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Abstract. We study a boundary value problem associated with a system of two second-order
differential equations with cubic nonlinearity which model a film of superconductor material subjected
to a tangential magnetic field. We show that for an appropriate range of parameters there are
asymmetric solutions and only trivial symmetric solutions. We then correct an error of the authors
in [Nonlinear Problems in Applied Mathematics, SIAM, Philadelphia, PA, 1996, pp. 150–158] and
show that the associated energy function is negative for the asymmetric solutions. Since the energy is
zero for the trivial symmetric solution, it follows that a global minimizer of the energy is asymmetric.
This property resolves a conjecture of Marcus [Rev. Mod. Phys., 36 (1964), pp. 294–299].
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1. Introduction. In this paper we continue our recent studies [9], [10] of the one-
dimensional Ginzburg–Landau model [8] for superconductors. Our main objective is
to investigate the model for the existence of asymmetric minimizers of the appropriate
energy integral. It is expected that the physically interesting solutions will be energy
minimizers. These solutions satisfy a symmetric boundary value problem which was
known to have a set of symmetric solutions. We will show, however, that in one space
dimension, for some parameter values, the energy minimizer is an asymmetric solution
to this symmetric boundary value problem.

The problem may be compared to studies in two dimensions, where the symmetry
of the energy minimizer is unresolved. Recent papers on this include [12] and [14].
Work in two dimensions has largely dealt with a reduced problem in which variations
in the magnetic field are ignored. In contrast, it is possible to include the magnetic
field as a variable in the analysis of the one-dimensional model.

In order to properly describe our results we first need to give a brief development
of the problem as well as a summary of our previous investigations.

In 1950 Ginzburg and Landau [8] proposed a model for the electromagnetic prop-
erties of a film of superconducting material of width d subjected to a tangential
external magnetic field. Under the assumption that all quantities are functions only
of the transverse coordinate, they proposed that the electromagnetic properties of
the superconducting material are described by a pair (φ̃, ã), which minimizes the free
energy functional

(1.1) G =
1

d

∫ d/2

−d/2

(
φ̃2(φ̃2 − 2) +

2(φ̃′)2

k2
+ 2φ̃2ã2 + 2(ã′ − he)2

)
dx.

The functional G is now known as the Ginzburg–Landau energy and provides a mea-
sure of the difference between normal and superconducting states of the material.
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The variable φ̃ is the order parameter which measures the density of superconducting
electrons, and ã is the magnetic field potential. Also, he is the external magnetic field,
and k is the dimensionless material constant distinguishing different superconductors,
i.e., 0 < k < 1√

2
for type I superconductors and k > 1√

2
for type II superconductors

(see also [7]). The minimizer requirement, that G be stationary with respect to general
first-order variations of the functions φ̃ and ã, leads to the boundary value problem

(1.2) φ̃
′′

= k2φ̃(φ̃2 + ã2 − 1),

(1.3) ã
′′

= φ̃2ã,

(1.4) φ̃′
(
± d

2

)
= 0, ã′

(
± d

2

)
= he.

It is routine to prove that G has a smooth minimizer satisfying (1.2)–(1.4) for
any positive he. In 1964 Marcus [13] investigated the problem (1.2)–(1.4) and gave
arguments which imply that a nontrivial minimizer of G should also satisfy

(1.5) φ̃(x) > 0 for all x ∈
[
− d

2
,
d

2

]
,

and, therefore, this is the only kind of solution we consider. A solution of (1.2)–(1.3)
is called symmetric if

(1.6) φ̃′(0) = 0 and ã(0) = 0.

It follows from (1.2) and (1.3) that if φ̃′(0) = ã(0) = 0, then φ̃ is an even function
and ã is odd. Thus φ̃ is symmetric with respect to the origin and ã is antisymmetric.
If (1.6) does not hold, then the solution is called asymmetric. Marcus makes the
conjecture that a minimizer of G is probably a symmetric solution satisfying (1.2)–
(1.6). However, he leaves open the possibility that asymmetric solutions may also
exist.

In later work, Odeh [15] gave criteria for asymmetric solutions to exist by bifur-
cation as he increases, and in [2], [3], [4], [5], Bolley and Helffer give results implying
that these criteria are satisfied for each k > 0. The existence of at least one sym-
metric solution has been investigated by Odeh [15], Wang and Yang [18], Yang [19],
and also Bolley and Helffer [2], [3], [4], [5]. Numerical studies, such as the work of
Seydel [16], [17] and also more recent theoretical work of Kwong [11], predict that
a range of parameters exists for which asymmetric solutions and multiple symmetric
solutions coexist. The work of Seydel [16] also predicts that there is a range of pa-
rameters for which no nontrivial symmetric solutions exist, yet asymmetric solutions
do exist. In Figure 1 we show a solution found by Seydel. (The solution is rescaled
from (1.2)–(1.4) by dividing φ̃ through by φ̃(0).) Other papers, such as [6], consid-
ered the problem on an infinite interval, whereas in our work, the interval is large but
finite. None of these studies addressed the physically important criterion of whether
the solutions of the problem (1.2)–(1.5) are actually global minimizers of the energy
functional G. However, a recent paper by Aftalion [1] does discuss this problem and
includes a conjecture that asymmetric solutions can have a lower energy than the
symmetric solutions. This is confirmed in the current paper.

In two recent papers [9], [10] we began our investigation of the problem (1.2)–(1.5)
with the goal of proving the existence of solutions predicted by the numerical studies
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Fig. 1. An asymmetric solution, showing φ̃/φ̃(0) and a, found by Seydel. Here k = 1.

described above. First, we studied the existence of multiple symmetric solutions and
proved the following result.

Theorem 1 (see [10]). (i) Let k ∈ (0, 1√
2
). If d > 0 is sufficiently large, there is

a range of values of he for which at least two symmetric solutions exist.

(ii) Let k > 1√
2
. If d > 0 is sufficiently large, there is a range of values of he for

which at least three symmetric solutions exist.

Remark. In related studies, Bolley and Helffer [2], [3], [4], [5] have investigated
other properties of symmetric solutions, including bifurcation analysis and the unique-
ness of solutions. Their analysis assumes that k tends to zero, whereas our results
assume that k > 0 is fixed and d becomes large.

In [9] we shifted our attention from the symmetric solutions found in [10] to
the study of asymmetric solutions. As mentioned above, the numerical experiments
of Seydel (in particular, see Figure 6.10 in [16]) predict that there is a range of
parameters in which there are no nontrivial symmetric solutions, yet asymmetric
solutions do exist. This leaves open the possibility that in this parameter range the
minimizer of G could be an asymmetric solution. Thus, our goal in [9] was to prove
that there is a range of parameters in which only asymmetric solutions exist, and that
the energy G is minimized by such solutions. The first step in proving this result is to
find an upper bound on the values of he for which a symmetric solution exists. Thus,
for fixed k > 0 and d > 0, we let h∗e denote the supremum of the set of all positive he
for which a nontrivial symmetric solution exists. Since we are assuming that d � 1
we define hsyme = limd→∞h∗e.

In [9] we proved that if k ≥ 1√
2.01

, then hsyme <
√

3k.
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Unfortunately, a rescaling error led us to assert that this inequality was sufficient
to prove that there are asymmetric minimizers. It turns out that we need a stronger
estimate. We shall show below that the inequality

(1.7) hsyme < 1.68k

suffices. This is obtained by a routine but tedious refinement of the proof in [9].
We shall not repeat that proof here. However, in the appendix we describe the
changes which must be made in [9] to obtain (1.7). We add that the proof of (1.7) is
considerably easier for large k. The proof for this case is in [9]. However, we want to
include values in the range of type I superconductors, and this is more difficult.

Statement of main results. In this paper we will make use of (1.7) in proving
that G has an asymmetric minimizer. We prove two main results. First, we fix
k ≥ 1√

2.01
so that both type I and type II superconductors are included. There is

no claim that this is a “best possible” estimate. It would be interesting to study
the transition from asymmetric to symmetric minimizers as k decreases within the
type I region. Then, in Theorem 2, we consider large d and prove that there exists a
family of small amplitude asymmetric solutions of the problem (1.2)–(1.5). We will
also prove that he

k ≥ 1.6831 for large d, for each of the asymmetric solutions found
in Theorem 2. This and (1.7) confirm the numerical prediction of Seydel in [16], that
there is a parameter regime in which there are asymmetric solutions and only trivial
symmetric solutions.

The work of Bolley and Helffer includes results which imply the existence of
asymmetric solutions. The proofs, which must be pieced together from several papers,
are by bifurcation theory, and do not appear to give the estimate of he which we
obtain and which is essential in our discussion of whether these asymmetric solutions
are energy minimizers.

The proof of Theorem 2 is given in section 2. Next, in Theorem 3 (proved in
sections 3 and 4) we show that the energy is negative for the asymmetric solutions
found in Theorem 2. This will allow us to prove that for large d a global minimizer
of G must be asymmetric.

In addition to showing that asymmetric solutions exist and have small amplitude,
we will prove that each of these has exactly one critical point (a relative maximum)
in the open interval (−d2 , d2 ) and that the relative maximum occurs at a value close

to −d2 . Because of these properties, we find it convenient to rescale the problem. We
introduce parameters r, h,m, and M and a new independent variable t by setting

(1.8) r =
1

k2
, h =

he
k
, m+M = kd, x =

d

2(m+M)
(2t+m−M).

Next, we define new dependent variables ψ and A by

(1.9) φ̃(x) = βψ(t) and ã(x) = A(t),

where β = φ̃(0). Then (1.1)–(1.5) become

(1.10) G =
2β2

(m+M)

∫ M

−m

(
ψ2

(
β2ψ2

2
− 1 +A2

)
+ (ψ′)2 +

1

rβ2
(A′ − h)2

)
dt,

(1.11) ψ
′′

= ψ(β2ψ2 +A2 − 1),
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(1.12) A
′′

= rβ2ψ2A,

(1.13) ψ′(−m) = ψ′(M) = 0, A′(−m) = A′(M) = h > 0,

and

(1.14) ψ > 0 in [−m,M ].

We now state our existence result in the following theorem.
Theorem 2. For sufficiently small β > 0 there is a value h > 1.6831 and a

solution (ψ,A) of (1.11)–(1.14) defined on an interval [−m,M ] such that the following
properties hold:

(i) m = m(β) > 0, M = M(β) > 0, and limβ→0+(m,M) = (0,∞);
(ii) ψ′ > 0 on (−m, 0), ψ′(0) = 0, and ψ(0) = 1;
(iii) ψ′ < 0 on (0,M);
(iv) There is an h0 > 1.6831 such that

(1.15) A′(−m)→ h0 as β → 0+.

Remark. Because of (1.8) and (1.9), each of the solutions (ψ,A) found in Theorem
2 corresponds to a solution (φ̃, ã) of (1.2)–(1.5). Since ψ has a relative maximum at
t = 0, (1.8) implies that φ̃′(xmax) = 0 where xmax = d

2

(
m−M
m+M

)
. It follows from

(1.9) and properties (i) and (iii) of Theorem 2 that for small β > 0, xmax < 0, and
φ̃′ < 0 for all x ∈ (xmax,

d
2 ). Therefore, φ̃′(0) < 0, and (1.6) cannot hold. We

conclude that (φ̃, ã) is an asymmetric solution of (1.2)–(1.5).
We now state our second result. Recall that G gives the free energy of a solution.
Theorem 3. Let (ψ,A) be an asymmetric solution found in Theorem 2. There

exists γ > 0 such that if r ∈ (0, 2 + γ), then G < 0 for sufficiently small β > 0.
Asymmetric minimizers. We now return to the original system (1.1)–(1.5)

and show that G has an asymmetric minimizer. Recall that k ≥ 1√
2.01

is fixed. Also,

it follows from (1.7) that if he
k ≥ 1.6831 and d is sufficiently large, then the only

symmetric solution of (1.2)–(1.5) is the trivial solution (φ̃, ã) = (0, hex), also known
as the “normal state.” Substitution of this pair into (1.1) shows that G = 0. Next,
we conclude from (1.8), (1.9), and the results of Theorems 2 and 3 that the problem
(1.2)–(1.5) has an asymmetric solution for large d, that ã′(−d2 ) ≥ 1.6831 k, and that
the corresponding energy G is negative. Therefore, in this parameter range, since G
is zero for the trivial symmetric solution and negative for at least one asymmetric
solution, a minimizer of G must be asymmetric.

2. Proof of Theorem 2. Our goal in this section is to show that for small β > 0
there is a solution (ψ,A) of the system

(2.1a) ψ
′′

= ψ(β2ψ2 +A2 − 1),

(2.1b) A
′′

= rβ2ψ2A

on an interval [−m,M ], where m > 0 is small and M > 0 is large, and such that

(2.2a) ψ′(−m) = ψ′(M) = 0, A′(−m) = A′(M) = h > 0,
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(2.2b) ψ′ > 0 on (−m, 0), ψ′ < 0 on (0,M),

(2.2c) ψ > 0 on [−m,M ],

and

(2.2d) ψ(0) = 1, ψ′(0) = 0.

Our method of proof uses a topological shooting argument. For this we begin
by analyzing the important properties of solutions of the initial value problem (2.1a),
(2.1b), (2.2d) when β = 0.

In this case A′ is constant, and we set A′ = h, where h > 0 is to be determined
later. Setting A(0) = A0, also to be determined later, we obtain the second-order
linear equation

(2.3) ψ
′′

= ((A0 + ht)2 − 1)ψ.

Because of (2.2d) we consider the solution of (2.3) such that the ψ(0) = 1, ψ′(0) = 0.
Lemma 2.1. Suppose that −1 ≤ A0 ≤ 0. Then there is a unique h0 > 0 (depending

continuously on A0) such that ψ > 0, ψ′ < 0 on (0,∞), and ψ(t) → 0 as t → ∞. If
0 < h < h0, then ψ = 0 before ψ′ = 0, while if h > h0, then ψ′ = 0 before ψ = 0.

Proof. We consider the Riccati equation obtained by setting

ρ(s) =
ψ′(s/h)

ψ(s/h)
.

Then ρ(0) = 0 and

(2.4) ρ′ =
H(s)− ρ2

h
,

where H(s) = (A0 + s)2 − 1. Since A0 ∈ [−1, 0], ρ initially decreases for any h > 0.
Further, ρ′ < 0 as long as ρ(s)2 > H(s). As long as ρ′ < 0, the right side of (2.4) is
an increasing and negative function of h and ρ. Suppose, for some first s0 > 0, that

ρ′(s0) = 0. Then H(s0) = ρ(s0)2 so that A(s0) > 1. Therefore, ρ′′(s0) = 2A(s0)
h > 0.

For s > s0 it follows from the equation for ρ′′ that ρ
′′
> 0 so that ρ increases until

ρ = 0; i.e., ψ′ = 0. Also, if ρ′ becomes positive for some h1, because ρ crosses the
curve ρ2 = H(s), then the same must happen for any h > h1. To see that there are
values of h such that ρ′ becomes positive we refer to (2.3). From that equation and
our assumption that ψ(0) = 1, ψ′(0) = 0 we easily see that for large h, ψ′ becomes
positive before ψ = 0. This implies that ρ, and hence ρ′, must become positive for
large h. It then follows from continuity that the set of values of h > 0 such that this
happens is open.

For small h > 0, on the other hand, we see that ρ decreases to below the curve
ρ = −s. For example, if −1 < A0 < 0 and 0 < h < 1 − A2

0, then ρ′(0) < −1, so
immediately ρ decreases below −s. If A0 = −1, then ρ(0) = ρ′(0) = 0. However,
ρ′′(s) < 2s−2

h and this integrates to show that for small h, ρ(2) < −2 and ρ′ < 0 over
(0, 2]. It follows from (2.4), and our assumption that A0 ∈ [−1, 0], that ρ′ continues
to decrease until ρ→ −∞ at some finite s1, that is, ψ(s1) = 0. It is clear that the set
of h′s such that ρ(s) < −s for some s is an open subset of the interval 0 < h < ∞.
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Similarly, as we pointed out above, the set of h′s such that ρ(s)2 < H(s) for some s
is also open.

Moreover, if ρ ever falls below −s, then we see from the equation for ρ′′ that
thereafter, ρ′ < −1, and ρ decreases monotonically to −∞. On the other hand, if
ρ′ is ever positive, then we see that ρ becomes positive, and because of (2.4) it must
remain positive.

Hence, there is at least one h0 such that on 0 ≤ s <∞, ρ′ ≤ 0, and 0 > ρ > −s.
These bounds imply that the solution exists on the entire interval [0,∞). In order to
complete the proof of Lemma 2.1 we need further properties of this solution. These
are given in the following result.

Lemma 2.2. For such an h0, ρ
′ < 0, −s < ρ(s) on (0,∞), ρ(s) < −√H(s) if

H(s) ≥ 0, and ρ+
√
H(s)→ 0 as s→∞.

Proof. The inequalities have already been proved. To see the limiting behavior of
ρ(s), we first note that for h = h0, ρ

′(s) is bounded. If ρ′ is unbounded, then it must
get arbitrarily large and negative, but then the equation for ρ′′ shows that ρ′ remains
large and negative and ρ(s) < −s for some s.

Writing ρ′ = (
√
H−ρ)(

√
H+ρ)

h and noting that the first of these factors is un-

bounded, we see that
√
H(s) + ρ(s) tends to zero, which implies Lemma 2.2.

To prove uniqueness we suppose that there is a second positive value of h, h1 < h0

for which this behavior occurs. Let ρ1, ρ0 denote the corresponding solutions. Then
ρ1(0) = ρ0(0) = 0, and it is easily shown that

d

ds
(ρ1 − ρ0) < 0

for all s > 0. Thus ρ1 − ρ0 could not approach zero as s → ∞. However, Lemma
2.2 implies that ρ1 − ρ0 = (ρ1 +

√
H) − (ρ0 +

√
H) → 0 as s → ∞, a contradiction.

Therefore, h0 is unique.
To complete the proof of Lemma 2.1 we must show that h0 depends continuously

on A0. This follows from the uniqueness of h by a standard argument.
Now let A0 = −1, and define h0 from Lemma 2.1 with A0 = −1. We will find the

desired solutions near the point (A0, h) = (−1, h0).
Lemma 2.3. h0 > 1.6831.
Proof. Let

ρ̂(t) =
ψ′(t)
ψ(t)

,

so that

(2.5) ρ̂′ = H(ht)− ρ̂2.

Here, because A0 = −1, H(s) = −2s + s2, where s = ht as before. We use the
following result about a solution ρ̂ of (2.5) such that ρ̂(0) = 0. If ρ̂

′′′
< 0 for some

t1, with ρ̂, ρ̂′, ρ̂
′′
< 0 on (0, t1), then ρ̂ decreases monotonically to −∞. To see this,

compute the equation satisfied by ρ̂
′′′′

, that is,

ρ̂
′′′′

+ 2ρ̂ρ̂
′′′

= −6ρ̂′ρ̂
′′
.

If there were a first y > t1 where ρ̂
′′′

(y) = 0, then ρ̂
′′′′

(y) ≥ 0. However, the last
equation gives ρ̂

′′′′
(y) < 0 since the definition of y implies that ρ̂′ρ̂

′′
is positive and
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increasing on (t1, y). From these derivative properties it follows that ρ̂ decreases below
−s, and, hence, ρ̂(s)→ −∞ at a finite value of s. Next, we define a sequence {ρ̂N} of
functions, all defined on [0, 2] as follows:

ρ̂0(t) =

∫ t

0

(h2r2 − 2hr)dr, ρ̂N+1(t) = ρ̂0(t)−
∫ t

0

ρ̂N (r)2dr for N ≥ 1.

From this definition it is evident that {ρ̂N} forms a decreasing sequence of functions
defined on [0,2], for all N ≥ 1. Furthermore, it is easily shown that our solution ρ̂(t)
satisfies ρ̂

′′′
< ρ̂

′′′
i on [0,2], for all i ≥ 1. Setting h = 16831

1000 , we used computer algebra
program Maple to compute ρ̂6, a polynomial of degree 225. All calculations are with
integers and rational numbers so that there are no roundoff errors. From ρ̂6 and its
first two derivatives we can compute ρ̂′′′7 without having to compute ρ̂7. We find that
ρ̂′′′7 (6/5) < 0 and that on [0,6/5], ρ̂, ρ̂′, ρ̂

′′
are all negative. This completes the proof

of the lemma.
Our solution (ψ,A) to (2.1a)–(2.2d) is obtained by perturbing A(0) from −1,

keeping β = 0, and then letting β be positive. Our argument is by “shooting,” rather
than by the use of bifurcation theory.

Thus, we will assume that

A(0) = −1 + ε

for small ε ≥ 0, and we let h0 = h0(ε) denote the value of h found in Lemma 2.1.
In constructing solutions to (2.1)–(2.2), in order to get something meaningful at

β = 0, we replace the boundary conditions on A in (2.2a) with∫ M

−m
ψ2(t)A(t)dt = 0.

Lemma 2.4. Suppose that ε = 0, (i.e., A0 = −1) and let ψ0 be the solution found
in Lemma 2.1 where h = h0 = h0(0). Then∫ ∞

0

ψ0(t)2(−1 + h0t)dt = 0.

Proof. It is easily seen that ψ0(t) → 0 exponentially fast as t → ∞. Thus, the
integral in the lemma converges and limt→∞(−1 + h0t)2ψ0(t)2 = 0. We set ψ = ψ0 in
(2.3), multiply by ψ′0, and integrate by parts to obtain the result.

From Lemma 2.1 and the definition of h0(ε) we see that for each h > h0(ε), there
is a first t = th > 0 such that ψ′(th) = 0, ψ′ < 0 and ψ > 0 on (0, th), with ψ(th) > 0.
By the implicit function theorem, th is continuous in h on (h0(ε),∞) since ψ

′′
(th) > 0.

(If ψ
′′
(th) = 0, then th = 2

h and ψ
′′′

(th) > 0, a contradiction.) Further, th → ∞ as
h→ h0(ε) from above.

Now consider small ε > 0, set h = h0(ε), and compute ψ
′′
(0) and ψ

′′′
(0). We

find that ψ′′(0) = −2ε + ε2 and ψ
′′′

(0) = 2(−1 + ε)h0(ε). From this and the fact
that h0(ε) → h0 > 0 as ε → 0+, we see that for small ε, ψ′(−m) = 0 for some
m = m0(ε) > 0. Furthermore,

(2.6) −m =
−2ε

h0(ε)
+ 0(ε2).

Here, O(ε2) < Lε2 for some L independent of ε. We now compute

I(ε) =

∫ ∞
−m

ψ2Ads,
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where A(s) = −1+ ε+h0(ε)s. Again, multiplying (2.3) by ψ′ and integrating by parts
give

0 = −ψ(−m)2A(−m)2 + ψ(−m)2 − 2h0

∫ ∞
−m

ψ(s)2A(s)ds.

Using (2.6) and the fact that ψ(−m) = 1 +O(ε), we find that I(ε) = − ε
h0

+O(ε2)

as ε→ 0+. Thus, we have shown that with h = h0(ε) for small ε, I(ε) < 0. Fix ε > 0
small enough so that this inequality holds for h = h0(ε). Then for h− h0(ε) positive
but sufficiently small, −m = −m(ε, h) will still be defined as the largest negative zero
of ψ′, A is positive on (th,∞), and therefore,∫ th

−m
ψ2Ads < 0.

Our goal now is to find an h and ε such that −m and th are defined as the negative
and positive zeros of ψ′ closest to t = 0, with m small and th large, and such that

I =

∫ th

−m
ψ2Ads > 0.

We will see that it is not necessary to have the same m and th as before. Starting
with ε = 0 and h = h0(ε), we now raise h, instead of ε. Thus, for small h − h0 > 0
our solution satisfies A(0) = −1, A′(0) = h > h0 = h0(0), ψ′(th) = 0 for some large
th. In this case, we multiply (2.3) by ψ′ and integrate from 0 to th, where th is the
first positive zero of ψ′. Using integration by parts once again, we find that I > 0.
We then keep h fixed and raise ε slightly, whereupon both m = m(ε, h) and th are
defined, still with I > 0. We summarize these results in the following lemma.

Lemma 2.5. For each sufficiently small ε > 0 there is an h1(ε) > h0(ε) such
that if h0(ε) < h < h1(ε), then the solution of (2.3) with A0 = −1 + ε, ψ(0) = 1, and
ψ′(0) = 0 is decreasing on an interval [0,M ], increasing on an interval [−m, 0], and
ψ′(−m) = ψ′(M) = 0, and

I(ε, h) =

∫ M

−m
ψ2Ads < 0.

Furthermore, ψ > 0 on [−m,M ] and h1(ε) → h0(0) = h0 as ε → 0+. On the other
hand, for each h > h0(0) sufficiently close to h0(0), there is an interval (0, ε1(h)) of
ε′s such that ψ has the same behavior, but I(ε, h) > 0. As ε and h − h0(0) tend to
zero, m→ 0 and M →∞.

Corollary 2.6. For ε > 0 sufficiently small, there is an h2 = h2(ε) such that if
ψ is the solution of (2.3) with A0 = −1 + ε and (ψ(0), ψ′(0)) = (1, 0), then there are
values M > m > 0 such that

(2.7a) ψ′(−m) = ψ′(M) = 0, ψ′ > 0 on (−m, 0), ψ′ < 0 on (0,M),

(2.7b) ψ
′′
(−m) 6= 0, ψ

′′
(M) 6= 0.

Further, I(ε, h1(ε)) < 0 and I(ε, h2(ε)) > 0. Finally, h2(ε) → h0(0) = h0 as
ε→ 0.
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With ε > 0 sufficiently small so that Lemma 2.5 and Corollary 2.6 hold, we now
raise β and consider solutions of (2.1) satisfying (2.2d). Since ψ

′′ 6= 0 at the zeros of
ψ′ when β = 0, it follows from the implicit function theorem that the zeros −m < 0
and M > 0 of ψ′ persist as continuous functions of β and the values of A(0) and A′(0).
For each sufficiently small ε > 0 there exist functions h1(ε) and h2(ε) independent of
β, such that for sufficiently small β (depending on ε) the solution (ψ,A) of (2.1) and
(2.2d) with

(2.8) A(0) = −1 + ε, A′(0) = h1(ε),

satisfies (2.7) on an interval [−m,M ], and∫ M

−m
ψ2Adt < 0.

Also, the solution of (2.1), (2.2d) with A(0) = −1 + ε, A′(0) = h2(ε) satisfies∫ M

−m
ψ2Adt > 0.

Furthermore, β → 0 as ε→ 0, and

(m,M)→ (0,∞), (h1(ε), h2(ε))→ (h0, h0).

In addition, it follows from (2.1b) that A
′′

is uniformly bounded on [−m, 0], and
therefore, A′(−m) = h → h0 as ε → 0 and β → 0+. It then follows from continuity
that for given fixed small ε, and sufficiently small β ≥ 0, there is an h ∈ (h1(ε), h2(ε))
such that the solution (ψε,β , Aε,β) of (2.1), (2.2d), and (2.8) with A′(−m) = h also

satisfies
∫M
−m ψ

2Adt = 0, so A′(M) = h. The conclusion of Theorem 2 now follows
from the transformation (1.8)–(1.9).

In the next section we will turn to the proof of Theorem 3. For this we will use
the following result, which is based on the construction given above. Let

E(ψ,A) =

∫ M

−m
F (ψ,A)(t)dt,

where

F (ψ,A)(t) = r

(∫ M

t

ψ(s)2A(s)ds

)2

− ψ(t)4

2
.

Lemma 2.7. With (ψ,A) = (ψε,β , Aε,β) chosen as in the proof of Theorem 2, we
have

lim
ε→0
{ lim
β→0
E(ψ,A)} = E(ψ0, A

0),

where A0(s) = −1 + h0s.
Proof. Our proof of Theorem 2 shows that

lim
ε→0
{ lim
β→0

(ψε,β(s), Aε,β(s))} = (ψ0(s), A0(s))
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uniformly on compact intervals. Let δ > 0 be given. We can choose K1 > 0 such that

(2.9) rψ(K1)4 < δ,

∫ ∞
K1

∣∣F (ψ0, A
0)(t)

∣∣dt < δ,

and

(2.10) A0(s)2 − 2 >
A0(s)2

2

for s ≥ K1. Then for sufficiently small ε > 0 we choose β1 = β1(ε) > 0 such that for
0 < β < β1,

(2.11)
∣∣∣ ∫ K1

0

(F (ψ,A)(t)− F (ψ0, A
0)(t))dt

∣∣∣ < δ.

Further, we can ensure that for 0 < β < β1, (2.10) also holds on [K1,M ] with A
substituted for A0.

We consider two cases:

(i)
ψ′0(K1)

ψ0(K1)
> −1

and

(ii)
ψ′0(K1)

ψ0(K1)
≤ −1.

Let ρ = ψ′

ψ , so that, from (2.1a),

ρ′(s) ≥ A(s)2 − 1− ρ2.

In case (i) we have ρ′ ≥ A(s)2

2 on [K1,M ] as long as −1 ≤ ρ < 0, so that ρ = 0 (and
hence ψ′ = 0) before ∫ t

K1

A(s)2

2
ds = 1.

In other words,

(2.12)

∫ M

K1

A(s)2

2
ds ≤ 1.

Thus, (2.10) implies that if M ≥ t ≥ K1, then A(s)
2 ≥ 1 on [t,M ], and hence∫ M

t

ψ(s)2A(s)ds ≤ ψ(K1)2

∫ M

t

A(s)2

2
ds ≤ ψ(K1)2.

Since (2.10) and (2.12) also imply that M −K1 < 1, it follows from (2.12) and (2.9)
that in case (i),

(2.13)

∫ M

K1

F (ψ,A)(t)dt < δ
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for sufficiently small ε and β.
In case (ii), since ψ′(M) = 0, there must be a T ∈ [K1,M) such that ρ ≤ −1 on

[K1, T ] and ρ ≥ −1 on [T,M ].

First consider
∫ T
K1
F (ψ,A)(t)dt. On [K1, T ] we have ψ′ ≤ −ψ, so that

(2.14) ψ(t) ≤ ψ(K1)eK1−t.

We now estimate the term ∫ M

t

ψ(s)2A(s)ds

in F (ψ,A) for K1 ≤ t ≤ T. For this we use the following lemma.
Lemma 2.8. limt→∞ ψ0(t)A0(t) = 0.

Proof. In our estimates of ψ0 we saw that
ψ′0
ψ0

+H0(t)→ 0. Since A0 grows linearly,
the result follows.

We now continue with the proof of Lemma 2.7. We choose K1 so that in addition
to the earlier constraints, ψ0(K1)A0(K1) < 1. For small ε and β, this inequality will
also be satisfied by (ψ,A). If t ≤ T, then∫ M

t

ψ(s)2A(s)ds =

∫ T

t

ψ(s)2A(s)ds +

∫ M

T

ψ(s)2A(s)ds

≤
∫ T

t

ψ(s)2A(s)ds +ψ(T )2

∫ M

T

A(s)ds.

The argument used earlier to get (2.12) shows that
∫M
T
A(s)ds ≤ 1, where we use

(2.10) with A substituted for A0. From an integration of ψ′

ψ ≤ −1 we obtain∫ T

t

ψ(s)2A(s)ds ≤ ψ(t)( max
t≤s≤T

ψ(s)A(s))

∫ T

t

et−sds.

In [K1, T ], ψ′ ≤ −ψ, so d
ds (ψ(s)A(s))≤ −ψ(s)A(s)+ψ(s)A′(s). But A′(s) ≤ A′(M) =

h ≤ 2h0 for small ε and β, so ψ(s)A(s) is decreasing in [K1, T ].Hence,
∫ T
t
ψ(s)2A(s)ds ≤

ψ(t) ≤ ψ(K1)eK1−t. Using this we find that on [K1, T ],

F (ψ,A) ≤ rψ(K1)2e2(K1−t).

Thus, we can further restrict K1 to ensure that for small positive ε and β,∫ T

K1

F (ψ,A)(t)dt < δ.

Finally, we consider
∫M
T
F (ψ,A)(t)dt. As in case (i), we have∫ M

T

A(s)2

2
ds ≤ 1.

Hence, we find that ∫ M

t

ψ(s)2A(s)ds ≤ ψ(T )2 ≤ ψ(K1)2
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and

M − T ≤ 1.

We then have (without further change in K1) that∫ M

T

F (ψ,A)(t)dt < δ.

Since δ was arbitrary, this completes the proof of Lemma 2.7.

3. Proof of Theorem 3. In order to prove Theorem 3 we need to show that
the asymmetric solutions found in Theorem 2 have the additional property that their
corresponding energy G is negative if ε > 0 and β > 0 are small enough. Thus, we
define

(3.1) Q =
2(m+M)

β4
G.

Then, by (3.1) and (1.10), Q is given by

(3.2) Q =
1

β2

∫ M

−m

(
ψ2

(
β2ψ2

2
− 1 +A2

)
+ (ψ′)2 +

1

rβ2
(A′ − h)2

)
dt.

Therefore, if we show that Q < 0 for small ε > 0 and β > 0 then G is also negative
and Theorem 3 is proved. We need to simplify Q. For this we use (1.11) and conclude
that

(3.3) ψ2

(
β2ψ2

2
− 1 +A2

)
+ (ψ′)2 = ψψ

′′
+ (ψ′)2 − β2ψ4

2
.

Then substitution of (3.3) ino (3.2), together with the observation that (ψψ′)′ =
ψψ

′′
+ (ψ′)2, reduces Q to

(3.4) Q =
1

β2

∫ M

−m

(
(ψψ′)′ − β2ψ4

2
+

1

rβ2
(A′ − h)2

)
dt.

Since ψ′(−m) = ψ′(M) = 0, (3.4) further reduces to

(3.5) Q =
1

β2

∫ M

−m

(
1

rβ2
(A′ − h)2 − β2ψ4

2

)
dt.

Next, it follows from an integration of (1.12) that

(3.6) h−A′ = rβ2

∫ M

t

ψ2Ads.

Finally, we substitute (3.6) into (3.5) and arrive at

(3.7) Q =

∫ M

−m

(
r

(∫ M

t

ψ2Ads

)2

− ψ4

2

)
dt.
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In view of Lemma 2.7 we conclude from (3.7) that

(3.8) lim
ε→0

lim
β→0

Q =

∫ ∞
0

(
r

(∫ ∞
t

ψ2
0A

0ds

)2

− ψ4
0

2

)
dt,

where A0 = −1 + h0s.
In the next section we prove the following lemma.
Lemma 3.1. There is a value γ > 0 such that

(3.9)

∫ ∞
0

(
r
(∫ ∞

t

ψ2
0A

0ds
)2

− ψ4
0

2

)
dt < 0

for all r ∈ (0, 2 + γ).
From Lemma 3.1 we observe that if r ∈ (0, 2 +γ), then Q < 0 for small ε > 0 and

β > 0. Therefore, G is also negative for small β > 0 and Theorem 3 is proved.

4. Proof of Lemma 3.1. For the proof of Lemma 3.1 we recall that ψ0 satisfies

(4.1) ψ
′′
0 = ψ0(−2h0t+ (h0)2t2),

(4.2) ψ0(0) = 1, ψ′0(0) = 0,

where h0 > 0 is the unique positive value for which ψ0 satisfies ψ′0 < 0 for all t > 0,
and

(4.3) lim
t→∞(ψ0(t), ψ′0(t)) = (0, 0).

The existence and uniqueness of h0 were proved in Lemma 2.1. Thus, our main
objective is to prove the following lemma.

Lemma 4.1. There is a value γ > 0 such that

(4.4)

∫ ∞
0

(
r
(∫ ∞

t

ψ2
0(−1 + h0s)ds

)2

− 1

2
ψ4

0(t)

)
dt < 0

for all r ∈ (0, 2 + γ).
The proof of Lemma 4.1 relies on an auxiliary result which we now establish.

Define the Riccati variable q = ψ′(t)
ψ(t) . Then q satisfies

(4.5) q′ + q2 + 2h0t− (h0)2t2 = 0,

(4.6) q(0) = q′(0) = 0.

Lemma 4.2. It follows from (4.5) and the definition of q that

(4.7) q < 0 and q′ < 0 for all t > 0,

(4.8) q ≤ −
√

(h0)2t2 − 2h0t for all t ≥ 2

h0
,

(4.9) q′ > −h0 for all t ≥ 0.
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Proof. Setting h = h0 and s = t h0, we observe that (4.7) and (4.8) follow
immediately from Lemma 2.2. It remains to prove (4.9). It follows from (4.6) that
q′(0) = 0. Thus q′ > −h0 on an interval [0, η) for small η > 0. Suppose that (4.9)
is false. Then there is a first t̂ > 0 for which q′(t̂) = −h0 and q

′′
(t̂) ≤ 0. Two

differentiations of (4.5) lead to

(4.10) q
′′′

+ 2qq
′′

= 2((h0)2 − (q′)2).

One solution of (4.10) is q′ ≡ −h0 for all t. Thus, if q
′′
(t̂) = 0 then uniqueness

of solutions implies that q′ = −h0 for all t ≥ 0, and in particular, q′(0) = −h0,
contradicting the fact that q′(0) = 0. Therefore, it must be the case that

(4.11) q′(t̂) = h0 and q
′′
(t̂) < 0.

It then follows from (4.10) and (4.11) that q
′′
(t) < 0 for all t > t̂ so that

(4.12) lim
t→∞ q

′(t) < −h0.

We conclude from (4.12) that

(4.13) lim
t→∞ q(t) + h0t < 0.

However, it follows from Lemma 2.2 that limt→∞ q(t) +h0t = 0, contradicting (4.13).
Thus, it must be the case that q′ > −h0 for all t > 0 and the proof is complete.

We now return to the proof of Lemma 4.1. First, we conclude from (4.7) and
(4.8), and the properties that 0 < ψ0 < 1 and ψ′0 < 0 for all t > 0, that the integral∫∞

0
ψ4

0(t)dt is well defined and positive. The same reasoning shows that

(4.14) J =

∫ ∞
0

(∫ ∞
t

ψ2
0(s)(−1 + h0s)ds

)2

dt

is well defined and positive. It remains to prove (4.4). For this we begin by estimating
the integral

(4.15) H =

∫ ∞
t

ψ2
0(−1 + h0s)ds.

An integration by parts reduces (4.15) to

(4.16) H = − ψ2
0

2h0
(−1 + h0t)2 − 1

h0

∫ ∞
t

ψ′0ψ0(−1 + h0s)2ds.

It follows from (4.1) that ψ′0ψ
′′
0 + ψ′0ψ0 = ψ′0ψ0(−1 + h0t)2, and therefore, (4.16)

becomes

(4.17) H = − ψ2
0

2h0
(−1 + h0t)2 +

ψ2
0(t)

2h0
+

1

2h0
(ψ′0)2.

Recall that ψ′ = qψ. Then (4.6) and (4.17) imply that

(4.18) H = −ψ
2
0q
′

2h0
.
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It follows from (4.18) and (4.14) that

(4.19) J =

∫ ∞
0

H2(t)dt ≤
∫ ∞

0

ψ4
0(t)

4(h0)2
(q′)2dt.

Because Lemma 4.2 gives −h0 < q′ < 0 for all t > 0, (4.19) further reduces to

(4.20) J <
1

4

∫ ∞
0

ψ4
0(t)dt.

Finally, it follows from (4.4), (4.14), and (4.20) that there exists γ > 0 such that

∫ ∞
0

(
r

(∫ ∞
t

ψ2
0(−1 + h0s)ds

)2

− ψ4
0

2

)
dt < 0

for all r ∈ [0, 2 + γ). This completes the proof of Lemma 4.1.
Appendix. In [9], when studying symmetric solutions, we used a different scaling

from that used in this paper. That is, we rescaled (1.2)–(1.5) by setting

K =
k2d2

4
, h =

hed

2
, r =

1

k2
, y =

2x

d
,

and defined new dependent variables φ and a by

φ(y) = φ̃(x), a(y) = ã(x).

This transforms the problem (1.2)–(1.5) into

φ′′ = Kφ(φ2 + a2 − 1),

a′′ = rKφ2a,

dφ

dy
(±1) = 0,

da

dy
(±1) = h,

φ > 0 on [−1, 1].

Since we are considering symmetric solutions, we consider the initial values

φ(0) = β, φ′(0) = 0, a(0) = 0, a′(0) = α.

In [11], Kwong proved that for each β ∈ (0, 1) there exists a unique α = α(β) > 0,
continuously dependent and decreasing in β such that φ′(1, β, α(β)) = 0. He then set
h(β) = a′(1, β, α(β)) and proved that h is continuous, h(0) > 0, and h(1) = 0. Thus,
to obtain the upper bound hsym ≤

√
3 given in [9] we found that it was sufficient to

fix r ∈ (0, 2.01] and estimate

hsym = limK→∞
(

sup
0≤β≤1

h(β)√
K

)
.
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In [9], our estimate for hsym was obtained by carefully analyzing the behavior of (φ, a)
for each β ∈ (0, 1). We considered three intervals of β, namely, (0, .1], (.1, 1 − 1√

K
],

and (1− 1√
K
, 1). We made repeated use of the “energy” function

φ′2

K
+
a′2

rK
− φ4

2
+ φ2 − a2φ2,

which is constant for solutions of the system. We defined the function

Q(y) = β2 − β4

2
+
φ(y)4

2
− φ(y)2 + a2φ(y)2

and found the point y0 where Q(y0) = 1 to be important. The difficult part of the
estimate required us to consider small intervals of values of φ(y0), say, I1 < φ(y0) < I2.
A priori, we know only that 0 < φ(y0) < 1 and to get better estimates we had to
subdivide (0, 1) into nine small subintervals [I1, I2].

In this paper, to get the improved estimates required to show that hsym ≤ 1.68
we have to use more subintervals. Thirty-four subintervals suffice. They are [0,.407],
[.407,.56], [.56,.6], then 30 intervals from .6 to .9 in steps of .01, and finally [.9,1.0].

With this change, the proof in [9] gives the required upper bound for hsym, and
because of our rescaling this immediately leads to hsyme ≤ 1.68k for k ≥ 1√

2.01
. As we

mentioned in [9], our estimate for hsym is much easier for small r.
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REGULARITY AND CONVERGENCE OF CRYSTALLINE MOTION∗
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Abstract. We consider the motion of polygons by crystalline curvature. We show that “smooth”
polygon evolves by crystalline curvature “smoothly” and that it shrinks to a point in finite time. We
also establish the convergence of crystalline motion to the motion by mean curvature.

Key words. crystalline motion, motion by mean curvature, viscosity solutions

PII. S0036141097317347

1. Introduction. Several models in phase transitions give rise to geometric
equations relating the normal velocity of the interface to its curvature. The cur-
vature term is related to surface tension and the surface energy is often an anisotropic
function of the normal direction, indicating the preferred directions of the underlying
crystal structure.

When the surface energy is isotropic, the resulting equation is the mean curvature
flow and a variety of techniques have been used to analyze this flow. Huisken [25]
showed that any convex set in higher than two space dimensions, shrinks to a point
smoothly in finite time. We note that Huisken’s method cannot be applied to the
planar motion by mean curvature. Using different methods from those in [25], Gage
and Hamilton [15] and Grayson [24] showed that a smooth planar embedded curve
first becomes convex and then smoothly shrinks to a point in finite time. However,
in general, in dimensions higher than two, embedded hypersurfaces may develop sin-
gularities and a weak formulation of the mean curvature flow is necessary to define
the subsequent evolution after the onset of singularities. Brakke [8] was the first to
study the mean curvature flow past the singularities. Using varifolds in geometric
measure theory, he constructed global generalized solutions that are not necessarily
unique. Almgren, Taylor, and Wang [2] used a time-step energy minimization ap-
proach together with geometric measure theory to analyze a very general class of
equations.

An alternate approach, initially suggested in the physics literature by Ohta, Jas-
naw, and Kawasaki [28], for numerical calculations by Osher and Sethian [26], repre-
sents the evolving surfaces as the level set of an auxiliary function solving an appro-
priate nonlinear differential equation. This level-set approach has been extensively
developed by Chen, Giga, and Goto [9] and Evans and Spruck [12]. Evolution of hy-
persurfaces with codimension greater than one is studied by Ambrosio and Soner [3],
and intrinsic definitions were developed by Soner [29] and Barles, Soner, and Sougani-
dis [7]. Since the level-set equations are degenerate parabolic, the theory of viscosity
solutions by Crandall and Lions [11] is used to define the level-set solutions. For more
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information on viscosity solutions see the survey by Crandall, Ishii, and Lions [10]
and the book by Fleming and Soner [13].

When the surface energy is convex, the evolution law is still degenerate parabolic
and much of the above theory generalizes to these equations as well.

Nonsmooth energies are also of interest, and an interesting class of surface energies—
called crystalline energies—have polygonal Frank diagrams. For these energies, the
corresponding solutions are also polygonal, and the evolution law is a system of ordi-
nary differential equations for the length of each side of the solution (see (2.3) below).
An excellent introduction to crystalline motion is given in the recent book of Gurtin
[22] and in the surveys of Taylor [32] and Taylor, Cahn, and Handwerker [34]. Short
time existence and the other properties of the planar solutions are proved by Angenent
and Gurtin [4] and Taylor [33]. Almgren and Taylor [1] showed that the crystalline
flow is consistent with the variational approach developed in [2]. In a recent preprint
Giga, Gurtin, and Mathias [19] study the classical solutions in three space dimensions
and a deep viscosity theory for graph-like solutions of very general geometric equa-
tions have been developed by Giga and Giga [16] and the references therein. We also
refer to Gurtin, Soner, and Souganidis [23] and Ohnuma and Sato [27], which treat a
relaxed formulation of evolving surfaces by nonconvex interfacial energies.

In this paper, we consider a two-dimensional problem with a crystalline energy
whose level sets are regular n-polygons and show the convergence of these solutions to
the unique smooth solution of the mean curvature flow. This convergence has already
been proved by Girao [20] for convex solutions and by Girao and Kohn [21] for graph-
like solutions. They also obtained the rate of convergence. Here we generalize the
convergence results in [20, 21] to general curves that are not necessarily convex. Our
proof is a set theoretic analogue of the weak viscosity approach of Barles and Perthame
[5, 6]. To describe our approach, let {Ωn(t)}t∈[0,T ) be a sequence of open polygons
each solving a crystalline flow. We define two possible limits:

Ω̂(t) := lim sup
n→∞, s→t

Ωn(s),

Ω(t) := lim inf
n→∞, s→tΩn(s).

(Precise definitions are given in (4.2) below.) Then, with only L∞ estimates, the

Barles–Perthame approach enables us to show that Ω̂ is a viscosity subsolution of the
mean curvature flow, and Ω is a viscosity supersolution of the mean curvature flow.
Since, in two space dimensions, there is a smooth solution to the mean curvature
flow, we show that both of these sets are equal to the smooth solution. This yields
the convergence of Ωn in the Hausdorff topology.

The paper is organized as follows. In the next section, we give the definition of
crystalline motion and prove the existence of a regular solution in section 3. We define
the weak viscosity limits in section 4 and prove their viscosity properties. Convergence
is proved in the final section. Some properties of the viscosity solutions are gathered
in the appendix.

After this work was completed, we were informed of a recent work of Giga and
Giga [17] related to ours. They proved the stability of the periodic graph-like solutions
for the motion by nonlocal weighted curvature. They also proved the motion by
crystalline energy is shown to approximate the motion by regular interfacial energy
if the crystalline energy approximates the regular interfacial energy. We also refer
to Fukui and Giga [14] for an approximation property of the motion by nonsmooth
weighted energy.
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2. Crystalline motion and n-smooth polygons. Here we recall several stan-
dard definitions and equations. Gurtin’s book [22] provides an excellent introduction
to this subject. Also, see [31, 33].

2.1. Surface energy. All geometric flows that we consider are, formally, the
gradient flows of the surface energy functional

I(Γ) :=

∫
Γ

f(~n) ds,(2.1)

where Γ is a Jordan curve in R2, ~n is its outward unit normal vector, and f : S1 →
[0,∞) is the surface energy function. It is customary to extend f to the whole R2 as
a homogeneous function of degree one,

f(x) = |x|f
(
x

|x|
)

∀x 6= 0,

and define

f̂(θ) := f( cos θ, sin θ ).

Then the twice differentiability of f on R2\{0} is equivalent to the twice differentia-

bility of f̂ , and f is convex if and only if f̂(θ) + f̂θ θ(θ) ≥ 0 for all θ.

The Frank diagram of the surface energy f is simply the polar graph of f̂−1, or
equivalently, it is the one-level set of f , i.e.,

F(f) := {x ∈ R2 : f(x) = 1} = {r (cos θ, sin θ) : rf̂(θ) = 1}.

When the surface tension f is smooth and convex, the gradient flow for the functional
I has the form

β(θ)V = (f̂(θ) + f̂θ θ(θ)) κ,(2.2)

where V , κ, (cos θ, sin θ) are, respectively, the normal velocity, the curvature, and
the normal vector of the solution Γ(t), and the given nonnegative function β is the

kinetic coefficient. The mean curvature flow corresponds to f̂ ≡ β ≡ 1, and the other
cases with strictly convex surface energy are qualitatively very similar to the mean
curvature flow.

If f is not convex, we need to modify both f and β to obtain the correct relaxed
equation. This relaxation procedure and the analytical properties of the relaxed
equation was studied by Gurtin, Soner, and Souganidis [23] and, independently, by
Ohnuma and Sato [27]. The common critical hypothesis in these works is the contin-
uous differentiability of the relaxed surface energy function.

2.2. Crystalline flow. Nonsmooth energy functions are of interest in models
for crystal growth, as it is well known that solid crystals can exist in polygonal shapes.
An interesting class of nonsmooth energies are the crystalline energies. The Frank
diagram of crystalline energy is a polygon.

Although the crystalline energies are only Lipschitz continuous, an appropriate
weak formulation of (2.2) is possible and is called the crystalline flow; see [22, section
12.5] for the precise definition. The crystalline flow was derived by Taylor [31] and,
independently, from thermodynamical considerations by Angenent and Gurtin [4].
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Fig. 1. Definition of χi.

Consider a crytalline energy function f , and let Θ := {θ1, . . . , θN} be the angles
corresponding to the corner points of the Frank digram of f . Suppose that the curve
Γ is locally smooth around a point with a normal angle θ∗ 6∈ Θ—say, θ∗ ∈ (θ1, θ2). We
can, then, decrease the energy I(Γ) of Γ by infinitesimally alternating the normal angle
between θ1 and θ2. Therefore, for crystalline energies, we consider only polygonal
solutions with normal angles taking values in Θ.

In this paper, for simplicity, we consider only crystalline energies whose Frank
diagrams are regular n-polygons, and kinetic coefficient β ≡ 1. Then

Θ = Θn :=

{
2πk

n
: k = 0, 1, . . . , (n− 1)

}
.

Here and hereafter θ ∈ Θ means θ ≡ 2πk/n mod 2π for some k ∈ {0, 1, . . . , n − 1}.
The evolution of side i, Li(t), is governed by

Vi(t) = − 2 tan(π/n)

li(t)
χi,(2.3)

where Vi(t), li(t), and χi, are, respectively, the normal velocity, the length, and the
discrete curvature of Li(t). The discrete curvature χi ∈ {−1, 0,+1}. It is equal to +1
if both edges of Li(t) have positive curvature, it is equal to −1 if both edges of Li(t)
have negative curvature, and it is equal to zero otherwise; see Figure 1. (Ω(t) denotes
the domain enclosed by Li(t)

′s.)
We close this subsection by stating the evolution rule for the length, li(t), of the

sides of a solution of the crystalline flow:

d

dt
li(t) =

1

cos2(π/n)

(
2 cos

(
2π

n

)
· χ

2
i

li(t)
− χ2

i+1

li+1(t)
− χ2

i−1

li−1(t)

)
.(2.4)

This equation follows from (2.3) and geometry; see [22, equation (12.39)].

2.3. n-smooth polygons. We continue by defining the notion of a “good” so-
lution of (2.3). For a polygon Γ, let N(Γ) be the total number of sides.

Definition 2.1. We say that a closed polygon Γ is an n-smooth polygon if N(Γ)
is finite and
(1) Γ encloses a simply-connected, bounded, open subset of R2,
(2) for every i = 1, . . . , N(Γ), the normal angle θi of the side i belongs to Θn,
(3) |θi − θi−1| = 2π/n for every i = 1, . . . , N(Γ), where |θi − θi−1| is understood as

the infimum over its representatives.
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The third condition is formally equivalent to the “discrete continuity” of the
normal angle, which explains the term “smooth.”

By definition, any solution of (2.3) satisfies the second condition.
Let

N+(Γ) := {i ∈ {1, . . . , N(Γ)} : χi = 1} ,

N−(Γ) := {i ∈ {1, . . . , N(Γ)} : χi = −1} ,

N0(Γ) := {i ∈ {1, . . . , N(Γ)} : χi = 0} .

Then for any n-smooth polygon Γ,

N+(Γ)−N−(Γ) =

N(Γ)∑
i=1

χi = n(2.5)

is an identity which is the discrete version of∫
C

κ ds = 2π

for a smooth Jordan curve C.

3. Regularity. In this section, we will show that there is a unique n-smooth
solution of (2.3) which evolves smoothly in time (i.e., remains n-smooth) and shrinks
to a point in finite time. This is the discrete analogue of a theorem of Grayson [24] and
Gage and Hamilton [15]. A more general statement is proved by Taylor [33, Theorem
3.1]. For the reader’s convenience, we provide all the details of this result.

Theorem 3.1 (Taylor [33]). Let Γ0 be an n-smooth polygon enclosing an open
set Ω0. Then there exist n-smooth polygons {Γ(t)}t∈[0,T ) solving (2.3) with the initial
condition Γ(0) = Γ0. Moreover Γ(t) shrinks to a point as t ↑ T , and

T =
|Ω0|

2n tan(π/n)
.(3.1)

Remark 3.2. Uniqueness follows from Giga and Gurtin [18] and Taylor [33].
We start with several results toward the proof of Theorem 3.1.
Clearly, for a short time there is a solution Γ(t) satisfying initial data. Let t1 > 0

be the first time this solution is no longer n-smooth. Since, by definition, the normal
angles of any solution take values in Θn (cf. section 2.2), there are two possibilities
at t1: either the length of one or more sides tend to zero or the solution self-intersects
at t1. We will first show that the latter does not happen. Our proof is very similar
to [33, Theorem 3.2(1)].

Lemma 3.3. Let t1 and {Γ(t) = ∂Ω(t)}t∈[0,t1) be as above. Then

lim inf
t↑t1

inf{li(s) : s ∈ [0, t], i = 1, . . . , N(Γ(0))} = 0.

Proof. Suppose the opposite. Then

inf{li(s) : s ∈ [0, t1), i = 1, . . . , N(Γ(0))} > 0.
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Then, by (2.4), each li(·) is smooth on (0, t1) and therefore

Ω(t1) = lim
t↑t1

Ω(t)

exists in the Hausdorff topology. By the definition of t1, Γ(t1) self-intersects. More-
over, for all t ∈ [0, t1],

|θi − θi−1| = 2π

n
, i = 1, . . . , N(Γ(t)) = N(Γ(0)),(3.2)

so that at t1 there are two possibilities: either two sides or two corner points touch
each other. Note that, by (3.2), if a corner point touches a side, then necessarily two
sides also touch each other. The following arguments are very similar to those in [18].

Case 1. Suppose that Li(t1) intersects at Lj(t1).
Then a straightforward analysis argument shows that (χi, χj) = (1,−1) or (χi, χj) =

(−1, 1). Since the analyses of these cases are symmetric, we may assume (χi, χj) =
(1,−1). Then li(t1) ≤ lj(t1).

Subcase (1). li(t1) < lj(t1).
Then for some δ > 0, li(t) < lj(t) in (t1 − δ, t1], and therefore,

α(t) :=
2 tan(π/n)

lj(t)
− 2 tan(π/n)

li(t)
> 0, t ∈ (t1 − δ, t1].

But α(t) is equal to the time derivative of the distance between Li(t) and Lj(t) and
this distance is equal to zero at t1. Hence this case is not possible.

Subcase (2). li(t1) = lj(t1).
Then, the sides adjacent to Li(t) and Lj(t) also touch each other at time t1,

and therefore, there have to be two sides satisfying the assumptions of the previous
subcase, thus yielding a contradiction.

Case 2. Two corner points touch each other.
Let the intersection, xi(t) of Li(t) and Li+1(t) be the same as the intersection

xj(t) of the sides Lj−1(t) and Lj(t). Then the angle between Li(t) and Lj(t) and
the one between Li+1(t) and Lj−1(t) are equal to 2π/n. By rotation, we may assume
that Li(t) and Lj(t) are parallel to the x-axis, and Li+1(t) is aligned with the Lj−1(t)
(cf. Figure 2). Moreover, χk ≥ 0 for k = i, i + 1, j, j − 1. Let Vxi(t) and Vxj (t) be
the velocity vectors of the points xi(t) and xj(t), respectively. Then

(0, 1) · (Vxj − Vxi) ≥ 0,

and the inequality is strict unless χk = 0 for all k = i, i + 1, j, j − 1. Since xi(t1) =
xj(t1), we conclude that χk = 0 for all k = i, i+1, j, j−1. But then Vxi(t) = Vxj (t) = 0
for t < t1 close to t1 and this contradicts the definition of t1.

Our next result is the following lemma.
Lemma 3.4. Let t1 and {Γ(t) = ∂Ω(t)}t∈[0,t) be as above. Suppose t1 is strictly

less than the extinction time. Then as t→ t1, Ω(t) converges to an n-smooth polygon
Ω(t1) in the Hausdorff topology.

Proof. By the previous lemma, there is a side i∗ such that

lim inf
t→t1

li∗(t) = 0.

The main step in this proof is to show χi∗ = 0 if the side Li∗ disappears at t1. So we
suppose that it is equal to +1 or −1. Since the analyses of these cases are similar, we
may assume that χi∗ = 1. Set θ = 2π/n.
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Fig. 2. Case 2.

1. In this step we will show that li∗(·) is continuous on [0, t1]. For future reference,
we will prove that, for any j, lj(·) is continuous on [0, t1]. By (2.4), all sides remain
bounded, and we set

B := lim sup
t→t1

lj(t).

Suppose that

B > lim inf
t→t1

lj(t) := A.

Since lj(·) is continuous in [0, t1), it crosses (A + B)/2 infinitely many times before
t1. In particular, by the mean value theorem, there is a sequence tk ↑ t1 such that

lj(tk) ≥ A+B

2
, lim

k→+∞
l′j(tk) = +∞.

However, by (2.4),

l′j(tk) ≤ 2 cos θ

lj(tk) cos2(θ/2)
≤ C

for some constant C independent of k. Hence A = B.
2. This step closely follows [33, Proposition 3.1].
Since t1 is strictly less than the extinction time, there are at least two sides which

have nonzero length at time t1. Hence there are two sides Lp0
and Lp1

such that
p0 < i∗ < p1, lp0

(t) and lp1
(t) are uniformly positive in [0, t1], and

lim
t↑t1

lj(t) = 0 ∀j = p0 + 1, . . . , p1 − 1.

For any j, let Lj(t) be the line extending Lj(t), xj+1(t) be the intersection between
Lj(t) and Lj+1(t), and θj be the angle between the outward normal and the horizontal
axis. Then, as t ↑ t1, all xp0+1(t), . . . , xq(t) converge to the same point x∗.

We analyze several cases separately.
Case 1. χj 6= 0 ∀ j = p0 + 1, . . . , p1 − 1.
Since we have assumed that χi∗ = 1, χj = 1 ∀ j = p0 + 1, . . . , p1 − 1 and

x∗ ∈
⋂

0≤t<t1

p1⋂
j=p0

{y ∈ R2 : (y − xj(t)) · (cos θj , sin θj) ≤ 0}.
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Fig. 3. Position of x∗.

See Figure 3.
By geometry, |θp0

− θp1
| ≤ π.

Subcase 1. |θp0
− θp1

| < π.
Let y(t) be the intersection between Lp0

(t) and Lp1
(t). We define

d(t) = (y(t)− x∗) · (cos θp0+1, sin θp0+1),

dp0+1(t) = dist(x∗,Lp0+1(t)).

Then dp0+1(t) ≤ d(t) ∀ t ∈ [0, t1) and dp0+1(t1) = d(t1) = 0. Moreover, d(t) is
Lipschitz continuous in t and

d

dt
dp0+1(t) = Vp0+1(t) = −2 tan(θ/2)

lp0+1(t)
.

Hence,

0 ≥ −
∫ t1

t

2 tan(θ/2)

lp0+1(τ)
dτ = dp0+1(t) ≥ d(t) ≥ −‖d′‖L∞(0,t1)(t1 − t) ∀t < t1.

This contradicts the fact lp0+1(t)→ 0 as t ↑ t1.
Subcase 2. |θp0

− θp1
| = π.

We repeat the argument used in the previous case with

d̃(t) = dist(Lp0
(t),Lp1(t)),

d̃p0+1(t) = dist(Lp0+1(t),Lp1(t)).

Case 2. χq = 0 exactly for one q ∈ {p0 + 1, . . . , p1 − 1}.
Then, χj = 1 for j = p0 + 1, . . . , q − 1 and χj = −1 for j = q + 1, . . . , p1 − 1,

or χj = −1 for j = p0 + 1, . . . , q − 1 and χj = 1 for j = q + 1, . . . , p1 − 1. Since the
arguments in both cases are similar, without loss of generality, we consider only the
first possibility.

If |θp0−θq| ≤ π, we argue as in Case 1, using side Lq(t) instead of Lp1(t). We also
argue similarly, when |θq − θp1

| ≤ π. Therefore, we may assume that |θp0
− θq| > π

and that there is a side Lj(t) with q < j < p1, which is parallel to Lp0
(t). Let L be

the line going through x∗ and parallel to both Lp0
(t) and Lj(t). Set

d(t) = dist(Lp0(t),L)− dist(Lj(t),L).

Then 0 = d(t1) and since |θp0 − θq| > π, 0 < d(t) ∀ (0, t1); see Figure 4.
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However, this contradicts the fact that d′(t) > 0 ∀ t sufficiently close to t1.
Case 3. χj = 0 for more than one side.
Suppose that χq and χj are equal to zero. Then x∗ belongs to both Lq(t) and

Lj(t) ∀ t, and therefore, j = q − 1 or q + 1. Since lq(t) converges to zero, at least
one side adjacent to Lq(t) has nonzero discrete curvature. Hence there are two sides
with zero discrete curvature and they are adjacent to each other. As in Case 1, all
the other sides between Lp0

(t) and Lp1
(t) satisfy χk = 1, and we argue as in Case 1.

Therefore, the case χi∗ = 1 is not possible. An entirely similar argument shows
that the case χi∗ = −1 is not possible either. Hence χi∗ = 0 and Li∗−1 and Li∗+1

are parallel, and the normal angle of the “new” side is equal to that of these two
ones.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Since Γ(0) is n-smooth for short time, there is an n-

smooth solution Γ(t). Moreover, by Lemma 3.4, this solution remains n-smooth until
one side of Γ(t) vanishes. Let t1 be the first time a side vanishes. Then, Γ(t) is
n-smooth and N(Γ(t)) = N(Γ(0)) ∀ t ∈ [0, t1). By Lemma 3.3, Γ(t1) is also n-smooth
and N(Γ(t1)) ≤ N(Γ(0)) − 2. We repeat this procedure starting from Γ(t1). Since
N(Γ(0)) is finite, we have only to repeat finitely many times.

Let t1 < t2 < · · · < tN be the times at which a side vanishes. Let tN > 0 be the
time when N−(Γ(tN )) = N0(Γ(tN )) = 0. Then, by (2.5), N+(Γ(tN )) = n and Γ(t) is
convex for all t ≥ tN .

We see that Γ(t) shrinks to a point at finite time. Indeed, by (2.5), we can
calculate the rate of change of |Ω(t)|:

d

dt
|Ω(t)| =

∑
i

Vili

= −
∑

i∈N+(Γ(t))

2 tan
π

n
+

∑
i∈N−(Γ(t))

2 tan
π

n

= −2n tan
π

n
.

From the foregoing calculation, we conclude that the solution shrinks to a point at
some time T . Moreover, at time T ,

0 = |Ω(T )| = |Ω0| − 2n tan
π

n
· T,

and (3.1) follows.
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4. Weak viscosity limits. In this section, we will study the properties of the
set-theoretic analogue of the weak viscosity limits of Barles and Perthame [5, 6]. Let
{Γn(t)}t∈[0,T ) be a sequence of n-smooth solutions of (2.3), and let Ωn(t) be the open
set enclosed by Γn(t). Assume that there is a constant R > 0, independent of n,
satisfying

Ωn(t) ⊂ B(0, R),(4.1)

where B(x, r) = {y ∈ R2 : |y − x| ≤ r}. Following [6, 29], for t ∈ [0, T ), we define

Ω̂(t) :=
⋂
r>0
N≥1

cl

 ⋃
|s−t|≤r, 0≤s<T

n≥N

Ωn(s)

 ,(4.2)

Ω(t) :=
⋃
r>0
N≥1

int

 ⋂
|s−t|≤r, 0≤s<T

n≥N

Ωn(s)

 ,

where clA and intA are, respectively, the closure and the interior of the set A. In
view of (4.1), Ω̂(t) is a bounded closed set and Ω(t) is a bounded open set. We will

show that, respectively, Ω̂(t) is a weak subsolution and Ω(t) is a weak supersolution
of the mean curvature flow.

This type of stability results are typical in the theory of viscosity solutions and,
in general, they are a simple consequence of the maximum principle. However, the
crystalline flow is not defined for smooth curves and this fact is the major difficulty
in the following analysis.

The notion of viscosity solutions we use is first introduced by the second author in
[29] and further developed in [7, 30]. Here we only recall the definition; other relevant
definitions and results are gathered in the appendix.

We continue by recalling several definitions that will be used in the subsequent
analysis. For subsets {Ω(t)}0≤t<T in R2, the upper semicontinuous (u.s.c.) envelope
and, respectively, the lower semicontinuous ((l.s.c.) envelope are defined by

Ω∗(t) =
⋂
r>0

cl

 ⋃
|s−t|≤r
0≤s<T

Ω(s)

 , Ω∗(t) =
⋃
r>0

int

 ⋂
|s−t|≤r
0≤s<T

Ω(s)

 , t ∈ [0, T ).

Then, it is clear that (Ω)∗ = Ω and (Ω̂)∗ = Ω̂. For other properties of these envelopes,
see [29, Lemma 3.1].

For a collection of closed subsets {O(t)}0≤t<T with smooth boundary, VO(x, t) is
the normal velocity of ∂O(t) at x and κO(x, t) is the curvature of ∂O(t) at x. We use
the convention that the curvature of a convex curve is nonnegative.

We are now in a position to give the weak (viscosity) definition of the mean
curvature flow we will use. This definition is very similar to the one given in [29]; see
the appendix for the connection between these two definitions.

Definition 4.1. Let {Ω(t)}0≤t<T be a collection of bounded subsets in R2 satis-
fying Ω∗(t) 6= ∅ for every t ∈ [0, T ).

We say {Ω(t)}0≤t<T is a weak subsolution of the mean curvature flow, if for any
closed, smooth subsets {O(t)}0≤t<T ,

VO(x0, t0) ≤ −κO(x0, t0)(4.3)
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at each t0 ∈ (0, T ) and x0 ∈ ∂O(t0) satisfying

Ω∗(t) ⊂⊂ O(t) ∀ t 6= t0,(4.4)

Ω∗(t0) ⊂ O(t0), ∂Ω∗(t0) ∩ ∂O(t0) = {x0}.

Similarly, we say {Ω(t)}0≤t<T is a weak supersolution of the mean curvature flow
if for any closed, smooth subsets {O(t)}0≤t<T ,

VO(x0, t0) ≥ −κO(x0, t0)

at each t0 ∈ (0, T ) and x0 ∈ ∂O(t0) satisfying

O(t) ⊂⊂ Ω∗(t) ∀ t 6= t0, O(t0) ⊂ Ω∗(t0), ∂Ω∗(t0) ∩ ∂O(t0) = {x0}.

Condition (4.4) implies that (x0, t0) ∈ ∂O(t0) × (0, T ) is the strict maximizer of
−dist(x, ∂Ω∗(t)) over all (x, t) ∈ ∂O(t) × (0, T ). A similar conclusion also holds for
supersolutions.

Following is the set theoretic analogue of the Barles and Perthame procedure
[5, 6], [13, section 5], and it is the chief technical contribution of this paper.

Recall that Γn(t) = ∂Ωn(t).

Lemma 4.2. Ω̂ is a weak subsolution of the mean curvature flow, while Ω is a
weak supersolution.

Before we give the proof of this lemma, we will first give a formal proof of the
subsolution property.

In view of our definition of a weak solution, we start with smooth sets {O(t)}0<t<T
and a point (x0, t0) satisfying (4.4). Our goal is to verify (4.3). By (4.4) there are
a subsequence nk and a sequence (xk, tk) → (x0, t0) satisfying Ωnk(tk) ⊂ O(tk) and
that xk ∈ Γnk(tk). Although there are several other cases, assume that xk is the
intersection of Li−1(tk) and Li(tk) of Γnk(tk), and χi = χi−1 = 1. We choose a
coordinate system so that xk is the origin and the Li(tk) side is included in the x1-
axis. Let n1 = (0, 1), n2 = (sin(2π/nk), cos(2π/nk)). Then, the unit normal vector
of ∂O satisfies nO(xk, tk) = (sinα, cosα) for some 0 < α < 2π/nk. By the crystalline
equation (2.3),

Vxk · n1 = Vi = −2 tan(π/nk)

li
,

Vxk · n2 = Vi−1 = −2 tan(π/nk)

li−1
,

and therefore,

Vxk = 2 tan
π

nk

(
1

tan(2π/nk)

(
1

li
− 1

li−1

)
,− 1

li

)
,(4.5)

VO(xk, tk) = Vxk · nO(xk, tk)(4.6)

= − 1

cos2(π/nk)

(
sin(2π/nk − α)

li
+

sinα

li−1

)
.
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Since VO(xk, tk) < 0, we may assume infk∈N κO(xk, tk) > 0. This implies that, as
k → ∞, both li and li−1 converge to zero. By elementary geometry, we obtain a
sharper estimate: for every ε > 0,

li ≤ 2 sinα

κO(xk, tk)− ε , li−1 ≤ 2 sin(2π/nk − α)

κO(xk, tk)− ε
for sufficiently large k. Substitute these into (4.6):

VO(xk, tk) ≤ −κO(xk, tk)− ε
2 cos2(π/nk)

(
sin(2π/nk − α)

sinα
+

sinα

sin(2π/nk − α)

)
≤ −κO(xk, tk) + ε.

In the foregoing argument, we crucially used the assumption that xk is a “convex”
corner point of Γnk . Although this is the most likely situation, other cases may also
arise, and for that we will perturb the test sets O in the preceding proof.

Proof. We will prove only the subsolution property. Proof of the supersolution
case is similar.

Let {O(t)}0<t<T and (t0, x0) be as in (4.4). Our goal is to verify (4.3), i.e.,

v := VO(x0, t0) ≤ −κ := −κO(x0, t0).

If necessary, by perturbing O(·), we may assume that κ 6= 0. We analyze two cases
separately.

Case 1. κ > 0.
For ε > 0, x∗ ∈ R2, and a large constant K, let Dε(t : x∗) be the disk with center

x∗ and radius

Rε(t) =
1

κ− ε + v(t− t0) +K(t− t0)2.

Set

xε0 := x0 −Rε(t0)nO(x0, t0).

By the smoothness of ∂O, for all sufficiently large K, there is a δε such that

O(t) ∩B(x0, 2δ
ε) ⊂ Dε(t : x0) ∩B(x0, 2δ

ε)(4.7)

for all |t− t0| ≤ 2δε. We fix K large enough so that the above inequality holds.
Next we approximate Dε(t : x∗) by regions with polygonal boundaries. Let

Cn :=

{
x ∈ R2 : x ·

(
cos

(
2lπ

n

)
, sin

(
2lπ

n

))
≤ 1 ∀ l = 0, 1, . . . , (n− 1)

}
,

and, for any x∗, set

Dε
n(t : x∗) := {x∗} ⊕Rε(t)Cn.

Since Dε
n(· : xε0) approximates Dε(· : xε0), by (4.4) and (4.7), there are a subsequence

nk and sequences (xk, tk)→ (x0, t0), yk → xε0 satisfying

xk ∈ Γnk(tk) ∩ ∂Dε
nk

(tk : yk),
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Ωnk(t) ∩B(x0, δ
ε) ⊂ Dε

nk
(t : yk) ∩B(x0, δ

ε) ∀ |t− t0| ≤ δε.
A proof of this fact is given in the appendix in Lemma 6.2. To simplify the notations,
we assume that nk = k and write Dk(t) for Dε

nk
(t : yk).

Let xk be on the ith side of Γk(tk). Then the normal velocity, Vi, of this side is
equal to the normal velocity of Dk at tk. Hence,

Vi = v + 2K(tk − t0).

Since Dk(tk) is a regular k-polygon, χi(tk) = 1 and, therefore, the length li(tk) of side
i of Γk(tk) is less than or equal to the length of any side of Dk(tk):

li(tk) ≤ 2Rε(tk) sin
π

k
.

Then, by (2.3) and the foregoing discussion,

v + 2K(tk − t0) = Vi = −2 tan(π/k)

li(tk)
≤ − 1

Rε(tk) cos(π/k)
.

Since Rε(tk) converges to 1/κ and tk → t0, we obtain (4.3) by first letting k → ∞
and then ε ↓ 0.

Case 2. κ < 0.
For small ε > 0 and any x∗, let xε0 := x0 +Rε(t0)nO(x0, t0), and let Dε(t : x∗) be

the complement of the disk with center x∗, radius

Rε(t) =
1

−κ+ ε
+ v(t− t0)−K(t− t0)2.

As in the previous case, there is a δε such that

O(t) ∩B(x0, 2δ
ε) ⊂ Dε(t : xε0) ∩B(x0, 2δ

ε)(4.8)

∀ |t− t0| ≤ 2δε, and for any x∗, we set

Dε
n(t : x∗) := R2 \ {x∗} ⊕Rε(t)Cn.

Then, Dε
n(· : x0) approximates Dε(· : x0), and by (4.4) and (4.8), there are a subse-

quence nk and sequences (xk, tk)→ (x0, t0), yk → xε0 satisfying

xk ∈ Γnk(tk) ∩ ∂Dε
nk

(tk : yk),

Ωnk(t) ∩B(x0, δ
ε) ⊂ Dε

nk
(t : yk) ∩B(x0, δ

ε) ∀ |t− t0| ≤ δε.
Again, we assume that nk = k, write Dk(t) for Dε

nk
(t : yk), and let xk belong to the

ith side of Γk(tk). Since, in this case, the normal velocity of Dk at tk is equal to
v − 2K(tk − t0),

Vi = v − 2K(tk − t0).

If v ≤ 0, (4.3) is immediately satisfied. Hence, we may assume that v > 0. So, for
small ε > 0, Vi > 0, and by (2.3), χi = −1. Consequently, li(tk) is greater than or
equal to the length of any side of Dk(tk):

li(tk) ≥ 2Rε(tk) sin
π

k
,
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and therefore,

v − C(tk − t0) = Vi =
2 tan(π/k)

li(tk)
≤ 1

Rε(tk) cos(π/k)
.

We first let k →∞ and then ε ↓ 0. Since Rε(tk) converges to 1/|κ| = −1/κ, the result
is (4.3).

5. Convergence. Let Γ0 = ∂Ω0 be a twice differentiable Jordan curve and
Γn 0 = ∂Ωn 0 be an n-smooth approximation of Γ0 satisfying

lim
n→∞ dH(Ωn 0,Ω0) = 0,(5.1)

where dH is the Hausdorff distance. For each n, there is a unique n-smooth solution
{Γn(t)}t∈[0,Tn) of (2.3) satisfying the initial condition Γn(0) = Γn 0 by Theorem 3.1.
Moreover,

Tn =
|Ωn 0|

2n tan(π/n)
→ T0 :=

|Ω0|
2π

, n→ +∞.(5.2)

Let Ω̂ and Ω be as in section 4 so that, by construction,

cl Ω(t) ⊂ Ω̂(t) ∀t ∈ [0, T0).(5.3)

Moreover, Ω̂ is a weak subsolution of the mean curvature flow, and Ω is a weak
supersolution of the mean curvature flow. In general space dimension, there is no
comparison between weak sub- and supersolutions; however, in dimension two, there
is always a smooth solution of the mean curvature flow, Γ(t) = ∂Ω(t) and we will
show that

Ω̂(t) ⊂ cl Ω(t) ⊂ cl Ω(t) ∀t ∈ [0, T0).(5.4)

Combining (5.3) and (5.4), we will then obtain the convergence of Ωn to Ω in Hausdorff
topology, thus generalizing the previous convergence results of Girao [20] and Girao
and Kohn [21].

The foregoing outline of our convergence result is entirely analogous to the Barles
and Perthame procedure of proving convergence with very weak L∞ estimates [5, 6].

Theorem 5.1. Let Γn(t) = ∂Ωn(t) be the solution of (2.3) with initial data Γn 0,
and let Γ(t) = ∂Ω(t) be the smooth solution of the mean curvature flow with initial
data Ω0. Assume (5.1); then

lim
n→∞ dH(Ωn(t),Ω(t)) = 0(5.5)

locally uniformly in t ∈ [0, T0).
We begin with the following lemma.
Lemma 5.2. Ω̂(0) ⊂ cl Ω0 ⊂ cl Ω(0).
Proof. We will prove only the first inclusion. Proof of the second inclusion is

similar.
Since dH(Ωn,Ω0)→ 0, for any x0 ∈ Ω0 there are δ0 > 0 and n0 ∈ N satisfying

B(x0, δ0) ⊂⊂ Ωn ∀n > n0.
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Let γn be the regular n-polygon enclosing B(x0, δ0). If necessary, by taking n0 larger,
we may assume that γn ⊂⊂ Ωn ∀ n > n0. Let γn(t) be the solution of the crystalline
flow (2.3) with initial data γn(0) = γn and ωn(t) be the open set enclosed by γn(t).
Then by the containment principle for crystalline motions (cf. Giga and Gurtin [18]),

B (x0, δ0/2) ⊂ ωn(t) ⊂ Ωn(t) ∀n > n0, 0 ≤ t ≤ 1

4
δ2
0 .

Let n→ +∞ and t ↓ 0 to conclude that B(x0, δ0/2) ⊂ Ω(0); therefore x0 ∈ Ω(0).
In our second step, we will show that the smooth mean curvature flow yields a

viscosity sub- and supersolution of the following equation:

ut + F (Du,D2u) = 0, R2 × (0, T ),

where

F (p,X) = −tr((I − p̄⊗ p̄)X)(5.6)

and p̄ = p/|p|. This step is very similar to Evans and Spruck [12, Section 6] and
Ambrosio and Soner [3, section 3].

We refer to Crandall, Ishii, and Lions [10] and Fleming and Soner [13] for infor-
mation on viscosity solutions and to Chen, Giga, and Goto [9], and Evans and Spruck
[12] for the properties of the level set equations.

Let {Γ(t)}0≤t<T0 be a unique smooth mean curvature flow satisfying Γ(0) = Ω0,
and let d(x, t) be the signed distance function to Γ(t), i.e.,

d(x, t) =

{
dist(x,Γ(t)) if x ∈ Ω(t),
−dist(x,Γ(t)) otherwise,

where Ω(t) is the open set enclosed by Γ(t). For a scalar d, d ∧ 0 = min{d, 0} and
d ∨ 0 = max{d, 0}.

Lemma 5.3. For any δ > 0, there are constants σ = σ(δ) > 0 and K = K(δ) > 0
so that the function u(x, t) := e−Kt[(d ∨ 0)(x, t) ∧ σ] is a viscosity subsolution of

ut + F (Du,D2u) = 0 in R2 × (0, T0).

Proof. For δ > 0, there exists a σ = σ(δ) > 0 such that d is smooth in {x ∈ R2 :
|d(x, t)| < 2σ} × [0, T0 − δ], and in this tubular set,

∆d(x, t) =
κ(y, t)

1− κ(y, t)d(x, t)
,(5.7)

where y ∈ Γ(t) is a unique point satisfying |d(x, t)| = |x−y| and κ(y, t) is the curvature
of Γ(t) at y. Since {Γ(t)}0≤t<T0 is a smooth mean curvature flow,

dt −∆d = 0 in Γ(t)× (0, T0).(5.8)

Since

C(δ) := sup{|κ(x, t)| : (x, t) ∈ ∂Ω(t)× [0, T0 − δ]} <∞,
by (5.7) and (5.8), d is a classical subsolution of

dt −∆d−Kd ≤ 0 on {x : 0 ≤ d(x, t) ≤ 2σ} × (0, T0 − δ]
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for some K ≥ C(δ). Since |Dd| = 1, d is also a classical subsolution of

dt + F (Dd,D2d)−Kd = 0 on {x : 0 ≤ d(x, t) ≤ 2σ} × (0, T0 − δ].

Let hε be a bounded smooth function satisfying hε(r) = 0 for r ≤ 0, hε(r) = σ for
r ≥ σ, and as ε ↓ 0, hε(r) converges to (r ∨ 0) ∧ σ. Since F is geometric, i.e.,

F (λp, λA+ µp⊗ p) = λF (p,A), λ, µ ≥ 0,

by calculus, we conclude that uε = e−Kthε(d) is a classical subsolution of

uεt + F (Duε, D2uε) ≤ 0 on R2 × (0, T0 − δ].

We let ε ↓ 0, δ ↓ 0 and use the celebrated stability property of viscosity solutions.
An entirely similar argument yields the following lemma.
Lemma 5.4. For any δ > 0, there are constants σ = σ(δ) > 0 and K = K(δ) > 0

so that the function u(x, t) := eKt[(d ∧ 0)(x, t) ∨ (−σ)] is a viscosity supersolution of

ut + F (Du,D2u) = 0 in R2 × (0, T0).

We are now in a position to complete the proof of Theorem 5.1.
Proof of Theorem 5.1. For notational convenience, we set Ωn(t) = ∅ ∀ n > 1, t >

Tn. Let Ω̂ and Ω be as in section 4, and let T̂ , T be, respectively, the extinction time
of Ω̂(t) and Ω(t). Set T̃ = min{T , T0, T̂}.

By Lemma 5.3, u(x, t) = e−Kt[(d ∨ 0)(x, t) ∧ σ] is a viscosity subsolution of

ut + F (Du,D2u) = 0 in R2 × (0, T̃ − δ),(5.9)

and by Lemma 4.2 and Proposition 6.1, v(x, t) = dist(x,R2\Ω(t)) is a viscosity su-
persolution of (5.9). Moreover, by Lemma 5.2, u(·, 0) ≤ v(·, 0) in R2, and therefore
the comparison principle for solutions of (5.9) (cf. Chen, Giga, and Goto [9], Evans
and Spruck [12]) yields

u ≤ v in R2 × [0, T̃ − δ).

We claim that this inequality implies that

Ω(t) ⊂ Ω(t) ∀t ∈ [0, T̃ − δ).

Indeed, for (x, t) ∈ Ω(t) × [0, T̃ − δ), 0 < u(x, t). Then, by the previous inequality,
0 < v(x, t) and, therefore, x ∈ Ω(t).

Similarly, we show that Ω̂(t) ⊂ cl Ω(t) ∀ t ∈ [0, T̃ − δ), and then we let δ → 0 to
obtain (5.4) on [0, T̃ ).

A lengthy elementary argument shows that (5.4) is equivalent to (5.5). Hence,
(5.5) holds on [0, T̃ ).

By (5.2) and the construction, T ≤ T̂ ≤ T0. The uniform convergence of Ωn to Ω
implies that T̃ = T0.

6. Appendix. In this section we gather several properties of the weak solutions.
Let {Ωn(t)}0≤t<Tn , {Ω̂(t)}0≤t<T , and {Ω(t)}0≤t<T be as in section 4, and let

dn(x, t) (resp., d̂(x, t) and d(x, t)) be the signed distance function for {Ωn(t)}0≤t<Tn
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(resp., for {Ω̂(t)}0≤t<T and {Ω(t)}0≤t<T ). Then the definitions of Ω̂(t) and Ω(t) are
equivalent to

(d̂ ∧ 0)(x, t) = lim sup
(y,s)→(x,t)
n→+∞

(dn ∧ 0)(y, s),

(d ∨ 0)(x, t) = lim inf
(y,s)→(x,t)
n→+∞

(dn ∨ 0)(y, s).

The following weak regularity result in t follows from an attendant modification
of [29, Lemma 7.3]:

lim sup
y→x, s↑t

(d̂ ∧ 0)(y, s) = (d̂ ∧ 0)(x, t), (x, t) ∈ R2 × (0, T ),(6.1)

lim inf
y→x, s↑t

(d ∨ 0)(y, s) = (d ∨ 0)(x, t), (x, t) ∈ R2 × (0, T ).(6.2)

These identities and the techniques of [29, section 14] yield the equivalence between
the weak solutions defined in section 4 and the distance solutions defined by Soner in
[29]. Let F be as in (5.6).

Proposition 6.1. {Ω(t)}0≤t<T is a weak subsolution of the mean curvature flow
satisfying (6.1) if and only if dΩ∗(x, t) ∧ 0 is a viscosity subsolution of

ut + F (Du,D2u) = 0 in R2 × (0, T ).(6.3)

{Ω(t)}0≤t<T is a weak supersolution of the mean curvature flow satisfying (6.2)
if and only if dΩ∗(x, t) ∨ 0 is a viscosity supersolution of (6.3).

We close the appendix by proving an approximation result used in section 4.
Lemma 6.2. Let {O(t)}0≤t<T be a family of closed smooth sets, and let t0 ∈

(0, T ), x0 ∈ ∂O(t0) satisfy (4.4). Let Dε(t) and Dε
n(t : x∗) be the same sets as in

the proof of Lemma 4.1. Assume that Dε(t : xε0) satisfies (4.7). Then there are a
subsequence nk and sequences (xk, tk)→ (x0, t0), yk → xε0 as k → +∞ satisfying

xk ∈ Γnk(tk) ∩ ∂Dε
nk

(tk : yk),

Ωnk(t) ∩B(x0, δ
ε) ⊂ Dε

nk
(t : yk) ∩B(x0, δ

ε) ∀ |t− t0| ≤ δε.

Proof. Fix ε > 0 and recall (Ω̂)∗ = Ω̂. Let dn(x, t) be the signed distance to
Dε
n(t : xε0), d(x, t) be the signed distance to Dε(t : xε0), and let

αn := inf
|t−t0|≤δε

inf{dn(x, t) : x ∈ Ωn(t) ∩B(x0, δ
ε)}.

Choose tn ∈ [t0 − δε, t0 + δε], xn ∈ Ωn(tn) ∩ B(x0, δ
ε) and wn ∈ ∂Dε

n(tn : xε0) such
that

|wn − xn| = |αn|.

Set

yn = xε0 − (wn − xn),
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so that

Ωn(t) ∩B(x0, δ
ε) ⊂ Dε

n(t : yn) ∩B(x0, δ
ε) ∀ |t− t0| ≤ δε.

Since x0 ∈ Ω̂(t0), by the definition of Ω̂, there are a subsequence nk and sequences
(zk, sk)→ (x0, t0) such that

zk ∈ Ωnk(sk).

Then

lim sup
k→∞

αnk ≤ lim sup
k→∞

dnk(zk, sk) = d(x0, t0) = 0.

A similar argument, using (4.7), shows that lim inf αnk ≥ 0. Hence αnk → 0 and,
therefore, ynk → xε0.

It remains to show that (xnk , tnk) → (x0, t0). Suppose that on a further subse-
quence, denoted by nk again,

(xnk , tnk)→ (x̄, t̄) ∈ B(x0, 2δ
ε)× [t0 − δε, t0 + δε].

Since dn converges to d uniformly,

d(x̄, t̄) = lim
k→∞

αnk = 0 ≤ lim
k→∞

dnk(zk, sk) = d(x0, t0).

Since (x0, t0) is the strict minimizer of d, this implies that (x̄, t̄) = (x0, t0).
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Abstract. We study the rate of convergence of the viscous and numerical approximate solution
to the entropy solution of genuinely nonlinear scalar conservation laws with piecewise smooth initial
data. We show that the O(ε| log ε|) rate in L1 is indeed optimal for viscous Burgers equation.
Through the Hopf–Cole transformation, we can study the detailed structure of ‖u(·, t)− uε(·, t)‖L1 .
For centered rarefaction wave, the O(ε| log ε|) error occurs on the edges where the inviscid solution
has a corner, and persists as long as the edges remain. The O(ε| log ε|) error must also occur at the
critical time when a new shock forms automatically from the decreasing part of the initial data; thus
it is, in general, impossible to maintain O(ε) rate for all t > 0. In contrast to the centered rarefaction
wave case, the O(ε| log ε|) error at critical time is transient. It resumes the O(ε) rate right after the
critical time due to nonlinear effect. Similar examples of some monotone schemes, which admit a
discrete version of the Hopf–Cole transformation, are also included.

Key words. hyperbolic conservation laws, error estimates, viscosity methods, monotone schemes
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1. Introduction. The hyperbolic conservation law

ut + f(u)x = 0, x ∈ R, t > 0,
u(x, 0) = u0(x)

(1.1)

can be analyzed using the method of characteristics. Due to nonlinearity of f , the
characteristic lines can intersect each other in finite time, and the solution develops
jump discontinuities even if the initial data is smooth. Due to the presence of jump
discontinuities, we need to generalize the solution class to include “weak solutions.”
In addition, since the weak solutions are not unique, entropy conditions are needed
to specify physically meaningful weak solutions.

There are several equivalent forms of the entropy condition for genuinely nonlinear
(say, f ′′ > 0) scalar conservation laws. Among them is the method of vanishing
viscosity, which asserts that the physically relevant solution is obtained by solving the
following viscous approximate equation

uεt + f(uε)x = εuεxx, x ∈ R, t > 0, ε > 0,
uε(x, 0) = u0(x)

(1.2)

and letting ε go to zero. It is known that uε converges strongly, and the limiting
function, u, is a weak solution of (1.1). Furthermore, u is the unique solution that
satisfies the following entropy condition:

u(x+ a, t)− u(x, t)

a
≤ E

t
, t > 0,(1.3)
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where E is a constant depending only on the flux function f and initial data (see, for
example, [11] for details).

Monotone difference schemes are first-order numerical schemes used to compute
approximate solutions of (1.1):

wn+1
j = G(wnj−p, w

n
j−p+1, . . . , w

n
j+q)

= wnj − λ[f̄(wnj−p+1, . . . , w
n
j+q)− f̄(wnj−p, . . . , w

n
j+q−1)],

(1.4)

where p and q are fixed nonnegative integers, G is a monotonely nondecreasing func-
tion in each of its arguments, f̄ is a Lipchitz continuous function and is consistent
with the scalar conservation law (1.1) in the sense

f̄(w, . . . , w) = f(w),(1.5)

and λ = ∆t/∆x is a constant satisfying the CFL condition λ < |f ′|.
Most well-known first-order schemes such as the Lax–Friedrichs scheme, Godunov

scheme, and Enquist–Osher scheme are monotone schemes. Monotone schemes are
known to converge to the entropy solution of (1.1) as ∆x → 0 (see [2]) and they are
at most first-order accurate [1].

Whether or not a viscous approximation/monotone scheme can be of order
O(ε)/O(∆x) accurate is an issue of practical interest and has long been studied.
Although viscous approximation and monotone schemes are formally first order, they
can really lose half-order accuracy across discontinuities. For example, it is easy to
see, using a scaling argument, that the solution of the heat equation with an initial
jump discontinuity is indeed O(

√
ε) in L1 norm away from its zero viscosity limit. In

fact, Tang and Teng [14] proved that the O(
√
ε) or O(

√
∆x) rate is indeed optimal for

all monotone schemes applied to linear advection equations with discontinuous data.
For general BV initial data with genuinely nonlinear flux, several authors have

obtained O(
√
ε) or O(

√
∆x) rate. See, for example, Kuznetsov [6], Lucier [8], Sanders

[10], and Tadmor [13]. It turns out to be optimal for this case (i.e., beyond linear
degeneracy); see Sabac [9]. For the special case of monotonely nondecreasing initial
data, Harabetian [5] has obtained O(ε| log ε|)/O(∆x| log(∆x)|) rate in L1 norm and
showed that it is indeed optimal in this case.

Although BV solution is a natural class for genuinely nonlinear scalar conserva-
tion law, we will consider here only the subclass of piecewise smooth solutions with
finitely many shocks. This class is of practical interest in shock capturing for the
following reason: We expect viscous solution or monotone schemes to have better
resolutions across an isolated jump discontinuity if the flux function is genuinely non-
linear, since for a linearly degenerate flux function, the discontinuity is a contact one,
thus the smearing is a result of diffusion only; while in case of a genuinely nonlinear
flux, the entropy condition dictates that the characteristic curves impinge into the
shock, and thus tend to squeeze the profile in shape.

The first result in this direction was Goodman and Xin [4], where the authors
considered piecewise smooth flows with noninteracting shocks for systems of hyper-
bolic conservation laws with viscosity. They obtained an O(ε) estimate away from
shock regions and an overall O(εγ) rate for any γ < 1. The proof uses a matched
asymptotic analysis employing a superposition of outer solutions (asymptotic series
off the shock) and inner solutions (asymptotic expansion near the shock in stretched
variables), as well as a nonlinear stability analysis based on energy estimates.

Inspired by [4], Teng and Zhang [16], Tang and Teng [15] showed that, for gen-
uinely nonlinear scalar conservation laws with piecewise smooth initial data having
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finitely many inflection points, the convergence rate can be improved to supt>0 ‖u(·, t)−
uε(·, t)‖ ≤ O(ε| log ε|). And in case there is no centered rarefaction wave or shock for-
mation at a later time, the rate is actually O(ε).

The corresponding counterpart for monotone schemes is more subtle. Engquist
and Yu [3] and Smyrlis and Yu [12] obtained pointwise estimates for a wide class
of finite difference schemes, which result in the O(∆x) convergence rate in L1 norm
of monotone schemes for piecewise smooth initial data with noninteracting shocks
provided no shocks form at a later time.

From the argument in [15], it is not clear whether the O(ε| log ε|) is optimal
beyond the centered rarefaction wave case (the optimality of the centered rarefaction
wave case was shown in Harabetian [5]). In this paper, we will study in detail the
structure of ‖u(·, t) − uε(·, t)‖ through an example, the viscous Burgers equation, to
gain more insight. It turns out that this rate is actually obtained at the critical time
when a shock develops from the decreasing part of the initial data. Thus, it is in
general impossible to maintain O(ε)/O(∆x) rate for all t > 0. However, in contrast
to the centered rarefaction wave case, this phenomenon is transient; it resumes the
O(ε)/O(∆x) rate right after the critical time. (This case was not covered in [14], [15],
[3], and [12], where the authors considered the shocks coming from jumps in initial
data.) This result is consistent with the following heuristic argument: The viscous
approximation/monotone schemes are first-order accurate both before and after the
critical time, but for different reasons. Before the critical time, the solution of (1.1)
is smooth if the initial data is; therefore, the viscous term εuεxx is an O(ε) · O(1)
quantity. After the critical time, the shock is already formed, and the impinging of
characteristic lines counteract with diffusion. However, at the critical time, neither of
these mechanisms is available, resulting in an underresolution.

The rest of this paper is arranged as follows: In section 2, we will review some basic
facts about formation of shocks, the Hopf–Cole transformation, and a few lemmas to
be used later. In section 3.1, we state and prove the main theorem concerning the
convergence rate at and after critical time for the viscous Burgers equation using
the Hopf–Cole transformation. In section 3.2, we give the same results for several
monotone schemes with particular flux functions, including upwind, Lax–Friedrichs,
and Godunov scheme, which admit a discrete version of Hopf–Cole transformation.
It will be clear how these elementary arguments can be utilized to study the centered
rarefaction wave case, and interactions of shocks and centered rarefaction waves, etc.
The results are as stated in the abstract of this paper; we thus omit the details.

2. Preliminaries.
Notation: ‖ · ‖ is the L1 norm. We’ll also denote the local L1 integral

∫ b
a
|g(x)|dx

by ‖g‖L1(dx;[a,b]).
Consider the viscous and inviscid Burgers equation which are special cases of (1.1)

and (1.2) with f(u) = 1
2u

2,

ut + uux = 0, x ∈ R, t > 0,
u(x, 0) = u0(x)

(2.1)

and

uεt + uεuεx = εuεxx, x ∈ R, t > 0, ε > 0,
uε(x, 0) = u0(x).

(2.2)

We first recall some facts about spontaneous formation of shocks. If the ini-
tial data is smooth and is such that f ′(u0(·)) is not monotonely nondecreasing, the
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characteristic lines can intersect each other and the shock forms. If ξ1 < ξ2 with
f ′(u0(ξ1)) > f ′(u0(ξ2)), then the two characteristic lines starting from ξ1 and ξ2
intersect at time t = ξ2−ξ1

f ′(u0(ξ1))−f ′(u0(ξ2)) ; thus the first time at which neighboring

characteristic lines intersect is when t = tc = −1
minξ

d
dξ f
′(u0(ξ))

and the initial shock is

located at the characteristic line starting from ξ0 where the minimum is taken.
Here in Burgers’s equation, f ′(u0) = u0. Up to a Galilean transformation, we may

assume that u0(0) = 0 and that ξ = 0 is where u′0 assumes its negative minimum which
corresponds to the initial formation of the shock. Thus the local Taylor expansion
near ξ = 0 reads

u0(ξ) = − 1

tc
ξ + aξ2p+1 + · · · ,(2.3)

where a > 0 and p is a positive integer. We’ll carry out the analysis for p = 1; the
proof for other values of p is similar.

By differentiating (2.1) with respect to x and then integrating along the char-
acteristic lines, one can find that the derivative blows up near t = tc (for a detail
derivation, see, for example, [11]),

ux(0, t) = − O(1)

tc − t , t < tc.(2.4)

Our main tool is the classical Hopf–Cole transformation,

uε = −2ε(log φε)x.(2.5)

Through (2.5), (2.2) linearizes to the heat equation

φεt = εφεxx.(2.6)

After transforming the initial data and solving the heat equation, we have

uε(x, t) = −2ε

(
log

∫ ∞
−∞

e−
1
2εG(x,y,t)dy

)
x

,(2.7)

where G(x, y, t) =
∫ y

0
u0(y′)dy′ + (x−y)2

2t .

Since (2.7) gives an exact formula for uε(x, t), hence for
∫ x

uε(x′, t)dx′, we can
estimate ‖uε(·, t)−u(·, t)‖ as long as we know the sign of uε(·, t)−u(·, t). The following
lemma is based on this observation.

Lemma 2.1. Let u0 be a smooth and bounded function satisfying
(A.1) u0(ξ) = − ξ

tc
+ aξ3 + bξ4 +O(ξ5) for |ξ| < δ where a > 0;

(A.2) ξ = 0 is the point corresponding to the first spontaneous formation of shocks,
that is, u′0(ξ) > − 1

tc
for all ξ 6= 0;

(A.3) u0 is antisymmetric: u0(−ξ) = −u0(ξ);
(A.4) u0 is monotonely decreasing;
(A.5) u0 is concave on ξ < 0, and, therefore, by Assumption (A.3), convex on ξ > 0.

Then

u(x, tc) ≥ (≤)uε(x, tc) on x < (>)0.(2.8)

Proof. By symmetry, we only need to prove the statement on {x < 0}. We will
apply the maximum principle in the region {(x, t) : 0 < t < tc, x < 0} for w = uε − u,
which satisfies

wt + (aw)x − εwxx = εuxx,(2.9)
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where a(x, t) = 1
2 (uε(x, t) + u(x, t)) = 1

2w(x, t) + u(x, t). Clearly, w = 0 on {(x, t) :
t = 0, x < 0} by definition and on {(x, t) : 0 < t < tc, x = 0} by symmetry. Since
monotonicity and concavity of u is preserved under the characteristic flow (one can see
this by differentiating (1.1) once and twice, then integrating along the characteristic
lines), we have the correct signs on the right-hand side of (2.8) and the coefficient of
w in order to apply the maximum principle, by which we conclude that w ≤ 0 on
{x < 0}.

We’ll also need the following lemma.
Lemma 2.2 (L1 stability). If uεi(x, t), i = 1, 2 satisfy

∂

∂t
uεi +

∂

∂x
f(uεi)− ε

∂2

∂x2
uεi = gi(x, t),(2.10)

then

‖uε1(·, t)− uε2(·, t)‖ ≤ ‖uε1(·, 0)− uε2(·, 0)‖+

∫ t

0

‖g1(·, s)− g2(·, s)‖ds.(2.11)

Proof. Let w = uε1 − uε2; then w solves the following equation:

wt + (aw)x − εwxx = g1 − g2,(2.12)

where a(x, t) = 1
2 (uε1 +uε2) for Burgers’s equation. (For general flux, a(x, t) is a proper

average of f ′(uε1(x, t)) and f ′(uε2(x, t)) .) Since the backward adjoint equation

zt + azx + εzxx = 0,
z(·, t) = sgn(w(·, t))(2.13)

satisfies the maximum principle, we then complete the proof by integrating z ·(2.12)+
w · (2.13) by parts.

3. Convergence rate at and near critical time.

3.1. The Burgers equation.
Theorem 3.1. Let uε(x, t) and u(x, t) be solutions of (2.1) and (2.2), respectively,

with the same initial data u0(x) satisfying (A.1) and (A.2) in Lemma 2.1, then for t
near tc, we have

1. If t 6= tc, then

‖uε(·, t)− u(·, t)‖ ≤ C(t)ε as ε→ 0,

where C(t) = O(log 1
|t−tc| ).

2.

‖uε(·, tc)− u(·, tc)‖ = O(ε| log ε|) as ε→ 0.

Proof. The case t < tc of the first part is a direct consequence of Lemma 2.2
above, since ‖uxx(·, t)‖ = TV (ux(·, t)) = 2‖ux(·, t)‖L∞ = −2ux(0, t) = O( 1

tc−t ).
At t = tc, we first prove the special case where the initial data satisfy the assump-

tions of Lemma 2.1. In this case we see that from (2.8),

‖uε(·, tc)− u(·, tc)‖L1(dx;[−1,0]) =

∫ 0

−1

u(x, tc)dx−
∫ 0

−1

uε(x, tc)dx.(3.1.1)
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By the Hopf–Cole transformation,

∫ 0

−1

uε(x, t)dx = −2ε log


∫
e−

1
2εG(0,y,t)dy∫

e−
1
2εG(−1,y,t)dy

 ,(3.1.2)

where G(x, y, t) =
∫ y

0
u0(y′)dy′ + (x−y)2

2t and the domain of integration in int(·)dy is
the whole real line. Following the standard stationary phase method, we check that
Gyy(−1, ξ(−1, tc), tc) = u′0(ξ) + 1

tc
> 0, where ξ = ξ(x, t) is where G(x, ·, t) assumes

its global minimum,

u0(ξ(x, t)) =
x− ξ(x, t)

t
.(3.1.3)

Thus at t = tc, the leading-order asymptotic expansion of the denominator in (3.1.2)
is ∫

e−
1
2εG(−1,y,tc)dy = e−

1
2εG(−1,ξ(−1,tc),tc)

∫
e−

1
2ε [G(−1,y,tc)−G(−1,ξ(−1,tc),tc)]dy

∼ e− 1
2εG(−1,ξ(−1,tc),tc)

∫
e−

1
2ε

Gyy(−1,ξ(−1,tc),tc)

2 (y−ξ(−1,tc))
2

dy

=
2
√
π

u′0(ξ(−1, tc)) + 1
tc

· ε 1
2 exp

(
− 1

2ε
G(−1, ξ(−1, tc), tc)

)
.(3.1.4)

The numerator, however, has a quartic exponent G(0, y, tc) at (x, t) = (0, tc),
since ξ(0, tc) = 0, Gy(0, ξ(0, tc), tc) = Gyy(0, ξ(0, tc), tc) = Gyyy(0, ξ(0, tc), tc) = 0 and
Gyyyy(0, ξ(0, tc), tc) = 6a > 0. Thus the asymptotic expansion of the integral is, to
leading order,∫

e−
1
2εG(0,y,tc)dy = e−

1
2εG(0,0,tc)

∫
e−

1
2ε [G(0,y,tc)−G(0,0,tc)]dy

∼ e− 1
2εG(0,0,tc)

∫
e−

1
8εay

4

dy

= I0(
4ε

a
)

1
4 exp

(
− 1

2ε
G(0, 0, tc)

)
,(3.1.5)

where I0 =
∫∞
−∞ e−

z4

2 dz is a constant. Therefore,∫ 0

−1

uε(x, tc)dx ∼ G(0, 0, tc)−G(−1, ξ(−1, tc), tc) +
1

2
ε log ε+ · · · .(3.1.6)

By differentiating (3.1.3) with respect to x, we see that ∂
∂xG(x, ξ(x, t), t) = u(x, t), so

G(0, 0, tc)−G(−1, ξ(−1, tc), tc) =

∫ 0

−1

u(x, tc)dx.(3.1.7)

From (3.1.2), (3.1.4), (3.1.5), (3.1.6), and (3.1.7), we conclude that

‖uε(·, tc)− u(·, tc)‖L1(dx;[−1,0]) ∼ 1

2
ε| log ε|.(3.1.8)
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The same estimate holds for ‖uε(·, tc)− u(·, tc)‖L1(dx;[0,1]) by symmetry. The integral
outside of [−1, 1] is of lower order by virtue of Lemma 3.2 below. Thus the special
case is proved.

To prove the general case, we note that, because of the structure of the initial
data, the assumptions of Lemma 2.1, except (A.3), indeed hold for ξ near zero in
general. Thus we only have to take care of the antisymmetry. We proceed as follows.

Let δ0 > 0 be a small number such that all the assumptions in Lemma 2.1, except
(A.3), are valid for |ξ| < 2δ0, and let the characteristic line starting from (−δ0, 0)
intersect the line {t = tc} at (−δ1, tc). We will concentrate on the local deviation
‖uε(·, tc) − u(·, tc)‖L1(dx;[−δ1,0]). The following lemma allows us to modify the initial
data in order to reduce to the antisymmetric case.

Lemma 3.2. Let v0, w0 be two bounded initial data such that v0(ξ) = w0(ξ) on
{ξ ≥ α} for some α ∈ R and let vε(x, t), wε(x, t) be corresponding solutions of the
viscous Burgers equation. If for some β > α, the characteristic flows of v0 and w0

left of α are strictly separated from those right of β up to some time t1 > 0, that is,
if there exist β1 > α1, such that the characteristic lines of v0 and w0 starting from
left of (α, 0) intersect the line {t = t1} at left of (α1, t1), and vice versa on the right
of (β, 0) and (β1, t1), then

‖vε(·, t1)− wε(·, t1)‖L1(dx;[β1,∞)) = O(1)e−
O(1)
ε .(3.1.9)

Proof. Equation (3.1.9) can be proved by estimating the Green function of the
backward adjoint equation, or one can prove it directly using the Hopf–Cole transfor-
mation.

Therefore, by adjusting u0(ξ) on {ξ < −2δ0} if necessary, we may assume that
u0 satisfies the assumptions (A.2), (A.4), and (A.5) globally on {ξ < 0}. To reduce
to the special case, we now construct an antisymmetric initial data

ua,0(ξ) =

{
u0(ξ) if ξ < 0,
−u0(−ξ) if ξ ≥ 0.

(3.1.10)

Since the corresponding inviscid solutions agree on the interval under consideration,

ua(x, tc) = u(x, tc) on − δ1 ≤ x ≤ 0,(3.1.11)

it suffices to estimate ‖uεa(·, tc)− uε(·, tc)‖L1(dx;[−δ1,0]).

By Assumption (A.1), we have ua,0(ξ)− u0(ξ) ≤ (≥)0 on {ξ ≤ 2δ0} if b > (<)0.
By Lemma 3.2, we can adjust u0(ξ) on {ξ > 2δ0} if necessary, so we may assume,
without loss of generality, that

ua,0(ξ)− u0(ξ) ≤ (≥)0 for all ξ ∈ R if b > (<)0.(3.1.12)

From the classical comparison lemma [2], (3.1.12) implies that

uεa(x, t)− uε(x, t) ≤ (≥)0 if b > (<)0,(3.1.13)

and, therefore,

‖uεa(·, tc)− uε(·, tc)‖L1(dx;[−δ1,0]) =

∣∣∣∣∫ 0

−δ1
uεa(x, tc)dx−

∫ 0

−δ1
uε(x, tc)dx

∣∣∣∣(3.1.14)
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Equations (3.1.11), (3.1.13), and (3.1.14) together imply

‖uε(·, tc)− u(·, tc)‖L1(dx;[−δ1,0]),

=


∫ 0

−δ1
u(x, tc)dx−

∫ 0

−δ1
uε(x, tc)dx if b < 0,∫ 0

−δ1
u(x, tc)dx+

∫ 0

−δ1
uε(x, tc)dx− 2

∫ 0

−δ1
uεa(x, tc)dx if b > 0;

(3.1.15)

therefore, we can apply the Hopf–Cole transformation again,

‖uε(·, tc)− u(·, tc)‖L1(dx;[−δ1,0]),(3.1.16)

=



−2ε log


∫
e−

1
2εG(−δ1,y,tc)−G(−δ1,ξ(−δ1,tc),tc)dy∫
e−

1
2εG(0,y,tc)−G(0,0,tc)dy

 if b < 0,

−2ε

[
log


∫
e−

1
2εGa(−δ1,y,tc)−Ga(−δ1,ξ(−δ1,tc),tc)dy∫
e−

1
2εGa(0,y,tc)−Ga(0,0,tc)dy


+ log


∫
e−

1
2εG(0,y,tc)dy∫

e−
1
2εGa(0,y,tc)dy

] if b > 0,

where Ga(x, y, t) =
∫ y

0
ua,0(y′)dy′ + (x−y)2

2t , and Ga(−δ1, ξ(−δ1, tc), tc) = G(−δ1, ξ
(−δ1, tc), tc) cancel out in the second term of the case b > 0 in (3.1.17). Since u′′′0 (0)
is preserved under antisymmetrization, we see that from (3.1.5)∫

e−
G(0,y,tc)

2ε dy∫
e−

Ga(0,y,tc)
2ε dy

= 1 + o(1).(3.1.17)

In view of (3.1.17) and (3.1.17), we have

‖uε(·, tc)− u(·, tc)‖L1(dx;[−δ1,0]) ∼ 1

2
ε| log ε|.(3.1.18)

The estimate for ‖uε(·, tc)− u(·, tc)‖L1(dx;[0,δ1]) is similar. The general case for t = tc
is thus proved.

The case t > tc can be reduced to the case t < tc by constructing a new initial
data which delays the formation of the shock. Let t0 > tc be given, with t0 − tc
sufficiently small. Denote by s(t) the location of the shock at time t, and let (ξ−, 0)
be where the backward characteristic line from (s(t0)−0, t0) intersects the x-axis. For
t0 − tc sufficiently small, ξ− is close to 0 and the tangent line of u0(·) at (ξ−, u0(ξ−))
lies above u0 in a neighborhood of ξ−. Now define

ū0(ξ) =

{
u0(ξ) if ξ < ξ−,
max(u0(ξ), u0(ξ) + u′0(ξ−)(ξ − ξ−) ) if ξ ≥ ξ−,

and let ū(x, t) and ūε(x, t) be correponding inviscid and viscous solutions. It is easy
to see that
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(a) ū(x, t0) = u(x, t0) for x < s(t0).
(b) The critical time for ū0 is t̄c = − 1

u′0(ξ−) > t0; thus no shock forms in ū(·, ·)
up to t = t0. Moreover, t̄c − t0 = 1

2 (t0 − tc) +O((t0 − tc)2).
(c) ū0(ξ) ≥ u0(ξ) and thus ūε(x, t) ≥ uε(x, t).

From (b), we have

‖ūε(·, t0)− ū(·, t0)‖ = O

(
log

1

|t− tc|
)
ε as ε→ 0,(3.1.19)

and from (c)

‖uε(·, t0)− ūε(·, t0)‖L1(dx;[−1,s(t0)])

=

∫ s(t0)

−1

ūε(x, t0)dx−
∫ s(t0)

−1

uε(x, t0)dx

= −2ε

log


∫
e−

1
2ε Ḡ(s(t0),y,t0)dy∫

e−
1
2εG(s(t0),y,t0)dy

− log


∫
e−

1
2ε Ḡ(−1,y,t0)dy∫

e−
1
2εG(−1,y,t0)dy


 ,(3.1.20)

where Ḡ(x, y, t) =
∫ y

0
ū0(y′)dy′+ (x−y)2

2t . A standard process of asymptotic expansion
leads to ∫

e−
1
2ε Ḡ(−1,y,t0)dy∫

e−
1
2εG(−1,y,t0)dy

∼ 1 +O(ε).(3.1.21)

As to the first term in (3.1.20), we note that the exponent G(s(t0), ·, t0) indeed
has two global minima occurring at ξ− and ξ+ due to the presence of the shock. Here
ξ+ is where the backward characteristic line from (s(t0) + 0, t0) intersects the x-axis.
Since ū(·, t0) is smooth, there is only one global minimum of Ḡ(s(t0), ·, t0) occurring
at ξ−, therefore,∫

e−
1
2ε Ḡ(s(t0),y,t0)dy∫

e−
1
2εG(s(t0),y,t0)dy

∼ (u′0(ξ−) + 1
t0

)
1
2

(u′0(ξ−) + 1
t0

)
1
2 + (u′0(ξ+) + 1

t0
)

1
2

+ o(1) < 1.(3.1.22)

From (a), (3.1.19), (3.1.20), (3.1.21), and (3.1.22), we conclude that

‖uε(·, t0)− u(·, t0)‖L1(dx;[−1,s(t0)]) = O

(
log

1

|t− tc|
)
ε.(3.1.23)

A similar estimate holds for ‖uε(·, t0) − u(·, t0)‖L1(dx;[s(t0),1]), and the theorem is
proved.

Remark 1. It is clear from the proof that the O(ε| log ε|) rate is indeed optimal at
the critical time. For a general exponent 2p + 1 in (2.3), the constant 1

2 in (3.1.8) is
replaced by p

p+1 .
The idea used in the proof of Lemma 2.1 and Theorem 3.1 can be carried over

to analyze the structure of the error in the case of a centered rarefaction wave. The
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O(ε| log ε|) error is optimal and, roughly speaking, is restricted to the inner edges of
the fan.

Proposition 3.3. Let the initial data u0(ξ) be a piecewise smooth function
with a jump discontinuity at ξ = 0 and u0(0−) < u0(0+) but smooth otherwise.
Assume further that u0 is concave on {ξ > 0}, convex on {ξ < 0}, and monotonely
nondecreasing. Then the following local L1 error estimates holds. For c, d ∈ R
satisfying

u0(0+) + u0(0−)

2
t < c < u0(0+)t < d,

‖u(·, t)− uε(·, t)‖
L1(dx;[

u0(0+)+u0(0−)

2 t,c])
∼ C1ε,

‖u(·, t)− uε(·, t)‖L1(dx;[c,u0(0+)t]) ∼ ε| log ε|,
‖u(·, t)− uε(·, t)‖L1(dx;[u0(0+)t,d]) ∼ C2ε,

(3.1.24)

where

C1 = 2 log

( 1
c
t−u0(0−) + 1

u0(0+)− ct
4

u0(0+)−u0(0−)

)
, C2 = 2 log

(
2

√
u0(ξ(u0(0+)t, t))

u0(ξ(d, t))

)
,(3.1.25)

and ξ(x, t) is defined implicitly by (3.1.3). Similar estimates hold for intervals at left

of the center u0(0+)+u0(0−)
2 t.

The proof is similar to the proof of Theorem 3.1; we omit the detail.
We remark here that the monotonicity and concavity (convexity) assumptions

in Proposition 3.3 are not essential; one can treat the case of a general centered
rarefaction wave up to the time when the edge is, if ever, merged into a shock. The
estimates (3.1.24) remain valid except the constants C1 and C2 may become larger
due to overestimates. After the edge is merged into a shock, the local L1 error reduces
to O(ε).

The precise form of the statement above is rather complicated; we illustrate with
the following example instead.

Example. Consider (2.1) and (2.2) with initial data

u0(ξ) =


−1, ξ < 0,

1− ξ
2 , 0 ≤ ξ < 1,

− ξ2 , 1 ≤ ξ < 2,
−1, 2 ≤ ξ.

(3.1.26)

At time t < 1, the solution to (1.1) has a rarefaction wave spanning over −t ≤ x ≤ t
and a standing shock at ξ = 1. At t = 1, the right edge of the centered rarefaction wave
is confronted with the standing shock and merged into it afterward. The following
local L1 estimates hold.

For 0 < t < 1, we have

‖u(·, t)− uε(·, t)‖L1(dx;[0,t]) ∼ ε| log ε|,
‖u(·, t)− uε(·, t)‖L1(dx;[t,1]) ∼ O(ε),
‖u(·, t)− uε(·, t)‖L1(dx;[1,∞)) ∼ O(ε).

(3.1.27)

At t = 1,

‖u(·, 1)− uε(·, 1)‖L1(dx;[0,1]) ∼ ε| log ε|,
‖u(·, 1)− uε(·, 1)‖L1(dx;[1,∞)) ∼ O(ε).

(3.1.28)
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After the interaction, say, 1 < t < 1.5, the shock begins to move. Denoting by s(t)
the shock location, we have

‖u(·, t)− uε(·, t)‖L1(dx;[0,s(t)]) ∼ O(ε),
‖u(·, t)− uε(·, t)‖L1(dx;[s(t),∞)) ∼ O(ε).

(3.1.29)

We outline the computation for the first equation in (3.1.27); the rest is done in
a similar way. Consider

ū0(ξ) =

{ −1, ξ < 0,
1, ξ > 0,

(3.1.30)

and denote the corresponding viscous and inviscid solutions by ūε and ū, respectively.
By a variant of Lemma 2.1, we can conclude that ū(x, t) ≥ (≤)ūε(x, t) on {x >
0} ({x < 0}). Thus one can apply the Hopf–Cole transformaton. A short calculation

leads to Ḡ(x, y, t) =
∫ y

0
ū0(y′)dy′ + (x−y)2

2t near the absolute minimum,

Ḡ(0, y, t) ∼ |y|, for y near 0,

Ḡ(t, y, t) ∼
{ t

2 − 2y, y < 0
t
2 + y2

2t , y > 0
for y near 0,

(3.1.31)

from which one easily concludes that

‖ū(·, t)− ūε(·, t)‖L1(dx;[0,t]) ∼ ε| log ε|.(3.1.32)

On the other hand, ū0 ≥ u0, thus ūε ≥ uε and we can apply the Hopf–Cole transfor-
mation again. The same calculation leads to

G(0, y, t) ∼ |y|, for y near 0,

G(t, y, t) ∼
{

t
2 − 2y, y < 0[1ex]
t
2 + ( 1

2t − 1
4 )y2, y > 0

for y near 0;
(3.1.33)

one thus concludes that

‖ūε(·, t)− uε(·, t)‖L1(dx;[0,t]) ∼ ε log

(
2− t

2

)
.(3.1.34)

We conclude with the first equation of (3.1.27), with the triangle inequality and the
fact that u(x, t) coincides with ū(x, t) for x ≤ t.

3.2. Hopf–Cole–Lax transformation for some monotone schemes. We
now give another example in which the convergence rate is not first order at the
critical time—Lax–Friedrichs scheme applied to the conservation law (1.1) with a
specific flux function:

fL(u) = log

(
cosh(u) + 1

2

)
.

The Lax–Friedrichs scheme for this particular flux admits a discrete version of Hopf–
Cole transformation. This was first observed by Lax [7] for upwind scheme with a
family of flux function f(u) = log(a + be−u), a, b > 0, a + b = 1. Here we adopt
a variation of the original one in order to maintain symmetry, which simplifies the
analysis.

The following properties of fL(u) are elementary:
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(C.1) fL(u) = fL(−u).
(C.2) fL(0) = 0.

(C.3) f ′L(u) = sinh(u)
cosh(u)+1 , f ′L(0) = 0.

(C.4) f ′′L(u) = 1
cosh(u)+1 > 0.

We now study the convergence rate for the Lax–Friedrichs scheme with fL. Let
u∆(x, t) be the approximate solution obtained via the Lax–Friedrichs scheme

u∆(x, t+∆) =
1

2
( u∆(x−∆, t)+u∆(x+∆, t) )−1

2
( fL(u∆(x+∆, t))−fL(u∆(x−∆, t)) ),

(3.2.1)
where the argument (x, t) is restricted to grid points only, and we have put ∆x =
∆t = ∆ for simplicity.

Now let U∆(x, t) = 2∆
∑
k=−∞0 u∆(x− 2k∆, t). The equation for U∆ is

U∆(x, t+∆) =
1

2
( U∆(x−∆, t)+U∆(x+∆, t) )−∆fL

(
U∆(x+ ∆, t)− U∆(x−∆, t)

2∆

)
.

(3.2.2)
Now we apply the Hopf–Cole–Lax transformation

U∆ = G(V ∆) = −2∆ log(V ∆),

which brings (3.2.1) to

G(V ∆(x, t+ ∆)) =
1

2
[G(V ∆(x+ ∆, t)) +G(V ∆(x−∆, t))][1ex]

−∆fL

(
G(V ∆(x+ ∆, t))−G(V ∆(x−∆, t))

2∆

)
.

(3.2.3)

The equation for V ∆ thus linearizes as the following identity holds for all V ,
W ∈ R,

1

2
(G(V ) +G(W ))−∆fL

(
G(V )−G(W )

2∆

)
= G

(
V +W

2

)
.

Thus

V ∆(x, t+ ∆) =
1

2
( V ∆(x+ ∆, t) + V ∆(x−∆, t) ),

and, therefore,

V ∆(x, t) =
n∑
l=0

(
n

l

)
1

2n
V ∆(x− n∆ + 2∆, 0),

where t = n∆.
For fixed x, z ∈ R, t > 0, we want to estimate

U∆(x, t)− U∆(z, t) = −2∆ log


n∑
l=0

(
n

l

)
e−

1
∆U

∆(x−n∆+2l∆,0)

n∑
l=0

(
n

l

)
e−

1
∆U

∆(z−n∆+2l∆,0)

 ,(3.2.4)
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where we’ve used U∆(·, 0) = −2∆ log(V ∆(·, 0)). For the sake of a simpler formula,
we assume that (x, t) and (z, t) are always on the grid points as the mesh refines.

The following counterpart of Lemma 2.1 is crucial in establishing the ordering
of u∆(·, tc) and u(·, tc); therefore, we can estimate the L1 difference of the two using
(3.2.4).

Lemma 3.4. Let u0 be a smooth and bounded function satisfying
(B.1) f ′L(u0(ξ)) = − ξ

tc
+ aξ3 + bξ4 +O(ξ5) for |ξ| < δ where a > 0.

(B.2) ξ = 0 is the point corresponding to the first spontaneous formation of shocks;
that is, d

dξf
′
L(u0(ξ)) > − 1

tc
for all ξ 6= 0.

(B.3) f ′L(u0) is antisymmetric, and thus so is u0: u0(−ξ) = −u0(ξ).
(B.4) f ′L(u0(·)), and, therefore, u0(·) is monotonely nonincreasing.
(B.5) f ′L(u0(·)) is concave on ξ < 0, and, therefore, by Assumption (B.3), convex

on ξ > 0.
Then

u(x,∆) ≥ u∆(x,∆) x < 0, (x,∆) on the grids.

By induction and the monotonicity of Lax–Friedrichs scheme, u(x, t) ≥ u∆(x, t) for
all x < 0, t > 0, (x, t) on the grids.

Proof. Let A = (x,∆), B = (x−∆, 0), C = (x+∆, 0), and D = (x, 0) be four-grid
points on x < 0; then

• u∆
A = g(uB , uC) ≡ 1

2 (uB + uC)− 1
2 (fL(uC)− fL(uB));

• uB ≥ uC , and uA = uE for some (unique) point E on the line segment B̄D.
Denote by m = f ′L(uE) = distance(D,E)/∆, and define, for 0 ≤ θ ≤ 1, a family

of functions v(θ, ξ) on B̄C by

f ′L(v(θ, ξ)) = m+ θ(f ′L(u0(ξ))−m), 0 ≤ θ ≤ 1, x−∆ ≤ ξ ≤ x+ ∆.

Obviously, v(0, ξ) = uE and v(1, ξ) = u0(ξ).
Now let h(θ) = g(v(θ, x−∆), v(θ, x+∆)); then h(0) = uE and h(1) = g(uB , uC) =

u∆
A . A direct computation gives

dh

dθ
=

1

2
(α+ θαβ +mβ),

where α = f ′(uB)+f ′(uC)−2m < 0 and β = f ′(uB)−f ′(uC) > 0. Due to concavity of
f ′(u0(·)), the graph of f ′(u0(·)) lies above the line joining (B, f ′(uB)) and (C, f ′(uC));
therefore, α+mβ ≤ 0. Thus dh

dθ ≤ 0 and uA ≥ u∆
A .

Now we come back to estimate the leading order term of (3.2.4) using Stirling’s
formula

n! =

(
n− 1

e

)n−1

(2π(n− 1))
1
2 + · · · .(3.2.5)

After elementary calculations, we have

U∆(x, t)− U∆(z, t) = −2∆ log


n∑
l=0

e−
1
∆ [(tF ( x−yt )+U0(y,o))+E1]

n∑
l=0

e−
1
∆ [(tF ( z−yt )+U0(y,o))+E2]

 ,(3.2.6)
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where F (s) = log(1− s2) + s log( 1+s
1−s ), t = n∆, and x− y = t− 2l∆. E1 and E2 are

the errors introduced by Stirling’s formula, and are of lower order.
We next replace sums by integrals. Again, the errors are of lower order since the

integrals are at least O(∆
1
2 ) as we saw in section 3.1. This leads to

U∆(x, t)− U∆(z, t) = −2∆ log


∫ x+t

x−t
e−

1
2∆ [(tF ( x−yt )+

∫ y
u0(y′)dy′)+E1]dy∫ z+t

z−t
e−

1
2∆ [(tF ( z−yt )+

∫ y
u0(y′)dy′)+E2]dy

+ · · · .

(3.2.7)

At x = 0, t = tc, the integrand of the numerator has a quartic phase at its maximum
y = 0, while the integrand of the denominator has a quadratic phase at z =, say, −1,
t = tc. Therefore,

U∆(0, tc)− U∆(−1, tc) =

∫ 0

−1

u(., tc)− 2∆ log

(
∆

1
4

∆
1
2

)
+ · · · ,

and

‖u(·, tc)− u∆(·, tc)‖L1(∆x;[−1,0]) ∼ 1

2
∆| log ∆|.

The generalization to nonantisymmetric initial data is the same as for Burgers’s
equation in the previous subsection.

Remark 2.
1. The case t 6= tc can be proved in the same way; see [2] for a discrete version

of Lemma 2.2. The discrete analogue of the comparison lemma is an immediate
consequence of monotonicity.

2. Although we only carry out the analysis for the most dissipative first-order
scheme, namely, the Lax–Friedrichs scheme, the same argument shows that even the
upwind scheme cannot do better. Since the same transform applies to the upwind
scheme with the flux function f(u) = − log(a+be−u), a, b > 0, a+b = 1. Even though
we don’t have symmetry in this case, we still have the lower bound for free:

‖u(·, tc)− u∆(·, tc)‖L1(∆x;[xc−1,xc]) ≥ |U(xc, tc)− U∆(xc − 1, tc)| = O(∆| log ∆|)
(3.2.8)

3. Since f ′(u) = be−u
a+be−u > 0, the Godunov scheme reduces to upwind scheme.

Therefore, (3.2.8) also holds for Godunov scheme with the same family of flux.
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Abstract. This paper discusses an initial-boundary value problem for a wave equation with a
nonstandard boundary condition associated with linear capillary waves on the surface of a compress-
ible liquid. We prove the well-posedness of this problem. Our main technical device is the Fourier
transform.
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Introduction. In this paper we discuss the following initial-boundary value
problem for a wave equation:

utt −∆u = 0 for t ∈ (0, T ), (x, y, z) ∈ R3
+,(0.1)

Bu(t, x, y, 0) = 0 for t ∈ (0, T ), (x, y) ∈ R2,(0.2)

u(0, x, y, z) = u0(x, y, z), ut(0, x, y, z) = u1(x, y, z) for (x, y, z) ∈ R3
+,(0.3)

where T > 0 is arbitrarily given, R3
+ = {(x, y, z) : (x, y) ∈ R2, z > 0}, ∆ is the

Laplacian in (x, y, z), and the operator B is defined by

Bu = ∆u+
∂

∂z

(
uxx + uyy

)
.(0.4)

This nonstandard boundary condition arises in the linearized model of capillary waves.
Let a compressible liquid occupy the half-space R3

+, and let u denote its velocity
potential. When the effects of gravity are neglected, u satisfies the following acoustic
equation within the liquid:

utt − c2∆u = 0,(0.5)

where c is the speed of sound. We describe the free surface by z = ζ(t, x, y). By the
Laplace formula (see Landau and Lifshitz [5]), we have

p− p0 = α
(
ζxx + ζyy),(0.6)

where α > 0 is the surface-tension coefficient, p is the pressure in the liquid near the
surface, and p0 is the constant external pressure. On the other hand, u is related to
the pressure by

p− p0 = −ρ0
∂u

∂t
,(0.7)
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where ρ0 is the constant equilibrium density and gravity has been neglected. On the
surface, it holds that

∂u

∂z
=
∂ζ

∂t
at z = 0.(0.8)

Combining (0.5)–(0.8), we have

∆u+
α

ρ0c2
∂

∂z

(
uxx + uyy

)
= 0 at z = 0.(0.9)

By rescaling the variables, we arrive at (0.1) and (0.2).

For the Dirichlet boundary condition u = 0, or the Neumann boundary condition
∂u
∂z = 0 at z = 0, a complete result on the well-posedness of the initial-boundary
value problem is well known. The purpose of this work is to establish a similar result
in the L2 Sobolev spaces with the boundary condition (0.2). Bondi [2] constructed a
fundamental solution of (0.1)–(0.2) and studied an interesting phenomenon of wave
propagation along the surface with infinite speed. His result was also discussed by
Duff [3]. Here our issue is to formulate the well-posedness of the initial-boundary value
problem (0.1)–(0.3) as closely as possible to that of the standard initial-boundary value
problems. One could use fundamental solutions to represent solutions. However,
even for the pure Cauchy problem in the whole space, the explicit formula of the
fundamental solution is not a good device to obtain the basic L2 energy estimates,
which trivially follow either by a multiplier technique or by the Fourier transform. In
particular, it is not at all clear whether the fundamental solution obtained in [2] can
be used to obtain estimates of solutions in the function classes of L2 setting. Here we
rely on the well-known theory of the Cauchy problem in the whole space. This involves
a suitable extension of the given data to the whole space, where various compatibility
conditions are naturally incorporated. The main tool is the Fourier transform. When
the boundary operator consists of only odd (or only even) derivatives in the normal
coordinate variable, this is a standard procedure. The novelty of the above problem is
that the boundary operator is hybrid, and a simple reflection method does not work.
So the main difficulty lies in handling the boundary condition. The boundary z = 0 is
noncharacteristic, and the trace of any derivative of the solution is well-defined due to
partial hypoellipticity; see Hörmander [4]. But we need some regularity condition for
the uniqueness of the solution, which is justified by a simple example presented in the
next section. Our starting point is the following observation made by Duff [3]. Since
B is a differential operator with constant coefficients, Bu satisfies the wave equation
if u does. Consequently, Bu is a solution of the initial-boundary value problem with
the initial data (Bu0,Bu1) and the Dirichlet boundary condition. However, it is only
a weak solution unless u itself is sufficiently smooth. For this, we provide in the next
section a definition of a weak solution which is suitable in our function classes such
that each solution in the natural energy space is included. As the initial data are more
regular with suitable compatibility conditions at the boundary z = 0, the regularity
of the solution improves accordingly.

Following the notation for function classes in Lions and Magenes [6], we state the
main result as follows.

Theorem 0.1. Let u0 ∈ H2(R3
+) and u1 ∈ H1(R3

+) with ∂u0

∂z (x, y, 0) ∈ H1(R2).
Then, there is a unique solution u ∈ C([0, T ] ; H2(R3

+)) ∩ C1([0, T ] ; H1(R3
+)) of

(0.1)–(0.3) such that Bu is a solution of (1.9) below with the initial data (Bu0,Bu1).
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Furthermore, for each t ∈ [0, T ] the solution satisfies

‖u(t, ·)‖H2(R3
+

) + ‖ut(t, ·)‖H1(R3
+

)(0.10)

≤M(T )

(
‖u0‖H2(R3

+
) + ‖u1‖H1(R3

+
) +

∥∥∥∥∂u0

∂z
(·, 0)

∥∥∥∥
H1(R2)

)
,

where M(T ) is a positive constant depending on T.
We can also obtain more regular solutions.
Corollary 0.2. If we suppose that u0 ∈ H3(R3

+) with Bu0 = 0 at z = 0

and that u1 ∈ H2(R3
+) with ∂u1

∂z (·, 0) ∈ H1(R2), the above solution belongs to
C([0, T ] ; H3(R3

+)) ∩ C1([0, T ] ; H2(R3
+)), and it holds that for all t ∈ [0, T ],

‖u(t, ·)‖H3(R3
+

) + ‖ut(t, ·)‖H2(R3
+

)(0.11)

≤M(T )

(
‖u0‖H3(R3

+
) + ‖u1‖H2(R3

+
) +

∥∥∥∥∂u1

∂z
(·, 0)

∥∥∥∥
H1(R2)

)
for some positive constant M(T ).

Corollary 0.3. Let m ≥ 1 be an integer. Suppose that u0 ∈ H2m+2(R3
+), Bu0 =

0, ∆Bu0 = 0, . . . ,∆m−1Bu0 = 0 at z = 0, ( ∂∂z )2m+1u0(·, 0) ∈ H1(R2) and that
u1 ∈ H2m+1(R3

+), Bu1 = 0, ∆Bu1 = 0, . . . ,∆m−1Bu1 = 0 at z = 0. Then, the
above solution belongs to C([0, T ] ; H2m+2(R3

+))∩C1([0, T ] ; H2m+1(R3
+)) and satis-

fies for all t ∈ [0, T ],

‖u(t, ·)‖H2m+2(R3
+

) + ‖ut(t, ·)‖H2m+1(R3
+

)(0.12)

≤M(T,m)

(
‖u0‖H2m+2(R3

+
) + ‖u1‖H2m+1(R3

+
) +

∥∥∥∥∂2m+1u0

∂z2m+1
(·, 0)

∥∥∥∥
H1(R2)

)
,

where M(T,m) is a positive constant depending on T and m.
Corollary 0.4. Let m ≥ 1 be an integer. Suppose that u0 ∈ H2m+3(R3

+), Bu0 =
0, ∆Bu0 = 0, . . . ,∆mBu0 = 0 at z = 0 and that u1 ∈ H2m+2(R3

+), Bu1 =

0, ∆Bu1 = 0, . . . ,∆m−1Bu1 = 0 at z = 0, ( ∂∂z )2m+1u1(·, 0) ∈ H1(R2). Then,
the above solution belongs to C([0, T ] ; H2m+3(R3

+)) ∩ C1
(
[0, T ] ; H2m+2(R3

+)
)

and
satisfies for all t ∈ [0, T ],

‖u(t, ·)‖H2m+3(R3
+

) + ‖ut(t, ·)‖H2m+2(R3
+

)(0.13)

≤M(T,m)

(
‖u0‖H2m+3(R3

+
) + ‖u1‖H2m+2(R3

+
) +

∥∥∥∥∂2m+1u1

∂z2m+1
(·, 0)

∥∥∥∥
H1(R2)

)
.

If we assume that the support of the initial data is contained in R3
+, then the

result is essentially the same as that for the standard boundary conditions.
Corollary 0.5. Let m be a nonnegative integer. Let u0 ∈ Hm+2(R3

+) and
u1 ∈ Hm+1(R3

+) such that supp u0 ∪ supp u1 ⊂ R3
+. Then, the above solution belongs

to C([0, T ] ; Hm+2(R3
+)) ∩ C1([0, T ] ; Hm+1(R3

+)) and satisfies for each t ∈ [0, T ],

‖u(t, ·)‖Hm+2(R3
+

) + ‖ut(t, ·)‖Hm+1(R3
+

)(0.14)

≤M(T,m)(‖u0‖Hm+2(R3
+

) + ‖u1‖Hm+1(R3
+

)).

We will prove these results in the next sections.
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1. Preliminaries. We first review some facts about the Cauchy problem for a
wave equation in R3, which is formulated as follows:

utt −∆u = 0 in (0, T )×R3,

u(0, x, y, z) = u0(x, y, z) in R3,

ut(0, x, y, z) = u1(x, y, z) in R3,

(1.1)

where ∆ is the Laplacian in (x, y, z) ∈ R3, and 0 < T <∞ is arbitrarily given.
Lemma 1.1. Let u0 ∈ Hs(R3), and u1 ∈ Hs−1(R3), for some s ∈ R. Then,

there is a unique solution of the Cauchy problem (1.1) in C([0, T ] ; Hs(R3))∩C1([0, T ] ;
Hs−1(R3)), and it holds that

‖u(t, ·)‖Hs(R3) + ‖ut(t, ·)‖Hs−1(R3) ≤M(T )(‖u0‖Hs(R3) + ‖u1‖Hs−1(R3))(1.2)

for all t ∈ [0, T ] with some positive constant M(T ) independent of u0 and u1.
Lemma 1.2. In the same setting as above, assume that supp u0 ∪ supp u1

⊂ {(x, y, z) : z < −L} for some L ∈ R. Then, the support of the solution for
t ≥ 0 is contained in {(t, x, y, z) : t > z + L}.

Next we define a function space X by

X = H−1(Rz ; H−1(R2)) + L2(Rz ; H−2(R2))

= {f1 + f2 : f1(x, y, z) ∈ H−1(Rz ; H−1(R2)), f2(x, y, z) ∈ L2(Rz ; H−2(R2))},
equipped with the norm

‖f‖X = inf
f=f1+f2

(‖f1‖H−1(Rz ;H−1(R2)) + ‖f2‖L2(Rz ;H−2(R2))),(1.3)

whereRz is for the z variable. Then, X is the dual ofH1(Rz ; H1(R2))∩L2(Rz ; H2(R2)).
For this, see Bergh and Löfström [1]. We also need the following fact.

Lemma 1.3. The operator (1−∆x,y)1/2 is an isomorphism from H−1(R3) onto
X . Here, ∆x,y is the Laplacian in (x, y).

Proof. Choose any f ∈ H−1(R3), and set

f̂1(ξ) =
|ξ3|

1 + |ξ1|+ |ξ2|+ |ξ3| f̂(ξ)

and

f̂2(ξ) =
1 + |ξ1|+ |ξ2|

1 + |ξ1|+ |ξ2|+ |ξ3| f̂(ξ),

where f̂(ξ) is the Fourier transform of f and ξ = (ξ1, ξ2, ξ3) is the dual variable of
(x, y, z). It is apparent that f = f1 + f2 and

‖(1−∆x,y)1/2f1‖H−1(Rz ;H−1(R2)) ≤M‖f‖H−1(R3)(1.4)

and

‖(1−∆x,y)1/2f2‖L2(Rz ;H−2(R2)) ≤M‖f‖H−1(R3)(1.5)

for some positive constant M independent of f. In the meantime, H−1(Rz ; L2(R2))
and L2(Rz ; H−1(R2)) are continuously embedded intoH−1(R3). Hence, (1−∆x,y)−1/2

is continuous from X into H−1(R3).
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Lemma 1.4. Suppose that u0 ∈ L2(Rz ; H−1(R2)) and u1 ∈ X . Then, there is a
unique solution u of (1.1) in C

(
[0, T ] ; L2(Rz ; H−1(R2))

) ∩ C1([0, T ] ; X ). We also
have

‖u(t, ·)‖L2(Rz ;H−1(R2)) + ‖ut(t, ·)‖X ≤M(T )
(‖u0‖L2(Rz ;H−1(R2)) + ‖u1‖X

)
(1.6)

for all t ∈ [0, T ], where M(T ) is a positive constant independent of u0 and u1.
Proof. Let us set

v0 = (1−∆x,y)−1/2u0, v1 = (1−∆x,y)−1/2u1,(1.7)

and consider the Cauchy problem (1.1) with (u0, u1) replaced by (v0, v1). Since v0 ∈
L2(R3) and v1 ∈ H−1(R3), it follows from Lemma 1.1 that there is a unique solution
v in C([0, T ] ; L2(R3)) ∩ C1([0, T ] ; H−1(R3)). We then set

u = (1−∆x,y)1/2v.(1.8)

By virtue of Lemmas 1.1 and 1.3, we find that u is the unique solution of (1.1) in
C([0, T ] ; L2(Rz ; H−1(R2))) ∩ C1([0, T ] ;X ) and that (1.6) is satisfied.

We now consider an initial-boundary value problem in a half-space:
utt −∆u = 0 in (0, T )×R3

+,

u(t, x, y, 0) = 0 in (0, T )×R2,

u(0, x, y, z) = u0(x, y, z) in R3
+,

ut(0, x, y, z) = u1(x, y, z) in R3
+.

(1.9)

We define a function space X1 by

X1 = {f1 + f2 : f1 ∈ H−1((0,∞) ; H−1(R2)), f2 ∈ L2(0,∞ ; H−2(R2))}
equipped with the norm

‖f‖X1
= inf
f=f1+f2

(‖f1‖H−1((0,∞);H−1(R2)) + ‖f2‖L2(0,∞;H−2(R2))

)
,(1.10)

so that X1 is the dual of H1
0 ((0,∞) ; H1(R2)) ∩ L2(0,∞ ; H2(R2)). We then adopt

the following definition of a solution of (1.9).
Definition 1.5. Let u0 ∈ L2(0,∞ ; H−1(R2)) and u1 ∈ X1. We say that a

function u ∈ C([0, T ] ; L2(0,∞; H−1(R2))
)∩C1([0, T ] ; X1) is a solution of (1.9) if it

holds that

−〈u1, φ(0, x, y, z)〉1 + 〈u0, φt(0, x, y, z)〉2(1.11)

+

∫ ∞
0

∫ T

0

〈u, φtt −∆φ〉3 dt dz = 0

for every φ ∈ C2([0, T ] ; H2(R3
+)) such that{

φ(t, x, y, 0) = 0 in [0, T ]×R2,

φ(T, x, y, z) = 0, φt(T, x, y, z) = 0 in R3
+.

(1.12)

Here, the bracket 〈·, ·〉1 is the duality pairing between X1 and H1
0 ((0,∞) ; H1(R2)) ∩

L2(0,∞ ; H2(R2)), 〈·, ·〉2 is the duality pairing between L2(0,∞ ; H−1(R2)) and
L2(0,∞ ; H1(R2)), and 〈·, ·〉3 is the duality pairing between H−1(R2) and H1(R2).
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First we note that the solution in the natural energy space C([0, T ] ; H1
0 (R3

+)) ∩
C1([0, T ] ; L2(R3

+)) satisfies the above condition (1.11). We will show that the condi-
tion (1.11) implies the boundary condition at z = 0. Choose any ψ ∈ C∞0 ((0, T ) ×
R2), and set

J(z) =

∫ T

0

〈u(t, x, y, z), ψ(t, x, y)〉3 dt,

I(z) =

∫ T

0

〈u(t, x, y, z), ψtt −∆x,yψ〉3 dt.

Then, J(z) and I(z) belong to L2((0,∞)), and it holds that

d2J

dz2
(z) = I(z), in D′((0,∞)),(1.13)

since (1.11) implies that u satisfies the wave equation in D′((0, T ) × R3
+). Thus,

J(z) ∈ H2((0,∞)) ⊂ C1([0, T ]). Next choose p(z) ∈ C∞0 ([0,∞)) with p(0) = 0, and
dp
dz (0) = 1. It follows from (1.13) that∫ ∞

0

d2J

dz2
(z) p(z) dz =

∫ ∞
0

I(z)p(z) dz.(1.14)

But we have ∫ ∞
0

d2J

dz2
p(z) dz = J(0) +

∫ ∞
0

J(z)
d2p

dz2
(z) dz.(1.15)

By (1.11), we find that

0 =

∫ ∞
0

∫ T

0

〈u, ψtt −∆x,yψ〉3 p(z) dt dz −
∫ ∞

0

∫ T

0

〈u, ψ〉3 d
2p

dz2
(z) dt dz

=

∫ ∞
0

I(z)p(z) dz −
∫ ∞

0

J(z)
d2p

dz2
(z) dz.(1.16)

It follows from (1.14)–(1.16) that J(0) = 0, which means that u satisfies the boundary
condition. Next we show that (1.11) implies that the initial conditions are satisfied.
Choose an arbitrary function θ(x, y, z) ∈ C∞0 (R3

+), and set

K(t) =

∫ ∞
0

〈u(t, x, y, z), θ(x, y, z)〉3 dz,

L(t) =

∫ ∞
0

〈u(t, x, y, z), ∆θ(x, y, z)〉3 dz.

Then, K(t) and L(t) are continuous in t ∈ [0, T ], and

d2K

dt2
(t) = L(t) holds in D′((0, T )),(1.17)
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which yields K(t) ∈ C2([0, T ]). Next choose a function q(t) ∈ C∞([0, T ]) such that
q(T ) = qt(T ) = 0, q(0) = 1, and qt(0) = 0. It is obvious that∫ T

0

d2K

dt2
(t)q(t) dt =

∫ T

0

L(t)q(t) dt,(1.18)

and thus,

−dK
dt

(0) +

∫ T

0

K(t)
d2q

dt2
(t) dt =

∫ T

0

L(t)q(t) dt.(1.19)

By virtue of (1.11), it holds that

0 = − 〈u1, θ(x, y, z)〉1 +

∫ ∞
0

∫ T

0

〈u, qttθ − q∆θ〉3 dt dz(1.20)

= −〈u1, θ(x, y, z)〉1 +

∫ T

0

K(t)qtt(t) dt−
∫ T

0

L(t)q(t) dt.

By combining (1.19) and (1.20), we have

〈u1, θ(x, y, z)〉1 =
dK

dt
(0) = 〈ut(0, x, y, z), θ(x, y, z)〉1.(1.21)

By choosing a different q(t), it also holds that

〈u0, θ(x, y, z)〉2 = 〈u(0, x, y, z), θ(x, y, z)〉2.(1.22)

Hence, u satisfies the initial conditions.
Proposition 1.6. Let u0 ∈ L2(0,∞ ; H−1(R2)) and u1 ∈ X1. Then, there is a

unique solution of (1.9) in C
(
[0, T ]; L2(0,∞; H−1(R2))

) ∩ C1([0, T ]; X1).
Proof. We can choose a sequence of functions {un0}∞n=1 such that un0 ∈ C∞0 (R3

+)
and

un0 → u0 in L2(0,∞ ; H−1(R2)).

Since u1 ∈ X1, we can write

u1 =
df

dz
+ g(1.23)

for some f ∈ L2(0,∞ ; H−1(R2)) and g ∈ L2(0,∞ ; H−2(R2)). Let {fn}∞n=1 and
{gn}∞n=1 be sequences in C∞0 (R3

+) such that

fn → f in L2(0,∞ ; H−1(R2)),

gn → g in L2(0,∞ ; H−2(R2))

as n→∞. We now define

vn0 (x, y, z) =

{
un0 (x, y, z) for z ≥ 0,

−un0 (x, y,−z) for z < 0;
(1.24)
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f̃n(x, y, z) =

{
fn(x, y, z) for z ≥ 0,

fn(x, y,−z) for z < 0;
(1.25)

g̃n(x, y, z) =

{
gn(x, y, z) for z ≥ 0,

−gn(x, y,−z) for z < 0;
(1.26)

vn1 (x, y, z) =
df̃n
dz

(x, y, z) + g̃n(x, y, z).(1.27)

Then, it is easy to see that as n→∞,
vn0 converges in L2(Rz ; H−1(R2))(1.28)

and

vn1 converges in X .(1.29)

With (u0, u1) replaced by (vn0 , v
n
1 ) in the Cauchy problem (1.1), we obtain a solution

vn ∈ C([0, T ] ; Hm(R3)) ∩ C1([0, T ] ; Hm(R3)) for every m ∈ R. By Lemma 1.4,
(1.28), and (1.29), we find that

vn → v in C
(
[0, T ] ; L2(Rz;H

−1(R2))
) ∩ C1([0, T ] ; X )(1.30)

for some v. Since vn0 and vn1 are odd in z, it follows that vn is odd in z. So
vn(t, x, y, 0) = 0. Since vn is a smooth solution, it is evident that the restriction of vn

toR3
+ satisfies (1.11) with (u0, u1) replaced by the restriction of (vn0 , v

n
1 ) toR3

+. Now it
follows from (1.30) that the restriction of v to R3

+ is a solution of (1.9). For the unique-
ness of the solution, choose an arbitrary function ψ(t, x, y, z) ∈ C∞0 ((0, T )×R3

+), and
find the solution of 

φtt −∆φ = ψ in (0, T )×R3
+,

φ(t, x, y, 0) = 0 in (0, T )×R2,

φ(T, x, y, z) = 0 in R3
+,

φt(T, x, y, z) = 0 in R3
+.

(1.31)

Then φ is eligible as a test function for (1.11). Let w be the difference between two
solutions satisfying (1.11). Then, it is apparent that∫ ∞

0

∫ T

0

〈w, ψ〉3 dt dz = 0,(1.32)

and hence, w ≡ 0.
As mentioned earlier, some regularity conditions are necessary for the uniqueness

of solution of (1.9). To see this, let us consider

u = δ(t− z),(1.33)

where δ is the Dirac delta measure. Then, u is obviously a weak solution of the wave
equation and satisfies the homogeneous initial-boundary conditions in the following
sense.

lim
t→0+

〈u, φ(x, y, z)〉 = 0,(1.34)
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lim
t→0+

〈ut, φ(x, y, z)〉 = 0,(1.35)

lim
z→0+

〈u, ψ(t, x, y)〉 = 0(1.36)

for every φ ∈ C∞0 (R3
+) and ψ ∈ C∞0 ((0, T ) × R2). The bracket denotes the dual-

ity pairing between distributions and test functions. In fact, this also satisfies the
boundary condition Bu = 0 at z = 0 in the sense

lim
z→0+

〈Bu, ψ(t, x, y)〉 = 0(1.37)

for all ψ ∈ C∞0 ((0, T )×R2).

2. Proof of Theorem 0.1. We first outline the strategy of proof.
Step 1. For given 0 < T < ∞, u0 ∈ H2(R3

+), and u1 ∈ H1(R3
+) with

∂
∂zu0(x, y, 0) ∈ H1(R2), we find ũ0 ∈ H2(R3) and ũ1 ∈ H1(R3) which satisfy the
following conditions:

ũ0 = u0, ũ1 = u1 for z ≥ 0;(2.1)

Bũ0 ∈ L2(Rz ; H−1(R2)), Bũ1 ∈ X ;(2.2)

there are sequences {wn0 }∞n=1, {wn1 }∞n=1 in C∞0 (R3) such that(2.3)

wn0 → Bũ0 in L2(Rz ; H−1(R2)),(i)

wn1 → Bũ1 in X ,(ii)

wn0 (x, y, z) = −wn0 (x, y,−z), wn1 (x, y, z) = −wn1 (x, y,−z) for − 2T < z < 2T.
(iii)

Step 2. We proceed as in Proposition 1.6 with help of Lemmas 1.1 and 1.2. Find
the solution wn of the Cauchy problem (1.1) in (0, 2T ) × R3 with the initial data
(wn0 , w

n
1 ). Let w be the limit of {wn}∞n=1. Then, the restriction of w to [0, T ] × R3

+

is a solution of (1.9) with initial data (Bu0,Bu1).
Step 3. Find the solution u of the Cauchy problem (1.1) in (0, 2T )×R3 with the

initial data (ũ0, ũ1). By the uniqueness of solution of (1.1), we have w ≡ Bu, and
the restriction of u to [0, T ]×R3

+ is a desired solution.
Step 4. Prove the uniqueness of solution of (0.1) - (0.3).
One might wonder if we can bypass Step 1 and use Proposition 1.6 directly with

initial data (Bu0,Bu1) to satisfy the boundary condition Bu = 0 at z = 0. This is
not possible since the solution obtained by Proposition 1.6 cannot be properly related
to the solution required in Theorem 0.1. The trouble lies in inverting the operator B.
We now present the details of the proof. Obviously, only Step 1 and Step 4 require
technical details.
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Construction of ũ0 and ũ1. Suppose that u0 ∈ H2(R3
+) is given with ∂

∂zu0(x, y, 0) ∈
H1(R2). Let us consider the following initial value problem:

∂2φ̂

∂s2
+ |ξ|2 ∂φ̂

∂s
− |ξ|2φ̂ = 2|ξ|2 ∂û0

∂s
(ξ, s), s > 0,(2.4)

φ̂(ξ, 0) = 2û0(ξ, 0),(2.5)

∂φ̂

∂s
(ξ, 0) = 0,(2.6)

where ξ = (ξ1, ξ2) is the dual variable of (x, y) and û0 denotes the Fourier transform
of u0 with respect to (x, y). Here ξ is a parameter in this initial value problem, which

is well posed for almost all ξ ∈ R2. It is easy to find a solution φ̂ of (2.4)–(2.6) by
the variation of constants formula:

φ̂(ξ, s) = 2

∫ s

0

eλ1(s−η)√|ξ|4 + 4|ξ|2 |ξ|
2 ∂û0

∂η
(ξ, η) dη(2.7)

− 2

∫ s

0

eλ2(s−η)√|ξ|4 + 4|ξ|2 |ξ|
2 ∂û0

∂η
(ξ, η) dη

− 2(λ2/λ1)eλ1s

1− (λ2/λ1)
û0(ξ, 0)

+
2eλ2s

1− (λ2/λ1)
û0(ξ, 0)

= Ĵ1(ξ, s) + Ĵ2(ξ, s) + Ĵ3(ξ, s) + Ĵ4(ξ, s),

where 
λ1 =

1

2
(−|ξ|2 +

√|ξ|4 + 4|ξ|2),

λ2 =
1

2
(−|ξ|2 −√|ξ|4 + 4|ξ|2),

(2.8)

and

Ĵ1(ξ, s) = 2

∫ s

0

λ1e
λ1(s−η)√|ξ|4 + 4|ξ|2 |ξ|

2û0(ξ, η) dη,(2.9)

Ĵ2(ξ, s) =
2|ξ|2√|ξ|4 + 4|ξ|2 û0(ξ, s) +

2λ1e
λ1s√|ξ|4 + 4|ξ|2 û0(ξ, 0),(2.10)

Ĵ3(ξ, s) = −2

∫ s

0

eλ2(s−η)√|ξ|4 + 4|ξ|2 |ξ|
2 ∂û0

∂η
(ξ, η) dη,(2.11)

Ĵ4(ξ, s) =
2eλ2s

1− (λ2/λ1)
û0(ξ, 0).(2.12)
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We fix a function ρ ∈ C∞0 (R) such that

ρ(s) = 1 for |s| ≤ 2T(2.13)

and estimate each ρ(s)Ĵi(ξ, s). There is a positive constant M such that for all ξ ∈ R2,

0 ≤ λ1 ≤M,(2.14)

|λ2 + |ξ|2| ≤M.(2.15)

By means of (2.14) and the inequality

‖(1 + |ξ|)3/2û0(ξ, 0)‖L2(R2) ≤M‖u0‖H2(R3
+

),(2.16)

it is evident that for i = 1, 2,

∫ ∞
0

(∥∥∥∥ ∂2

∂s2
(ρ(s)Ĵi(ξ, s))

∥∥∥∥2

L2(R2)

+
∥∥ρ(s)(1 + |ξ|2)Ĵi(ξ, s)

∥∥2

L2(R2)

)
ds ≤M‖u0‖2H2(R3

+
)

(2.17)

for some positive constant M. Next we recall some basic estimates of solutions of the
heat equation, which follow directly from energy estimates:∫ ∞

0

∥∥∥∥e−|ξ|2s |ξ|2 f̂(ξ)

∥∥∥∥2

L2(R2)

ds ≤M‖f‖2H1(R2) for all f ∈ H1(R2)(2.18)

and

∫ ∞
0

∥∥∥∥∫ s

0

e−|ξ|
2(s−t) |ξ|2 ĝ(ξ, t) dt

∥∥∥∥2

L2(R2)

ds ≤M‖g‖2L2(R3
+

) for all g ∈ L2(R3
+)

(2.19)

for some positive constant M. We can write λ2 = −|ξ|2 + p(ξ) and

Ĵ4(ξ, s) =
2e−|ξ|

2s

1− (λ2/λ1)
ep(ξ)s û0(ξ, 0),(2.20)

where p(ξ) is uniformly bounded, which follows from (2.15). By virtue of (2.14),
(2.16), and (2.18), it is apparent that

∫ ∞
0

(∥∥∥∥ ∂2

∂s2
(ρ(s)Ĵ4(ξ, s))

∥∥∥∥2

L2(R2)

+
∥∥(1 + |ξ|2)ρ(s)Ĵ4(ξ, s)

∥∥2

L2(R2)

)
ds ≤M‖u0‖2H2(R3

+
).

(2.21)

We rewrite
∂

∂s
Ĵ3 as

∂

∂s
Ĵ3(ξ, s) = − 2

|ξ|2eλ2s√|ξ|4 + 4|ξ|2
∂û0

∂s
(ξ, 0)(2.22)

− 2

∫ s

0

|ξ|2eλ2(s−η)√|ξ|4 + 4|ξ|2
∂2û0

∂η2
(ξ, η) dη,

= Î1(ξ, s) + Î2(ξ, s),
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where Î1 is the first term of the right-hand side, and Î2 is the integral term. By the
same argument as for Ĵ4, we have∫ ∞

0

∥∥∥∥∂(ρÎ1)

∂s
(ξ, s)

∥∥∥∥2

L2(R2)

ds ≤M∥∥∂u0

∂z
(x, y, 0)

∥∥2

H1(R2)
(2.23)

for some positive constant M. Î2 can be written as

Î2(ξ, s) = −2ep(ξ)s
∫ s

0

|ξ|2e−|ξ|2(s−η)√|ξ|4 + 4|ξ|2 e
−p(ξ)η ∂

2û0

∂η2
(ξ, η) dη.(2.24)

Since p(ξ) is uniformly bounded, we can derive by (2.19)∫ ∞
0

∥∥∥∥ ∂∂s (ρ(s)Î2(ξ, s))

∥∥∥∥2

L2(R2)

ds ≤M∥∥∂2u0

∂z2

∥∥2

L2(R3
+

)
(2.25)

for some positive constant M. By a similar argument, we can also estimate ρ(s)(1 +
|ξ|2)Ĵ3(ξ, s) and arrive at∫ ∞

0

(∥∥∥∥ ∂2

∂s2
(ρ(s) Ĵ3(ξ, s))

∥∥∥∥2

L2(R2)

+
∥∥(1 + |ξ|2)ρ(s)Ĵ3(ξ, s)

∥∥2

L2(R2)

)
ds(2.26)

≤M
(
‖u0‖2H2(R3

+
) +

∥∥∥∥∂u0

∂z
(x, y, 0)

∥∥∥∥2

H1(R2)

)
.

Combining (2.17), (2.21), and (2.26), we have∫ ∞
0

(∥∥∥∥ ∂2

∂s2
(ρ(s) φ̂(ξ, s))

∥∥∥∥2

L2(R2)

+
∥∥(1 + |ξ|2)ρ(s)φ̂(ξ, s)

∥∥2

L2(R2)

)
ds(2.27)

≤M
(
‖u0‖2H2(R3

+
) +

∥∥∥∥∂u0

∂z
(x, y, 0)

∥∥∥∥2

H1(R2)

)
,

where M is a positive constant depending on T through (2.13). We now define ũ0 by

ũ0(x, y, z) =

{
u0(x, y, z) for z ≥ 0,

ρ(z)φ(x, y,−z)− u0(x, y,−z) for z < 0,
(2.28)

where φ(x, y, s) is the Fourier inverse transform of φ̂(ξ, s) above. Then, it follows that
lim
z→0+

ũ0(·, z) = lim
z→0−

ũ0(·, z),

lim
z→0+

∂

∂z
ũ0(·, z) = lim

z→0−
∂

∂z
ũ0(·, z),

(2.29)

and consequently,

‖ũ0‖H2(R3) ≤M
(
‖u0‖2H2(R3

+
) +

∥∥∥∥∂u0

∂z
(x, y, 0)

∥∥∥∥2

H1(R2)

)
,(2.30)

and

Bũ0 ∈ L2(Rz ; H−1(R2)).(2.31)
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It also follows that, for almost all −2T < z < 2T,

(Bũ0)(·,−z) = − (Bũ0)(·, z) in H−1(R2).(2.32)

Since Bũ0 ∈ L2(Rz ; H−1(R2)), there are sequences {ζn1 }∞n=1 in C∞0 ((0, 2T )×R2),
{ζn2 }∞n=1 in C∞0 ((2T,∞)×R2), and {ζn3 }∞n=1 in C∞0 ((−∞,−2T )×R2) such that as
n→∞,

ζn1 → χ1 Bũ0 in L2(Rz ; H−1(R2)),(2.33)

ζn2 → χ2 Bũ0 in L2(Rz ; H−1(R2)),(2.34)

and

ζn3 → χ3 Bũ0 in L2(Rz ; H−1(R2)),(2.35)

where χ1(z) is a characteristic function for the interval [0, 2T ], χ2(z) is for the interval
[2T,∞), and χ3(z) is for (−∞,−2T ]. We then set

wn0 (x, y, z) = ζn1 (x, y, z)− ζn1 (x, y,−z) + ζn2 (x, y, z) + ζn3 (x, y, z).(2.36)

Then, all the conditions in (2.1)–(2.3) for u0 are satisfied.
Next we suppose that u1 ∈ H1(R3

+) is given. We consider (2.4)–(2.6) with û0

replaced by û1. Then, the solution ψ̂ of (2.4)–(2.6) is given by

ψ̂(ξ, s) = Ĥ1(ξ, s) + Ĥ2(ξ, s) + Ĥ3(ξ, s) + Ĥ4(ξ, s),(2.37)

where

Ĥ1(ξ, s) = 2

∫ s

0

λ1e
λ1(s−η)√|ξ|4 + 4|ξ|2 |ξ|

2û1(ξ, η) dη,(2.38)

Ĥ2(ξ, s) =
2|ξ|2√|ξ|4 + 4|ξ|2 û1(ξ, s) +

2λ1e
λ1s√|ξ|4 + 4|ξ|2 û1(ξ, 0),(2.39)

Ĥ3(ξ, s) = −2

∫ s

0

eλ2(s−η)√|ξ|4 + 4|ξ|2 |ξ|
2 ∂û1

∂η
(ξ, η) dη,(2.40)

Ĥ4(ξ, s) =
2eλ2s

1− (λ2/λ1)
û1(ξ, 0).(2.41)

Since u1 ∈ H1(R3
+) implies u1(x, y, 0) ∈ H1/2(R2), we can easily derive

∫ ∞
0

(∥∥∥∥ρ(s)
∂Ĥi

∂s
(ξ, s)

∥∥∥∥2

L2(R2)

+
∥∥ρ(s)(1 + |ξ|)Ĥi(ξ, s)

∥∥2

L2(R2)

)
ds ≤M‖u1‖2H1(R3

+
),

(2.42)
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for i = 1, 2, 4, where ρ is the same as defined by (2.13). For the estimate of Ĥ3, we
write

∂Ĥ3

∂s
(ξ, s) = − 2

|ξ|2√|ξ|4 + 4|ξ|2
∂û1

∂s
(ξ, s)(2.43)

− 2

∫ s

0

λ2|ξ|2eλ2(s−η)√|ξ|4 + 4|ξ|2
∂û1

∂η
(ξ, η) dη,

and, by means of (2.15) and (2.19), we find that

∫ ∞
0

∥∥∥∥∥ρ(s)
∂Ĥ3

∂s
(ξ, s)

∥∥∥∥∥
2

L2(R2)

ds ≤M‖u1‖2H1(R3
+

)(2.44)

for some positive constant M. It also holds that∫ ∞
0

∥∥ρ(s)(1 + |ξ|)Ĥ3(ξ, s)
∥∥2

L2(R2)
ds ≤M‖u1‖2H1(R3

+
).(2.45)

Let us define

ũ1(x, y, z) =

{
u1(x, y, z) for z ≥ 0,

ρ(z)ψ(x, y,−z)− u1(x, y,−z) for z < 0.
(2.46)

Then we have

lim
z→0+

ũ1(·, z) = lim
z→0−

ũ1(·, z) in H1/2(R2),(2.47)

which, together with (2.42), (2.44), and (2.45), yields

∂ũ1

∂z
∈ L2(R3)(2.48)

and

‖ũ1‖H1(R3) ≤M‖u1‖H1(R3
+

),(2.49)

for some positive constant M depending on T through (2.13). Next we choose a
sequence {vm}∞m=1 in H3(R3

+) such that

vm → u1 in H1(R3
+)(2.50)

as m→∞. Let ψ̂m be the solution of (2.4)–(2.6) with û0 replaced by v̂m, and define

ṽm(x, y, z) =

{
vm(x, y, z) for z ≥ 0,

ρ(z)ψm(x, y,−z)− vm(x, y,−z) for z < 0.
(2.51)

Then, by virtue of (2.49), we find that

Bṽm → Bũ1 in X .(2.52)
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In the meantime, the result for u0 implies that each Bṽm can be approximated
in L2(Rz ; H−1(R2)) by a sequence of functions in C∞0 (R3) which are odd in z ∈
(−2T, 2T ). Hence, there is a sequence {wn1 }∞n=1 in C∞0 (R3) such that

wn1 → Bũ1 in X ,(2.53)

and

wn1 (x, y,−z) = −wn1 (x, y,−z) for − 2T < z < 2T.(2.54)

Obviously, all the conditions (2.1)-(2.3) for u1 are satisfied.
Solutions of (1.1) with initial data (ũ0, ũ1). Consider the Cauchy problem (1.1)

with the initial data (wn0 , w
n
1 ). For each n, there is a unique solution wn ∈ C([0, 2T ] ;

Hm(R3)) ∩C1([0, 2T ] ; Hm−1(R3)) for every m ∈ R. By Lemma 1.2 and the condi-
tion (iii) in (2.3), wn(t, x, y, 0) = 0 for all (t, x, y) ∈ [0, T ]×R2. Hence, the restriction
of wn to [0, T ]×R3

+ satisfies (1.11) with (u0, u1) replaced by the restriction of (wn0 , w
n
1 )

to z > 0. Meanwhile, we have, by Lemma 1.4,

wn → Bũ in C
(
[0, T ] ; L2(Rz;H

−1(R2))
) ∩ C1([0, T ] ; X ),(2.55)

where ũ is the unique solution of (1.1) with the initial data (ũ0, ũ1). Hence, the
restriction of Bũ to [0, T ]×R3

+ satisfies (1.11) with (u0, u1) replaced by the restriction
of (Bu0,Bu1) to z > 0. Consequently, the restriction of ũ to [0, T ]×R3

+ is a desired
solution in Theorem 0.1.

Uniqueness of the solution. Let Φ be the difference between two solutions in
Theorem 0.1. Then, we have

Φ ∈ C([0, T ] ; H2(R3
+)) ∩ C1([0, T ] ; H1(R3

+)),(2.56)

Φ(0, x, y, z) = 0, Φt(0, x, y, z) = 0 for (x, y, z) ∈ R3
+,(2.57)

Φtt −∆Φ = 0 in (0, T )×R3
+.(2.58)

Since BΦ is a solution of (1.9) with

(BΦ)(0, ·) = 0, (BΦt)(0, ·) = 0,(2.59)

it follows from Proposition 1.6 that

BΦ ≡ 0 in (0, T )×R3
+.(2.60)

By virtue of (2.57) and the domain of dependence of the solution, we also have

Φ = 0 for 0 ≤ t < z.(2.61)

Since Φ ∈ C([0, T ] ; H2(R3
+)), (2.60) implies that for each t ∈ [0, T ], ξ ∈ R2,

∂2Φ̂

∂z2
(t, ξ, z)− |ξ|2 ∂Φ̂

∂z
(t, ξ, z)− |ξ|2Φ̂(t, ξ, z) = 0(2.62)

holds in D′((0,∞)). But it follows from (2.61) that

Φ̂(t, ξ, z) = 0 for all ξ ∈ R2, 0 ≤ t < z,(2.63)

which, together with (2.62), yields

Φ̂ ≡ 0 in R3
+.(2.64)

Hence, the solution of Theorem 0.1 is unique.
Finally, the estimate (0.10) follows from Lemma 1.1, (2.30), and (2.49).
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3. Proof of corollaries. For the proof of corollaries, it is enough to obtain
necessary estimates of φ̂(ξ, s) given by (2.7). We start from Corollary 0.2. Suppose
u0 ∈ H3(R3

+) and Bu0 = 0 at z = 0. By the same argument used before, it is easy
to see for i = 1, 2,

∫ ∞
0

(∥∥∥∥ ∂3

∂s3
(ρ(s)Ĵi(ξ, s))

∥∥∥∥2

L2(R2)

+
∥∥ρ(s)(1 + |ξ|)3Ĵi(ξ, s)

∥∥2

L2(R2)

)
ds ≤M‖u0‖2H3(R3

+
),

(3.1)

where ρ(s) is the same as before. By means of (2.12) and (2.22), we write

∂2Ĵ3

∂s2
(ξ, s) +

∂2Ĵ4

∂s2
(ξ, s) =

2λ1λ
2
2e
λ2s√|ξ|4 + 4|ξ|2 û0(ξ, 0)(3.2)

− 2
λ2|ξ|2eλ2s√|ξ|4 + 4|ξ|2

∂û0

∂s
(ξ, 0)− 2

|ξ|2eλ2s√|ξ|4 + 4|ξ|2
∂2û0

∂s2
(ξ, 0)

− 2

∫ s

0

|ξ|2eλ2(s−η)√|ξ|4 + 4|ξ|2
∂3û0

∂η3
(ξ, η) dη.

However, the first three terms in the right-hand side can be written as

−2
|ξ|2eλ2s√|ξ|4 + 4|ξ|2

(
∂2û0

∂s2
(ξ, 0)− |ξ|2 ∂û0

∂s
(ξ, 0)− |ξ|2û0(ξ, 0)

)
(3.3)

+ eλ2s

(
p1(ξ)

∂û0

∂s
(ξ, 0) + p2(ξ)û0(ξ, 0)

)
,

where p1(ξ) and p2(ξ) are uniformly bounded in ξ. Since Bu0 = 0 at z = 0, (3.2) is
reduced to

∂2Ĵ3

∂s2
(ξ, s) +

∂2Ĵ4

∂s2
(ξ, s) = eλ2s

(
p1(ξ)

∂û0

∂s
(ξ, 0) + p2(ξ)û0(ξ, 0)

)
(3.4)

− 2

∫ s

0

|ξ|2eλ2(s−η)√|ξ|4 + 4|ξ|2
∂3û0

∂η3
(ξ, η) dη.

It now follows from (2.18) and (2.19) that∫ ∞
0

∥∥∥∥ρ(s)

(
∂3Ĵ3

∂s3
(ξ, s) +

∂3Ĵ4

∂s3
(ξ, s)

)∥∥∥∥2

L2(R2)

ds ≤M‖u0‖2H3(R3
+

).(3.5)

We can easily find that∫ ∞
0

∥∥ρ(s)(1 + |ξ|)3(Ĵ3(ξ, s) + Ĵ4(ξ, s))
∥∥2

L2(R2)
ds ≤M‖u0‖2H3(R3

+
).(3.6)

By virtue of (3.1) and (3.6), we can estimate φ;

‖ρ(z)φ(x, y, z)‖H3(R3
+

) ≤M‖u0‖H3(R3
+

),(3.7)

for some positive constant M, which depends on T through (2.13). Recalling (2.4),
(2.28), (2.29), and the boundary condition Bu0 = 0 at z = 0 we derive

lim
z→0+

∂2ũ0

∂z2
(·, z) = lim

z→0−
∂2ũ0

∂z2
(·, z),(3.8)
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which, combined with (3.7), yields

‖ũ0‖H3(R3) ≤M‖u0‖H3(R3
+

).(3.9)

The estimate of ũ1 defined by (2.46) follows directly from the estimate of ũ0 in the
previous section. This completes the proof of Corollary 0.2.

For the proof of the remaining corollaries, we first observe the following fact.
Lemma 3.1. Let φ̂ be a solution of (2.4)–(2.6). Assume that u0 ∈ H2m+4(R3

+),
and Bu0 = 0, ∆Bu0 = 0, . . . ,∆mBu0 = 0 at z = 0, where m is a nonnegative
integer. Then, we have

∂2m+2 φ̂

∂s2m+2
(ξ, 0) = 2

∂2m+2 û0

∂s2m+2
(ξ, 0) for almost all ξ ∈ R2,(3.10)

∂2m+3 φ̂

∂s2m+3
(ξ, 0) = 0 for almost all ξ ∈ R2.(3.11)

Proof. Suppose that Bu0 = 0 at z = 0. Then, it follows from (2.4)–(2.6) that

∂2φ̂

∂s2
(ξ, 0) = 2|ξ|2

(
û0(ξ, 0) +

∂û0

∂s
(ξ, 0)

)
(3.12)

= 2
∂2û0

∂s2
(ξ, 0) for almost all ξ ∈ R2.

By differentiation of (2.4) in s, and using (3.12), we obtain

∂3φ̂

∂s3
(ξ, 0) = 0 for almost all ξ ∈ R2.(3.13)

Suppose that Lemma 3.1 is true for 0 ≤ m ≤ k. By differentiation of (2.4), we have

∂2k+4 φ̂

∂s2k+4
+ |ξ|2 ∂

2k+3 φ̂

∂s2k+3
− |ξ|2 ∂

2k+2 φ̂

∂s2k+2
= 2|ξ|2 ∂

2k+3 û0

∂s2k+3
,(3.14)

which, combined with (3.10) and (3.11) for m = k, yields

∂2k+4 φ̂

∂s2k+4
(ξ, 0) = 2|ξ|2

(
∂2k+3û0

∂s2k+3
(ξ, 0) +

∂2k+2û0

∂s2k+2
(ξ, 0)

)
(3.15)

= 2
∂2k+4 û0

∂s2k+4
(ξ, 0) for almost all ξ ∈ R2.

Here we also used the fact that ∆mBu0 = 0, 0 ≤ m ≤ k + 1 at z = 0 implies
∂2m

∂z2mBu0 = 0, 0 ≤ m ≤ k + 1, at z = 0. Now (3.10) is true for m = k + 1.
By differentiation of (3.14), we also get (3.11) for m = k + 1. The proof is com-
plete.

Under the same assumption as in Lemma 3.1, we consider the initial value problem
for 0 ≤ k ≤ m+ 1,

∂2ψ̂k
∂s2

+ |ξ|2 ∂ψ̂k
∂s
− |ξ|2ψ̂k = 2|ξ|2 ∂

2k+1 û0

∂s2k+1
(ξ, s), s > 0,(3.16)
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ψ̂k(ξ, 0) = 2
∂2k û0

∂s2k
(ξ, 0),(3.17)

∂ψ̂k
∂s

(ξ, 0) = 0.(3.18)

By the above lemma, and the uniqueness of solution of (2.4)–(2.6), we find

ψ̂k ≡ ∂2k φ̂

∂s2k
for 0 ≤ k ≤ m+ 1.(3.19)

Recalling (2.28), we derive

lim
z→0+

∂ν

∂zν
ũ0(·, z) = lim

z→0−
∂ν

∂zν
ũ0(·, z), 0 ≤ ν ≤ 2m+ 3.(3.20)

Meanwhile, (2.27) yields∫ ∞
0

(∥∥∥∥ ∂2

∂s2
(ρ(s) ψ̂m+1(ξ, s))

∥∥∥∥2

L2(R2)

+
∥∥(1 + |ξ|2)ρ(s)ψ̂m+1(ξ, s)

∥∥2

L2(R2)

)
ds(3.21)

≤M
(
‖u0‖2H2m+4(R3

+
) +

∥∥∥∥∂2m+3 û0

∂z2m+3
(x, y, 0)

∥∥∥∥2

H1(R2)

)
.

By means of (2.18) and (2.19), we can obtain directly from (2.9)–(2.12)

∫ ∞
0

‖ρ(s)(1 + |ξ|)2m+4Ĵi(ξ, s)‖2L2(R2) ds ≤M‖u0‖2H2m+4(R3
+

), i = 1, . . . , 4.

(3.22)

By (3.20)–(3.22), we arrive at

‖ũ0‖H2m+4(R3) ≤M
(
‖u0‖H2m+4(R3

+
) +

∥∥∥∥∂2m+3 u0

∂z2m+3
(x, y, 0)

∥∥∥∥
H1(R2)

)
.(3.23)

When u0 ∈ H2m+3(R3
+), with Bu0 = 0, . . . ,∆mBu0 = 0 at z = 0, we apply the

estimate (3.7) to ψm = ∂2mφ
∂z2m so that

‖ũ0‖H2m+3(R3) ≤M‖u0‖H2m+3(R3
+

).(3.24)

Here, M is a positive constant depending on T and m. Since the esimates of ũ1 are
identical with those of ũ0, the proof of Corollaries 0.3 and 0.4 is complete. Corollary
0.5 follows trivially from the previous ones.
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EXISTENCE OF TRAVELING WAVES IN A BIODEGRADATION
MODEL FOR ORGANIC CONTAMINANTS∗
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Abstract. We study a biodegradation model for the time evolution of concentrations of con-
taminant, nutrient, and bacteria. The bacteria has a natural concentration which will increase when
the nutrient reaches the substrate (contaminant). The growth utilizes nutrients and degrades the
substrate. Eventually, such a process removes all the substrate and can be described by traveling
wave solutions. The model consists of advection-reaction-diffusion equations for the substrate and
nutrient concentrations and a rate equation (ODE) for the bacteria concentration. We first show the
existence of approximate traveling wave solutions to an elliptically regularized system posed on a
finite domain using degree theory and the elliptic maximum principle. To prove that the approximate
solutions do not converge to trivial solutions, we construct comparison functions for each component
and employ integral identities of the governing equations. This way, we derive a priori estimates
of solutions independent of the length of the finite domain and the regularization parameter. The
integral identities take advantage of the forms of coupling in the system and help us obtain optimal
bounds on the traveling wave speed. We then extend the domain to the infinite line limit, remove
the regularization, and construct a traveling wave solution for the original set of equations satisfying
the prescribed boundary conditions at spatial infinities. The contaminant and nutrient profiles of
the traveling waves are strictly monotone functions, while the biomass profile has a pulse shape.

Key words. biodegradation, organic contaminants, traveling waves

AMS subject classifications. 92C05, 92C45, 34B15, 35J25

PII. S0036141096313392

1. Introduction. Thousands of chemical spills contaminate subsurface aquifers
used for drinking water and agriculture in the United States. A promising technol-
ogy for cleaning up subsurface organic contamination is in-situ bioremediation. This
technique works by stimulating the bacteria already present in the soil to use the
contaminant as a source of food, thereby transforming it into nontoxic components
such as carbon dioxide and water. Among a variety of restoration technologies, in-
situ bioremediation has been shown to be the most economical for remediating certain
contaminants. Several experiments have shown that this method takes much less time
and is less costly than the traditional pumping and filtering techniques. For example,
one site was estimated to take 100 years to clean up using the pump and treat method;
in-situ bioremediation took only 10 months [3]. Moreover, while many methods simply
remove the contaminant from the site and thereby create a disposal problem, in-situ
bioremediation has the potential to completely transform organic contaminants into
neutral compounds by utilizing the indigenous bacteria [6].

In-situ bioremediation involves a complex combination of biological and chemical
properties and fluid dynamics rendering scientific predictions difficult. Mathematical
models are particularly useful in understanding the interplay between the various
mechanisms in addition to making predictions, analyzing the significance of physical
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parameters, and providing theoretical interpretations of experiments. Several models
for in-situ bioremediation have been presented in the literature; see [2], [5]. In this
paper, we consider the model presented in [7] and [8], for it is the simplest model to
capture the fundamental aspects of degradation.

The biodegradation model is

RfSt + (vS −DSx)x = −Rs, x ∈ R1,(1.1)

At + (vA−DAx)x = −γRs,(1.2)

Mt = Y Rs − b(M −M0),(1.3)

where Rf , b,M0, γ, v,D, Y are all positive constants. The subscripts t and x denote
time and space derivatives, while the subscripts s and f are used to distinguish be-
tween the reaction term Rs and retardation factor Rf . The variables are (S,A,M)
where S is the aqueous phase concentration of the electron donor (substrate), A is
the electron acceptor (nutrient concentration), and M is the biomass concentration.
The constant M0 is the neutral background biomass concentration. Rf > 1 is the
retardation factor of the electron donor (substrate) S due to sorption. The parameter
b is the cell decay coefficient for the bacteria population M . γ is a coefficient equal to
the mass of A utilized by the bacteria per unit mass of S degraded. D is the diffusion
coefficient and Y is the yield coefficient (mass of bacterial cells produced per mass
of S degraded). The parameter v is the constant pore water velocity and M0 is the
background biomass concentration.

The biodegradation rate, Rs, is given by the Monod kinetic model

Rs =
qMSA

(KS + S)(KA +A)
,(1.4)

where q is the maximum specific rate of substrate utilization, and KS , KA are the
half-maximum rate concentrations of S and A. Note that the system assumes linear
sorption of the electron donor (represented by the term Rf ), no sorption for the
electron acceptor, and a constant minimal background bacteria population M0 (as an
equilibrium between cell growth and decay). In this model, microbes are attached to
the soil particles and only consume aqueous phase species.

The system (1.1)–(1.3) is one of the simplest systems in the literature; however, it
contains very rich phenomena. Oya and Valocchi [8] and Valocchi [10] recently studied
traveling waves in this system. They observed that “bioavailability” of the chemical
constituents is an important requirement for successful biodegradation. Since the
microbes are assumed to be attached to solids [5], the dissolved contaminant and nu-
trients must be transported to the bacteria. This is represented in the above system
by the water velocity v and the sorption effect Rf > 1. When the nutrients reach the
biomass, a biologically active zone forms and propagates. This zone supports respira-
tion, that is, nutrient consumption, contaminant degradation, and an increase in the
microbial population. [8] is the first paper to propose the idea that the biologically
active zone can be mathematically modeled as traveling waves. The retreating dis-
solved solute concentration and the advancing nutrient concentration move together
as traveling fronts, while the bacteria concentration tags along as a traveling pulse.

In this paper, we establish the existence of traveling waves in (1.1)–(1.3) under
the sole condition that Rf > 1. The traveling wave solutions are of the form

S = S(x− ct), A = A(x− ct), M = M(x− ct),(1.5)



74 R. MURRAY AND J. XIN

where (S,A,M) as functions of ξ ≡ x− ct satisfy the boundary conditions

S(−∞) = 0, S(+∞) = S+, A(−∞) = A−, A(+∞) = 0, M(±∞) = M0,(1.6)

and A− and S+ are prescribed positive constants. Using (1.5), (1.1)–(1.3) are trans-
formed into

DSξξ + (Rfc− v)Sξ = Rs,(1.7)

DAξξ + (c− v)Aξ = γRs,(1.8)

cMξ = −Y Rs + b(M −M0),(1.9)

along with the boundary conditions

S(−∞) = 0, S(+∞) = S+, A(−∞) = A−, A(+∞) = 0, M(±∞) = M0.(1.10)

To prove the existence of a solution to (1.7)–(1.9), we follow a framework similar to
that of Berestyki, Nicolaenko, and Sheurer [1] and Xin [11], and consider the system
on a bounded domain [−d, d], d > 0. We define a fixed point map such that any
solution to the fixed point problem is also a solution of (1.7)–(1.9) on the bounded
domain. By determining the Leray–Schauder degree of the map (see [13] for details),
we show that a solution exists to the fixed point problem. Finally, we extend the
solution to the entire real line. This is a well-known technique.

It is important to note that equations (1.1)–(1.3) are substantially different than
the two-equation, reaction-diffusion, combustion system studied in [1] and require
new ingredients for the proof of existence. In the biodegradation model, the fronts
propagate as a result of distinct advective velocities rather than reaction-diffusion.
We believe traveling wave fronts in advection systems have not been much explored.
In this case, although the method of [1] applies, many new steps are needed. For
instance, finding good bounds on the wave speed requires a substantial amount of
work on the advection and reaction terms. In addition, the two advection equations
cannot be manipulated to define pointwise inequalities as in [1]. Instead, we develop
integral inequalities based on the conserved quantity γRfS −A (see Lemma 3.4).

Many other differences between the biodegradation system and [1] are noteworthy.
First, while the fronts in [1] are strictly monotone, the biomass profile in (1.1)–(1.3)
forms a pulse. Rather than following directly from the maximum principle, new
arguments are necessary to estimate the maximum ofM (see Proposition 2.1). Second,
the condition to fix translation invariance, A(0) = θ, is not a priori optimal as it is in
[1], where θ is the ignition temperature. In this paper, the value of θ is updated three
times to prevent the solutions of (1.1)–(1.3) from converging to trivial solutions in
the limit d→∞ (see Proposition 3.1 and Lemmas 3.3 and 3.4). In particular, much
work is required to show that S does not tend to zero as the domain extends to the
real line. Finally, we develop integral identities to show that the boundary conditions
remain as d→∞; see Theorem 4.1 and Lemma 5.1. Using integral identities instead
of pointwise estimates to control wave speeds and large space asymptotic behavior of
solutions is an efficient way of handling systems with more than two equations.

The main result of the paper is the following.
Theorem 1.1 (existence of traveling waves). Under the condition that the retar-

dation factor Rf > 1, the system (1.7)–(1.9) with Rs given by (1.4) admits a classical
traveling wave solution (S,A,M, c) of the form (1.5) satisfying the boundary condi-
tions in (1.10). Moreover,

0 < S(ξ) < S+, S′(ξ) > 0, 0 < A(ξ) < A−, A′(ξ) < 0 ∀ξ ∈ R1,(1.11)
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c =
v(A− + γS+)

A− + γRfS+
,(1.12)

M0 < M ≤M0 + Y
(Rf − 1)A−S+

A− + γS+
∀ξ ∈ R1.(1.13)

We see from Theorem 1.1 that the profiles of substrate and nutrient concentra-
tions (S and A) are strictly monotone functions of ξ and that the wave speed c is
independent of the parameters Y, b of the M equation. The explicit formula for the
wave speed c in terms of the left and right states of solutions is reminiscent of the
Rankine–Hugoniot formula for viscous shock waves in conservative equations; see [12]
for such traveling waves arising in solute transport problems. The maximum norm
bound of the biomass M , on the other hand, depends on the parameters and boundary
conditions of the (S,A) equations as well as the yield constant Y of the M equation.
Numerical simulations in [8] and those of the present authors show that M forms an
asymmetric pulse with one maximum. The condition Rf > 1 physically means that
the advective velocity of S is slower than that of A; hence, the two concentrations
mix, which is essential for the biomass to grow and the three components to travel
together. As pointed out in [8], there are no traveling waves if Rf = 1. In fact, it is
obvious from (1.13) that M ≡ M0 if Rf = 1, and no traveling pulse can form in M .
It remains an interesting problem to find out if the traveling waves are unique up to
a constant translation in ξ and if M always achieves one maximum.

The main result is significant, for it shows that there is a simple, well-understood
solution to a very complicated phenomena. This solution occurs under a particular
set of parameters; however, numerical studies suggest that this is the most common
solution. In [8], the authors find waves with oscillating front shapes in time; this proof
will be left for a future paper. Finally, many of the important factors required for the
implementation of in-situ bioremediation are determined in Theorem 1.1, such as the
speed of the traveling fronts and the maximum and minimum concentrations of the
biomass.

The second result of the paper is the following.
Theorem 1.2 (existence and uniqueness of traveling waves). The system (1.7)–

(1.9) with D = 0 and Rs given by (1.4) admits a unique, classical traveling wave
solution (S,A,M, c) of the form (1.5) satisfying the boundary conditions in (1.10)
and the bounds given in Theorem 1.1.

Theorem 1.2 is proven in section 6. By eliminating the diffusion term (D = 0), the
system of equations (1.7)–(1.9) can be reduced to a set of three, first-order ordinary
differential equations. A conserved quantity enables us to reduce the system further to
two equations. Thus, a phase portrait solution is easily obtained and we show that the
traveling wave solution is unique. It is interesting to note that the question of existence
and uniqueness for the system with diffusion can also be considered by examining the
flow in the phase plane. In this case, the phase space has five dimensions although
it is reduced to four via the conserved quantity. One of the equilibrium points is
degenerate so it is difficult to determine the flow path. As such, we have elected to
pursue the proof of existence by utilizing degree theory. Moreover, numerical studies
[8] suggest that the traveling wave solution with diffusion is not unique.

The rest of the paper is organized as follows. In section 2, we show the existence
of solutions to a regularized system on any finite interval via degree theory, based
on maximum principles and preliminary a priori bounds. In section 3, we carry out
refined a priori estimates of solutions as the length of the interval tends to infinity. In
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particular, we obtain uniform estimates of the wave speed and bound it strictly inside
the interval ( v

Rf
, v). In section 4, utilizing the estimates of section 3, we pass to the

infinite line limit of solutions and justify the validity of the boundary conditions of the
limiting solutions. In section 5, we obtain further ε-independent bounds of solutions,
pass to the ε → 0 limit of solutions, and finish the proof of Theorem 1.1. In section
6, we prove Theorem 1.2.

2. A regularized system on finite intervals. In this section, we construct
solutions to a regularized system with Dirichlet boundary conditions. In the following
sections, these solutions are shown to converge to the desired traveling wave solutions
of (1.7)–(1.9) as we pass to the infinite line limit and remove the regularization. We
add an elliptic regularization term εMξξ to the left side of (1.9) with ε ∈ (0, 1) so that
the existence problem is turned into a fixed point problem for which classical Leray–
Schauder degree theory [4], [13] is available. We derive a priori bounds of solutions
and compute the degree using its homotopic invariance as in [1] and [11]. The nonzero
degree (equal to −1 in our case) implies the existence of a solution.

Let us first normalize the original system (1.7)–(1.9) so that KS and KA are
scaled to one. Define S = KSŜ, A = KAÂ, q = KS q̂, γ = KA

KS
γ̂, and Y = 1

KS
Ŷ .

Then (1.7)–(1.9) remains the same under hat variables and parameters except that
KS and KA are replaced by one. With no loss of generality, we also set q̂ = 1. The
normalized system (without the hats) reads

DSξξ + (Rfc− v)Sξ = MSA(1 + S)−1(1 +A)−1,(2.1)

DAξξ + (c− v)Aξ = γMSA(1 + S)−1(1 +A)−1,(2.2)

cMξ = −YMSA(1 + S)−1(1 +A)−1 + b(M −M0)(2.3)

under the boundary conditions (1.10).
We propose to study the following regularized elliptic system and the associated

boundary value problem on a finite interval [−d, d]:

DSξξ + (Rfc− v)Sξ = R(1)
s,ε ,(2.4)

DAξξ + (c− v)Aξ = γR(2)
s,ε ,(2.5)

εMξξ + cMξ = −Y R(3)
s,ε + b(M −M0),(2.6)

with ε ∈ (0, 1) and the boundary conditions

S(−d) = A(d) = 0, S(d) = S+, A(−d) = A−, M(±d) = M0.(2.7)

To remove the translation invariance of traveling wave solutions of an unknown speed
c, we also impose the additional normalization condition

A(0) = θ, θ ∈ (0, A−),(2.8)

with θ prescribed. The modified reaction terms R
(i)
s , i = 1, 2, 3, are

R(1)
s,ε =

|M |S|A|
(1 + ε|M |)(1 + |S|)(1 + |A|) ,

R(2)
s,ε =

|M ||S|A
(1 + ε|M |)(1 + |S|)(1 + |A|) ,

R(3)
s,ε =

M |S||A|
(1 + ε|M |)(1 + |A|)(1 + |S|) .(2.9)
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Note that we modify the reaction terms by the factor (1 + ε|M |) which is crucial to
obtain the first upper bound on M . The variables S,A,M , and c depend on both d
and ε; however, to simplify the notation, we do not specify this dependence until it
becomes necessary in the later sections.

In order to use degree theory, we consider a parametrized family of equations
indexed by τ ∈ [0, 1],

DSξξ + (Rfc− v)Sξ = τR(1)
s,ε ,(2.10)

DAξξ + (c− v)Aξ = γτR(2)
s,ε ,(2.11)

εMξξ + cMξ = −Y τR(3)
s,ε + b(M −M0),(2.12)

under the boundary conditions (2.7) and the imposed condition (2.8).
Note that if τ = 0, (2.10)–(2.12) under (2.7) and (2.8) has a unique solution.

Without (2.8), the system is uniquely solvable for any given c, as a two-point boundary
value problem for second-order ordinary differential equations. The solutions are

S(ξ) = S+ 1− e(− cR−vD )(ξ+d)

1− e(− cR−vD )(2d)
,

A(ξ) = A−
1− e(− c−vD )(ξ−d)

1− e( c−vD )(2d)
,

M(ξ) = M0.(2.13)

The extra condition A(0) = θ implies

θ = A−
1− ed( c−vD )

1− e2d( c−vD )
= A−

1

1 + ed( c−vD )
,

which uniquely determines c, since the right-hand side is a monotone function of c
and ranges between zero and A−.

Next we derive a priori estimates on solutions of (2.10)–(2.12) under the boundary
and normalization conditions (2.7) and (2.8) independent of τ ∈ [0, 1].

Proposition 2.1. Let τ ∈ [0, 1] and let (S,A,M, c) be a solution to (2.10)–
(2.12) subject to the boundary conditions (2.7). Then ∀τ ∈ [0, 1] and ∀ξ ∈ [−d, d], we
have the following inequalities:

0 ≤ S(ξ) ≤ S+, 0 ≤ A(ξ) ≤ A−,(2.14)

M0 ≤M(ξ) ≤ 1

2ε

εM0 +
Y

b
− 1 +

√(
1− Y

b
− εM0

)2

+ 4εM0

 ≡Mmax,(2.15)

S′(ξ) > 0, A′(ξ) < 0.(2.16)

Proof. In view of (2.10)–(2.11), both S and A satisfy the classical elliptic strong
maximum principle; see, for example, [9]. The maximum and minimum of S and
A are achieved at the end points. Hence, (2.14) follows from (2.7). To show that
M ≥ M0 ∀ξ ∈ [−d, d], suppose that M < M0 at some point ξ0 ∈ (−d, d) for some
τ = τ1 ∈ (0, 1). Then, since M is continuous in τ and ξ ∈ [−d, d], as τ varies, the
minimum of M must pass through the interval (0,M0) before M becomes negative.
Let us assume that at τ1, minξ∈[−d,d]M ∈ (0,M0). Hence, ∃ ξ1 ∈ (−d, d) and 0 <
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M(ξ1) = minξ∈[−d,d]M(ξ) < M0, for τ = τ1. Evaluating (2.12) at ξ = ξ1 and τ = τ1,
we have

−Y τ1R(3)
s,ε(ξ1) + b(M(ξ1)−M0) = εMξξ(ξ1) + cMξ(ξ1).

At the minimum, the first derivative is zero and the second derivative is nonnegative,
which results in

−Y τ1R(3)
s,ε(ξ1) = εMξξ(ξ1) + b(M0 −M(ξ1)) > 0.

Since Y, τ1 > 0, we have that R
(3)
s,ε(ξ1) < 0. This is impossible since M(ξ1) > 0. It

follows that M ≥M0 ∀τ ∈ [0, 1], ξ ∈ [−d, d]. By now, since A ≥ 0, S ≥ 0, M ≥M0,

we can identify R
(1)
s,ε = R

(2)
s,ε = R

(3)
s,ε ≡ Rs,ε.

To prove the upper bound in (2.15), we define maxξ∈[−d,d]M(ξ) = M∗ ≥ M0.
We only need to consider the case M∗ > M0. There exists ξ∗ ∈ (−d, d) such that
M(ξ∗) = M∗,M ′(ξ∗) = 0,M ′′(ξ∗) ≤ 0. Evaluating (2.12) at ξ = ξ∗ implies that

b(M∗ −M0) ≤ Y τASM∗

(1 +A)(1 + εM∗)(1 + S)

∣∣∣∣
ξ=ξ∗

≤ YM∗

1 + εM∗
.(2.17)

This can be rewritten as b(M∗ −M0)(1 + εM∗) ≤ YM∗, or

M∗ ≤ 1

2ε

εM0 +
Y

b
− 1 +

√(
εM0 +

Y

b
− 1

)2

+ 4εM0

 = Mmax.(2.18)

Notice that if Yb ≥ 1, then the right-hand side of (2.18) behaves like O(ε−1) (O(ε−1/2)

if Y = b) as ε → 0. If Y
b < 1, then in the limit ε → 0, the right-hand side converges

to M0

1−b−1Y > M0. To prove (2.16), we rewrite (2.4) by multiplying both sides of the

equation by e
(cRf−v)ξ

D . Then, integrating from −d to ξ, we obtain

e
(cRf−v)ξ

D S′(ξ) = e
−(cRf−v)d

D S′(−d) +

∫ ξ

−d

1

D
e

(cRf−v)ξ′
D Rs(ξ

′)dξ′.

Since S is not identically constant and, as a result of the Hopf lemma, it is clear that
S′(−d) > 0. Thus, the entire right-hand side is positive and S′ > 0. Similarly, it can
be shown that A′ < 0. The proof of the proposition is complete.

Proposition 2.2. Let τ ∈ [0, 1] and let d > 1 be fixed. There exists a constant
c independent of τ ∈ [0, 1] such that the wave speed c = c(τ) in (2.10)–(2.12) satisfies

c ≤ c(τ) ≤ v +
D

d
ln

(
1

θ0
− 1

)
,(2.19)

where θ0 = θ
A−
∈ (0, 1).

Proof. To establish the upper bound for c, we find an upper solution A(ξ) to A(ξ)
and use it to bound c from above. The upper solution solves{

DA
′′

+ (c− v)A
′

= 0, ξ ∈ [−d, d],
A(−d) = A−, A(d) = 0,

(2.20)



EXISTENCE OF TRAVELING WAVES 79

and is given by

A(ξ) =
A−(1− e−( c−vD )(ξ−d))

1− e( c−vD )2d
.(2.21)

By definition, A(ξ) ≤ A(ξ), and in particular A(0) ≤ A(0). Evaluating A at ξ = 0
and solving for c, we have

c ≤ v +
D

d
ln

(
A−
θ
− 1

)
= v +

D

d
ln

(
1

θ0
− 1

)
.(2.22)

With (2.22), we have established the upper bound for the wave speed c(τ). To show
the lower bound, we proceed similarly by defining a lower solution A(ξ) for A(ξ) on
[−d, d] which solves

DA′′ + (c− v)A′ = ([S+ − S(0, d)]H(ξ) + S(0, d))FA,(2.23)

where

F = F (ε) ≡ Mmax

1 + εM0
≥ M

1 + εM
; H(ξ) =

{
1, ξ ≥ 0,
0, ξ < 0,

along with boundary and regularity conditions

A(−d) = A−, A(d) = 0, A ∈ C1.(2.24)

It follows from (2.23) that

A(ξ) =

{
c1e

r1ξ + c2e
r2ξ, ξ ∈ [−d, 0],

c3e
r3ξ + c4e

r4ξ, ξ ∈ [0, d],
(2.25)

where r1,2 and r3,4 are given by

r1,2 =
−(c− v)±√(c− v)2 + 4DFS(0, τ)

2D
, r1 > 0, r2 < 0;(2.26)

r3,4 =
−(c− v)±√(c− v)2 + 4DFS+

2D
, r3 > 0, r4 < 0.(2.27)

Using boundary conditions (2.24) and the fact that A(0+) = A(0−) and A′(0−)=
A′(0+), we solve for the constants

c1 = A−er1d − c2e(r1−r2)d,

c2 =
A−er1d[(r4 − r3e

(r4−r3)d)− r1(1− e(r4−r3)d)]

(r2 − r1e(r1−r2)d)(1− e(r4−r3)d)− (r4 − r3e(r4−r3)d)(1− e(r1−r2)d)
,(2.28)

c3 = −c4e(r4−r3)d,

c4 =
A−er1d + c2(1− e(r1−r2)d)

1− e(r4−r3)d
.

The solution is

A(ξ) =

{
A−er1(ξ+d) + c2(er2ξ − er1ξe(r1−r2)d), ξ ∈ [−d, 0],(
A−er1d+c2(1−e(r1−r2)d)

1−e(r4−r3)d

) (
er4ξ − e(r4−r3)der3ξ

)
, ξ ∈ [0, d],

(2.29)
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where c2 is given in (2.28).
To find the lower bound for c, we assume there is no lower bound (c → −∞)

and use the following two properties to deduce a contradiction: A(0) ≤ θ, A(0) =
A−er1d+c2(1−e(r1−r2)d). Combining these with equations (2.28)–(2.29), we find that

θ ≥ A(0, τ)

=
A−er2d(1− e(r4−r3)d)(r2 − r1)

(r2e(r2−r1)d − r1)(1− e(r4−r3)d)− (r4 − r3e(r4−r3)d)(e(r2−r1)d − 1)
.(2.30)

Fix any τ ∈ [0, 1], and let c→ −∞. We have from (2.26)–(2.27) that r1 → +∞, r2 →
0−, r3 → +∞, and r4 → 0−. It follows from (2.30) that limc→−∞A(0, τ) = A− ≤ θ,
contradicting the fact that θ ∈ (0, A−). Since S(0, τ) is bounded between zero and
S+, it is easy to see that the limit of A(0, τ) as c → −∞ is uniform in τ ∈ [0, 1].
Hence, there exists a constant c independent of τ ∈ [0, 1] such that c(τ) ≥ c. The
proof is complete.

Remark 2.1. By Propositions 2.1 and 2.2 and by standard elliptic estimates, the
maximum norms of the derivatives of solutions (S′, A′,M ′) are bounded independently
of the parameter τ ∈ [0, 1].

Next we show the existence of solutions to (2.10)–(2.12), (2.7), and (2.8) on the
bounded domain [−d, d] by Leray–Schauder degree theory. The idea is to transform
the system of equations into a fixed point problem. The solution of the fixed point
problem solves the original system of equations (τ = 1) which is topologically equiva-
lent to a simpler system (τ = 0) for which we can easily determine the degree. Thus,
showing that the degree is not zero amounts to proving the existence of a solution
to the original system (τ = 1). The proof is similar to that given in [1]; thus, the
definitions and propositions are listed but the details of the proof can be found by
referring to [1].

We begin by fixing d and defining Id = [−d, d] and X = (C1(Id))
3 × R. The set

X is a Banach space equipped with the norm

‖(S,A,M, c)‖X ≡ max (‖S‖C1(Id), ‖A‖C1(Id), ‖M‖C1(Id), |c|).(2.31)

For each element (S,A,M, c) ∈ X, we consider the unique solution (S,A,M) of the
following system indexed by τ ∈ [0, 1]:

DSξξ + (Rfc− v)Sξ = τ
qSAM

(1 + S)(1 +A)(1 + εM)
,(2.32)

DAξξ + (c− v)Aξ = γτ
qSAM

(1 + S)(1 +A)(1 + εM)
,(2.33)

εMξξ + cMξ − b(M −M0) = −Y τ qSAM

(1 + S)(1 +A)(1 + εM)
(2.34)

subject to the boundary and normalization conditions (2.7) and (2.8). We define
a compact map Kτ : (S,A,M, c) ∈ X → (S,A,M, c − A(0) + θ) ∈ X. Every so-
lution of (2.10)–(2.12) is a fixed point of the map Kτ given by Kτ [(S,A,M, c)] =
(S,A,M, c). We define another map, Fτ = I −Kτ , where I is the identity map in X
Fτ : (S,A,M, c)→ (S − S,A−A,M −M,A(0)− θ). Every solution to (2.10)–(2.12)
is a solution of Fτ = 0.

The set Ω, upon which the degree is well defined, is

Ω = {(S,A,M, c) ∈ X| ‖S‖C1 ≤ N, ‖A‖C1 ≤ N, ‖M‖C1 ≤ N, |c| ≤ N},(2.35)
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where N is larger than the τ -independent a priori bounds of C1 norms of (S,A,M)
in Proposition 2.1 and Remark 2.1; N is also larger than the absolute value of the
upper and lower bounds of c(τ) given in Proposition 2.2. The degree of Fτ at 0, or
deg(Fτ ,Ω, 0), is known to be well defined if Fτ (∂Ω) 6= 0.

Proposition 2.3. For all τ ∈ [0, 1], Fτ (∂Ω) = (I −Kτ )(∂Ω) 6= 0.
Proof. See Proposition 7.3 in [1].
Proposition 2.4. Fτ = (I −Kτ ) satisfies, ∀τ ∈ [0, 1],

deg(Fτ ,Ω, 0) = deg(F0,Ω, 0) = −1.(2.36)

Proof. Equations (2.13) are the solutions denoted in this proof by (S0, A0,M0).
See Proposition 7.5 in [1] for more details.

3. Further estimates on the regularized system. In this section, we obtain
further estimates on solutions of the system (2.4)–(2.8) which enable us to extend the
solutions to the entire real line in section 4. In particular, by carefully choosing the
value of θ, we find the correct wave speed and prevent solutions from converging to
the trivial solution as d→∞.

To begin, we rewrite the system of equations as

DSξξ + (Rfc− v)Sξ = Rs,ε,(3.1)

DAξξ + (c− v)Aξ = γRs,ε,(3.2)

εMξξ + cMξ = −Y Rs,ε + b(M −M0),(3.3)

where ε ∈ (0, 1). The boundary conditions are

S(−d) = A(d) = 0, S(d) = S+, A(−d) = A−, M(±d) = M0,(3.4)

and the normalization condition is

A(0) = θ, θ ∈ (0, A−).(3.5)

The modified reaction term, Rs,ε, is

Rs,ε =
MSA

(1 + εM)(1 + S)(1 +A)
.

Proposition 3.1. There exist θ∗0 ∈ (0, 1) and constants α, d0 > 0 independent
of d, such that if θ0 ∈ (0, θ∗0), θ = θ0A−, and d ≥ d0, the wave speed c in (3.1)–(3.3)
satisfies

D

dRf
lnα+

v

Rf
− D

dRf
[ln d+ lnS+] ≤ c ≤ v +

D

d
ln

(
1

θ0
− 1

)
,(3.6)

implying in the limit d→∞
v

Rf
≤ lim inf

d→∞
c ≤ lim sup

d→∞
c ≤ v.(3.7)

Proof. In view of Proposition 2.2, we need only to establish the lower bound of
(3.6). To find the lower bound, we use the same approach as in Proposition 2.2 but
consider an upper solution for S (rather than A) which satisfies{

DS
′′

+ (cRf − v)S
′

= 0, ξ ∈ [−d, d],
S(−d) = 0, S(d) = S+.

(3.8)



82 R. MURRAY AND J. XIN

Solving this differential equation and evaluating it at ξ = 0, we obtain the inequality

c ≥ v

Rf
− D

Rfd
ln

(
S+

S(0)
− 1

)
,(3.9)

where S(0) = S(0, d), due to the implicit dependence of S(0) on d. To find the lower
bound for c, we must bound S(0, d) from below. Defining L = lim infd→∞ S(0, d)d,
consider the following two cases for L. First, suppose that 0 < L ≤ ∞. Then,
S(0, d) ≥ α

d for α ∈ (0, L2 ), and d large enough. By (3.9),

c ≥ v

Rf
− D

Rfd
ln

[
dS+

α
− 1

]
≥ v

Rf
− D

dRf
[ln d+ lnS+] +

D

dRf
lnα,(3.10)

and so, for 0 < L ≤ ∞, the proposition is proved.
Now suppose that L = 0; then ∀δ > 0, ∃ d(δ) such that if d ≥ d(δ), S(0, d) ≤

α
d . Since lim supd→∞ c ≤ v, we can assume that lim infd→∞ c ≤ v

Rf
; otherwise the

proposition holds for large enough d. Therefore, there exists a sequence {dj} → ∞,
such that c(dj)→ c∗, with c∗ ≤ v

Rf
.

Evaluating the lower solution A(ξ) in the proof of Proposition 2.2 (with τ = 1,
d = dj) at ξ = 0, we have A(0) = A−er1dj + c2(1 − e(r1−r2)dj ), where r1,2 and r3,4

are given by (2.26)–(2.27) with S(0, τ) replaced by S(0, dj), and c2 as in (2.28). It
follows that

lim
j→∞

r1 =
v − c∗
D

, lim
j→∞

r2 = 0,

lim
j→∞

r3,4 =
(v − c∗)±√(v − c∗)2 + 4DFS+

2D
.(3.11)

Using the assumption that L = 0,

lim
j→∞

r2dj = lim
j→∞

−2FS(0, dj)dj

(v − c) +
√

(v − c)2 + 4DFS(0, dj)
= 0.(3.12)

Therefore, we infer from (3.11)–(3.12) that

θ ≥ lim
j→∞

A(0) ≥ A− 2

1 +
√

1 + 4DFS+

v2(1− 1
Rf

)2

.(3.13)

Recall that θ = θ0A−. We see from (3.13) that

θ0 ≥ θ∗0 ≡
2

1 +

√
1 + 4DFS+

v2(1−R−1
f

)2

.

Since θ0 ∈ (0, 1), we can choose θ0 < θ∗0 to deduce a contradiction. So for large d and
θ0 < θ∗0 , we conclude that L > 0. We have proven Proposition 3.1.

Corollary 3.1. If lim infd→∞ c= v
Rf

and θ ∈ (0, θ∗0), then

lim inf
d→∞

S(0, d)d > 0.
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Proof. In view of (3.12), the proof above implies that lim infd→∞ S(0, d)d > 0
which is equivalent to saying that there exists a constant α = α(ε) > 0, such that for
d large, S(0, d) ≥ αd−1. In other words, if S(0, d) tends to zero, then it goes to zero
more slowly than 1

d .
Lemma 3.1. If lim infd→∞ c = v

Rf
and θ ∈ (0, θ∗0), then the derivative A′(d)

satisfies

lim sup
d→∞

|A′(d)| ≤ θ

D
lim sup
d→∞

√
(v − c)2 +

4γDS(0, d)M0

(1 + S+)(1 +A−)

≤ θ

D

√(
v − v

Rf

)2

+
4γDM0

1 +A−
.

Proof. First, notice that ∀ξ ∈ [0, d], we have γRs ≥ η1(d)A, where

η1(d) =
γS(0, d)M0

(1 + S+)(1 +A−)(1 + εMmax)
≥ O(d−1),(3.14)

and the lower bound is given by Corollary 3.1. Now, define A(ξ) to solve{
DA

′′
+ (c− v)A

′ − η1(d)A = 0, ξ ∈ [0, d],
A(0) = θ, A(d) = 0.

(3.15)

Solving (3.15),

A(ξ) = θer2ξ
e(r1−r2)d − e(r1−r2)ξ

e(r1−r2)d − 1
, r1,2 =

v − c±√(v − c)2 + 4η1(d)D

2D
.(3.16)

By the assumptions, Corollary 3.1, and (3.14), we see that −(r2 − r1)d → +∞, so
e(r2−r1)d → 0 and er2d ≤ 1. Therefore, by Proposition 3.1,

lim
d→∞

|A′(d)| ≤ lim
d→∞

|A′(d)| ≤ θ

D

√(
v − v

Rf

)2

+
4DM0γ

1 +A−
.(3.17)

The proof is complete.
Note that if lim infd→∞ η1(d) > 0, limd→∞ er2d = 0. Then, limd→∞A′(d) = 0.

However, we need more results to deduce that η1(d), or rather S(0, d), does not
converge to zero as d→∞.

Proposition 3.2. If θ ∈ (0, θ∗0), then limd→∞ S′(−d) = limd→∞A′(−d) = 0.
Proof. Step 1. limd→∞ |S′(−d)| = 0. To prove this, we find an upper solution

to S and use a resulting inequality to bound limd→∞ |S′(−d)| by zero on both sides.
To construct an upper solution, we note that on [−d, 0], Rs ≥ η2S, where we define
η2 = M0θ

(1+εMmax)(1+A−)(1+S+) , which is a constant, independent of d. Let S solve (3.8)

with the right-hand side equal to η2S and S(−d) = 0, S(0) = S(0, d) for ξ ∈ [−d, 0].
Solving for S, we obtain

S(ξ) = S(0, d)er̄1ξ
(
e(r̄1−r̄2)d − e(r̄2−r̄1)ξ

e(r̄1−r̄2)d − 1

)
, ξ ∈ [−d, 0],(3.18)

where

r̄1,2 =
(v − cRf )

2D
±
√

(v − cRf )2 + 4Dη2

2D
, r̄1 > 0, r̄2 < 0.
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From (3.18), we find S
′
(−d) = S(0,d)(r̄1−r̄2)

er̄1d−er̄2d . Note that if c 6→ v
Rf

as d → ∞, then

by Proposition 3.1, c > v
Rf

for large d, and so r̄2 < −
√
η2/D for large d. If c→ v

Rf
,

as d → ∞, then r̄2 → −
√
η2/D. In either case, er̄2d converges to zero, and er̄1d

converges to infinity. Thus, 0 ≤ lim supd→∞ S′(−d) ≤ lim supd→∞ S
′
(−d) = 0, and

the proof of Step 1 is complete.
Step 2. limd→∞A′(−d) = 0. We infer from (3.18) that

S(ξ) ≤ S(0, d)er̄1ξ
e(r̄1−r̄2)d

e(r̄1−r̄2)d − 1
≤ 2S+er̄1ξ ∀ξ ∈ [−d, 0],(3.19)

where r̄1 is bounded away from zero uniformly in d → ∞. Using (3.19), we find an
upper bound for Rs to be γRs ≤ η3(d)A ∀ξ ∈ [−d, 0], where η3 is given in (3.20). We
define a lower solution, A, as the solution of{

DA′′ + (c− v)A′ − η3A = 0, η3(d) = 2γS+Mmaxe
−r̄1 d2

(1+εM0)(1+θ) .

A(−d) = A−, A
(−d2) = θ ∀ξ ∈ [−d,−d2 ] .(3.20)

We solve (3.20) to get A(ξ) = c1e
r1ξ + c2e

r2ξ, with r1,2 given by (2.26) with FS(0, τ)
replaced by η3(d). Differentiating A(ξ), we find

A′(−d) = r1A− +
(r1 − r2)A− + (r2 − r1)θe−

r1d

2

e(r2−r1) d2 − 1
.(3.21)

Suppose that c → v along a subsequence {dj} → ∞; then r1 → 0 and r2 → 0. If,

in addition (r2 − r1)dj → 0, then e
(r2−r1)dj

2 − 1 ∼ (r2 − r1)
dj
2 +O((r2 − r1)2d2

j ), and

A′(−dj)→ 0. If lim infj→∞(r2−r1)dj > 0, then the second term in (3.21) with d = dj
goes to zero because its numerator converges to zero while its denominator does not.
The first term clearly converges to zero. Hence, A′(−dj)→ 0 as j →∞.

Suppose now that c → c∗ < v along a subsequence dj → ∞; then r1 → |c∗−v|
D

and r2 → 0 and also, |r2− r1| → β > 0, for a finite number β. Passing to the dj →∞
limit in (3.21), we arrive at limj→∞A′(−dj) = 0. It follows that we always have
limd→∞A′(−d) = 0. The proof is complete.

Lemma 3.2. Let θ ∈ (0, θ∗0). There exists a positive constant K1 depending only
on D, v,Rf , γ,Mmax such that lim supd→∞ S′(d) ≤ K1S

+ max(θ,
√
θ).

Proof. In this proof, we construct a lower solution to S on half the finite domain
to find an inequality for S′. To find the upper bound, we bound all the terms as
d→∞. First, note that A(ξ) ≤ θ ∀ ξ ∈ [0, d]. Next, define the subsolution S as{

DS′′ + (cRf − v)S′ − η4S = 0, ξ ∈ [0, d],
S(0) = S(0, d), S(d) = S+,

(3.22)

where η4 = θK and K ≡ γMmax since γRs ≤ γθMmaxS. Note that η4 is a positive
constant independent of d. The solution of (3.22) is S = c1e

r1ξ + c2e
r2ξ, where r1,2 =

r̄1,2 from Proposition 2.2 with η2 replaced by η4. Solving (3.22) and differentiating,
it follows that

S′(d) =
(r1 − r2)S(0, d)er2d − r1S

+ + r2e
(r2−r1)dS+

e(r2−r1)d − 1
,(3.23)

where r2 is rewritten as

r2 =
−4Dη4

2D · (v − cRf +
√

(v − cRf )2 + 4Dη4)
,(3.24)
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and r2−r1=− 1
D

√
(v − cRf )2 + 4Dη4 ≤ − 1

D2
√
DθK. Thus, e(r2−r1)d → 0 as d→∞.

To find an upper bound on S′(d), we must bound r1 and r2. If v − cRf ≤ 0, then

|r2| ≥
√

η4

D =
√

θK
D . If v − cRf > 0, by Proposition 3.1, we see that v − cRf ≤

O(d−1 ln d). Hence, we find a lower bound for r2 in the limit d→∞ as

|r2| ≥ 2η4

O(d−1 ln d) +
√

(O(d−1 ln d))2 + 4Dη4

→
√
η4

D
,

and so lim supd→∞ r2 ≤ −
√
D−1η4 = −

√
D−1θK. Now, we see that limd→∞ er2d ≤

limd→∞ e−
√
D−1θKd = 0. We consider the same cases in order to bound r1. If v −

cRf ≤ 0, then

r1 ≤ 2η4

((v +O( 1
d ))Rf − v) +

√
((v +O( 1

d ))Rf − v)2 + 4Dη4

(3.25)

by Proposition 3.1. Therefore,

lim sup
d→∞

r1 ≤ 2η4

v(Rf − 1) +
√
v2(Rf − 1)2 + 4Dη4

.(3.26)

If v − cRf > 0, then by Proposition 3.1 again v − cRf ≤ O(d−1 ln d) for large d, and
so

r1 ≤ O(d−1 ln d) +
√
O(d−2(ln d)2) + 4Dη4

2D
,

and finally,

lim sup
d→∞

r1 ≤
√
θK

D
.(3.27)

In any case, we have the following:

lim sup
d→∞

r1 ≤ 2K1(D, γ, v,Rf ,Mmax) max(θ,
√
θ) = K1 max(θ,

√
θ).(3.28)

Combining (3.23) and (3.28), we obtain the result

lim sup
d→∞

S′(d) ≤ S+ lim sup
d→∞

r1 = K1S
+ max(θ,

√
θ),(3.29)

and the proof is complete.
Lemma 3.3. There exist two positive constants δ1 and δ2 independent of d, and a

positive number θ∗∗0 depending only on δ1 and δ2, θ∗∗0 ∈ (0, θ∗0). If θ0 ∈ (0, θ∗∗0 ), then

v

Rf
+ δ1 ≤ lim inf

d→∞
c ≤ lim sup

d→∞
c ≤ v − δ2.(3.30)

Proof. Combining the equations for S and A in (3.1)–(3.2) and integrating from
−d to d, we obtain

γ(DS′(d) + (cRf − v)S+ −DS′(−d)) = DA′(d)−DA′(−d)− (c− v)A−.
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We solve for c to get

c =
D(A′(d)−A′(−d)) + γD(S′(−d)− S′(d)) + vA− + vγS+

γRfS+ +A−
.(3.31)

Using Proposition 2.1, we derive the inequality

DA′(d)− γDS′(d) + vA− + vγS+

γRfS+ +A−
≤ c ≤ −DA

′(−d) + γDS′(−d) + vA− + vγS+

γRfS+ +A−
.

Taking d → ∞ and using Proposition 3.2, lim supd→∞ c < v. If lim infd→∞ c > v
Rf

,

then the proof is done if we define δi, i = 1, 2, to be the difference between c and v
R

and v, respectively. On the other hand, if lim infd→∞ c = v
Rf

, then by Lemmas 3.1

and 3.2, we have

lim inf
d→∞

c(3.32)

≥
−θ
√
v2(1−R−1

f )2 + 4γDM0

1+A−
− γDK1S

+ max(θ, θ
1
2 ) + vA− + vγS+

γRfS+ +A−
.

Now, set δ2 = (γS+(Rf − 1)v)/(γS+Rf +A−) > 0, and

δ1 =
v(1− 1

Rf
)(A− + S+γ)− θ

√
v2(1−R−1

f )2 + 4γDM0

1+A−
− γDK1S

+ max(θ, θ
1
2 )

γS+Rf +A−
.

Here δ1 is the difference between the lower bound in (3.32) and v
Rf

. There exists a

θ∗∗0 ∈ (0, θ∗0) such that if θ0 ∈ (0, θ∗∗0 ), δ1 > 0. We end the proof.
Lemma 3.4. There exists a positive constant, θ∗∗∗0 , depending on δ1, δ2 and less

than θ∗∗0 such that if θ0 ≤ θ∗∗∗0 , lim infd→∞ S(0, d) > 0.
Proof. Suppose S(0, dj) → 0 along a sequence {dj} → ∞; then S(ξ) → 0,

uniformly in ξ ∈ [−dj , 0]. Proposition 3.1 says that cj = c(dj) is uniformly bounded
in dj ; (2.10)–(2.12) then imply that (S,A,M)(ξ, dj) is compact in (C1

loc(R))3. Up to

a subsequence, we have (S,A,M)(ξ, dj) → (S̃, Ã, M̃)(ξ) as j → ∞, S̃′ ≥ 0, Ã′ ≤
0, Ã(0) = θ, S̃(ξ) ≡ 0 if ξ ≤ 0. By uniqueness of solutions to ordinary differential
equations, we deduce from (2.10) that S̃ ≡ 0 on R1. Thus, Ã is a bounded solution
to the problem {

DÃξξ + (c∗ − v)Ãξ = 0, ξ ∈ R1,

Ã(0) = θ.
(3.33)

As a consequence of Lemma 3.3, along a subsequence of dj → ∞, c(dj) → c∗ ∈
( v
Rf

+ δ1, v − δ2) as j → ∞, where δi = δi(D, v,Rf , γ, θ0,M0,Mmax, S
+, A−) > 0 for

i = 1, 2. The only bounded solution of (3.33) is Ã ≡ θ.
Let us consider the equations for (S,A) on [−dj , dj ]:

DS′′ + (cjRf − v)S′ =
A

1 +A

M

1 + εM

S

1 + S
,(3.34)

DA′′ + (cj − v)A′ = γ
A

1 +A

M

1 + εM

S

1 + S
.(3.35)
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Multiplying (3.34) by γ and subtracting (3.35) from the resulting equation, we obtain

γDS′′ −DA′′ + γ(cjRf − v)S′ − (cj − v)A′ = 0, ξ ∈ [−dj , dj ].(3.36)

Integrating once in ξ, we obtain

γDS′ −DA′ + γ(cjRf − v)S − (cj − v)A = γDS′(dj)−DA′(dj) + γ(cjRf − v)S+,

= Q(dj) + Γ + o(1) ∀ξ ∈ [−dj , dj ],(3.37)

where Γ = limj→∞ γ(cjRf − v)S+, and Q(dj) = γDS′(dj)−DA′(dj) ≥ 0. It follows
that

γD

(
S′ +

cjRf − v
D

S

)
= DA′ + (cj − v)A+ Γ +Q(dj) + o(1),

and so

γD

(
e(
cjRf−v

D )ξS

)′
= e(

cjRf−v
D )ξ [DA′ + (cj − v)A+ Γ +Q(dj) + o(1)] .(3.38)

Integrating (3.38) over [−dj , ξ] gives

γDe(
cjRf−v

D )ξS =

∫ ξ

−dj
e(
cjRf−v

D )ξ′ [DA′ + (cj − v)A+ Γ +Q(dj) + o(1)] dξ′

≥ D
∫ ξ

−dj
e(
cjRf−v

D )ξ′e(
v−cj
D )ξ′ ·

(
e(
cj−v
D )ξ′A

)′
dξ′ + (Γ + o(1))

∫ ξ

−dj
e(
cjRf−v

D )ξ′dξ′

= De(
cjRf−v

D )ξA−De−(
cjRf−v

D )djA− − cj(Rf − 1)

∫ ξ

−dj
e(
cjRf−v

D )ξ′A(ξ′)dξ′

+(Γ + o(1))
D

cjRf − v e
(
cjRf−v

D )ξ + o(1).(3.39)

Recall that if S(0, dj)→ 0 as dj →∞, then A(ξ, dj)→ θ and S(ξ, dj)→ 0 as dj →∞,
∀ξ, uniformly for a compact set of ξ. It follows that by the dominated convergence
theorem

lim
dj→∞

∫ ξ

−dj
e(
cjRf−v

D )ξ′A(ξ′)dξ′ =

∫ ξ

−∞
e(
c∗Rf−v

D )ξ′θdξ′

= θ
D

c∗Rf − v e
(
c∗Rf−v

D )ξ,(3.40)

so (3.39) in the limit dj →∞ reads

0 ≥ Dθ0A− − c∗Dθ0A−
(Rf − 1)

(c∗Rf − v)
+

ΓD

c∗Rf − v .

Substituting in Γ = γ(c∗Rf − v)S+, we get 0 ≥ γS+D + Dθ0A−
[
1 − c∗(Rf−1)

c∗Rf−v
]
, and

finally

0 ≥ S+ + γ−1θ0A−

(
c∗ − v
c∗Rf − v

)
≥ S+ − γ−1θ0A−

δ2
Rfδ1

.(3.41)
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There exists θ∗∗∗0 ∈ (0, θ∗∗0 ) depending on δ1 and δ2 such that the right-hand side of
(3.41) is strictly positive. This implies a contradiction. Therefore, S(0, d) does not
tend to zero as d→∞.

Proposition 3.3. If θ ∈ (0, θ∗∗∗0 ), then limd→∞A′(d) = limd→∞ S′(d) = 0.
Proof. Let us follow the proof of Lemma 3.1 until the derivative of A at ξ = d is

found to be

A
′
(d) =

θer2d(r2 − r1)

1− e(r2−r1)d
,(3.42)

where |r2 − r1| is bounded. Now by Lemma 3.4, we can improve (3.14) so that
lim infd→∞ η1(d) > 0. Hence, v − c is bounded strictly away from zero as d → ∞ by
Lemma 3.3, and so limd→∞ er2d = 0 and limd→∞A′(d) = 0.

For the second part of the proposition, we consider S(ξ, d) over
[
d
2 , d
]
. First, by

(3.16),

A(ξ) ≤ θer̄2 d2 ∀ξ ∈
[
d

2
, d

]
, r̄2 =

v − c−√(v − c)2 + 4η1(d)D

2D
,

and lim supd→∞ r̄2 < 0. Hence, A(ξ, d) goes to zero exponentially fast in d.

Let η5(d) = Mmaxθe
r̄2
d
2 , so that Rs ≤ η5S. Define a subsolution S on [d2 , d] as in

(3.22) with η2 replaced by η5 and S(d2 ) = S(0, d), S(d) = S+. Solving for S, taking
the derivative, and evaluating it at ξ = d, we get

S′(d) =
(r1 − r2)S(0, d)e

r2d

2 − r1S
+ + r2S

+e(r2−r1) d2

e(r2−r1) d2 − 1
≥ S′(d) ≥ 0.(3.43)

Since c is bounded away from v
Rf

uniformly in d,

lim
d→∞

e(r2−r1) d2 = 0, lim
d→∞

er2
d
2 = 0, and lim

d→∞
η5(d) = 0.

In addition, limd→∞ r1 = 0, and we deduce immediately that limd→∞ S′(d) = 0. The
proof is complete.

Proposition 3.4.

lim
d→∞

c(d) = v
(A− + γs+)

(A− + γRfS+)
= c.(3.44)

Proof. The limit follows from (3.31) in the proof of Lemma 3.3 and Propositions
3.2 and 3.3.

Corollary 3.2. There exist positive constants β1 and β2 independent of d such
that

A(ξ, d) ≤ θe−β1ξ, β1 > 0, ∀ξ ∈ [0, d],(3.45)

S(ξ, d) ≤ 2S+eβ2ξ, β2 > 0, ∀ξ ∈ [−d, 0].(3.46)

Proof. To prove (3.45), we consider (3.16) from Lemma 3.1, defined on [0, d].
It is clear that A(ξ, d) ≤ θer2ξ, ∀ξ ∈ [0, d]. Note that lim supd→∞ r2 < 0. Letting
0 < β1 ≤ − lim supd→∞ r2 with β1 bounded away from zero uniformly in d, we have
shown (3.45). To prove (3.46), we use (3.19): S(ξ, d) ≤ 2S+er̄1ξ, ∀ξ ∈ [−d, 0]. We
see that lim infd→∞ r̄1 > 0. Choosing 0 < β2 ≤ lim infd→∞ r̄1, we have shown (3.46).
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4. Solutions of a regularized system on the real line. For a fixed ε > 0,
we are interested in taking the limit d → ∞. The ε dependence of solutions will
not be specified until the next section. By Propositions 3.1–3.3, we know that the d
dependent solutions denoted by (Sd, Ad,Md) are compact in (C1

loc(R))3. So up to a
subsequence in d, (Sd, Ad,Md) → (S,A,M) uniformly on any compact set of ξ and
the limiting system is

DSξξ + (Rfc− v)Sξ = Rs,(4.1)

DAξξ + (c− v)Aξ = γRs,(4.2)

εMξξ + cMξ = −Y Rs + b(M −M0),(4.3)

with boundary conditions

A(0) = θ0A−, θ0 ∈ (0, θ∗∗∗0 ), S(0) = S(0, ε) > 0.(4.4)

Moreover, we have the following bounds:

0 ≤ S(ξ) ≤ S+, 0 ≤ A(ξ) ≤ A−, M0 ≤M(ξ) ≤Mmax,(4.5)

A′(ξ) ≤ 0, S′(ξ) ≥ 0.(4.6)

Note that (4.4) is due to Lemma 3.4.
Corollary 3.2 holds for the limiting functions A and S. In particular,

lim
ξ→+∞

A(ξ) = 0, lim
ξ→−∞

S(ξ) = 0.

Monotonicity of A and S in (4.6) implies that

lim
ξ→−∞

A(ξ) = Ã− for Ã− ∈ (0, A−],(4.7)

lim
ξ→+∞

S(ξ) = S̃+ for S̃+ ∈ (0, S+].(4.8)

Lemma 4.1. For ε ∈ (0, 1), limξ→±∞M(ξ) = M0.
Proof. Let m = M −M0; then m ≥ 0 and m 6≡ 0 (if m ≡ 0 by (4.3) AS ≡ 0 which

contradicts (4.4) at ξ = 0). Therefore, there exists a ξ1 such that (M −M0)(ξ1) =
m(ξ1) > 0. On [ξ1,∞) by inequalities (4.5) and Corollary 3.2,

Y SAM

(1 + S)(1 +A)(1 + εM)
≤ y0YMmaxθe

−β1ξ,

where y0 > 1 is to be chosen and

β1 ≤ c− v +
√

(v − c)2 + 4η1(d)D

2D
, η1(d) > 0.

Define m̄ as a solution of εmξξ + cmξ − bm = −y0YMmaxθe
−β1ξ with m(ξ1) ≥

m(ξ1) > 0, for ξ ∈ [ξ1,∞). Solving for a positive solution m, we obtain

m = −y0
YMmaxθ

(εβ2
1 − cβ1 − b)e

−β1ξ,(4.9)
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where β1 > 0, εβ2
1 − cβ1 − b < 0 for ε ∈ (0, 1) and β1 <

√
b. So indeed m̄ > 0. We

choose y0 such that m(ξ1) ≥ m(ξ1). By the maximum principle, m(ξ) ≤ m(ξ). Since
limξ→+∞m(ξ) = 0, we find that limξ→+∞m(ξ) = 0 and limξ→+∞M(ξ) = M0. A
similar argument shows that limξ→+∞M(ξ) = M0.

Lemma 4.2. Consider Md for ξ ∈ [−d, d]. Then limd→∞M ′d(±d) = 0.
Proof. This proof is similar to the proof of Lemma 4.1. We define md = Md−M0

on [−d, d] and then construct an upper solution to md which solves{
εmd,ξξ + cmd,ξ − bmd = −YMmaxθe

−β1ξ,
md(0) = md(0), md(d) = 0, ξ ∈ [0, d],

(4.10)

where c = c(d). We solve for md and find the derivative at ξ = d. Taking the limit
as d → ∞, we show that limd→+∞m′d(d) = 0. It follows that limd→+∞ |m′d(d)| =
limd→+∞ |(Md −M0)′(d)| = limd→+∞ |M ′d(d)| = 0. A similar argument shows that
limd→+∞M ′d(−d) = 0.

Lemma 4.3. There exists four constants k1, k2, k3, and k4 depending on Y ,
Mmax, θ, ε, b, c, R, v, and D such that

(M −M0)(ξ) ≤ k1e
−σ1ξ + k2e

−σ2ξ, σ1 > 0, σ2 > 0, ξ ≥ 0,(4.11)

(M −M0)(ξ) ≤ k3e
σ3ξ + k4e

σ4ξ, σ3 > 0, σ4 > 0, ξ ≤ 0,(4.12)

where σi is a constant for i = 1, 2, 3, 4.
Proof. The proof of (4.11) relies on bounding the upper solution md found in

Lemma 4.2. The proof of (4.12) is similar.
Theorem 4.1. For ε ∈ (0, 1), ∃ a smooth solution (S,A,M, c) solving the system

(4.1)–(4.3) and the boundary conditions (4.4)–(4.6). Moreover, M0 < M ≤Mmax and
limξ→±∞M(ξ) = M0.

Proof. We have shown that there exist solutions on the real line and that M
reaches its limits at the spatial infinities. Now, we only need to show that the boundary
conditions on S,A hold in the limit d → ∞; i.e., we want to show that A− = Ã−
and S+ = S̃+. To that end, we multiply γ to (2.4), subtract (2.5), and integrate over
[−d, d]. Taking the limit d → ∞, using Propositions 3.2 and 3.3 and (4.7)–(4.8), we
solve for c:

c = v
(Ã− + γS̃+)

(Ã− + γS̃+Rf )
.(4.13)

Proposition 3.4 says that c = v (A−+γS+)
(A−+γS+Rf ) . Therefore, it is clear that S̃+

S+ = Ã−
A−

.

Multiplying (2.4) by Y , adding it to (2.6), and integrating over [−d, d],

Y D[S′d(d)− S′d(−d)] + Y (cdR− v)S+ + ε[M ′d(d)−M ′d(−d)] = b

∫ d

−d
(Md −M0)(ξ)dξ.

By Propositions 3.2 and 3.3 and Lemmas 4.1 and 4.2, in the limit d→∞,

Y (cRf − v)S+ = b lim
d→∞

∫ d

−d
(Md −M0)(ξ)dξ = b

∫ ∞
−∞

(M −M0)(ξ)dξ.(4.14)

Multiplying (4.1) by Y , adding it to (4.3), integrating the resulting equation from
ξ = −∞ to ξ = +∞, and using boundary conditions as well as the decay of the
limiting functions at infinities, we end up with

Y (cRf − v)S̃+ = b

∫ ∞
−∞

(M −M0)(ξ)dξ.(4.15)
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Combining (4.14)–(4.15), we find that S+ = S̃+, and similarly A− = Ã−. Thus, we
have a solution (S,A,M) for the system (4.1)–(4.3) satisfying S(∞) = S+, S(−∞) =
0, A(∞) = 0, and A(−∞) = A−. The fact that M(ξ) > M0 follows from the
maximum principle. The proof is complete.

5. Traveling waves on the real line. Through results of the last section, we
have established the existence of the regularized solutions denoted by (Sε,Aε,Mε, cε)
over the real line. We show that they converge to the desired traveling wave solutions
as ε → 0. We have found cε = c independent of ε. However, we improve the
previous bounds on Sε,Aε,Mε and their derivatives so that they are independent of
ε. Moreover, we show that the boundary conditions are valid for limiting functions
(S,A,M) as ξ →∞. The first step is to establish an upper bound on Mε independent
of ε.

Lemma 5.1. For Mε of the system (4.1)–(4.3), Mε satisfies

M0 < Mε ≤M0 + Y
(
Rf − v

c

)
S+ ∀ξ ∈ R1.(5.1)

Proof. As mentioned, limε→0Mε = M 6≡ M0. By Proposition 2.1 and Theo-
rem 4.1, we have that M0 < Mε. Therefore, ∃ ξ1 ∈ (−∞,∞) such that Mε(ξ1) =
supξ∈R1 Mε(ξ) = Mε > M0. Multiplying Y by (4.1), adding it to (4.3), and integrat-
ing from ξ1 to ∞, we obtain

−Y DS′ε(ξ1) + Y (cRf − v)(S+ − Sε(ξ1)) + c(M0 −Mε) = b

∫ ∞
ξ1

(Mε −M0)(ξ)dξ.

Note that M ′ε(ξ1) = 0 and
∫ +∞
ξ1

(Mε −M0)dξ ≥ 0. Solving for Mε,

Mε ≤M0 + Y
(
Rf − v

c

)
S+.(5.2)

It is clear that M0 < Mε(ξ) ≤ Mε ≤ M0 + Y (Rf − v/c)S+. Substituting in the
expression for c in Proposition 3.4, we obtain the bound given in the main theorem.
The proof of the lemma is complete.

Proof of the main theorem. First by Lemma 5.1, (Sε,Aε,Mε) → (S,A,M)
in C1

loc. We want to show that S decays to zero as ξ → −∞ (as we showed previously
in Corollary 3.2). We see that the upper bound for Sε on ξ ≤ 0 depends on r2 which
in turn depends on η2(d, ε). We recall from Proposition 3.2 that η2 is a lower bound
for Rs/Sε. Therefore, we can improve this lower bound by substituting in the upper
bound for Mε as given in Lemma 5.1. Then we have for ε ∈ [0, 1],

η =
M0θ

(1 +M0 + Y (Rf − v
c )S+)(1 + S+)(1 +A−)

≤ ηε2 ≤
Rεs
Sε
.(5.3)

We establish an upper bound for Sε on the negative real line by following the proof
of Corollary 3.2. In this way, we find a bound which is independent of ε and as such,
Sε → S and in the limit ξ → −∞ decays to zero.

We must also establish that lim infε→0 Sε(0) > 0 so that the derivatives for S,A
tend to zero at infinity. Following the proof of Lemma 3.3, we can derive the analogous
inequality

0 ≥ S+ − θ0δ2
γδ1

.(5.4)
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Since all these constants are independent of ε, θ0 can be chosen small enough so that
the right-hand side is positive without being dependent on ε. Thus the bound holds,
and so S(0) > 0.

As such, it is easy to deduce that the second part of Corollary 3.2 can be re-
produced independent of ε. The first inequality of Corollary 3.2 follows with β1

independent of ε. Given the results of Lemma 5.1, and because S(0) > 0, we have
that η1 > 0 independent of ε. Therefore, limξ→−∞ S = 0. Similarly, as ξ → ∞, A
decays to zero.

Next, we reproduce Lemma 4.1 to find the decay properties of M near infinity.
We begin by improving the upper bound of Rεs in Lemma 4.1. We see that by Lemma
5.1,

Rεs ≤
(
M0 + Y

(
Rf − v

c

)
S+
)
θe−β1ξ.(5.5)

We construct an upper solution mε to mε = Mε −M0 on [ξ1,∞] which solves

εm′′ε + cm′ε − bmε = −Y
(
M0 + Y

(
Rf − v

c

)
S+
)
θe−β1ξ,

mε(ξ1) ≥ mε(ξ1) > 0.(5.6)

The solution to (5.6) is

mε = −y1

Y (M0 + Y (Rf − v
c )S+)θe−β1ξ

εβ2
1 − cβ1 − b ,(5.7)

where 0 < β1 ≤ c−v+
√

(v−c)2+4Dη1

2D and y1 is a positive constant chosen so that the
inequality in (5.6) holds at ξ1. In the limit as ε → 0,

mε → y1

Y (M0 + Y (Rf − v
c )S+)θe−β1ξ

(cβ1 + b)
≡ m0.(5.8)

Thus, in the limit ξ → +∞, we have that m0 → 0, which implies that m(ξ) → 0 as
ξ → +∞ or limξ→+∞M(ξ) = M0. Similarly, limξ→−∞M(ξ) = M0.

Justifying the limits limξ→−∞A = A− and limξ→+∞ S = S+ as in the proof
of Theorem 4.1, we have shown that the limiting functions (S,A,M, c) are traveling
wave solutions satisfying all the boundary conditions.

Finally, we establish the strict inequalities for the wave profiles. By the strong
elliptic maximum principle, 0 < S(ξ) < S+, and 0 < A(ξ) < A− for any finite ξ. If
M(ξ1) = M0, for a finite ξ1, then M ′(ξ1) = 0. The M equation evaluated at ξ = ξ1
cannot hold thanks to S(ξ1)A(ξ1) > 0. Hence, M(ξ) > M0 for any finite ξ.

If A′(ξ2) = 0 for a finite ξ2, then by the A equation evaluated at ξ = ξ2, we
see that A′′(ξ2) = γRs(ξ2) > 0. It follows that ξ2 is a local minimal point, which
contradicts the fact that A is monotone decreasing. Hence, A′ < 0 for any finite ξ.
Similarly, S′ > 0, for any finite ξ. The proof of the main theorem is complete.

6. Existence of traveling waves in the zero-diffusion model. In this sec-
tion, we prove Theorem 1.2. We have already shown that traveling wave solutions
exist to (1.1)–(1.3) for D > 0. For the case when D = 0, the equations are reduced to
first order. Using the conserved quantity, γRfS −A, and defining the new variables,
u = γRfS −A and w = γS −A, (1.1)–(1.3) are transformed into conservative form

ut + vwx = 0,(6.1)
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wt + v/Rf ((R+ 1)w − u)x = ε(u−Rfw)(u− w)/G,(6.2)

Mt − b(M −M0) =
YM(u−Rfw)(u− w)

γ(R− 1)2KSKAG
,(6.3)

where ε = R−1
f (Rf − 1)−1(KAKS)−1, and G(A,S) = (1 +K−1

A A)(1 +K−1
S S). When

rewritten in the traveling wave variable, ξ, (6.1) becomes uξ = (v/c)wξ. This relation-
ship restricts the flow in the phase space to two-dimensional planes. The two-by-two
dynamical system is then

wξ = −Rfε(A− + γRfS
+)(w − γS)(w +A−)M

v(A− + γS+)G
,

Mξ =
b(A− + γRfS

+)(M −M0)

v(A− + γS+)
+
Y A−S+(A− + γRfS

+)(w − γS)(w +A−)M

v(A− + γS+)3KSKAG
.

There are two equilibrium points in the phase plane (w,M): (γS+,M0) and
(−A−,M0). The eigenvalues governing the flow near (γS+,M0) are

λ1 =
b(A− + γRfS

+)

v(A− + γS+)
> 0 and λ2 =

−Rfε(A− + γRfS
+)

v
< 0.

The eigenvalues for the flow near (−A−,M0) are both positive. Thus, (γS+,M0) is a
saddle point and (−A−,M0) is an unstable node. In order to have a traveling wave
solution, at least one of the unstable manifolds emanating from the point (−A−,M0)
must intersect the two-dimensional stable manifold of (γS+,M0). It is straightforward
to show that there is a unique path between the two equilibrium points. Thus, the
proof of Theorem 1.2 is complete.
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Abstract. This paper is concerned with the existence and the asymptotic stability of traveling
waves for a model system derived from approximating the one-dimensional system of the radiating
gas. We show the existence of smooth or discontinuous traveling waves and also prove the uniqueness
of these traveling waves under the entropy condition, in the class of piecewise smooth functions
with the first kind discontinuities. Furthermore, we show that the C3-smooth traveling waves are
asymptotically stable and that the rate of convergence toward these waves is t−1/4, which looks
optimal. The proof of stability is given by applying the standard energy method to the integrated
equation of the original one.
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1. Introduction. Consider the system of equations

ut + uux + qx = 0(1.1a)

and

−qxx + q + ux = 0(1.1b)

for x ∈ R and t ≥ 0. The first equation is a hyperbolic conservation law and the
second is an elliptic equation. As the second equation is a linear elliptic equation, we
express q in terms of u formally as

q = −Kux,(1.2)

where K is the inverse of the operator − d2

dx2 + 1 and has the expression

(Kf)(x) =
1

2

∫ ∞
−∞

e−|x−y|f(y)dy.(1.3)

Since (1.2), we have formally that

qx = −Kuxx = u−Ku.(1.4)

Thus we see that (1.1) is formally equivalent to the following:

ut + uux + u−Ku = 0(1.5a)
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and

q = −Kux.(1.5b)

We are concerned with the traveling wave solution of (1.1), which is expressed in
the form (u, q)(x, t) = (U,Q)(ξ)(ξ = x− st), where s is a constant called the speed of
the traveling wave. We assume that the traveling wave connects the asymptotic state
u+ and u−, i.e.,

u± = lim
ξ→±∞

U(ξ).(1.6)

Substituting (u, q)(x, t) = (U,Q)(ξ) in (1.1), we have

−sU ′ + UU
′
+Q

′
= 0(1.7a)

and

−Q′′ +Q+ U
′

= 0.(1.7b)

This system of autonomous ordinary differential equations (ODEs) does not have
classical solutions satisfying (1.6) when the shock |u+ − u−| is large (see section 2).
So we must look for the solutions in weak sense, which is defined as (U,Q)(ξ) satisfying
the following integral equations.

Definition 1.1. We define an admissible traveling wave (U,Q)(ξ) as a function
(U,Q) ∈ L∞ which satisfies

∫ +∞

−∞
−s|U − k|ϕξ + sign(U − k)

(
1

2
U2 − 1

2
k2

)
ϕξ − sign(U − k)(U −KU)ϕdξ ≥ 0

(D.1a)

and ∫ +∞

−∞
Qψdξ =

∫ +∞

−∞
(KU)ψξdξ(D.1b)

for arbitrary ϕ ∈ C∞0 with ϕ(ξ) ≥ 0, arbitrary ψ ∈ S, and arbitrary real number k.
Here the function sign is defined as

sign(x) =

 −1 for x < 0,
0 for x = 0,
1 for x > 0.

(1.8)

Here we note that this definition corresponds to the equivalent system (1.5). In order
to make the above definition of the admissible traveling waves clear, we introduce
different definitions of traveling waves here.

Definition 1.2. We define a traveling wave (U,Q)(ξ) as a function (U,Q) ∈ L∞
which satisfies ∫ +∞

−∞

(
−sU +

1

2
U2

)
ϕξ − (U −KU)ϕdξ = 0(D.2)

and the equation (D.1b) for arbitrary ϕ ∈ C∞0 and arbitrary ψ ∈ S.
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Definition 1.3. We define a traveling wave (U,Q)(ξ) as a function (U,Q) ∈ L∞
which satisfies ∫ +∞

−∞

(
−sU +

1

2
U2 +Q

)
ϕξdξ = 0(D.3a)

and ∫ +∞

−∞
Q(−ψξξ + ψ)− Uψξdξ = 0(D.3b)

for arbitrary ϕ ∈ C∞0 and arbitrary ψ ∈ S.
Obviously, Definitions 1.2 and 1.3 correspond to the systems (1.5) and (1.1),

respectively.
When the traveling wave (U,Q)(ξ) has discontinuities of the first kind, we de-

note the right state of each discontinuity by (ur, qr) and the left state by (ul, ql),
respectively. Also, we denote by (u′r, q

′
r) and (u′l, q

′
l) the right and the left states

of (U ′, Q′)(ξ), respectively. The following proposition makes the relationship among
definitions of traveling waves clear.

Proposition 1.4. (i) Definitions of traveling waves in Definitions 1.2 and 1.3
are equivalent to each other. If the traveling wave (U,Q)(ξ), ξ = x− st, is a piecewise
smooth function with the first kind discontinuities, it satisfies the Rankine–Hugoniot
condition

s(ur − ul) =
1

2
(ur

2 − ul2)

(
i.e., s =

ur + ul
2

)
,(1.9a)

qr = ql,(1.9b)

and

ur − q′r = ul − q′l(1.9c)

at each discontinuity.
(ii) Admissible traveling waves in the sense of Definition 1.1 are traveling waves

in the sense of Definition 1.2 (or in the sense of Definition 1.3). If the admissible
traveling wave is a piecewise smooth function with the first kind discontinuities, it
satisfies not only the Rankine–Hugoniot condition (1.9) but also an entropy condition

ur < ul(1.10)

at each discontinuity.
(iii) Suppose that the traveling wave (U,Q)(ξ) in the sense of Definition 1.2 (or

in the sense of Definition 1.3) is a piecewise smooth function with the first kind dis-
continuities and satisfies the entropy condition (1.10) at each discontinuity. Then
(U,Q)(ξ) is an admissible traveling wave in the sense of Definition 1.1.

The proof of the previous proposition will be given in section 2. Here we note
that (1.9b) implies the continuity of Q(ξ). More precisely, it is shown in section 2 that
Q(ξ) is Lipschitz continuous even in the case where U(ξ) has discontinuities. Also
note that the entropy condition (1.10) is just the same as the one for the Burgers
equation

ut + uux = 0.
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By virtue of the entropy condition, when u+ < u−, we obtain the unique existence
of a (discontinuous) traveling wave in the class of piecewise smooth functions whose
discontinuities are of the first kind. This result can be stated as follows.

Theorem 1.5.
(i) Suppose that there exists an admissible traveling wave (U,Q)(x − st) which

satisfies the asymptotic condition (1.6) and is a piecewise smooth function with the
first kind discontinuities. Then we have

u+ < u−, s =
1

2
(u+ + u−)(1.11)

and

lim
ξ→±∞

Q(ξ) = 0.(1.12)

(ii) Conversely, we suppose that (1.11) holds. Then there exists an admissible
traveling wave (U,Q)(x − st) satisfying (1.6) and (1.12). This admissible traveling
wave is unique up to a shift in the class of piecewise smooth functions with the first
kind discontinuities.

(a) When |u+ − u−| >
√

2, U(ξ) is continuous except for one point, while Q(ξ)
is Lipschitz continuous. The conditions (1.9), (1.10), and u

′
r = u

′
l = −1 hold at the

discontinuity of U(ξ).
(b) If |u+ − u−| ≤

√
2, then U(ξ) is in B1 and Q(ξ) is in B2.

(c) If |u+ − u−| < 2
√

2n
n+1 , then U(ξ) is in Bn and Q(ξ) is in Bn+1, where n =

2, 3, . . . .
Thus, when the shock strength |u+ − u−| is less than or equal to

√
2, we have

the C1-smooth traveling waves. In proving the stability theorem in section 3, we

require that |u+ − u−| ≤
√

6
2 to make traveling waves C3-smooth. In order to state

the stability theorem, we define the function (φ, ψ)(x, t), expressing the perturbation
from the traveling wave:

φ(x, t) = u(x, t)− U(x− st)(1.13a)

and

ψ(x, t) = q(x, t)−Q(x− st).(1.13b)

As (u, q) and (U,Q) are solutions of (1.1), (φ, ψ) satisfies

φt +

(
Uφ+

1

2
φ2

)
x

+ ψx = 0,(1.14a)

−ψxx + ψ + φx = 0.(1.14b)

We solve the above equations under the initial condition

φ(x, 0) = φ0(x) ≡ u0(x)− U(x),(1.15)

where without loss of generality, we may assume that∫ ∞
−∞

φ0(x)dx = 0.(1.16)
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In section 3, we prove the contraction property in L1 that if φ0 ∈ L1, then φ(·, t) ∈ L1

and |φ(·, t)|1 ≤ |φ0|1 for each t > 0 (see Lemma 3.1). Based on this property, we
define the integrated function Φ of φ as

Φ(x, t) =

∫ x

−∞
φ(y, t)dy(1.17)

and put

Φ0(x) =

∫ x

−∞
φ0(y)dy.(1.18)

The function Φ satisfies the following equation that is derived by integrating (1.14a)
on the interval (−∞, x]:

Φt + UΦx +
1

2
Φ2
x + ψ = 0.(1.19)

Now we state the stability result.

Theorem 1.6. (i) Let u+ < u− and suppose that |u− − u+| <
√

6
2 . Suppose also

that φ0 ∈ L1 ∩H2 and Φ0 ∈ L2. If ‖Φ0‖3 is sufficiently small, then the initial value
problem (1.14), (1.15) has a unique global solution (φ, ψ) satisfying

lim
t→∞ |(φ, ψ)(·, t)|∞ = 0.(1.20)

(ii) In addition to the assumption of (i), we suppose that Φ0 ∈ L1. Then

|(φ, ψ)(·, t)|∞ = O(t−
1
4 ) as t −→∞.(1.21)

The proof of the above theorem follows from the local existence theorem (Propo-
sition 1.7) and a priori estimates (Propositions 1.8 and 1.9). As Proposition 1.7 is
proved by the standard iteration method, we omit the proof. The derivation of the
a priori estimates are given in section 3.

Proposition 1.7. Suppose that U ∈ B3 and φ0 ∈ H2. Then there exists a
positive constant T0, depending only on ‖φ0‖2, such that (1.14), (1.15) has a unique
solution (φ, ψ) satisfying

φ ∈ C0([0, T0];H2) ∩ C1([0, T0];H1)(1.22a)

and

ψ ∈ C0([0, T0];H3).(1.22b)

Furthermore, if φ0 ∈ L1, then the solution verifies

φ ∈ C0([0, T0];L1).(1.22c)

By virtue of (1.22c), Φ is well defined by (1.17) and satisfies Φ ∈ C0([0, T0];L2)
(and hence Φ ∈ C0([0, T0];H3)), provided that Φ0 ∈ L2. In this case our solution
verifies

‖(Φ, ψ)(t)‖3 ≤ C‖Φ0‖3 for t ∈ [0, T0].(1.23)



100 SHUICHI KAWASHIMA AND SHINYA NISHIBATA

We denote the supremum in time of the H3 norm of Φ by N :

N(t) = sup
0≤τ≤t

‖Φ(·, τ)‖3.(1.24)

Proposition 1.8. Suppose that the assumptions of (i) in Theorem 1.6 holds. Let
T > 0 and let (φ, ψ) be a solution of the problem (1.14), (1.15), which satisfies (1.22)
with T0 replaced by T . Then Φ ∈ C0([0, T ];H3). Moreover, if N(T ) is so small that
N(T ) ≤ 1

10 , then we have the uniform estimate:

‖(Φ, ψ)(t)‖23 +

∫ t

0

‖φ(τ)‖22 + ‖ψ(τ)‖23dτ +

∫ t

0

∫ ∞
−∞
|Ux|Φ2dx dτ ≤ C‖Φ0‖23(1.25)

for t ∈ [0, T ], where C is a positive constant independent of T .
Proposition 1.9. Suppose that the assumptions of (ii) in Theorem 1.6 hold. Let

(φ, ψ) be the global solution obtained in (i) of Theorem 1.6. Then we have the decay
estimate:

‖(Φ, ψ)(t)‖3 ≤ C(|Φ0|1 + ‖Φ0‖3)(1 + t)−1/4(1.26)

for t ≥ 0.
Known results and outline of the paper. The system of equations (1.1) is

derived as the third-order approximation of the full system describing the motion of
radiating gas in thermo-nonequilibrium, while the second-order approximation gives
the viscous Burgers equation ut + uux = uxx, and the first-order approximation gives
the inviscid Burgers equation ut + uux = 0. Hamer [3] studied these equations in the
physical respect, especially for the steady progressive shock-wave solutions. Mathe-
matically, Kawashima and Tanaka started the research of (1.1) in [6], which proved
the local existence and uniqueness of the smooth solutions. Furthermore, under suit-
able conditions, [6] proved the global existence of smooth solutions and observed the
asymptotic behaviors in the two cases u− = u+ and u− < u+. The first case gives
diffusion waves which correspond to the viscous Burgers equation, while the second
one gives rarefaction waves corresponding to the inviscid Burgers equation. On the
other hand, Ito [4] proved the uniqueness and global existence of weak solutions in the
space of functions of bounded variation. He also discussed the stability of rarefaction
waves. These results in [6] and [4] indicate to us that the time asymptotic behavior
for (1.1) is closely related to the one for the Burgers equation.

The purpose of this paper is to investigate the case u− > u+ for the same system.
We will show the existence and stability of the traveling waves. It turns out that the
condition u− > u+ is the necessary and sufficient condition to ensure the existence
of traveling waves in weak sense. The magnitude of the quantity |u− − u+| is shown
to give information on the smoothness of the traveling waves. To obtain the smooth
traveling waves, the condition |u−− u+| � 1 is required. The smaller |u−− u+| gets,
the smoother the traveling waves become. These phenomena are newly found by the
authors. Although the discontinuous traveling waves are found and discussed in [8]
and [10] for the relaxation models, these waves are C∞ when they are differentiable.
The phenomena mentioned above can occur because the viscosity derived from the
elliptic equation (1.1b) is relatively weak, compared to that of the viscous conservation
laws. However, when |u− − u+| is small, the term qxx in (1.1b) becomes small and
our system (1.1) is well approximated by the viscous Burgers equation.

Furthermore, we prove the stability theorem which asserts that C3-smooth trav-
eling waves are time asymptotically stable, assuming that the antiderivative of the
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initial perturbation is small in the Sobolev space H3. Also, we obtain the conver-
gence rate t−1/4. The rate looks optimal, compared to the result given for the viscous
Burgers equation.

The plan of this paper is as follows. After introducing the notations, we discuss
the properties of traveling waves in section 2. In section 3, we give the proofs of the
stability results. In section 2, we first discuss the unique existence of (discontinuous)
traveling waves. The entropy condition (1.10), which is derived from Definition 1.1,
play the essential role. Then we give necessary and sufficient conditions for making
traveling waves differentiable. Furthermore, we show that the order of differentiability
is determined by the shock strength |u− − u+|.

In section 3, we give the proof of stability theorem by proving the propositions in

the case that |u− − u+| <
√

6
2 and the antiderivative of initial perturbation is small

in the Sobolev space H3. These results are given by applying the standard energy
method not only to the system (1.14) but also to the integrated equation (1.19). The
decay estimate is also given by the energy method which makes use of a time weight
function.

Notations. For an integer k ≥ 0, we denote by Ck the space of k-times con-
tinuously differentiable functions on R. Bk denotes the space of Ck-functions whose
derivatives up to order k are bounded. For 1 ≤ p ≤ ∞, Lp denotes the usual Lebesgue
space over R with the norm | · |p. For arbitrary integer l ≥ 0, H l denotes the lth order
Sobolev space in the L2-sense, equipped with the norm ‖ · ‖l. We note H0 = L2 and
‖ · ‖0 = | · |2 ≡ ‖ · ‖. We also denote by Ck(I;H l) the space of k-times continuously
differentiable functions on the interval I with values in H l.

We denote by S the space of all rapidly decreasing functions on R. Also, C0
∞

denotes the space of C∞-functions on R, having compact supports.

Finally, by C or c we denote several constants without confusion.

2. Traveling waves. In this section we analyze the traveling waves. At first we
discuss the properties of the traveling waves in weak sense to prove Proposition 1.4.

Traveling waves in weak sense (proof of Proposition 1.4). In this subsec-
tion we investigate definitions of traveling waves in weak sense. As we see function as
distributions, we abbreviate that

〈f, g〉 =

∫ +∞

−∞
fgdξ.

By direct calculation, it follows that the linear operator K in (1.3) is symmetric in
the following sense.

Lemma 2.1. If ψ ∈ S, then Kψ ∈ S and

〈KU,ψ〉 = 〈U,Kψ〉

for arbitrary U ∈ L∞.

Proof of Proposition 1.4 (i). Assuming (U,Q) ∈ L∞ is a traveling wave in the
sense of Definition 1.2, we have from (D.1b) that

〈Q,ψξ〉 = 〈KU,ψξξ〉 = −〈U −KU,ψ〉.(2.1)

In deriving this equation, we used Lemma 2.1 and the equality Kψξξ = −(ψ −
Kψ). By substituting (2.1) with ψ = φ ∈ C∞0 in (D.2), (D.3a) follows immediately.



102 SHUICHI KAWASHIMA AND SHINYA NISHIBATA

By (2.1) and (D.1b),

〈Q,−ψξξ + ψ〉 = −〈Q,ψξξ〉+ 〈Q,ψ〉
= 〈U −KU,ψξ〉+ 〈KU,ψξ〉
= 〈U,ψξ〉.

(2.2)

This equation is (D.3b).
Next we assume that (U,Q) ∈ L∞ is a traveling wave in the sense of Definition

1.3. Let ψ̂ = Kψ for arbitrary ψ ∈ S. As ψ = −ψ̂ξξ + ψ̂,

〈Q,ψ〉 = 〈Q,−ψ̂ξξ + ψ̂〉
= 〈U, ψ̂ξ〉
= 〈U,Kψξ〉
= 〈KU,ψξ〉,

(2.3)

where we used (D.3b) and Lemma 2.1. Thus we proved (D.1b). Noting that (D.1b)
implies (2.1), we substitute (2.1) with ψ = φ ∈ C0

∞ in (D.3a) to obtain (D.2). This
proves the equivalence between Definitions 1.2 and 1.3.

The Rankine–Hugoniot condition (1.9) is proved by the standard computation
employed in deriving the condition for the inviscid conservation laws.

Let us note that Q(ξ) for arbitrary traveling wave (U,Q) ∈ L∞ in the weak
sense is not only continuous but also Lipschitz continuous because (2.1) implies Qξ =
U −KU ∈ L∞.

Proof of Proposition 1.4 (ii) and (iii). As the first statement is apparent, we
only prove the second statement of (ii) here. Let us assume that (U,Q) ∈ L∞ is an
admissible traveling wave in the sense of Definition 1.1 and is a piecewise smooth
function with the first kind discontinuities. Let {ai; i = 1 · · ·N} be the set of the
discontinuous points of U contained in the support of ϕ ∈ C0

∞ with ϕ ≥ 0. Also we
denote by ui,l and ui,r the left and right limits of U at ai, respectively. Since (U,Q)
solves (D.2) and (D.1a), we see that (U,Q) satisfies the Rankine–Hugoniot condition
(1.9) at each ai and also the differential equations

−sU ′ + UU ′ + U −KU = 0(2.4a)

and

−Q′′ +Q+ U ′ = 0(2.4b)

on supp[ϕ] \ {ai}. Now the direct calculation using (1.9), (2.4a) shows that

left-hand side of (D.1a) =
1

2

∑
i

{sign(k − ui,r)

+ sign(ui,l − k)}ϕ(ai)(k − ui,r)(ui,l − k).

(2.5)

In the above summation the suffix i runs over the set {i;ui,l < k < ui,r or ui,l > k >
ui,r}. Thus the entropy condition ui,r < ui,l follows immediately from the observa-
tion using (2.5). The conclusion of (iii) follows from (i) and (2.5). The details are
omitted.

Existence of traveling waves (proof of Theorem 1.5). Here and after we
look for the admissible traveling waves satisfying (1.6) in the class of piecewise smooth
functions with the first kind discontinuities.
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At first we suppose that there exists such an admissible traveling wave (U,Q)(ξ).
Integrating (1.7a) over the interval [ξ, ξ′], we have that

−sU(ξ) +
1

2
U(ξ)2 +Q(ξ) = −sU(ξ′) +

1

2
U(ξ′)2 +Q(ξ′).(2.6)

Owing to the Rankine–Hugoniot conditions (1.9), the above equation holds true even
if there are discontinuities in the interval [ξ, ξ′]. Letting ξ′ → ∞ in (2.6) and using
(1.6), we find that Q(ξ′) has a finite limit as ξ′ → ∞, which we denote by q+. In a
similar way, the limit q− = limξ→−∞Q(ξ) exists and is finite. Thus we get that

−sU(ξ) +
1

2
U(ξ)2 +Q(ξ) = −su± +

1

2
u2
± + q±.(2.7)

This equation implies that the state (U,Q)(ξ) lies on the parabolic curve, which we
denote by Γ, in the U -Q plane. Also we denote the apex of the curve Γ by (ũ, q̃).
Notice that s = ũ.

Lemma 2.2. If there exists a ξ0 such that (U,Q)(ξ) is differentiable for ξ > ξ0
(resp., ξ < ξ0), then q+ = 0 (resp., q− = 0).

Proof. We consider the case that ξ > ξ0 only, since another case can be treated
similarly. By (1.6),

u+ = lim
ξ→∞

U(ξ) = lim
ξ→∞

U(ξ)e−ξ

e−ξ
= lim
ξ→∞

(U(ξ)− U ′(ξ)).

Thus we have that U
′
(ξ) → 0 as ξ → ∞. Similarly, we see that Q

′
(ξ) → 0 and

Q
′′
(ξ)→ 0 as ξ →∞. Substituting in (1.7b), we get the conclusion.
Proof of Theorem 1.5 (i). It suffices to prove the following lemma.
Lemma 2.3. (i) u+ < u−, s = 1

2 (u+ + u−) and q± = 0.
(ii) Admissible traveling waves have at most one discontinuity.
Proof. At first we prove that our admissible traveling waves have only finitely

many discontinuities. Consider the case where (u+, q+) 6= (ũ, q̃). We note that any
admissible traveling wave (U,Q)(ξ) laying on the curve Γ has the horizontal jump only
in the U -Q plane, which goes from right to left, because it must satisfy the Rankine–
Hugoniot condition (1.9b) and the entropy condition (1.10). On the other hand, the
convergence (1.6) requires that (U,Q)(ξ) is in a small neighborhood of (u+, q+) for
any ξ > R, where R is a sufficiently large number. Since (u+, q+) is on the slope of
Γ, we conclude that there is no discontinuity for ξ > R.

Similarly, if (u−, q−) 6= (ũ, q̃), then there is no discontinuity for ξ < −R. Thus
we have shown that when (u+, q+) 6= (ũ, q̃) and (u−, q−) 6= (ũ, q̃), the discontinuities
appear only finitely many times. Consequently, applying Lemma 2.2, we have q± = 0
in this case.

Next we show that the case (u+, q+) = (ũ, q̃) cannot occur by contradiction.
Assume that (u+, q+) = (ũ, q̃). Then (u−, q−) 6= (ũ, q̃). It follows from the above
consideration that there is no discontinuity for ξ < −R so that q− = 0 by Lemma 2.2.
Consequently, if we have infinitely many discontinuities, they should lie in a certain
neighborhood of (u+, q+) = (ũ, q̃). Since the discontinuity is a horizontal jump which
goes from right to left in the U -Q plane, the point (U,Q)(ξ) must move from left
to right along the curve Γ, passing through the top (ũ, q̃), as ξ increases from one
jump point ξ1 to the next one ξ2. Therefore, there must exist a ξ̃ ∈ (ξ1, ξ2) such that
(U,Q)(ξ̃) = (ũ, q̃). On the contrary, differentiating (1.7a) in ξ, we have that

Q
′′

= (s− U)U
′′ − (U

′
)2.
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Substituting this in (1.7b) and evaluating the equation thus obtained at ξ = ξ̃, we
find that

U
′
(ξ̃) = −U ′(ξ̃)2 − q̃ < 0,

where we used ũ = s and q̃ > q− = 0.
This inequality implies that the point (U,Q)(ξ) moves from right to left along the

curve Γ around (ũ, q̃) as ξ increases. This is a contradiction. Therefore, we have only
finitely many discontinuities and so q+ = 0 by Lemma 2.2. This is a contradiction,
too. Thus we have proved that the case (u+, q+) = (ũ, q̃) cannot occur. Similarly, we
conclude that the case (u−, q−) = (ũ, q̃) does not happen, either.

Since q± = 0, we have from (2.7) that s = 1
2 (u+ +u−). Consequently, we see that

q̃ = 1
8 |u+ − u−|2 > 0. By virtue of the property q̃ > 0, we conclude that u+ < u−

by the same discussion. This proves (i). Also, employing the same discussion, we
conclude that the jump can occur at most one point. The proof of the Lemma 2.3 is
complete.

Putting s = 1
2 (u+ + u−) and q± = 0 in (2.7), we can express Q in terms of U :

Q = −1

2
(U − u+)(U − u−).(2.8)

Substituting this in equation (1.7b), we have the second-order ordinary differential
equation: (

U − u+ + u−
2

)
U
′′

+ (U
′
)2 − 1

2
(U − u+)(U − u−) + U

′
= 0.(2.9)

To simplify the equation, we change the dependent variable as Û = U − u++u−
2 .

Denoting this new variable Û by U without confusion, we get the following system of
the first-order ordinary differential equations:(

U
V

)′
=

(
V

−V 2+V− 1
2 (U2−α2)

U

)
,(2.10)

where α = |u+−u−|
2 . Since u+ < u−, the asymptotic condition (1.6) is rewritten as

lim
ξ→±∞

(U, V )(ξ) = (∓α, 0).(2.11)

We have to look for solutions of (2.10) under the condition (2.11). We denote by
O the orbit of the solutions (U,Q)(ξ) of (2.10), (2.11). Also we define the parabolic
curve P in the U -V plane by

P =

{
(U, V );V 2 + V − 1

2
(U2 − α2) = 0

}
.(2.12)

By algebraic calculation, we know that the curve P intersects with the line U = 0 at
the point (0, v0), where

v0 =
−1 +

√
1− 2α2

2
,(2.13)

provided that α ≤
√

2
2 , i.e., |u+ − u−| ≤

√
2.
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Otherwise, P does not meet the line U = 0.
The equilibrium points of (2.10) are (±α, 0). The Jacobian matrix of the vector

on the right-hand side of (2.10), evaluated at (±α, 0), is

A± =

(
0 1
1 ∓ 1

α

)
.(2.14)

The eigenvalues of A+ are

µ1 =
−1 +

√
1 + 4α2

2α
> 0, µ2 =

−1−√1 + 4α2

2α
< 0.(2.15)

Thus (α, 0) is a saddle point. Similarly, another equilibrium point (−α, 0) is a saddle
point, too.

Lemma 2.4. The trajectory O of solutions to (2.10), (2.11) is symmetric with
respect to the line U = 0 in the U -V plane.

Proof. Let (U, V )(ξ) be a solution of (2.10) in a neighborhood of ξ = ∞ and
satisfy the asymptotic condition (2.11) for ξ →∞. Then the function defined by

(Û , Q̂)(ξ) = (−U,Q)(−ξ)
is a solution of (2.10) around ξ = −∞ and satisfies (2.11) for ξ → −∞ . Since the
equilibrium points (±α, 0) are saddle points, the conclusion follows easily.

Lemma 2.4 and its proof show that if the shift in ξ is chosen appropriately, then
U is an odd function and V is an even function with respect to ξ. Hence, it is enough
to consider the case U > 0.

Next, comparing the eigenvector (1, µ1) (row vector) of A+ for µ1 and the tangent
of P , we have the following relation between the trajectory O and the curve P .

Lemma 2.5. (i) The trajectory O and the parabolic curve P do not intersect
except for the points (±α, 0) and (0, v0).

(ii) The trajectory O is located above the curve P in the U -V plane.
The above lemma implies that when U > 0, U and V are strictly decreasing

functions of ξ.
Proof of Theorem 1.5 (ii-a). At first we prove that any admissible traveling wave

satisfies

u′r = u′l = −1(2.16)

at each discontinuity. Let us consider the original dependent variable (U,Q)(ξ). We
have from (1.7a) that q′r = (s − ur)u

′
r and q′l = (s − ul)u

′
l. Substituting these

relations in (1.9c) and using s = 1
2 (ur + ul), we see that

(ul − ur)
(

1 +
1

2
(u
′
l + u

′
r)

)
= 0.

Since u
′
l = u

′
r by Lemma 2.4, we have (2.16).

From now on we again write U in place of U − 1
2 (u+ + u−). Consider the case

where |u+−u−| >
√

2. In this case the trajectory O goes to −∞ as U goes to zero, and
therefore any continuous traveling wave does not exist. But it is possible to connect
the trajectory sprung from (α, 0) in U > 0 and the one from (−α, 0) in U < 0 by the
horizontal jump between the two points (ur, vr) and (ul, vl). We require that

vr = vl = −1,



106 SHUICHI KAWASHIMA AND SHINYA NISHIBATA

which ensures (2.16). As this jump satisfies the Rankine–Hugoniot condition (1.9)
and the entropy condition (1.10) apparently, a discontinuous traveling wave exits.
Thus we complete the proof of Theorem 1.5 (ii-a) with the fact that Q is Lipschitz
continuous proved in the previous subsection.

In order to obtain smooth traveling waves, we make a change of the independent
variable as

U
d

dξ
=

d

dη

and transform (2.10) into

d

dη

(
U
V

)
=

(
UV

−V 2 − V + 1
2 (U2 − α2)

)
.(2.17)

This system has equilibrium points, (±α, 0) and (0, v0). The Jacobian matrix of the
vector on the right-hand side of (2.17), evaluated at (0, v0), is given by

A =

(
λ1 0
0 λ2

)
,(2.18)

where

λ1 =
−1 +

√
1− 2α2

2
≡ v0 < 0 and λ2 = −

√
1− 2α2 < 0.(2.19)

The eigenvectors corresponding to λ1 and λ2 are

e1 =

(
1
0

)
and e2 =

(
0
1

)
,(2.20)

respectively.

Proof of Theorem 1.5 (ii-b). Let |u+ − u−| ≤
√

2, i.e., α ≤
√

2
2 . By the standard

phase plane analysis, it is shown that the trajectory O connects the equilibrium points
(α, 0) and (0, v0). Let us note that the change of the independent variable

ξ = −
∫ ∞
η

U(ζ)dζ

gives the correspondence between −∞ < ξ < 0 and −∞ < η < ∞. Actually, this
follows from the fact that U(η) → 0 exponentially as η → ∞. Obviously, V ∈ B0

so that U ∈ B1 as a function of ξ. Thus we have proved the existence of a desired
traveling wave.

Next, we show the following lemma.
Lemma 2.6. (i) If |u+ − u−| < 4

3 , then U ∈ B2.

(ii) If |u+ − u−| <
√

6
2 , then U ∈ B3.

Proof. By standard theory of autonomous ordinary differential equations, it is
known that when λ1 < λ2, i.e., |u+ − u−| > 4

3 (resp., λ1 > λ2, i.e., |u+ − u−| < 4
3 ),

the trajectory O tangents the eigenvector e2 (resp., e1) at the point (0, v0). Therefore,
when |u+− u−| > 4

3 , we see that dV
dU →∞ as U → 0+ so that V /∈ B1 and U /∈ B2 as

functions of ξ. While in the case where |u+ − u−| < 4
3 , we have dV

dU → 0 as U → 0+

so that V ∈ B1 and U ∈ B2. This proves (i).
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To show (ii), we introduce

W1 =
V − λ1

U
(2.21)

and transform (2.17) into

d

dη
U = λ1U + U2W1(2.22a)

and

d

dη
W1 =

1

2
U + (λ2 − λ1)W1 − 2UW 2

1 .(2.22b)

We study the behavior of the trajectory of solutions for the system (2.22) around
the equilibrium point (0, 0), which corresponds to (0, v0) for the system (2.17). The
Jacobian matrix of the vector on the right-hand side of (2.22), evaluated at (0, 0), is

A1 =

(
λ1 0
1
2 λ2 − λ1

)
.(2.23)

The eigenvalues of A1 are λ
(1)
1 = λ1 < 0 and λ

(1)
2 = λ1 − λ2 < 0. The corresponding

eigenvectors are

P
(1)
1 =

(
1
a2

)
and P

(1)
2 =

(
0
1

)
= e2,(2.24)

respectively, where a2 = 1
2(2λ1−λ2) . By the standard theory of autonomous ordinary

differential equations, when λ
(1)
1 < λ

(1)
2 , i.e., |u+ − u−| >

√
6

2 (resp., λ
(1)
1 > λ

(1)
2 , i.e.,

|u+ − u−| <
√

6
2 ), the trajectory tangents the eigenvector P

(1)
2 (resp., P

(1)
1 ) at the

point (0, 0). Therefore, if |u+ − u−| >
√

6
2 , then dW1

dU → ∞ as U → 0+. This shows

that d2V
dU2 → ∞ as U → 0+ so that V /∈ B2 and U /∈ B3 as functions of ξ. On the

other hand, if |u+ − u−| <
√

6
2 , then dW1

dU → a2 as U → 0+. Consequently, we have
d2V
dU2 → 2a2 as U → 0+, which shows that V ∈ B2 and U ∈ B3. This completes the
proof.

Proof of Theorem 1.5 (ii-c). It suffices to prove the following theorem that gives
a more precise statement of Theorem 1.5 (ii-c).

Theorem 2.7. Let n ≥ 1 be an integer and suppose that

|u+ − u−| < bn ≡ 2
√

2(n+ 1)

n+ 2
.(2.25)

Then V is a Bn-function of U and has the expansion

V = a0 + a1U + a2U
2 + · · ·+ anU

n + o(Un)(2.26)

for U → 0+, where the coefficients an are given by the formula (2.27) below. Moreover,
V ∈ Bn and U ∈ Bn+1 as functions of ξ:

a0 = λ1,(2.27a)
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a2 =
1

2(2λ1 − λ2)
,(2.27b)

and

an =
n+ 2

4(nλ1 − λ2)

∑
aian−i for n = 4, 6, 8, . . . ,(2.27c)

where the summation is taken over all even integers i with 2 ≤ i ≤ n− 2, and

an = 0 for n = 1, 3, 5, . . . .(2.27d)

Proof. The theorem has already been proved for n = 1 and 2 in Lemma 2.6. We
use the induction with respect to n to prove the general case. As the arguments are
essentially the same as those in Lemma 2.6, we give only a brief sketch of the proof
here.

Let k ≥ 1 be an integer and assume that the theorem is valid for n = k. Then we
prove the theorem for n = k + 1. Let |u+ − u−| < bk. Put

Wk =
1

Uk

V − k∑
j=0

ajU
j

 .(2.28)

Then Wk → 0 as U → 0+ by the induction hypothesis. Write (2.28) as

V =
k∑
j=0

ajU
j + UkWk,(2.29)

and substitute this in (2.17). This yields the system of (U,Wk) of the form

d

dη

(
U
Wk

)
=

(
fk(U,Wk)
gk(U,Wk)

)
.(2.30)

By direct computation, we see that (0, 0) is an equilibrium point of (2.30). Moreover,
the Jacobian matrix of the vector on the right-hand side of (2.30), evaluated at (0, 0),
is given by

Ak =

(
λ1 0
sk λ2 − kλ1

)
,

where sk = 0 if k is even and sk = {(k + 1)λ1 − λ2}ak+1 if k is odd. The eigenvalues

of Ak are λ
(k)
1 = λ1 and λ

(k)
2 = λ2 − kλ1. The corresponding eigenvectors are

P
(k)
1 =

(
1

ak+1

)
and P

(k)
2 =

(
0
1

)
,(2.31)

respectively. Noting that λ
(k)
1 < λ

(k)
2 (resp., λ

(k)
1 > λ

(k)
2 ) is equivalent to |u+ − u−| >

bk+1 (resp., |u+ − u−| < bk+1), we can deduce the desired conclusion of the theorem
for n = k + 1 by the same argument as in Lemma 2.6. In particular, we see that
U ∈ Bk+2 for |u+ − u−| < bk+1, but U /∈ Bk+2 if |u+ − u−| > bk+1. The proof is
complete.
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Finally, in this section we summarize the result concerning the magnitude of
traveling waves, which is necessary in the stability proof in section 3.

Corollary 2.8. If |u− − u+| ≤
√

2, then

|U | ≤ 1

2
|u− − u+| and |U ′| ≤ 1

4
|u− − u+|2.(2.32a)

Moreover, we assume that |u− − u+| < 2
√

2n
n+1 for an integer n ≥ 2. Then∣∣∣∣( d

dξ

)n
U

∣∣∣∣ ≤ C|u− − u+|n+1 with C =
C0

1− (n+ 1)|v0|(2.32b)

and

|U ′| ≤ |v0| < 1

n+ 1
,(2.33)

where C0 is a constant independent of |u−−u+| and v0 is the constant given in (2.13)

with α = |u−−u+|
2 .

Proof. It follows from Lemma 2.5 (ii) that |U | ≤ α and |V | ≤ |v0|. Also, by simple

calculation, using (2.13), we see that |v0| ≤ α2 and that |v0| < 1
n+1 for α <

√
2n

n+1 . Thus
we have proved (2.32a) and (2.33).

Next, we prove (2.32b) only for n = 2. The general case can be proved by the
induction with respect to n. Observe that as U

′′
decays exponentially for ξ → ±∞,

|U ′′| attains its maximum at a point ξ0 where U
′′′

= V
′′

= 0 holds. We have from
(2.10) that

UV ′ + V 2 + V − 1

2
(U2 − α2) = 0.

Differentiate the equation with respect to ξ and evaluate at ξ = ξ0. Since V
′′
(ξ0) = 0,

we obtain

U
′′

= V
′

=
UV

1 + 3V

at ξ = ξ0. Substituting the estimates |U | ≤ α and |V | ≤ |v0| ≤ α2, we have

|U ′′ | ≤ α3

1− 3|v0|
at ξ = ξ0, which proves (2.32b) for n = 2.

3. Stability. In this section, we discuss the stability of smooth traveling waves

which are obtained in section 2. Here and after, we assume that |u− − u+| <
√

6
2 to

make U of (1.6) being in B3. Moreover, let (φ, ψ) be a solution of the problem (1.14),
(1.15) satisfying (1.22) with T0 replaced by T and assume that N(T ) ≤ 1

10 .
L1 estimates of φ. At first, we give the L1 estimate for φ. To this end, we

introduce aδ and Aδ by

aδ(φ) = ρδ ∗ sign(φ) and Aδ(φ) =

∫ φ

0

aδ(η)dη,(3.1)
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where ρδ∗ denotes the Friedrichs mollifier. Note that Aδ(φ)→ |φ| as δ → 0. We have
from (1.5b) that

ψ = −Kφx,(3.2)

so that ψx = φ−Kφ. Substitution of this in (1.14a) gives

φt +

(
Uφ+

1

2
φ2

)
x

+ φ−Kφ = 0.(3.3)

Multiplying aδ(φ) on this equation, we obtain that

Aδ(φ)t + Ux

∫ φ

0

a′δ(η)ηdη + aδ(φ)(φ−Kφ)

+

{
U

(
aδ(φ)φ−

∫ φ

0

a′δ(η)ηdη

)
+

∫ φ

0

aδ(η)ηdη

}
x

= 0.

(3.4)

We integrate this equation over R× [0, t], obtaining∫ ∞
−∞

Aδ(φ)(x, t)dx+

∫ t

0

∫ ∞
−∞

Ux

(∫ φ

0

a′δ(η)ηdη

)
dx dτ

+

∫ t

0

∫ ∞
−∞

aδ(φ)(φ−Kφ)dx dτ =

∫ ∞
−∞

Aδ(φ0)dx.

(3.5)

Making δ ↓ 0, we have that

|φ(t)|1 +

∫ t

0

|φ|1dτ −
∫ t

0

∫ ∞
−∞

sign(φ)Kφdxdτ = |φ0|1.(3.6)

Here we used the fact that second term on the left-hand side of (3.5) goes to zero as
δ → 0 by the Lebesgue convergence theorem. Applying the estimate∣∣∣∣∫ ∞−∞ sign(φ)Kφdx

∣∣∣∣ ≤ |Kφ|1 ≤ |φ|1
on (3.6), we obtain that |φ(t)|1 ≤ |φ0|1. Thus we have proved the following lemma.

Lemma 3.1. If φ0 ∈ L1, then

|φ(t)|1 ≤ |φ0|1.(3.7)

L2 estimates (proof of Proposition 1.8). Since we have assumed φ ∈
C0([0, T ];L1), Φ is well defined by (1.17) and satisfies Φ ∈ C0([0, T ];L2) if Φ0 ∈ L2.
Consequently, we have

Φ ∈ C0([0, T ];H3),(3.8)

and Φ satisfies (1.19). First we apply the standard energy method to equation (1.19)
to derive the L2-estimate for Φ. Multiplying Φ on (1.19), we have(

1

2
Φ2

)
t

− 1

2
UxΦ2 +

1

2
Φφ2 + Φψ +

(
1

2
UΦ2

)
x

= 0.(3.9)
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Since we have from (1.14b) that

Φψ = φ2 − (ψ2 + ψ2
x) + {(Φ + ψ)(ψx − φ)}x,

(3.9) is modified as(
1

2
Φ2

)
t

− 1

2
UxΦ2 + φ2 − (ψ2 + ψ2

x) +
1

2
Φφ2 + (· · · )x = 0,(3.10)

where here and in what follows, (· · · )x denotes terms which vanish after integration
over x ∈ R. We integrate (3.10) over R× [0, t], obtaining

|Φ(t)|22 + 2

∫ t

0

|φ|22dτ +

∫ t

0

∫ ∞
−∞
|Ux|Φ2dx dτ = |Φ0|22 + 2

∫ t

0

‖ψ‖21dτ −
∫ t

0

∫ ∞
−∞

Φφ2dx dτ,

(3.11)

where we used the fact that Ux < 0, namely, U is a strictly decreasing function of
ξ = x− st.

Next we derive the L2-estimate for φ in a similar way. Multiplying φ and ψ on
equations (1.14a) and (1.14b), respectively, and adding these two equations, we have(

1

2
φ2

)
t

+ ψ2 + ψ2
x +

1

2
Uxφ

2 +

{
1

2
Uφ2 +

1

3
φ3 − ψ(ψx − φ)

}
x

= 0.(3.12)

Integrating (3.12) over R× [0, t] and using the fact that Ux < 0, we obtain

|φ(t)|22 + 2

∫ t

0

‖ψ‖21dτ = |φ0|22 +

∫ t

0

∫ ∞
−∞
|Ux|φ2dx dτ.(3.13)

Now we add (3.11) and (3.13), obtaining

|Φ(t)|22 + |φ(t)|22 + 2

∫ t

0

|φ|22dτ +

∫ t

0

∫ ∞
−∞
|Ux|Φ2dx dτ = |Φ0|22 + |φ0|22

+

∫ t

0

∫ ∞
−∞

(|Ux| − Φ)φ2dx dτ.

(3.14)

We would like to estimate the last term on the right-hand side of (3.14). We recall

that when |u+ − u−| <
√

6
2 , Corollary 2.8 gives that

|Ux| < 1

4
, |Uxx| ≤ C,(3.15a)

and

|Uxxx| < CM with M =
1

1− 4|v0| .(3.15b)

Using (3.15a) and N(T ) ≤ 1
10 , we see that |Ux| + |Φ| < 1. Therefore, we have from

(3.14) that

|Φ(t)|22 + |φ(t)|22 +

∫ t

0

|φ|22dτ +

∫ t

0

∫ ∞
−∞
|Ux|Φ2dx dτ ≤ |Φ0|22 + |φ0|22.(3.16)
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Moreover, applying this estimate to the right-hand side of (3.13), we obtain∫ t

0

‖ψ‖21dτ ≤ |Φ0|22 + |φ0|22.(3.17)

Next we derive the estimate for φx. We differentiate (1.14) with respect to x and
multiply φx and ψx on the first and the second equations thus obtained, respectively.
Then we add these two equations, getting(

1

2
φ2
x

)
t

+ ψ2
x + ψ2

xx +
3

2
Uxφ

2
x + Uxxφφx +

1

2
φ3
x

+

{
1

2
Uφ2

x +
1

2
φφ2

x − ψx(ψxx − φx)

}
x

= 0.

(3.18)

On the other hand, by squaring (1.14b), we have

φ2
x = ψ2 + 2ψ2

x + ψ2
xx − 2(ψψx)x.(3.19)

We rewrite (3.18) by using (3.19) as(
1

2
φ2
x

)
t

+ φ2
x − (ψ2 + ψ2

x) +
3

2
Uxφ

2
x + Uxxφφx +

1

2
φ3
x + (· · · )x = 0.(3.20)

Here, applying (3.15a) and N(T ) ≤ 1
10 , we see that∣∣∣∣32Uxφ2

x + Uxxφφx +
1

2
φ3
x

∣∣∣∣ ≤ 1

2
φ2
x + Cφ2.(3.21)

We integrate (3.20) over R × [0, t] and substitute (3.21) in the resulting equation.
This yields

|φx(t)|22 +

∫ t

0

|φx|22dτ ≤ |φ′0|22 + C

∫ t

0

|φ(τ)|22dτ + 2

∫ t

0

‖ψ(τ)‖21dτ ≤ C(|Φ0|22 + ‖φ0‖21),

(3.22)

where we used the estimate (3.16) and (3.17). Also, from (3.19) and (3.22) we have∫ t

0

‖ψ(τ)‖22dτ ≤ C(|Φ0|22 + ‖φ0‖21).(3.23)

Finally, we derive the L2-estimate for φxx by the similar method used in deriving
the estimate for φx. We differentiate (1.14) twice with respect to x and multiply
φxx and ψxx on the first and the second equations thus obtained, respectively. Then,
adding the resulting two equations, we have(

1

2
φ2
xx

)
t

+ ψ2
xx + ψ2

xxx +
5

2
Uxφ

2
xx + 3Uxxφxφxx

+ Uxxxφφ
2
xx +

5

2
φxφ

2
xx + (. . . )x = 0.

(3.24)

Also, similarly to (3.19), we have

φ2
xx = ψ2

x + 2ψ2
xx + ψ2

xxx − 2(ψxψxx)x.(3.25)
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We rewrite (3.24) by using (3.25) and obtain as a counterpart of (3.20)(
1

2
φ2
xx

)
t

+ φ2
xx − (ψ2

x + ψ2
xx) +

5

2
Uxφ

2
xx + 3Uxxφxφxx

+ Uxxxφφ
2
xx +

5

2
φxφ

2
xx + (. . . )x = 0.

(3.26)

Here, using (3.15) and N(T ) ≤ 1
10 , we see that∣∣∣∣52Uxφ2

xx + 3Uxxφxφxx + Uxxxφφxx +
5

2
φxφ

2
xx

∣∣∣∣ ≤ 15

16
φ2
xx + CM2φ2 + Cφ2

x.(3.27)

Now, integrating (3.26) over R×[0, t] and substituting (3.27) in the resulting equation,
we obtain

|φxx(t)|22 +

∫ t

0

|φxx(τ)|22dτ ≤ C|φ
′′
0 |22 + C(M)

∫ t

0

‖φ(τ)‖21 + ‖ψx(τ)‖21dτ

≤ C(M)(|Φ0|22 + ‖φ0‖22),

(3.28)

where we used the estimates (3.16), (3.22), and (3.23). Here C(M) denotes a constant
depending on M in (3.15b). Also, from (3.25) and (3.28) we have∫ t

0

‖ψx(τ)‖22 ≤ C(M)(|Φ0|22 + ‖φ0‖22).(3.29)

To complete the proof of Proposition 1.8, we combine (3.16), (3.22), (3.23), (3.28),
and (3.29), obtaining

|Φ(t)|22 + ‖φ(t)‖22 +

∫ t

0

‖φ(τ)‖22 + ‖ψ(τ)‖23dτ

+

∫ t

0

∫ ∞
−∞
|Ux|Φ2dx dτ ≤ C(M)(|Φ0|22 + ‖φ0‖22).

(3.30)

This inequality combined with the inequality ‖ψ‖3 ≤ ‖φx‖1, which is derived from
(3.19) and (3.25), gives the desired estimate (1.25). This completes the proof of
Proposition 1.8 and hence of Theorem 1.6 (i).

Decay estimates (proof of Proposition 1.9). In this subsection we derive
the decay estimate (1.26). Let (φ, ψ) be the global solution to the problem (1.14),
(1.15), which is obtained in Theorem 1.6. Note that this solution verifies

sup
0≤t≤∞

‖Φ(t)‖3 ≤ C‖Φ0‖3 ≤ 1

10
.(3.31)

At first we prove the L1-estimate of Φ, which plays an important role in getting the
convergence rate.

Lemma 3.2. If Φ0 ∈ L1, then Φ ∈ C0([0,∞);L1) and

|Φ(t)|1 +

∫ t

0

∫ ∞
−∞
|Ux||Φ|dx dτ ≤ |Φ0|1 +

1

2
(|Φ0|22 + |φ0|22).(3.32)
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Proof. From (3.2), we have that

ψx = φ−Kφ = (Φ−KΦ)x.

By integrating this equation on the interval (−∞, x], we obtain

ψ = Φ−KΦ.(3.33)

Substituting this equation in (1.19), we have that

Φt + UΦx +
1

2
φ2 + Φ−KΦ = 0.(3.34)

Multiplying aδ(Φ) on this equation and integrating over R× [0, t], we obtain that∫ ∞
−∞

Aδ(Φ(t))dx+

∫ t

0

∫ ∞
−∞
|Ux|Aδ(Φ)dx dτ +

1

2

∫ t

0

∫ ∞
−∞

aδ(Φ)φ2dx dτ

+

∫ t

0

∫ ∞
−∞

aδ(Φ)(Φ−KΦ)dx dτ =

∫ ∞
−∞

Aδ(φ0)dx.

(3.35)

Letting δ ↓ 0 in (3.35), we have

|Φ(t)|1 +

∫ t

0

∫ ∞
−∞
|Ux||Φ|dx dτ ≤ |Φ0|1 +

1

2

∫ t

0

|φ|22dτ ≤ |Φ0|1 +
1

2
(|Φ0|22 + |φ0|22),

where we used the estimate (3.16). This completes the proof.
Next we derive the decay estimate for Φ and φ. Let µ > 1

2 be a sufficiently large
number which is fixed. We multiply (τ + 1)µ on equations (3.10) and (3.12), and
integrate the resulting equations over R× [0, t]. This yields

(t+ 1)µ|Φ(t)|22 + 2

∫ t

0

(τ + 1)µ|φ(τ)|22dτ

+

∫ t

0

∫ ∞
−∞

(τ + 1)µ|Ux|Φ2dx dτ = |Φ0|22 + µ

∫ t

0

(τ + 1)µ−1|Φ(τ)|22dτ

+ 2

∫ t

0

(τ + 1)µ‖ψ(τ)‖21dτ −
∫ t

0

∫ ∞
−∞

(τ + 1)µΦφ2dx dτ.(3.36)

and

(t+ 1)µ|φ(t)|22 + 2

∫ t

0

(τ + 1)µ‖ψ(τ)‖21dτ = |φ0|22 + µ

∫ t

0

(τ + 1)µ−1|φ(τ)|22dτ

+

∫ t

0

∫ ∞
−∞

(τ + 1)µ|Ux|φ2dx dτ.(3.37)

Adding the above two equations, we obtain

(t+ 1)µ(|Φ(t)|22 + |φ(t)|22) + 2

∫ t

0

(τ + 1)µ|φ(τ)|22dτ

+

∫ t

0

∫ ∞
−∞

(τ + 1)µ|Ux|Φ2dx dτ = |Φ0|22 + |φ0|22

+ µ

∫ t

0

(τ + 1)µ−1(|Φ(τ)|22 + |φ(τ)|22)dτ

+

∫ t

0

∫ ∞
−∞

(τ + 1)µ(|Ux| − Φ)φ2dx dτ.

(3.38)
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We estimate the integrals on the right-hand side of (3.38). First, using (3.15a) and
(3.31), we have∫ t

0

∫ ∞
−∞

(τ + 1)µ(|Ux| − Φ)φ2dx dτ ≤ 1

2

∫ t

0

(τ + 1)µ|φ(τ)|22dτ.(3.39)

Next, applying the Gagliardo–Nirenberg inequality

|Φ|2 ≤ C|Φx|
1
3
2 |Φ|

2
3
1 = C|φ| 132 |Φ|

2
3
1

and the Hölder inequality, we see that

µ

∫ t

0

(τ + 1)µ−1|Φ(τ)|22dτ ≤ C sup
τ
|Φ(τ)| 431

∫ t

0

(τ + 1)µ−1|φ(τ)| 232 dτ

≤ C sup
τ
|Φ(τ)| 431

[∫ t

0

(τ + 1)µ|φ(τ)|22dτ
] 1

3
[∫ t

0

(τ + 1)µ−
2
3 dτ

] 2
3

≤ ε
∫ t

0

(τ + 1)µ|φ(τ)|22dτ + C(ε)(t+ 1)µ−
1
2 sup

0≤τ≤t
|Φ(τ)|21(3.40)

for arbitrary ε > 0, where C(ε) is a constant depending on ε. Here we assumed that
µ > 1

2 . Finally, we show that

µ

∫ t

0

(τ + 1)µ−1|φ(τ)|22dτ ≤ ε
∫ t

0

(τ + 1)µ|φ(τ)|22dτ + C(ε)

∫ t

0

|φ(τ)|22dτ(3.41)

for arbitrary ε > 0. To see this, we choose T such that µ(T + 1)−1 = ε and divide
the integral on the left-hand side of (3.41) into two parts corresponding to [0, T ] and
[T, t], respectively. The first part is estimated as

µ

∫ T

0

(τ + 1)µ−1|φ(τ)|22dτ ≤ µ(T + 1)µ−1

∫ T

0

|φ(τ)|22dτ ≤ C(ε)

∫ t

0

|φ(τ)|22dτ,

while the second is

µ

∫ t

T

(τ + 1)µ−1|φ(τ)|22dτ ≤ µ(T + 1)−1

∫ t

T

(τ + 1)µ|φ(τ)|22dτ ≤ ε
∫ t

0

(τ + 1)µ|φ(τ)|22dτ.

This proves (3.41). Now, substitute (3.39), (3.40), and (3.41) in (3.38). Then letting
ε = 1

4 on the inequality thus obtained, we obtain

(t+ 1)µ(|Φ(t)|22 + |φ(t)|22) +

∫ t

0

(τ + 1)µ|φ(τ)|22dτ +

∫ t

0

∫ ∞
−∞

(τ + 1)µ|Ux|Φ2dx dτ

≤ |Φ0|22 + |φ0|22 + C(t+ 1)µ−
1
2 sup

0≤τ≤t
|Φ(τ)|21 + C

∫ t

0

|φ(τ)|22dτ

≤ C(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + |φ0|22),(3.42)

where we used the estimates (3.32) and (3.16). Moreover, applying (3.42) to the
right-hand side of (3.37), we have∫ t

0

(τ + 1)µ‖ψ(τ)‖21dτ ≤ C(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + |φ0|22).(3.43)
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Next we derive the decay estimate for φx by multiplying (τ + 1)µ on (3.20) and
integrating it over R× [0, t]. Then, using (3.21), we obtain

(t+ 1)µ|φx(t)|22 +

∫ t

0

(τ + 1)µ|φx(τ)|22dτ ≤ |φ
′
0|22 + µ

∫ t

0

(τ + 1)µ−1|φx(τ)|22dτ

+ C

∫ t

0

(τ + 1)µ|φx(τ)|22dτ + 2

∫ t

0

(τ + 1)µ‖ψ(τ)‖21dτ.(3.44)

We substitute the estimate (3.41) with φ replaced by φx to the second term on the
right-hand side of (3.44). Then, using (3.22), (3.42), and (3.43), we obtain

(t+ 1)µ|φx(t)|22 +

∫ t

0

(τ + 1)µ|φx(τ)|22dτ ≤ C(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + ‖φ0‖21).

(3.45)

Also, from (3.19) and (3.45) we have∫ t

0

(τ + 1)µ‖ψ(τ)‖22dτ ≤ C(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + ‖φ0‖21).(3.46)

Similarly, we derive the decay for φxx. We multiply (τ + 1)µ on equation (3.26)
and integrate it over R× [0, t]. Then, using (3.27), we obtain

(t+ 1)µ|φxx(t)|22 +

∫ t

0

(τ + 1)µ|φxx(τ)|22dτ ≤ C|φ
′′
0 |22 + µC

∫ t

0

(τ + 1)µ−1|φxx(τ)|22dτ

+ C(M)

∫ t

0

(τ + 1)µ(‖φ(τ)‖21 + ‖ψx(τ)‖21)dτ.(3.47)

By applying (3.41) with φ replaced by φxx and using (3.28), (3.42), (3.45), and (3.46),
we have from (3.47) that

(t+ 1)µ|φxx(t)|22 +

∫ t

0

(τ + 1)µ|φxx(τ)|22dτ ≤ C(M)(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + ‖φ0‖22).

(3.48)

Also, from (3.25) and (3.48) we have∫ t

0

(τ + 1)µ‖ψx(τ)‖22dτ ≤ C(M)(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + ‖φ0‖22).(3.49)

Finally, combining (3.42), (3.45), (3.46), (3.48), and (3.49), we arrive at the esti-
mate

(t+ 1)µ(|Φ(t)|22 + ‖φ(t)‖22) +

∫ t

0

(τ + 1)µ(‖φ(τ)‖22 + ‖ψ(τ)‖23)dτ

+

∫ t

0

∫ ∞
−∞

(τ + 1)µ|Ux|Φ2dx dτ

≤ C(M)(t+ 1)µ−
1
2 (|Φ0|21 + |Φ0|22 + ‖φ0‖22).

(3.50)

In particular, we have shown that

|Φ(t)|2 + ‖φ(t)‖2 ≤ C(M)(t+ 1)−
1
4 (|Φ0|1 + |Φ0|2 + ‖φ0‖2),(3.51)

which together with the inequality ‖ψ‖3 ≤ C‖φ‖2 gives

‖ψ(t)‖3 ≤ C(M)(t+ 1)−
1
4 (|Φ0|1 + |Φ0|2 + ‖φ0‖2).(3.52)

This completes the proof of Proposition 1.9 and hence of Theorem 1.6 (ii).
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Abstract. We prove the existence of vector-valued exponentially localized solutions to a class of
nonlinear elliptic equations with equivariant nonlinearities. The elliptic equations govern the spatial
profiles of solitary wave solutions to nonlinear wave equations with globally regular solutions. These
solitary waves are localized versions of nonlinear Schrödinger vortices. We use constructive methods
to show that there are localized solutions with any prescribed number of nodal surfaces.

Key words. nonlinear wave equations, solitary waves, multidimensional solitons, vortices,
equivariant wave equations, localized traveling waves

AMS subject classifications. 34B15, 35L70, 35Q53, 35Q55

PII. S0036141097316925

1. Introduction. We consider nonlinear Schrödinger (NLS) and nonlinear Klein–
Gordon (NLKG) equations

(1.1) −J ut −∆u = ~g(u) (NLS)

and

(1.2) utt −∆u = ~g(u) (NLKG),

where J is an invertible real skew-symmetric M × M matrix, and solutions u are
RM -valued functions on spacetime RN+1. The nonlinearity ~g : RM → RM is assumed
to be a continuous radial vector field; in particular, ~g(0) = 0 and

(1.3) ~g(y) = g(|y|)ŷ for y 6= 0,

where g : [0,∞)→ R is a continuous function with g(0) = 0 and ŷ ≡ y
|y| .

We study standing-wave solutions

(1.4) u(x, t) ≡ eνtK v(x)

to the nonlinear wave equations (NLS) and (NLKG), where ν is a real constant, K
is a real skew-symmetric M ×M matrix, and v : RN → RM . For (NLS), we take
K ≡ J−1, so that −J ∂

∂tu = −ν u. For (NLKG), we take K to be skew-symmetric

and such that K2 = −I, so that ∂2

∂t2u = −ν2u. (These requirements on J and K
necessitate that the range space RM be even-dimensional.)

Because eνtK is an isometry on the Euclidean space RM , it follows that ~g
(
eνtK v(x)

)
= eνtK~g (v(x)), and consequently, if u(x, t) ≡ eνtK v(x) is a solution of (NLS) or
(NLKG), then the function v must satisfy the elliptic equation

(1.5) ∆v + ~f(v) = 0,
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where ~f(y) ≡ ~g(y) + ω y, with

ω ≡
{
ν for NLS,

ν2 for NLKG.

We note that by virtue of (1.3), the nonlinearity ~f has the analogous equivariant
property

(1.6) ~f(y) = f(|y|)ŷ for y 6= 0,

where the scalar-valued function f is defined by f(s) ≡ g(s) + ωs. For convenience,
we will also denote by f the odd extension of f to all of R.

In this paper, we prove the existence of twice-differentiable solutions v : RN →
RM with N ≥ 2 and M ≥ 2 such that ν(x) → 0 as |x| → ∞. We remark that if
v is such a solution of (1.5), then u(x, t) ≡ eνtK v(x) is a localized standing-wave
solution of the corresponding nonlinear evolution equation (NLS) or (NLKG). Under
a (Galilean or Lorentz) velocity boost, such a standing wave becomes a spatially-
localized traveling wave solution of the wave equation, that is, a multidimensional
solitary wave.

The set of spherically-symmetric (“radial”) scalar-valued (M = 1) solutions to
(1.5) has been extensively studied (see [1], [2], [3], [5], [6], [8], [9], [10], [12], [13], [14],
[15]). Constructive techniques to establish the existence of localized solutions to (1.5)
with prescribed nodal structure include [13], which treats real-valued radial solutions
in RN for nonlinearities that are superlinear at large amplitudes.

In [7] we used techniques analogous to those in [13] to investigate the existence and
nodal structure of complex-valued (M = 2) nonradial solutions in R2 for nonlinearities
that are superlinear at large amplitudes. The corresponding standing-wave solutions
to (NLS) and (NLKG) carry nonzero (classical) angular momentum in the center-of-
momentum frame and are thus “spinning” solitary waves.

The type of nonlinearity treated in [7] and [13], however, admits finite-time blowup
of (some) solutions to the corresponding semilinear wave equation. In [8], we studied a
different type of nonlinearity, compatible with global regularity of solutions, in which
the energy density for the associated wave equation is positive definite. For such
“hilltop” nonlinearities, [8] establishes the existence, in arbitrary spatial dimension,
of spherical (real-valued, spinless) solitary-wave solutions to (NLS) and (NLKG) with
a prescribed nodal structure. Here we establish the existence, in arbitrary spatial
dimension, of nonspherical (spinning) solitary-wave solutions with prescribed nodal
structure, for “hilltop” nonlinearities compatible with global regularity of solutions.

For complex-valued nonradial solutions in spatial dimensions N ≥ 3, no ansatz
has been found that reduces (1.5) to an ordinary differential equation. An ansatz
for complex-valued nonradial solutions that transforms (1.5) to a partial differential
equation with fewer independent variables is made in [11], where the existence of
localized solutions is established through variational methods. In contrast, the vector-
valued solutions we construct here (with range dimension M ≥ 3 in the case N ≥ 3)
result from an ansatz that reduces (1.5) to an ordinary differential equation.

In particular, we look for solutions to the elliptic equation (1.5) of the separated
form

(1.7) v(x) = w(r) ψ̂(x̂),
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where r ≡ |x| and x̂ ≡ x
|x| . Here w : [0,∞)→ R, and ψ̂ : SN−1 → SM−1 is a function

on the sphere SN−1 in RN , taking unit-vector values in RM . For v(x) of this form,
we have

(1.8) ∆v = (∆rw)ψ̂ + 1
r2w (∆Sψ̂),

where ∆r ≡ ∂2

∂r2 + N−1
r

∂
∂r is the radial Laplacian, and where ∆S is the Laplacian on

the sphere SN−1 ⊂ RN , applied componentwise to ψ̂.
We show in section 2 that there are functions ψ̂ : SN−1 → SM−1 whose coordinate

functions are eigenfunctions of the spherical Laplacian with eigenvalue µ` ≡ −`(` +
N − 2), provided that the dimension M of the range space is at least as large as the
multiplicity of µ`. Given that

(1.9) ∆Sψ̂ = −`(`+N − 2)ψ̂,

it follows from (1.5)–(1.9) that the radial profile w must then satisfy the ordinary
differential equation

(1.10) w′′ +
N − 1

r
w′ − `(`+N − 2)

r2
w + f(w) = 0 .

We use ordinary-differential-equation arguments to prove that, for each prescribed
number of nodes, there is a solution w : [0,∞) → R to (1.10) that is exponentially
decreasing far from the origin. We establish this result for N ≥ 2 and ` ≥ 1, un-
der hypotheses on the nonlinearity f that are compatible with global existence of
finite-energy solutions to the associated nonlinear wave equations, as in [8]. For our
nonlinearities, the corresponding standing-wave solutions for (NLS) have a structure
consisting of a core region resembling a vortex (a nonlocalized solution with asymp-
totically constant amplitude), encapsulated by a membrane region that exponentially
localizes the solution.

Let G be the primitive of g. The individual terms in the conserved energy densities
e1[u] ≡ 1

2 |∇u|2−G(|u|) for (NLS) and e2[u] ≡ 1
2 |ut|2+ 1

2 |∇u|2−G(|u|) for (NLKG) are
all nonnegative provided that G is nonpositive. In that case, the time-independence
of the spatial integrals of e1[u] and e2[u] ensures global existence of finite-energy
solutions. Because f(s) = g(s) + ωs, the primitive F of f is related to G by F (s) =
G(s) + 1

2ωs
2. Accordingly, we treat nonlinearities f in (1.10) whose primitives are

quadratically bounded above, corresponding to nonpositive G.
Our hypotheses on f are essentially those for the “hilltop case” in [8]. We sup-

pose that f is an odd locally Lipschitz-continuous function with −∞ < −σ2 ≡
lims→0

f(s)
s ≤ 0, and in case σ = 0 we require that f(s) < 0 for small positive s.

We assume that there exist β and δ with 0 < β < δ such that f(β) = f(δ) = 0 and
f > 0 on (β, δ). For simplicity, we assume that f(s) is strictly decreasing for s near
δ. In addition, we assume that the primitive F (s) ≡ ∫ s

0
f(t) dt has a positive zero γ

with β < γ < δ and that F < 0 on (0, γ). We denote the smallest positive zero of f
by α. Thus 0 < α ≤ β < γ < δ. See Figure 1. We make no assumptions on f(s) for
arguments with |s| > δ.

To formulate a well-posed initial value problem for (1.10) with initial conditions
given at r = 0, we make the change of variable w(r) = r`z(r) to obtain the equation

(1.11) z′′ + 2`+N−1
r z′ + 1

r`
f(r`z) = 0
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α β γ δ

α β γ δ
s

s

f (s)

F(s)

Fig. 1.

for z, which, by virtue of the condition on f at zero, has well-posed initial value
problems obtained by specifying

(1.12) z(0) = d and z′(0) = 0.

Since f is odd it suffices to consider nonnegative d, and henceforth we assume d ≥ 0.
If z is a C2 solution of such an initial value problem, it follows that w(r) = r`z(r) is
a C2 solution of the differential equation

(1.13) w′′ +
N − 1

r
w′ − `(`+N − 2)

r2
w + f(w) = 0

subject to

(1.14) lim
r→0+

w(r)

r`
= d and lim

r→0+

(
w(r)

r`

)′
= 0

and that the corresponding function v(x) = w(|x|)ψ̂(x̂) is C2 on RN . We remark that

the term `(`+N−2)
r2 w in (1.13) makes the behavior of solutions significantly different
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from that in the “radial” case ` = 0. See [7] and [8] for commentary on the novel
features of these initial value problems.

We remark that the equivalence of (1.10) and (1.11) shows that, for the case
of superlinearly-growing f (not under consideration here), the analysis in [7] for the
N = 2 case applies to establish the existence of localized standing-wave solutions to
(NLS) and (NLKG) for such f and general N .

We prove the following main theorem.

Main Theorem. Let the nonlinearity f have the (“hilltop”) properties specified.
Let integers N ≥ 2 and ` ≥ 1 be given. Then, for each nonnegative integer n, there is a
positive number d and a C2 solution w to (1.13) and (1.14) such that limr→∞ w(r) = 0
and w has exactly n positive zeros.

Figure 2 shows the radial profiles w(r) with n = 0 and n = 1 positive zeros in the
case N = 2 and ` = 2 for f(s) ≡ −(4.3)s+ 5s3 − s5.

We remark that if σ 6= 0, then the solutions whose existence is established by the
main theorem decay exponentially as r →∞. This can be established using the proof
technique in section 6 of [7].

In section 2, we show that there are unit-vector-valued eigenfunctions of the
Laplacian on the sphere. In section 3, we return to consideration of the ordinary dif-
ferential equation and establish some general properties of solutions of (1.13)–(1.14).
In section 4, we show that there is a value of d for which the solution to (1.13)–(1.14)
is monotonically increasing to δ as r → ∞. Section 5 contains the proof of the main
theorem.

In the following, we write r → 0 and d → 0 to mean r → 0+ and d → 0+,
respectively. Throughout, N ≥ 2, ` ≥ 1, and w(r) = r`z(r).

We will make use of the identity

(1.15) r2( 1
2w
′2 +F (w))|r2r1 +(N −2)

∫ r2
r1
sw′2 ds = `(`+N−2)

2 w2|r2r1 +2
∫ r2
r1
sF (w(s)) ds

which results from multiplying (1.13) by r2w′ to obtain (1
2r

2w′2)′ + (N − 2)rw′2 −
( `(`+N−2)

2 w2)′ + r2(F (w))′ = 0, and then integrating on (r1, r2).

2. Vector-valued eigenfunctions of the Laplacian on the sphere. In this
section we show that unit-vector-valued eigenfunctions of the Laplacian on the sphere
exist for suitably large dimension M of the range space. We first recall [4, section 2H]
that the Laplacian ∆S on the unit sphere SN−1 in RN has scalar-valued eigenfunctions
with eigenvalues µ` ≡ −`(`+N − 2), ` = 0, 1, 2, . . . ; the subspace H` of L2(SN−1)
consisting of eigenfunctions with eigenvalue µ` has dimension

(2.1) D` =
(2`+N − 2)(`+N − 3)!

(N − 2)! `!
.

(In the case N = 2, we have D0 = 1 and D` = 2 for all ` ≥ 1.) For given N and `, let
{Y`m | m = 1, 2, . . . , D` } be an orthonormal basis for H` consisting of real-valued
functions. Then the identity

(2.2)

D∑̀
m=1

(Y`m(x̂))
2

=
D`

σN

holds for all x̂ ∈ SN−1, where σN ≡ 2πN/2

Γ(N/2) is the area of SN−1 in RN .
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Fig. 2. Radial profiles w(r) in the case N = 2 and l = 2 for f(s) = −(4.3)s+ 5s3 − s5.

We now construct unit-vector-valued eigenfunctions. Given the spatial dimension
N and a nonnegative integer `, a vector-valued eigenfunction of ∆S with eigenvalue
µ` has the general form

(2.3) ψ(x̂) ≡
D∑̀
m=1

amY`m(x̂),

where each am is a (constant) vector in RM . The requirement that ψ be a unit vector
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for all x̂ ∈ SN−1 then becomes

(2.4) 1 = |ψ(x̂)|2 =

D∑̀
m=1

D∑̀
n=1

(am · an) Y`m(x̂)Y`n(x̂),

where am · an is the ordinary Euclidean inner product of the vectors am and an.
In view of the identity (2.2), we may satisfy this requirement by choosing the vec-
tors {am | m = 1, 2, . . . , D` } to be pairwise orthogonal and normalized by |am| =√
σN/D`.

We note that in order to accommodate the D` linearly independent vectors in
this construction, the dimension M of the range space must be at least D`. In the
case of N = 2 spatial dimensions, D` = 2 for all ` ≥ 1, and the maps ψ` : S1 → S1

given by ψ`(θ) ≡ (cos`θ, sin`θ) are eigenfunctions of ∆S with eigenvalue µ` = −`2.
This is the situation treated in [7] (for growing nonlinearity f).

In higher spatial dimensions, D` is an increasing function of `, so that the range
of admissible values of ` in this construction depends on M . In particular, since
our construction requires D` linearly independent vectors in RM , for fixed domain
dimensionN and range dimensionM , there is a maximum value `max = max{` : D` ≤
M} of ` for which our construction can produce unit-vector-valued eigenfunctions of
∆S with eigenvalue µ`. (This upper limit on the “spin” ` is of potential interest for
the modeling of elementary particles with equations of these types.)

We note, however, that D1 = N for all N , so that a vector field (M = N)
accommodates eigenvalue µ1. In particular, ψ1 : SN−1 → SN−1, defined by ψ1(x̂) ≡
x̂, is an eigenfunction of ∆S with eigenvalue µ1 = −(N − 1) for general N .

In all cases, given spatial dimension N and index `, we may choose suitably-
normed pairwise orthogonal vectors am so that (2.3) furnishes unit-vector-valued
eigenfunctions of the Laplacian on SN−1 with eigenvalue µ`, provided that the dimen-
sion M of the range space is sufficiently large to accommodate D` linearly independent
vectors.

3. Properties of solutions to the initial value problem. As in [7], it is a
straightforward task to show that for any fixed d ≥ 0, the initial value problem (1.13)–
(1.14) has a unique C2 solution on some small interval (0, ε) with ε > 0. The solution
w(r) = w(r, d) of (1.13)–(1.14) may be continued in r > 0 as long as |w(r)| ≤ δ
and |w′(r)| remains finite. Let (0, R(d)) be the resulting maximal open interval of
existence for w(r, d). If R(d) =∞, then |w(r, d)| ≤ δ for r ∈ (0,∞). If 0 < R(d) <∞,
then, because f is bounded on [−δ, δ], both limits w(R(d), d) ≡ limr→R(d)− w(r, d)
and w′(R(d), d) ≡ limr→R(d)− w

′(r, d) exist, which we can verify as follows.

For r ∈ (0, R(d)), we have r`|z| = |w| ≤ δ. Multiplying (1.11) by r2`+N−1 and
integrating give

(3.1) −z′(r, d) =
1

r2`+N−1

∫ r

0

s`+N−1f(s`z(s, d)) ds.

Since f is bounded on [−δ, δ], we see that |z′(r, d)| ≤ (constant)r1−` for r ∈ (0, R(d)).
Thus, limr→R(d)− z(r, d) exists. Furthermore, because f is bounded and |z′| is bounded
for r near R(d), (1.11) shows that |z′′(r, d)| is also bounded for r near R(d), and thus
limr→R(d)− z

′(r, d) exists as well. Because w(r, d) = r`z(r, d), it follows that the limits
of w and w′ as r → R(d)− both exist, as asserted.

We now establish some qualitative properties of solutions w(r) to (1.13)–(1.14).
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Lemma 3.1. Suppose p is a local maximum for |w| with 0 < p < R(d) and
0 < |w(p)| < δ. Then F (w(r)) ≤ F (w(p)) for r > p. In particular, if |w(p)| ≥ γ, then
|w(r)| ≤ |w(p)| for r > p.

Proof. Consider first the case 0 < w(p) < δ. Since p is a local maximum for w,
we have that w′(p) = 0 and w′′(p) ≤ 0. Therefore, from (1.13) we have f(w(p)) ≥
`(`+N−2)

p2 w(p) > 0. Thus, F is increasing near w(p). Since w(r) ≤ w(p) for r near p,

we then have that F (w(r)) ≤ F (w(p)) for r near p.
Next, suppose by way of contradiction that the lemma is false. Then there exists

a finite number s with p < s such that [p, s] is the r-interval of maximal length on
which F (w(r)) ≤ F (w(p)). It follows that F (w(s)) = F (w(p)).

We now evaluate the identity (1.15) with r1 = p, r2 = s. This gives

(3.2) F (w(p))[s2 − p2] ≤ `(`+N−2)
2 [w2(s)− w2(p)] + 2

∫ s

p

tF (w) dt.

Since F (w(r)) ≤ F (w(p)) on [p, s], we have

2

∫ s

p

tF (w) dt ≤ F (w(p))[s2 − p2].

Thus (3.2) implies

w2(p) ≤ w2(s).

Therefore, there exists q with p < q ≤ s such that w(p) = |w(q)|. Again, using
identity (1.15), this time with r2 = q and r1 = p, gives (since F is even and thus
F (w(q)) = F (w(p)))

(3.3)
1

2
q2w′(q)2

+ F (w(p))[q2 − p2] ≤ 2

∫ q

p

rF (w) dr.

We may assume that F (w(r)) 6≡ F (w(p)) on [p, q]. (Otherwise, w(r) would be con-
stant, which is impossible). Thus (3.3) implies

1

2
q2w′(q)2

+ F (w(p))[q2 − p2] ≤ 2

∫ q

p

rF (w) dr < F (w(p))[q2 − p2],

or equivalently, q2w′(q)2
< 0, which is absurd. This contradiction completes the proof

of Lemma 3.1 in the case where w(p) is positive.
To treat the situation in which w(p) is negative, we note that because f is odd,

w̃(r) ≡ −w(r) is also a solution to (1.13), and w̃(p) > 0 is a local maximum of w̃.
Thus our arguments apply without change to w̃, and complete the proof of Lemma
3.1 in this case as well.

Lemma 3.2. Suppose that w is not identically zero and there exists t ∈ (0, R(d))
such that w(t) = 0. Then, there exists q with 0 < q < t such that |w(q)| > γ.

Proof. The quantity w′(t)2 is strictly positive, since otherwise w ≡ 0 by unique-
ness of solutions of initial value problems. Using identity (1.15) with r2 = t and
r1 = 0, we thus obtain

0 <
1

2
t2w′(t)2 ≤ 2

∫ t

0

sF (w(s)) ds.
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Thus the integrand is positive somewhere, that is, F (w(q)) > 0 for some q ∈ (0, t).
Hence |w(q)| > γ, as claimed.

Lemma 3.3. Suppose w′(r) ≥ 0 on (a, b) ⊂ (0, R(d)), w(a) ≥ 0, and w 6≡ 0.
Then in fact w′(r) > 0 on (a, b).

Proof. Suppose there exists p ∈ (a, b) with w′(p) = 0. Then w(p) ≥ w(a) ≥ 0 since
w′ ≥ 0 on (a, b). In addition, w(p) > 0 because otherwise w ≡ 0 by the uniqueness of
solutions of initial value problems. Now, since w′ ≥ 0 on (a, b), w′(r) has a minimum
at p, and therefore w′′(p) = 0. We next observe that the composition f(w(r)) is
differentiable at r = p even though f is only locally Lipschitz, and d

drf(w(r))|r=p =

0. To see this, observe that 0 ≤ limr→p | f(w(r))−f(w(p))
r−p | ≤ K limr→p |w(r)−w(p)

r−p | =

K|w′(p)| = 0, where K is the Lipschitz constant for f near w(p). Thus we may

differentiate (1.13) at r = p, to obtain w′′′(p) = − 2`(`+N−2)
p3 w(p) < 0. But w′′′(p)

cannot be negative if w′(r) has a minimum at r = p. Thus there cannot be any point
p ∈ (a, b) with w′(p) = 0, which establishes the assertion of Lemma 3.3.

Lemma 3.4. If w(q) = δ for some finite q ∈ (0, R(d)], then w′(q) > 0.
Proof. Recall that |w(r)| ≤ δ for r ∈ (0, R(d)]. Thus w′(q) ≥ 0. Now suppose

w′(q) = 0. Then w′′(q) ≤ 0. On the other hand, from (1.13) we have w′′(q) =
`(`+N−2)

q2 δ > 0, a contradiction. Thus, w′(q) > 0 and the lemma is proved.

Lemma 3.5. w(r) > −δ for all r ∈ (0, R(d)). If R(d) <∞, then also w(R(d)) >
−δ.

Proof. Recall that d ≥ 0, so that (from (1.14)) w is positive for small positive r.
If there exists r0 ∈ (0, R(d)] with w(r0) = −δ, then w must have a local maximum,
p, with 0 < p < r0 and 0 < w(p) ≤ δ. By Lemma 3.4, 0 < w(p) < δ. Now by Lemma
3.1, F (w(r)) ≤ F (w(p)) < F (δ) for r > p. Evaluating at r0 gives F (δ) < F (δ), a
contradiction. The lemma is proved.

We now define

(3.4) Ẽ(r) =
1
2w
′2(r) + F (w(r))− F0

r2`−2
+
`(`+N − 2)

2

w2(r)

r2`
,

where

(3.5) F0 ≡ min
y∈[−δ,δ]

F (y) < 0.

We note that Ẽ(r) ≥ 0, and from (1.14) we see that

Ẽ(0) = +∞ if ` > 1

and

Ẽ(0) =
N

2
d2 − F0 > 0 if ` = 1.

A computation shows that

(3.6) Ẽ′ = − (`+N − 2)

r2`−1

(
w′ − `w

r

)2

− 2(`− 1)[F (w(r))− F0]

r2`−1
≤ 0.

For each solution w(r), Ẽ(r) is thus a nonnegative, nonincreasing quantity. Since the
term F (w(r))− F0 is nonnegative, we have that

(3.7)
w′2

r2`−2
+
w2

r2`
≤ Ẽ(r0) <∞
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for 0 < r0 < r < R(d). From this estimate and Lemmas 3.4 and 3.5, it follows that the
only way in which a solution w(r) can fail to extend to all positive r is if w(r) attains
the value δ. Furthermore, if R(d) < ∞ then |w| < δ on [0, R(d)) and w(R(d)) = δ.
Otherwise, if R(d) =∞, then |w| < δ on [0,∞).

Lemma 3.6. Let w(r, d) be the solution of the initial value problem (1.13)–(1.14).
If R(d) <∞, then w′(r, d) > 0 on (0, R(d)].

Proof. If d = 0, then w is identically zero, so then R(d) = ∞. Thus under
the hypotheses here, d > 0. From (1.12) and the relation w(r) = r`z(r), it follows
that w′(r) > 0 for small r > 0. Now suppose that w has a local maximum, p, with
0 < p < R(d) and 0 < w(p) < δ. By Lemma 3.1, F (w(r)) ≤ F (w(p)) < F (δ) for r > p.
Evaluating at R(d) gives F (δ) < F (δ), a contradiction. Hence, w′(r) ≥ 0 on (0, R(d)).
Then, by Lemma 3.3, w′(r) > 0 on (0, R(d)), and by Lemma 3.4, w′(R(d)) > 0. This
completes the proof of the lemma.

4. Existence of a positive, monotone solution with limiting value δ.
Recall that ` ≥ 1 and N ≥ 2. The proofs of Lemmas 4.1 and 4.2 below are implicit
in [7, section 3].

Lemma 4.1. For d > 0 chosen small enough, (1.13)–(1.14) has a solution, w(r, d),
which satisfies 0 < w(r, d) < γ for all r > 0.

Lemma 4.2. For any d > 0, there exists a smallest value of r, ad, such that
w(ad, d) = α, and w′ > 0 for all r ∈ (0, ad).

Lemma 4.3. For r ∈ (0, ad) we have w(r) ≥ dr`. (Consequently, taking limits as
r → a−d gives α ≥ da`d. Therefore, ad → 0 as d→∞).

Proof. On [0, ad] we have f(w) ≤ 0. Hence, from (1.11) we obtain

(r2`+N−1z′)′ ≥ 0.

Integrating on (0, r) gives z′ ≥ 0, that is, (w(r)/r`)′ ≥ 0. Thus, using (1.14) we have

w(r) ≥ dr`

on (0, ad). This completes the proof of Lemma 4.3.
Lemma 4.4. For d > 0 large enough, we have R(d) <∞.
Proof. Assume by way of contradiction that R(d) =∞ for an unbounded sequence

of positive values of d. For such values of d with R(d) =∞, we know by Lemma 3.4
that |w| < δ on (0,∞). Then (1.13) gives

w′′ +
N − 1

r
w′ − `(`+N − 2)

r2
w +M ≥ 0,

where M ≡ maxy∈[−δ,δ] f(y). Letting w = r`z yields

(r2`+N−1z′)′ ≥ −Mr`+N−1.

Hence, integrating on (0, r) and using (1.12) gives

(4.1) z′ ≥ − M

`+N
r1−`.

We now must consider three different cases.
Case I (` = 1). Integrating (4.1) on (0, r) and using z(0) = d give

z ≥ d− M

1 +N
r
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and thus

(4.2) w ≥ r
(
d− M

1 +N
r

)
.

Evaluating at r = 1 gives

(4.3) w(1) ≥ d− M

1 +N
.

Clearly, for large enough d, we have w(1) > δ, which is a contradiction to our as-
sumption that R(d) = ∞ (for this implied that |w| < δ). Thus, we must have that
R(d) <∞ for large enough d.

This completes the lemma for Case I.
Case II (` = 2). We begin by integrating (4.1) on (ad, r) and we obtain

z(r) ≥ z(ad)− M

2 +N
[log r − log ad] for r > ad.

Since w = r2z, we have

w

r2
≥ α

a2
d

+
M

2 +N
log ad − M

2 +N
log r for r > ad.

By Lemma 4.3, ad → 0 as d → ∞. Thus, ad < 1 for large enough d. Evaluating the
above inequality at r = 1 we obtain

w(1) ≥ α

a2
d

+
M

2 +N
log ad =

1

a2
d

(
α+

M

2 +N
a2
d log ad

)
.

Since ad → 0 as d→∞, it follows that limd→∞ a2
d log ad = 0. So, for large enough d,

we have w(1) > δ which again is a contradiction to the fact that R(d) = ∞. Thus,
R(d) <∞ for large enough d. This completes Case II.

Case III (` > 2). We begin by integrating (4.1) on (ad, r) and obtain

w

r`
= z(r) ≥ z(ad)+ M

(`+N)(`− 2)

[
1

r`−2
− 1

a`−2
d

]
=

α

a`d
+

M

(`+N)(`− 2)

[
1

r`−2
− 1

a`−2
d

]

(4.4) =
1

a`−2
d

[
α

a2
d

− M

(`+N)(`− 2)

]
+

M

(`+N)(`− 2)

1

r`−2
.

Because ad → 0 as d→∞, the term in brackets in (4.4) is positive if d is chosen
large enough. Thus for sufficiently large d,

(4.5) w ≥ M

(`+N)(`− 2)
r2 for r > ad.

Thus w > δ for large enough r, which contradicts the assumption that R(d) = ∞.
Therefore, R(d) < ∞. This completes Case III and thus completes the proof of
Lemma 4.4.

We now let D be the set of d-values for which the solution reaches the hilltop at
a finite time. That is, we define

D = {d > 0|R(d) <∞}.
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By Lemma 4.4, if d is chosen large enough, then R(d) < ∞. Thus the set D is
nonempty. Also, by Lemma 4.1, we have 0 < w < γ < δ for all r > 0 if d is chosen
small enough. Thus, D is bounded away from zero.

We now let

d∗ = inf D.

Note that d∗ > 0.
Lemma 4.5. For d ∈ (0, d∗), the solution z(r, d) of (1.11)–(1.12) satisfies

|z(r, d)| ≤ C1, |z′(r, d)| ≤ C2, and |z′′(r, d)| ≤ C3

for all r > 0, where C1, C2, and C3 are independent of d.
Proof. Since d ∈ (0, d∗), in particular d 6∈ D. Thus R(d) = ∞ which implies (by

Lemma 3.4) that

(4.6) |w(r, d)| < δ on [0,∞).

We now estimate z(r, d). Integrating (3.1) gives

(4.7) z(r, d) = d−
∫ r

0

∫ t
0
s`+N−1f(s`z(s, d)) ds

t2`+N−1
dt.

Next, note that f(u)
u is bounded (since f is bounded and limu→0

f(u)
u = −σ2) so that

there is a B > 0 such that |f(u)| ≤ B|u|. Now let s0 ∈ [0,
√

(2`+N)/B] be such that

|z(s0, d)| = max[
0,
√

2`+N
B

] |z(r, d)|.

Estimating (4.7) at s0 gives

|z(s0, d)| ≤ d+B|z(s0, d)|
∫ s0

0

∫ t
0
s2`+N−1 ds

t2`+N−1
dt = d+

B|z(s0, d)|s2
0

2(2`+N)
≤ d+

1

2
|z(s0, d)|.

Consequently,

(4.8) max[
0,
√

2`+N
B

] |z(r, d)| ≤ 2d ≤ 2d∗.

Further, by (4.6) we know that

(4.9) max[√
2`+N
B ,∞

) |z(r, d)| = max[√
2`+N
B ,∞

) |w(r, d)|
r`

< δ

(
B

2`+N

)`/2
.

Combining (4.8) and (4.9), we then have for 0 < d < d∗,

|z(r, d)| ≤ 2d∗ + δ

(
B

2`+N

)`/2
= C1(d∗, δ, `,N,B).

Next, we estimate z′(r, d). Equation (3.1) gives

(4.10) |z′(r, d)| =
∣∣∣∣ 1

r2`+N−1

∫ r

0

s`+N−1f(s`z(s, d)) ds

∣∣∣∣ ≤ BC1

2`+N
r.
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On the other hand, we may obtain a different estimate for |z′| by using the fact that
|f(y)| ≤ Bδ for y ∈ [−δ, δ]. Equation (3.1) gives

(4.11) |z′(r, d)| ≤ Bδ

r2`+N−1

∫ r

0

s`+N−1 ds =

(
Bδ

`+N

)
1

r`−1
.

Combining the two estimates (4.10) and (4.11) by locating the intersection of the
graphs of the upper bounds as functions of r, we obtain

|z′(r, d)| ≤ B
(

δ

`+N

)1/`(
C1

2`+N

)(`−1)/`

= C2(d∗, δ, `,N,B).

Last, using (1.11) and the previous estimates, we obtain

|z′′(r, d)| ≤ C3(d∗, δ, `,N,B).

This completes the proof of Lemma 4.5.
Lemma 4.6. R(d∗) =∞.
Proof. For d ∈ (0, d∗), Lemma 4.5 establishes that all of |z(r, d)|, |z′(r, d)|, and

|z′′(r, d)| are bounded uniformly in d for all r ≥ 0. Thus, by the Arzelá–Ascoli
theorem, there exists a sequence {dj} tending to d∗ from below and a function z∗(r)
such that z(r, dj)→ z∗(r) and z′(r, dj)→ z∗′(r) as j →∞ (where the convergence is
uniform on compact sets). In addition, taking limits in (1.11) as d→ d∗− shows that
z∗ solves (1.11) on [0,∞).

Now suppose that the assertion of the lemma is false, that is, assume that R(d∗) <
∞. By uniqueness of solutions to initial value problems, we know that z∗(r) is equal
to z(r, d∗) on [0, R(d∗)]. Thus, w∗(r) ≡ r`z∗(r) satisfies (1.13)–(1.14) on [0,∞) and
w∗(r) = w(r, d∗) on [0, R(d∗)]. We also have from (4.6) that |w(r, d)| < δ for 0 ≤
d < d∗. Taking the limit as d → d∗−, we see that |w∗(r)| ≤ δ for all r > 0. Since
w∗(R(d∗)) = w(R(d∗), d∗) = δ, we see that w∗(r) has a local maximum at R(d∗).
This contradicts the fact that w∗′(R(d∗)) = w′(R(d∗), d∗) > 0, established by Lemma
3.4. Thus we must have R(d∗) =∞. This completes the proof of Lemma 4.6.

Lemma 4.7. w(r, d∗) > 0 and w′(r, d∗) > 0 for r > 0, and limr→∞ w(r, d∗) = δ.
Proof. We adopt the shorthand w∗(r) ≡ w(r, d∗). Since R(d∗) = ∞, we know

that |w∗(r)| < δ for all r ≥ 0. Also, since d∗ > 0, from (1.14) we know that w∗(r) is
positive for small positive r.

We claim that w∗′(r) ≥ 0 for r > 0. To verify this claim, we note that if w∗′(r) < 0
for some r, then w∗(r) must have a local maximum. In that case, because solutions
depend continuously on initial data, w(r, d) must also have a local maximum for d ∈ D
sufficiently close to d∗. But Lemma 3.6 establishes that for d ∈ D, w′(r, d) > 0 on
(0, R(d)]. Thus w∗(r) cannot have a local maximum, hence w∗′(r) ≥ 0 for all r > 0.

Lemma 3.3 then establishes that w∗′(r) > 0 for all r > 0. Since w∗(r) is positive
for small positive r, it immediately follows that w∗(r) > 0 for all r > 0.

It remains to show that limr→∞ w∗(r) = δ. Since w∗(r) is monotonically increas-
ing and bounded above by δ, the limit L ≡ limr→∞ w∗(r) exists, and L ≤ δ.

We claim that f(L) = 0. To verify this claim, note that (1.15) yields

1

2
w∗′

2
+ F (w∗) ≤ `(`+N − 2)

2

w∗2

r2
+

2

r2

∫ r

0

sF (w∗) ds.

Since |w∗(r)| ≤ δ we have

2

r2

∫ r

0

sF (w∗) ds ≤ F (δ).
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Also, F (w) is bounded below by F0. Hence,

1

2
w∗′

2
<
`(`+N − 2)

2

δ2

r2
+ F (δ)− F0.

Since (from (1.14)) w∗′(r) has a finite limit as r → 0, we thus conclude that |w∗′|
is bounded. Taking the limit r → ∞ in (1.13) then yields limr→∞ w∗′′(r) = −f(L).
Since |w∗′| is bounded, the limiting value of w∗′′ must be zero. Therefore f(L) = 0,
as claimed.

We have thus established that w∗ limits to a positive zero L of f . It remains to
show that L = δ. Recall that f(β) = f(δ) = 0 and f(s) > 0 on (β, δ). We will show
for d ∈ D that w(r, d) reaches γ+β

2 at r = bd where bd can be bounded independent
of d. Given that fact, and the fact that the monotonic function w∗ is approximated
arbitrarily closely on any compact interval by a solution w(r, d) with d ∈ D, it follows
that L ≥ γ+β

2 > β, from which we conclude (since δ is the only zero of f greater than
γ) that L = δ.

To show that bd is bounded, consider d ∈ D. Then w achieves δ. Thus, w reaches
γ at some finite value, r = cd, and since w′ > 0 (by Lemma 3.6) we have 0 < w < γ
on (0, cd). Using identity (1.15) at cd gives

(4.12) 0 ≤ 1

2
c2dw

′(cd)
2 ≤ `(`+N − 2)

2
γ2 + 2

∫ cd

0

rF (w(r)) dr.

We now estimate the integral term on (ad, bd) and obtain (since F ≤ 0 on (0, cd) and
0 < ad < bd < cd)

2

∫ cd

0

rF (w(r)) dr ≤ 2

∫ bd

ad

rF (w(r)) dr.

Next, on (ad, bd) we have α < w(r) < β+γ
2 . In particular, since F < 0 on [α, β+γ

2 ],

there exists C2 > 0 such that F (s) ≤ −C2 on [α, β+γ
2 ]. Therefore,

2

∫ bd

ad

rF (w(r)) dr ≤ −C2(b2d − a2
d).

Thus, (4.12) can be rewritten as

b2d − a2
d ≤

`(`+N − 2)γ2

2C2
.

Now recall that we proved in Lemma 4.3 that

a`d ≤
α

d
.

Since d ∈ D, we have that d > d∗. Thus,

b2d ≤
( α
d∗
)2/`

+
`(`+N − 2)γ2

2C
.

Therefore,

b2d ≤ K,
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where K is independent of d ∈ D, as claimed. This completes the proof of Lemma
4.7.

We now let B be the set of d-values for which the solution approaches the hilltop
asymptotically. That is, we define

B = {d > 0 | w(r, d) > 0 for r > 0, w′(r, d) > 0 for r > 0, and lim
r→∞w(r, d) = δ}.

We know that d∗ ∈ B so that B is nonempty. Also, Lemma 4.1 shows that B is
bounded away from zero. Now let

d∗ = inf B.

Remark. We have 0 < d∗ ≤ d∗. We expect in general that B = {d∗}, so that
d∗ = d∗, but we have not proven this assertion.

We now show that d∗ ∈ B.
Lemma 4.8. w(r, d∗) > 0 for r > 0, w′(r, d∗) > 0 for r > 0 and limr→∞ w(r, d∗) =

δ.
Proof. If d∗ ∈ B, then the assertion of the lemma is trivially true. So suppose

d∗ 6∈ B. Then d∗ < d∗. Consider a sequence {dj ∈ B} with d∗ < dj < d∗ such that
dj → d+

∗ . Because solutions depend continuously on initial conditions, the functions
w(r, dj) converge uniformly on compact intervals to w(r, d∗). Because each dj ∈ B,
it follows that 0 ≤ w(r, d∗) ≤ δ and w′(r, d∗) ≥ 0. Since d∗ > 0, w(r, d∗) is not
identically zero. So, by Lemma 3.3, w′(r, d∗) > 0, hence w(r, d∗) > 0 for r > 0.
Exactly as in the proof of Lemma 4.7, it can now be shown that limr→∞ w(r, d∗) = δ.
This completes the proof of Lemma 4.8.

Lemma 4.9. If d < d∗ and d is sufficiently close to d∗, then w(r, d) has a local
maximum.

Proof. Since 0 < d < d∗ ≤ d∗, we have that d 6∈ D and therefore R(d) =∞. Now
suppose w(r, d) does not have a local maximum for all d sufficiently close to d∗. Then
there is a sequence {dj} with 0 < dj < d∗ and dj → d−∗ such that w′(r, dj) ≥ 0 on
[0,∞). By Lemma 3.3, w′(r, dj) > 0 on (0,∞) and thus 0 < w(r, dj) < δ on (0,∞).
As in the proof of Lemma 4.7, limr→∞ w(r, dj) = Lj , where f(Lj) = 0. But also
by continuity of solutions of initial value problems, w(r, dj) converges uniformly on
compact subsets to w(r, d∗) as j → ∞. Now since w(r, d∗) limits to δ as r → ∞, we
can make Lj larger than β for dj close enough to d∗. Since f(Lj) = 0, we must then
have Lj = δ. Hence, dj ∈ B for all sufficiently large j. This contradicts the hypothesis
that dj < d∗. Thus w(r, d) must have a local maximum for all d sufficiently close to
d∗. This proves Lemma 4.9.

As a consequence of Lemma 4.9, for d sufficiently close to d∗, the solution w(r, d)
of (1.13)–(1.14) has a first local maximum at r = Md. We now show that this first
local maximum occurs later and grows in amplitude as d approaches d∗ from below.

Lemma 4.10. limd→d−∗ Md =∞ and limd→d−∗ w(Md, d) = δ.
Proof. Lemma 4.9 establishes the existence of a first local maximum Md for d < d∗

and d close to d∗. To prove that Md → ∞, suppose not. Then Md ≤ C < ∞ and
so there is a subsequence of the ds (again labeled d) and an M such that Md → M.
By Lemma 4.5 we have then that z(r, d)→ z(r, d∗) and z′(r, d)→ z′(r, d∗) uniformly
on [0,M + 1], and hence w(r, d) → w(r, d∗) and w′(r, d) → w′(r, d∗) uniformly on
[0,M + 1]. Since Md is a local maximum for w(r, d), we have that w′(Md, d) = 0. On
the other hand, 0 = w′(Md, d) → w′(M,d∗) > 0 where the last inequality is from
Lemma 4.8. This contradiction shows that Md →∞ as d→ d∗.
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To prove the second assertion of the lemma, consider 0 < d < d∗ with d sufficiently
close to d∗ that w(r, d) has a first local maximum at r = Md. Because w(r, d) > 0 for
small r, it follows that 0 < w(r, d) < w(Md, d) < δ for r ∈ (0,Md).

Since (by Lemma 4.8) w(r, d∗) → δ as r → ∞, given ε > 0 there is rε such that
w(r, d∗) ≥ δ − ε

2 for all r ≥ rε. Because w(r, d) → w(r, d∗) uniformly on [0, rε] as
d→ d−∗ , there is a number dε < d∗ such that |w(r, d)−w(r, d∗)| < ε

2 for all r ∈ [0, rε]
whenever dε < d < d∗. Because Md → ∞ as d → d−∗ , we may furthermore choose
dε such that additionally Md > rε whenever dε < d < d∗. Thus δ − ε < w(rε, d) <
w(Md, d) < δ for dε < d < d∗. Since ε may be chosen arbitrarily small, it follows that
w(Md, d)→ δ as d→ d−∗ , as claimed. This completes the proof of Lemma 4.10.

5. Energy analysis. We will now establish that there are solutions of the initial
value problem (1.13)–(1.14) with arbitrarily many zeros. We will then finally prove
the main theorem.

Lemma 5.1. Suppose that a solution w(r) to (1.13) has successive local extrema
w1 ≡ w(r1) and w2 ≡ w(r2), with 0 < r1 < r2 <∞ (and w′(r) 6= 0 for all r ∈ (r1, r2).)
Then (w1 − w2)(f(w1) − f(w2)) > 0. Thus f must be increasing somewhere in the
interval between w1 and w2.

Proof. First suppose w1 = w(r1) is a local maximum of w. Then w2 = w(r2) is
a local minimum, and we have w′(r1) = 0, w′′(r1) ≤ 0, w′(r2) = 0, w′′(r2) ≥ 0, and
w2 < w1. Evaluating (1.13) at r1 and r2 and subtracting, we obtain

(5.1) (w′′(r2)− w′′(r1)) + `(`+N − 2)

[
w1

r2
1

− w2

r2
2

]
= f(w1)− f(w2).

Because 1
r2
1
> 1

r2
2

and w1 > w2, the term in (5.1) in square brackets is strictly positive.

Because (w′′(r2) − w′′(r1)) ≥ 0, we see that f(w1) − f(w2) > 0, as claimed. This
establishes the assertion of the lemma in the case when w1 is a local maximum.

Next suppose w1 = w(r1) is a local minimum of w. Then w2 = w(r2) is a local
maximum, and w2 > w1. Because f is odd, the function w̃(r) ≡ −w(r) is also a
solution to (1.13), and we note that w̃1 ≡ w̃(r1) = −w1 is a local maximum of w̃,
and that w̃2 ≡ w̃(r2) = −w2 is a local minimum of w̃. Thus the reasoning in the first
part of our proof applies to w̃, and we conclude that f(w̃1)− f(w̃2) > 0. Thus (again
because f is odd) f(w1) − f(w2) < 0, while w1 − w2 < 0 also. This completes the
proof of Lemma 5.1.

Lemma 5.2. If w(r) = w(r, d) is a solution to (1.13)–(1.14) with 0 < d < d∗,
then

(5.2) |w′| ≤
√
`(`+N − 2)

δ2

r2
+ 2 (F (δ)− F0)

for all r > 0.
Proof. Identity (1.15) with the initial condition (1.14) yields

(5.3) 1
2w
′2 + F (w) ≤ `(`+N − 2)

2

w2

r2
+

2

r2

∫ r

0

sF (w(s)) ds.

Since we know that |w(r)| < δ for all r ≥ 0 and since maxy∈[−δ,δ] F (y) = F (δ), we

have
∫ r

0
sF (w(s)) ds ≤ 1

2r
2F (δ). Hence (5.3) yields

(5.4) 1
2w
′2 ≤ `(`+N − 2)

2

w2

r2
+ F (δ)− F (w) <

`(`+N − 2)

2

δ2

r2
+ F (δ)− F0,
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that is,

|w′| ≤
√
`(`+N − 2)

δ2

r2
+ 2 (F (δ)− F0),

as asserted.
For a solution w(r) to (1.13), we define the “energy”

(5.5) E(r) ≡ 1

2
w′(r)2

+ F (w(r)).

Differentiating E and using (1.13), we find

(5.6) E′ = −N − 1

r
w′2 +

`(`+N − 2)

r2
ww′.

We now estimate the loss of energy on an interval of monotonicity for the solution.
Lemma 5.3 establishes that the energy loss is bounded independent of the length of
the interval.

Lemma 5.3. Suppose w(r) = w(r, d) is a solution to (1.13)–(1.14) with 0 < d <
d∗, such that w′(r) 6= 0 for all r ∈ (r1, r2), where 0 < r1 < r2. Then

(5.7) E(r1)− E(r2) ≤ C1

r1
+
C2

r2
1

,

where C1 and C2 are positive constants that are independent of d, r1, and r2.
Proof. Since w′(r) 6= 0 for all r ∈ (r1, r2), it follows that w′ has a constant sign on

(r1, r2), and that w can change sign at most once on (r1, r2). Thus ww′ can change
sign at most once on (r1, r2). Let (s1, s2) be the maximal subinterval of (r1, r2) on
which ww′ < 0. (The interval (s1, s2) could be empty, in which case the corresponding
integrals below are taken to be zero.) Thus 0 < r1 ≤ s1 ≤ s2 ≤ r2.

We now estimate E(r1)− E(r2).

(5.8)

E(r1)− E(r2) = −
∫ r2

r1

E′(r) dr

=

∫ r2

r1

N − 1

r
w′2 dr −

∫ r2

r1

`(`+N − 2)

r2
ww′ dr

≤
∫ r2

r1

N − 1

r
w′2 dr −

∫ s2

s1

`(`+N − 2)

r2
ww′ dr

≤ N − 1

r1

∫ r2

r1

w′2 dr +
`(`+N − 2)

r2
1

∫ s2

s1

(−ww′) dr

=
N − 1

r1

∫ r2

r1

w′2 dr +
`(`+N − 2)

2r2
1

[
w(s1)2 − w(s2)2

]
≤ N − 1

r1

∫ r2

r1

w′2 dr +
`(`+N − 2)

2

δ2

r2
1

.

To estimate the remaining integral we note that for r ∈ (r1, r2), Lemma 5.2 yields

(5.9) |w′(r)| ≤
√
`(`+N − 2)

δ2

r2
1

+ 2 (F (δ)− F0).
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Thus ∫ r2

r1

w′2 dr =

∫ r2

r1

|w′(r)| |w′(r)| dr

≤
√
`(`+N − 2)δ2r−2

1 + 2F (δ)− 2F0

∫ r2

r1

|w′(r)| dr.

Since w′(r) 6= 0 for r ∈ (r1, r2), we have

(5.10)

∫ r2

r1

w′2 dr ≤
√
`(`+N − 2)δ2r−2

1 + 2F (δ)− 2F0 |w(r2)− w(r1)|

≤2δ

√
`(`+N − 2)δ2r−2

1 + 2F (δ)− 2F0

≤2
√

2δ
√
F (δ)− F0 + 2δ2r−1

1

√
`(`+N − 2).

Substituting (5.10) into (5.8), we obtain (5.7), as claimed, with

C1 = C1(N, `, f) = 2
√

2(N − 1)δ
√
F (δ)− F0

and

C2 = C2(N, `, f) =
(

1
2`(`+N − 2) + 2(N − 1)

√
`(`+N − 2)

)
δ2.

This completes the proof of Lemma 5.3.
For brevity, we define h(r) ≡ C1

r + C2

r2 , where C1 and C2 are the constants of
Lemma 5.3.

Lemma 5.4. Suppose w(r) = w(r, d) is a solution to (1.13)–(1.14) with 0 < d <
d∗. Suppose that |w| has a local maximum at r = p, with F (w(p))− h(p) > 0. Then
w′ has a zero for some value of r larger than p.

Proof. Suppose by way of contradiction that w′ 6= 0 for all r > p. Then, because
|w| is bounded, w has a limit L ≡ limr→∞ w(r). Using the fact that |w′| is bounded
and taking limits in (1.13) shows that limr→∞ w′′(r) = −f(L). As earlier, this limiting
value of w′′ must vanish because |w′| is bounded. Thus f(L) = 0 and w′(r) has a
limit as r →∞ which must then vanish because |w| is bounded. It then follows that
limr→∞E(r) = F (L).

Now from Lemma 5.3 we have E(r) ≥ E(p)− h(p) = F (w(p))− h(p) > 0 for all
r > p. Thus F (L) > 0, hence γ < |L| ≤ δ. Since the only zeros of f with magnitude
between γ and δ are ±δ, we find that limr→∞ |w(r)| = δ. But Lemma 3.1 asserts that
|w(r)| ≤ |w(p)| < δ for all r ≥ p. Thus |w| cannot have limit δ. This contradiction
establishes that w′ must have a zero at r > p, and completes the proof of Lemma 5.4.

We next establish that there are solutions to the initial value problem (1.13)–
(1.14) with arbitrarily many zeros. This result, in Lemma 5.5, elucidates the solution
set structure as a function of d and is an essential part of the proof of the main
theorem. Our proof of Lemma 5.5 is based on the fact, established by Lemma 5.3,
that a solution’s loss of energy on an interval of monotonicity is bounded independent
of the length of the interval.

Lemma 5.5. Given any positive integer n, there is a number en between 0 and d∗
such that the solution of (1.13)–(1.14) has at least n positive zeros for all d ∈ (en, d∗).

Proof. By hypothesis there is a number λ ∈ (γ, δ) such that f is strictly decreasing
on [λ, δ]. Recall that F is then positive, increasing, and concave downward on [λ, δ].
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By Lemmas 4.9 and 4.10, w(r, d) has a first local maximum r = Md for d sufficiently
close to d∗, and limd→d−∗ Md =∞ and limd→d−∗ w(Md, d) = δ. Let c ∈ (0, d∗) be such

that λ < w(Md, d) < δ for all d ∈ (c, d∗).
Because F (δ) > F (λ), given n we may choose en ∈ (c, d∗) so close to d∗ that

F (w(Md, d)) − nh(Md) > F (λ) for all d ∈ (en, d∗). Consider fixed d ∈ (en, d∗). By
Lemma 5.4, w′ has a next zero r = m1 > Md. By Lemma 5.3, E(m1) ≥ E(Md) −
h(Md). Thus F (w(m1)) ≥ F (w(Md)) − h(Md) > F (λ), and therefore |w(m1)| > λ.
Because f is strictly decreasing on [λ, δ] and because w(Md) ∈ (λ, δ), by Lemma 5.1 it
cannot be that w(m1) ∈ (λ, δ). Thus w(m1) ∈ (−δ,−λ). Hence w has a zero between
r = Md and r = m1.

If n > 1, we may now repeat the argument: Because

F (w(m1))− h(m1) >F (w(m1))− h(Md)

≥F (w(Md))− 2h(Md)

>F (λ),

by Lemma 5.4, w′ has a next zero r = m2 > m1. By Lemma 5.3, E(m2) ≥ E(m1)−
h(m1). Thus F (w(m2)) ≥ F (w(m1)) − h(m1) > F (λ), and hence |w(m2)| > λ. Be-
cause f is strictly decreasing on (−δ,−λ) and because w(m1) ∈ (−δ,−λ), by Lemma
5.1 we have w(m2) ∈ (λ, δ). Hence w has another zero between r = m1 and r = m2.

We may continue in this fashion to show that there are n positive zeros of w.
This concludes the proof of Lemma 5.5.

The last major result required for the proof of the main theorem is the fact that
as d is varied new zeros in the solution to (1.13)–(1.14) appear one at a time, and
changes in the number of zeros occur at isolated values of d. This result is established
in Lemma 5.9. The following three lemmas are used in the proof of Lemma 5.9.

Lemma 5.6. Suppose w is a nontrivial solution of (1.13) with w(t) = 0 for some
t > 0, and suppose p < t is such that w′(p) = 0 and w′(r) 6= 0 for r ∈ (p, t). Then
|w(p)| > γ.

Proof. Because w′(r) 6= 0 for r ∈ (p, t), we have w(r)w′(r) < 0 for r ∈ (p, t). So
by (5.6), E′(r) < 0 for r ∈ (p, t). Thus E(p) > E(t) ≥ 0, hence F (w(p)) = E(p) > 0,
hence |w(p)| > γ, as asserted.

Lemma 5.7. If w is a nontrivial solution to (1.13) such that limr→∞ w(r) = 0,
then w′(r) 6= 0 for all sufficiently large r.

Proof. Suppose on the contrary that w is nontrivial and there is a sequence
pj →∞ such that w(pj)→ 0 as j →∞ and w′(pj) = 0 for all j.

We note first that if w′′(p) = w′(p) = 0 for some p > 0, then, by (1.13), either
w(p) = 0, or w(p) 6= 0 and f(w(p)) has the same sign as w. Since w is nontrivial, by
uniqueness of solutions to initial value problems we cannot have w(p) = w′(p) = 0,
so it must be that w(p) and f(w(p)) have the same sign. Thus |w(p)| > α. Since
w(pj)→ 0 as j →∞, it must be that w′′(pj) 6= 0 for sufficiently large j.

Under our supposition, it follows that there is an increasing sequence of local
maxima Mj of |w|, with Mj →∞ and 0 6= w(Mj)→ 0 as j →∞. Because F (y) < 0
for |y| ∈ (0, γ), we have F (w(MJ)) < 0 for some sufficiently large J . Thus by
Lemma 3.1, F (w(Mj)) ≤ F (w(MJ)) < 0 for all j > J . This contradicts the fact
that limj→∞ F (w(Mj)) = F (0) = 0. This contradiction shows that there cannot be a
sequence pj with the properties that we assumed, thereby proving the lemma.

Lemma 5.8. Suppose w is a nontrivial solution to (1.13) such that limr→∞ w(r) =
0. Suppose w′(p) = 0 and w′(r) 6= 0 for all r > p. Then |w(p)| > γ.
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Proof. Since |w| is monotonically decreasing to 0 on (p,∞), as in Lemma 5.6 it
follows that E′(r) < 0 for all r > p. Since E(r) is bounded below (by F0), E(r) =
1
2w
′(r)2 + F (w(r)) has a limit as r → ∞. Since F (w(r)) → 0 as r → ∞, it follows

that |w′| has a limit, which must vanish. Thus F (w(p)) = E(p) > limr→∞E(r) = 0,
hence |w(p)| > γ, as asserted.

Lemma 5.9. Suppose w(r) = w(r, dc) is a solution to (1.13)–(1.14) with d = dc ∈
(0, d∗), such that w(r) has exactly k zeros, and such that limr→∞ w(r, dc) = 0. If d is
sufficiently close to dc then the solution w(r, d) has at most (k + 1) zeros.

Proof. We wish to show that for d near dc, w(·, d) has at most (k + 1) zeros in
(0,∞). So we suppose there is a sequence of values dj ∈ (0, d∗) converging to dc as
j → ∞ such that w(·, dj) has at least (k + 1) zeros in (0,∞). (If there is no such
sequence then the lemma is proven.) We write wj(r) ≡ w(r, dj) and we denote by rj
the (k + 1)st zero of wj , counting from the smallest. We set w0(r) ≡ w(r, dc).

By Lemma 5.7, |w0(r)| decreases monotonically to zero for sufficiently large r.
Since |w0(r)| < δ for all r, there is a largest number p0 for which w′0(p0) = 0. By
Lemma 5.8, |w0(p0)| > γ. Let q0 > p0 be such that |w0(q0)| = γ. We note that q0 is
unique because |w0(r)| is monotonically decreasing for r > p0.

Let ε2 ≡ min
{

1
2β,

1
2 (|w0(p0)| − γ)

}
. Given ε1 ∈ (0, ε2), let q+

0 > q0 be defined by

|w0(q+
0 )| = γ − ε1, and let q−0 ∈ (p0, q0) be defined by |w0(q−0 )| = γ + ε1. Note that

q+
0 and q−0 approach q0 as ε1 → 0+.

Since w′0(q0) 6= 0, there is a number m0 > 0 such that minr∈[q−0 ,q
+
0 ] |w′0(r)|

> m0 > 0 independent of ε ∈ (0, ε1). Let ε0 ≡ min
{

1
2m0, ε1

}
. Let L0 > q0 be

the unique number such that |w0(L0)| = 1
2β.

Because solutions depend continuously on initial data, we know that wj → w0

and w′j → w′0 uniformly on compact sets as j → ∞. Thus, given ε ∈ (0, ε0) and
L > L0, there is a number J(ε, L) so large that for all j > J(ε, L) we have
supr∈[0,L] |wj(r)− w0(r)| < ε and supr∈[0,L] |w′j(r)− w′0(r)| < ε. In particular,

|wj(q+
0 )| ≤ |w0(q+

0 )|+ |wj(q+
0 )− w0(q+

0 )| < γ − ε1 + ε < γ

and

|wj(q−0 )| ≥ ∣∣|w0(q−0 )| − |wj(q−0 )− w0(q−0 )|∣∣ > γ + ε1 − ε > γ

and, for all r ∈ [q−0 , q
+
0 ],

|w′j(r)| =
∣∣w′0(r) + (w′j(r)− w′0(r))

∣∣
≥ ∣∣|w′0(r)| − |w′j(r)− w′0(r)|∣∣
>m0 − ε > 1

2m0 > 0.

Therefore, |wj(qj)| = γ for a unique qj ∈ (q−0 , q
+
0 ). We note that because ε1 may be

chosen arbitrarily small, we have qj → q0 as j →∞.
For j > J(ε, L) it also follows that |wj(r)| < γ for all r ∈ (qj , L]. Furthermore,

|wj(L)| < β for all j > J(ε, L).
Claim. For all sufficiently large j, |wj(r)| < γ for all r > qj .
Proof of Claim. Fix ε ∈ (0, ε0) and L > L0. We already know that for j > J(ε, L)

we have |wj(r)| < γ for r ∈ (qj , L]. So suppose by way of contradiction that there
exists a subsequence dj → dc (again labeled by j) such that, for all j > J(ε, L),
|wj(Qj)| = γ for some smallest Qj > L.
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By Lemma 3.1, |wj | cannot have a local maximum at any point in (qj , Qj). It
follows, because |wj(L)| < β, that there are numbers sj and tj with L < sj < tj < Qj
such that |wj(sj)| = β and |wj(tj)| = 1

2 (β + γ) > β and |wj | is increasing on (sj , tj).
We now apply (1.15) between qj and Qj to obtain

(5.11) 1
2Q

2
jw
′(Qj)2 + (N − 2)

∫ Qj

qj

sw′j(s)
2ds = 1

2q
2
jw
′(qj)2 + 2

∫ Qj

qj

sF (w(s))ds.

We now estimate the integral term on the right side of (5.11). Because |w(s)| < γ
for s ∈ (qj , Qj), we have F (w(s)) ≤ 0 for s ∈ (qj , Qj). Thus

(5.12)
2

∫ Qj

qj

sF (w(s))ds ≤ 2

∫ tj

sj

sF (w(s))ds ≤ 2F (1
2 (β + γ))

∫ tj

sj

s ds

= F ( 1
2 (β + γ))(tj − sj)(tj + sj).

Now, Lemma 5.2 establishes that |w′j(r)| is bounded for r ≥ p0 by

w′max ≡
√
`(`+N − 2)

δ2

p2
0

+ 2 (F (δ)− F0)

independent of j. We thus have

1
2 (β + γ)− β = |wj(tj)− wj(sj)| ≤ w′max(tj − sj),

that is, tj − sj ≥ (γ−β)
2w′max

. Thus, since F ( 1
2 (β + γ)) < 0 and L < sj < tj , (5.12) yields

(5.13) 2

∫ Qj

qj

sF (w(s))ds ≤ (γ − β)F (1
2 (β + γ))

w′max

L.

Thus by choosing L > L0 sufficiently large we may make the term 2
∫ Qj
qj

sF (w(s))ds

in (5.11) negative and arbitrarily large in magnitude. Since qj → q0 as j → ∞, the
term 1

2q
2
jw
′(qj)2 on the right side of (5.11) is bounded independent of j. Thus by

choosing L sufficiently large, we can make the right side of (5.11) negative. Since the
left side of (5.11) is manifestly positive, we arrive at a contradiction, thus establishing
that, for sufficiently large j, |wj(r)| < γ for all r > qj , as claimed.

To complete the proof of Lemma 5.9, we note that if wj has a zero zj beyond rj ,
then |wj | has a local maximum at some point p between rj and zj . By Lemma 5.6,
this local maximum must occur at an amplitude |wj(p)| > γ, which the claim shows
is impossible for sufficiently large j. Therefore, for sufficiently large j, wj(r) has at
most the single zero rj for r > qj . This completes the proof of Lemma 5.9.

Proof of the Main Theorem. To prove the main theorem, we follow exactly the
same steps as in [7, section 5]. The same proof technique applies despite the different
hypotheses on the large-amplitude behavior of f in [7] because the large-r behavior
of the solutions under study is governed by the small-amplitude features of f , which
are exactly the same here as in [7]. The only difference in the proof is that here we
use identity (1.15), which is a generalization of the Pohozaev identity used in [7].

In particular, we define

A0 = {d ∈ (0, d∗) |w(r, d) > 0 for all r > 0}.
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By Lemma 4.1, A0 is nonempty. Also, A0 is bounded above by d∗. Setting

d0 = supA0,

we know from Lemma 5.5 that d0 < d∗. As in [7, section 5], we can show that
w(r, d0) > 0 for r > 0, w′(r, d0) < 0 for large r, and limr→∞ w(r, d0) = 0. Next, we
define

A1 = {d ∈ (d0, d∗) |w(r, d) has exactly one zero in (0,∞)}.

First, if d0 < d < d∗, then w(r, d) must have at least one zero in (0,∞) (by definition
of d0). Also, by Lemma 5.9, w(r, d) has at most one zero in (0,∞) if d is close enough
to d0. Thus, A1 is nonempty, and clearly A1 is bounded above by d∗. Setting

d1 = supA1,

we know from Lemma 5.5 that d1 < d∗. And again as in [7, section 5], we can show
that w(r, d1) has exactly one zero and vanishes as r →∞. Continuing by induction,
the main theorem is proved.
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Abstract. We consider the problem of asymptotic decay as t→ +∞ of solutions of an abstract
evolution equation of second order with a nonlinear and nonmonotone feedback. Weak asymptotic
stability of the global solutions is proved. This abstract result can be applied to different types of
equations (wave, beam, and plate equations) and to different types of controls (interior, boundary, or
pointwise controls). In particular, we significantly improve several earlier results on the asymptotic
stability of the wave equation in a bounded domain with an interior or boundary control.
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1. Introduction. We consider the problem of asymptotic decay as t → +∞ of
solutions of an abstract evolution equation of second order with a nonlinear and non-
monotone feedback. More precisely, we consider some evolution equations of second
order for which strong compactness of trajectories does not hold while weak compact-
ness does. We give general conditions for which weak asymptotic stability as t→ +∞
of global solutions will occur. As an illustration, let us consider the following classical
control problem.

Example 1.1. Let Ω be a bounded open subset of RN , N ≥ 1 with a smooth
boundary Γ, and let (Γ0,Γ

∗) be a nontrivial partition of Γ (i.e., Γ0, Γ∗ are closed,
int(Γ∗) 6= ∅, int(Γ0) 6= ∅, and int(Γ∗) ∩ int(Γ0) = ∅). Let q : R → R be continuous
and such that

∀λ ∈ R, λq(λ) ≥ 0 and ∀λ > 0, q(λ) > 0.(1.1)

Let a ∈ L∞(Γ0) such that a(.) > 0 on Γ0. We set V = {v ∈ H1(Ω) | v = 0 on Γ∗},
and we consider the following equation:

utt −∆u = 0 for (t, x) ∈ R+ × Ω,

u = 0 for (t, x) ∈ R+ × Γ∗,
∂u
∂ν = −a(x)q(ut) for (t, x) ∈ R+ × Γ0,

u(0) = u0, ut(0) = v0 for x ∈ Ω,

(1.2)

where the initial data (u0, v0) are given in V × L2(Ω).
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If q is monotone increasing and satisfies

|q(λ)| ≤ A+B|λ|r


with r ≤ min( N
N−2 , 2) if N ≥ 3,

with r ≤ 2 if N = 2,

and no condition if N = 1,

(1.3)

then strong asymptotic stability of the solution is known (a proof and references can
be found in [1]). But if q does not verify the hypothesis (1.3), the problem of strong
asymptotic stability of the solution is still open even if q is monotone increasing. We
will prove that in this case there is at least weak asymptotic stability of the solution.
Actually if we suppress the hypothesis of monotonicity of q, and if we suppose only
that ∀α > 0, inf{q(λ) | λ ≥ α} > 0, then we still obtain weak asymptotic stability of
all global solutions.

More generally, we will use an abstract framework and we will prove weak asymp-
totic stability of the global solutions of an abstract evolution equation of second order
with a nonlinear and nonmonotone feedback. The use of this abstract framework
underlines the essential properties of the considered equation which are necessary for
the proof. Moreover, our abstract result of weak asymptotic stability can be applied
to many equations (including, for example, wave- and platelike equations with inte-
rior feedbacks but also with boundary or pointwise controls). Our result improves
significantly several earlier results on the subject (see, for example, [3] , [6] , [1] , [9])
insofar as we need neither hypothesis of monotonicity of the control nor condition
restricting its asymptotic growth.

2. Results.

2.1. Abstract framework and theorem of weak asymptotic stability. We
suppose the following.
• (H1)(i): Let X be a locally compact space, and let µ be a positive measure

such that µ(X) < +∞. We denote by K(X) the space of continuous and compactly
supported functions from X into R, and we denote by H the Hilbert space L2(X,µ)
equipped with the scalar product

∀u, v ∈ H, (u, v)H =

∫
X

u(x)v(x)dµ(x).

• (H1)(ii): Let A be a linear operator on H with dense domain D(A). We assume
that A is self-adjoint and coercive and that the resolvent of A is compact. We define
V = D(A

1
2 ) equipped with the scalar product

∀u, v ∈ V, (u, v)V = (A
1
2u,A

1
2 v)H = 〈Ãu, v〉V ′,V ,

where Ã ∈ L(V ;V ′) is defined by the bilinear form (., .)V and extends A. As usual,
we identify H with its dual. Then V ↪→ H ↪→ V ′ with the following relation:

∀h ∈ H,∀v ∈ V, 〈h, v〉V ′,V = (h, v)H .

Moreover, we suppose that E = K(X) ∩ V is dense in V .
• (H1)(iii): Let Y be a subspace of X (i.e., Y ⊂ X), and let m be a positive

measure on Y such that m(Y ) < +∞. For all v ∈ K(X), we denote by τ(v) the
restriction of v to Y and we suppose that

∃C > 0/ ∀v ∈ E , ‖τ(v)‖L1(Y,m) ≤ C‖v‖V .
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Consequently, the linear mapping τ can be extended to a linear continuous application
from V → L1(Y,m). So we can define the restriction to Y of all elements of V . For all
v ∈ V , we will simply denote by v this restriction (see the remark below for various
examples).
• (H2)(i): Let q : R→ R be continuous and such that

∀λ ∈ R, λq(λ) ≥ 0,(2.1)

∀α > 0, inf{q(λ) | λ ≥ α} > 0.(2.2)

• (H2)(ii): Let a ∈ L∞(Y,m) with a(y) ≥ 0 almost everywhere for measure m.
We define Q : D(Q)→ V ′ by

D(Q) =

{
v ∈ V | ∀ϕ ∈ E , a(.)q(v)ϕ ∈ L1(Y,m)(2.3)

and ∃Cv > 0 such that

∣∣∣∣∫
Y

aq(v)ϕdm

∣∣∣∣ ≤ Cv‖ϕ‖V ∀ϕ ∈ E}
and

∀v ∈ D(Q), ∀ϕ ∈ E ∪ {v}, 〈Q(v), ϕ〉V ′,V =

∫
Y

a(y)q(v(y))ϕ(y)dm(y).(2.4)

• (U): Moreover, for asymptotic stability we will need the following “uniqueness”
property:(

ϕ ∈ V, Aϕ = ω2ϕ and a(y)ϕ(y) = 0 m-a.e. in Y
) ⇒ ϕ(x) = 0 µ-a.e. x ∈ X.

We consider the following problem for (u0, v0) given in V ×H:
utt + Ãu = −Q(ut), t ∈ R+,

u ∈ V, t ∈ R+,

u(0) = u0, ut(0) = v0,

(2.5)

and we obtain the following result of weak asymptotic stability.
Theorem 2.1. We assume (H1), (H2), and (U) hold. Let (u0, v0) be given in

V × H. We suppose that there exists u(t;u0, v0), a solution of the problem (2.5) in
the following sense: 

(u, ut) ∈ C([0,+∞[;V ×H),

ut ∈ L2
loc(]0,+∞[;V ),

utt ∈ L2
loc(]0,+∞[;H),

Ãu+Q(ut) ∈ L2
loc(]0,+∞[;H),

(2.6)

and u satisfies the equation (2.5) almost everywhere (a.e.) t in V ′. Then (u(t), ut(t)) ⇀
(0, 0) weakly in V ×H as t→ +∞.

Remark. The abstract framework can be applied to the different types of controls
as follows:

• In the case of an equation in a bounded open Ω of RN , N ≥ 1 with an interior
control, we will set X = Y = Ω and µ = m = dx where dx is the Lebesgue’s
measure in RN .
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• In the case of an equation in a bounded open Ω of RN , N ≥ 1 with a boundary
control on Γ = ∂Ω, we will set X = Ω, µ = dx, and Y = Γ, m = dν where dν
is the superficial measure on Γ.
• In the case of an equation in a bounded open Ω of RN , N ≥ 1 with a pointwise

control at p ∈ Ω, we will set X = Ω, µ = dx, Y = {p}, and m will be the
Dirac masse δ(· − p).
• More generally, we can choose X = Ω, µ = dx, and Y a set of positive

“capacity” for the capacity associated with the norm of V and m carried by
Y (see [1]).

Remark. Note that the hypothesis (U) is a necessary condition of weak asymptotic
stability of all global solutions of (2.5). Indeed, if (U) is not satisfied then there exists
ϕ ∈ V and ω ∈ R such that Aϕ = ω2ϕ and a(y)ϕ(y) = 0 m-a.e. in Y but ϕ 6≡ 0 on X.
If we set u(x, t) = sin(ωt)ϕ, it is easy to see that u is a solution of (2.5) and that
ut 6⇀ 0 as t→ +∞ weakly in H.

Remark. We deliberately chose here to a priori assume the existence of solutions
on (0,+∞) rather than adding more or less classical assumptions ensuring existence of
global solutions. Indeed, we concentrate here on the question of asymptotic stability.
Note also that, in specific applications, existence may be provided by various means.
For each of the examples below, we refer to the literature where existence results are
given.

2.2. First example: A wave equation with a boundary control. In this
section, we apply Theorem 2.1 to the example presented in the introduction. Note
that we know in this example that global solutions of (1.2) exist at least if we suppose
q continuous increasing (see, for example, [1]).

Corollary 2.1. Let Ω, Γ0, Γ∗ be as in Example 1.1. Let a : Γ0 → R be such
that a(.) > 0 on Γ0, and let q : R→ R be continuous and such that (H2)(i) holds. Let
(u0, v0) be given in V ×L2(Ω) (where V is defined in Example 1.1). We suppose that
there exists a solution of (1.2) in the following sense:

(u, ut) ∈ C([0,+∞[;V × L2(Ω)),

ut ∈ L2
loc(]0,+∞[;V ),

a(.)q(ut) ∈ L1
loc(]0,+∞[×Γ0),

utt ∈ L2
loc(]0,+∞[;L2(Ω)),

(2.7)

and 
utt −∆u = 0 in D′(]0,+∞[×Ω) and a.e. (t, x) ∈ R+ × Ω,
∂u
∂ν = −a(x)q(ut) a.e. (t, x) ∈ R+ × Γ0,

u(0) = u0, ut(0) = v0 a.e. x ∈ Ω.

(2.8)

Then the solution satisfies

(u(t), ut(t)) ⇀ (0, 0) weakly in V × L2(Ω) as t→ +∞.

Remark. In particular, this result is true for q continuous monotone increasing
such that q(0) = 0 and q(λ) > 0 ∀λ > 0.

Remark. This example is also treated in [10] by another method: there we use
Young’s measures to handle the weak limits.
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2.3. Second example: A plate equation with interior control. In this
section, we apply Theorem 2.1 to the following example.

Example 2.1. Let Ω be a connected bounded open subset of RN with a smooth
boundary Γ. Let q : R → R be continuous and such that (H2)(i) holds, and let
a : [0, 1]→ R be such that a(.) ∈ L∞(0, 1), a(.) ≥ 0, and meas(supp(a)) > 0. We set
V = {v ∈ H2(Ω) | v = 0 on Γ}, and we consider the following problem:

utt + ∆2u = −a(x)q(ut) for (t, x) ∈ R+ × Ω,

u = 0 on Γ, t > 0,

∆u = 0 on Γ, t > 0,

u(0) = u0, ut(0) = v0 in Ω,

(2.9)

where (u0, v0) are given in V × L2(Ω).
Remark. In this case, we can prove that if we suppose q continuously differentiable

such that

∃m ∈ R | ∀λ ∈ R, q′(λ) ≥ −m,

then global solutions of (2.9) exist.
More generally, it is still true in the case of the abstract problem (2.5) with an

interior control, i.e., when X = Y = Ω and µ = m = dx (for proofs, see [11]).
Applying Theorem 2.1 to this problem, we obtain the following result.
Corollary 2.2. All global solutions of Example 2.1 satisfy

(u(t), ut(t)) ⇀ (0, 0) weakly in V × L2(Ω) as t→ +∞.

Remark. If we suppose N = 1, Ω =]0, 1[, and q globally Lipschitz continuous, then
strong asymptotic stability was obtained by E. Feireisl (see [5]), i.e., (u(t), ut(t)) →
(0, 0) strongly in H2(0, 1)× L2(0, 1) as t→ +∞.

2.4. Third example: Rectangular Kirchhoff plates with an inner point
control.

Example 2.2. We consider Ω =]0, a[×]0, b[ with a > 0, b > 0 and such that

a2

b2
6∈ Q.(2.10)

Let (x0, y0) ∈ Ω, and let q : R → R be continuous and such that (H2)(i) holds. We
set V = {v ∈ H2(Ω) | v = 0 on Γ = ∂Ω}, and we consider the following problem:

utt + ∆2u = −q(ut(x0, y0))δ(· − x0, · − y0) for (t, x) ∈ R+ × Ω,

u = 0 on Γ, t > 0,

∆u = 0 on Γ, t > 0,

u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y) in Ω,

(2.11)

where (u0, v0) are given in V × L2(Ω).
This problem was studied for q = C.Id in [12] and in [1], and strong asymptotic

stability was obtained. Note that global solutions of (2.11) exist at least if we suppose
q continuous increasing (see, for example, [1]). Applying Theorem 2.1, we obtain the
following result.
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Corollary 2.3. If (2.10) is satisfied, then all global solutions of Example 2.2
satisfy (u(t), ut(t)) ⇀ (0, 0) weakly in V × L2(Ω) as t → +∞ if and only if x0

a 6∈ Q
and y0

b 6∈ Q.
Remark. Theorem 2.1 can be applied to many other equations (see [10], [11] for

other examples).

2.5. Remarks. It can be proved that in the case of an interior control (X =
Y = Ω,m = µ = dx), the hypothesis (H2)(i), (2.2) can be replaced by the weaker
hypothesis

∀λ > 0, q(λ) > 0

(for proof, see [11]). But we do not know if it is still true in the general case (and in
particular in the case of a boundary control).

However, the hypothesis ∀λ > 0, q(λ) > 0, is absolutely necessary (at least in the
case of a boundary control) since we have the following counterexample.

Example 2.3. Let q : R→ R be defined by
q(λ) = 0 if λ ≤ 0,

q(λ) = λ if 0 ≤ λ ≤ 1,

q(λ) = 2− λ if 1 ≤ λ ≤ 2,

q(λ) = 0 if 2 ≤ λ,
and let u be the solution of

utt − uxx = 0, x ∈]0, 1[, t > 0,

u(0, t) = 0, t > 0,

−ux(1, t) = q(ut(1, t)), t > 0,

with {
u0(x) = 0, x ∈]0, 1[,

u1(x) = 2α, x ∈]0, 1[.

Then, if α > 1 or α < −1, we can prove that u(t) 6⇀ 0 weakly in H1(0, 1) as t→ +∞.
To prove this, we make the calculus of the solution and we remark that the support of
ut is contained in the kernel of q (for details, see [11]).

3. Proofs.

3.1. Proof of Theorem 2.1. Let (u0, v0) be given in V ×H, and let u(t;u0, v0)
be the solution of (2.5) associated with the initial data (u0, v0). From (2.6) and
(H1)(ii), we obtain

〈utt, ut〉V ′,V + 〈Ãu+Q(ut), ut〉V ′,V = 0 a.e. t ∈ R+,

with

〈utt, ut〉V ′,V =
1

2

d

dt
‖ut‖2H a.e. t ∈ R+,

and

〈Ãu, ut〉V ′,V = (u, ut)V =
1

2

d

dt
‖u‖2V a.e. t ∈ R+,
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so that, a.e. t ∈ R+, from (2.4) we have

d

dt
(‖ut‖2H + ‖u‖2V ) = −2〈Q(ut), ut〉V ′,V = −2

∫
Y

aq(ut)utdm.(3.1)

Hence, we obtain the following “energy” equality:

‖u(t)‖2V + ‖ut(t)‖2H + 2

∫ t

0

∫
Y

aq(ut)utdmds = ‖u0‖2V + ‖v0‖2H a.e. t ∈ R+.(3.2)

If we set v = ut and U = ( uv ), then the problem (2.5) may be written in the first
order form 

dU
dt = AU + F (U), t ∈ R+,

U(t) ∈ H, t ∈ R+,

U(0) = U0,

(3.3)

where

A =
(

0 1
−Ã 0

)
, F (U) =

(
0

−Q(v)

)
, U0 = ( u0

v0
) ,

and where H = V ×H is equipped with the scalar product

(U, Ũ)H = (u, ũ)V + (v, ṽ)H for U = ( uv ) , Ũ = ( ũṽ ) ∈ H.
We also note that

(U, Ũ)H′×H = 〈u, ũ〉V ′,V + (v, ṽ)H

for U = ( uv ) ∈ H′ = V ′ ×H and Ũ = ( ũṽ ) ∈ H = V ×H.
With these notations, (3.2) becomes

‖U(t;U0)‖2H + 2

∫ t

0

∫
Y

aq(ut)utdmds = ‖U0‖2H a.e. t ∈ R+.(3.4)

By (2.1) and (3.4), we have

‖U(t;U0)‖H ≤ ‖U0‖H a.e. t ∈ R+.(3.5)

Consequently, the weak ω-limit set ωW (U0) is nonempty. Let
( ϕ
ψ

)
be in ωW (U0). By

definition, there exists tn → +∞ as n→ +∞ such that

U(tn;U0) ⇀
( ϕ
ψ

)
in H as n→ +∞.(3.6)

For this sequence tn, we consider the translates defined by

Un(t) = U(t+ tn;U0).(3.7)

For any fixed T > 0, we deduce from (3.5) that (Un)n is a bounded sequence in
L∞(0, T ;H). Hence it possesses a subsequence also denoted by (Un)n, and there
exists Ū = ( ūv̄ ) ∈ L∞(0, T ;H) such that

Un = ( unvn ) ⇀ Ū = ( ūv̄ ) weakly in L2(0, T ;H) as n→ +∞.(3.8)
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In particular, we can prove that for any W ∈ H, the function t 7→ (Un(t),W )H
converges in D′(]0, T [) to the function t 7→ (Ū(t),W )H.

Our purpose is to prove that Ū ≡ 0 on X × R+. In particular, it will give
Ū(0) =

( ϕ
ψ

)
= ( 0

0 ) and so ωW (U0) = {(0, 0)}, which implies that U(t;U0) ⇀ (0, 0)
weakly in V ×H. In the first part of the proof, we will write the equation satisfied by
the translates Un. Passing to the limit as n → +∞ in this equation, we will obtain
an equation satisfied by Ū . In the second part, we will use the representation of the
solutions of this equation and the result of “uniqueness” (U) to prove that Ū ≡ 0 on
X × R+.

Part 1. Since Un is a solution of (3.3) with the initial data U(tn), we have for all
n ∈ N, t ∈ [0, T ], and W = (w1

w2
) ∈ V × E ,

(Un(t),W )H − (U(tn),W )H(3.9)

=

∫ t

0

(A∗W,Un(s))H′×Hds+

∫ t

0

∫
Y

F (Un(s)) ·Wdm(y)ds.

By (3.8), the first term (Un(t),W )H converges in D′(]0, T [) to (Ū(t),W )H as n→ +∞.
By (3.6),

(U(tn),W )H →
(( ϕ

ψ

)
,W
)
H as n→ +∞,

and by (3.8), we have for all t ∈ [0, T ],∫ t

0

(A∗W,Un(s))H′×Hds→
∫ t

0

(A∗W, Ū(s))H′×Hds as n→ +∞.

Moreover, the Lebesgue dominated convergence theorem implies that these two last
convergences hold in D′(]0, T [).

We will now prove that

a(y)q(vn)→ 0 as n→ +∞ strongly in L1(Y × [0, T ]),(3.10)

which will imply that the last term of (3.9) converges to 0 in D′(]0, T [). Indeed, we
will obtain for all t ∈ [0, T ],

∫ t

0

∫
Y

F (Un(s)) ·Wdm(y)ds =
(

0

−
∫ t

0

∫
Y
a(y)q(vn)w2dm(y)ds

)
→ ( 0

0 ) as n→ +∞,

and the Lebesgue dominated convergence theorem will give the result since w2 is
bounded in Y .

To prove (3.10), we fix ε > 0. By continuity of q(λ) at λ = 0, there exists η(ε)
such that ∫∫

Y×[0,t]
|vn(y,s)|≤η(ε)

a(y)|q(vn)|dm(y)ds ≤ ε.(3.11)

So, we have ∫ t

0

∫
Y

a(y)|q(vn)|dm(y)ds(3.12)

≤
∫∫

Y×[0,t]
|vn(y,s)|≥η(ε)

a(y)|q(vn)|dm(y)ds+

∫∫
Y×[0,t]

|vn(y,s)|≤η(ε)

a(y)|q(vn)|dm(y)ds

≤ 1

η(ε)

∫ t

0

∫
Y

a(y)q(vn)vndm(y)ds+ ε.



148 JUDITH VANCOSTENOBLE

From (3.4), we have for all t ∈ [0, T ] and n ∈ N,

‖Un(t)‖2H − ‖U(tn)‖2H = −2

∫ t

0

∫
Y

a(y)q(vn)vndm(y)ds.(3.13)

Since the function t 7→ ‖U(t;U0)‖H is nonincreasing and bounded from below, its
limit as t→ +∞ exists. But since Un(t) = U(t+ tn), it follows that

lim
n→+∞ ‖Un(t)‖H = lim

n→+∞ ‖U(tn;U0)‖H,

and hence by (3.13),

lim
n→+∞

∫ t

0

∫
Y

a(y)q(vn)vndm(y)ds = 0 ∀t ∈ [0, T ].(3.14)

We deduce from (3.12) and (3.14) that there exists n0 ∈ N such that, for all n ≥ n0,∫ t

0

∫
Y

a(y)|q(vn)|dm(y)ds ≤ 2ε.

So (3.10) is proved.
We can now write the limit in D′(]0, T [) of relation (3.9) as ∀t ∈ [0, T ], ∀W =

(w1
w2

) ∈ V × E ,

(Ū(t),W )H −
(( ϕ

ψ

)
,W
)
H =

∫ t

0

(A∗W, Ū(s))H′×Hds.(3.15)

And we obtain that Ū is a solution of{
d
dt (Ū(t),W )H = (A∗W, Ū(t))H×H ∀W ∈ D(A∗)∀t ∈ [0, T ],

Ū(0) =
( ϕ
ψ

)
.

(3.16)

Indeed, (3.15) implies that this equation is verified for all W ∈ V × E , and since E
is dense in D(A), it is still true for all W ∈ V ×D(A) = D(A∗). Moreover, since T
is arbitrary and Ū ∈ L∞(0,∞;H), it is always true for t ∈ [0,+∞[. Finally, Ū is a
solution of the equation {

d
dt Ū(t) = AŪ(t), t ∈ R+,

Ū(0) =
( ϕ
ψ

)
,

(3.17)

and consequently, ū is a solution of{
ūtt + Ãū = 0, t ∈ R+,

ū(0) = ϕ, ūt(0) = ψ.
(3.18)

Part 2.
Step 1. Since (ū, ūt) is a solution of (3.18), and since A satisfies (H1)(ii), we can

write

ū(t) =
∑
p∈N

(
−cos(ωpt)

ψp
ωp

+ sin(ωpt)
ϕp
ωp

)
,(3.19)
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and

ūt(t) =
∑
p∈N

(cos(ωpt)ϕp + sin(ωpt)ψp) ,(3.20)

where ϕp, ψp are eigenfunctions of A, ωp eigenvalues of A and where (3.19) (resp.,
(3.20)) converges in V (resp., in H) uniformly in t (for more details, see [1] or [11]).

Step 2. Fix p ∈ N and η = ±1. For T > 0, we set

∀n ∈ N, wn,T =
1

T

∫ T

0

1 + ηcos(ωpt)

2
vn(x, t)dt,(3.21)

and

w̄T =
1

T

∫ T

0

1 + ηcos(ωpt)

2
ūt(x, t)dt.(3.22)

The following convergence results can be proved (the proof appears later in this paper).
Lemma 3.1.

∀T > 1, wn,T (y) ⇀ w̄T (y) weakly in V as n→ +∞,(3.23)

w̄T (y) ⇀
1

4
ηϕp(y) weakly in V as T → +∞.(3.24)

Step 3. Since q is such that (H2)(i) holds, we can construct q̂ : R→ R continuous
increasing such that {

∀λ ∈ R, 0 ≤ q̂(λ)λ ≤ q(λ)λ,

∀λ > 0, q̂(λ) > 0

(indeed, we can choose q̂(λ) = 0 for λ ≤ 0 and q̂(λ) = inf{q(s) | s ≥ λ} for λ > 0).
Then we denote by ̂ : R→ [0,+∞[ the primitive of q̂ such that ̂(0) = 0, and we

set Ψ̂(v) =
∫
Y
a(y)̂(v(y))dm(y) for v ∈ V .

Ψ̂ : V →] −∞,+∞] is proper, convex (since ̂ is convex), lower semicontinuous
(l.s.c.). Indeed, since Ψ̂ is convex, we just have to prove that

(vn → v strongly in V as n→∞) =⇒ (Ψ̂(v) ≤ lim inf
n→+∞ Ψ̂(vn)).(3.25)

By (H1)(iii), vn → v strongly in V as n → +∞ implies that vn → v strongly in
L1(Y,m) as n→ +∞ and so vn → v m-a.e. in Y as n→ +∞ for a subsequence still
denoted by (vn)n. Then (3.25) is verified by Fatou’s lemma.

Since ∀λ ∈ R, ̂(λ) ≤ λq̂(λ), we can prove that

∀n ∈ N, 0 ≤ Ψ̂(vn) ≤
∫
Y

aq̂(vn)vndm ≤
∫
Y

aq(vn)vndm,

which gives, for all T > 0,

∀n ∈ N,
∫ T

0

Ψ̂(vn)dt ≤
∫ T

0

∫
Y

aq(vn)vndmdt.
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So from (3.14), we deduce that

∀T > 0,

∫ T

0

Ψ̂(vn)dt→ 0 as n→ +∞.(3.26)

Moreover, since Ψ̂ is convex with Ψ̂(0) = 0 and since 0 ≤ 1+η cos(ωpt)
2 ≤ 1 for all

t ∈ [0, T ], we have

∀n ∈ N, 0 ≤ Ψ̂

(
1

T

∫ T

0

1 + η cos(ωpt)

2
vndt

)
≤ 1

T

∫ T

0

1 + η cos(ωpt)

2
Ψ̂(vn)dt

≤ 1

T

∫ T

0

Ψ̂(vn)dt.

Therefore, by (3.26), all these integrals tend to 0 as n→ +∞. From Lemma 3.1, and
since Ψ̂ is l.s.c. on V , we have for all T > 0,

Ψ̂(w̄T ) ≤ lim inf
n→+∞ Ψ̂(wn,T ) = 0,

and similarly

Ψ̂
(η

4
ϕp

)
≤ lim inf
T→+∞

Ψ̂(w̄T ) = 0.

So, we obtain

Ψ̂
(η

4
ϕp

)
=

∫
Y

a(y)̂
(η

4
ϕp(y)

)
dm(y) = 0,

which implies

a(y)̂

(±1

4
ϕp(y)

)
= 0 m-a.e. on Y.(3.27)

Since ̂′(λ) = q̂(λ) > 0 ∀λ > 0, we know that ̂ is strictly increasing on R+. But
̂(0) = 0, so ̂(λ) > 0 ∀λ > 0. In particular, ̂(λ) = ̂(−λ) = 0 implies λ = 0. So,
(3.27) implies that

a(y)ϕp(y) = 0 m-a.e. on Y.

And from the “uniqueness” hypothesis (U), we obtain

ϕp(x) = 0 a.e. x ∈ X ∀p ∈ N.(3.28)

Similarly, multiplying vn by
1+ηsin(ωpt)

2 instead of
1+ηcos(ωpt)

2 , we get

ψp(x) = 0 a.e. x ∈ X ∀p ∈ N.(3.29)

Finally, from (3.19) and (3.20), we get (ū, ūt) ≡ (0, 0) on X × R+, which ends the
proof of Theorem 2.1.

Proof of Lemma 3.1. First, we will prove that

∃Cp > 0 such that ∀n ∈ N, ∀T > 1, ‖wn,T ‖V ≤ Cp.(3.30)
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Indeed, for all n ∈ N and T > 0,

wn,T (x) =
1

T

∫ T

0

1 + ηcos(ωpt)

2
vn(x, t)dt

=
1

T

[
1 + ηcos(ωpt)

2
un(x, t)

]T
0

+
1

T

∫ T

0

ηωpsin(ωpt)

2
un(x, t)dt.

Hence,

‖wn,T ‖V ≤ 1

T

(
1 + ηcos(ωpt)

2
‖un(T )‖V +

1 + η

2
‖un(0)‖V

)
+

1

T

∫ T

0

1

2
ωp‖un(t)‖V dt.

From (3.5), we know that there exists C > 0 such that

‖un(t)‖V ≤ C ∀n ∈ N, ∀t ∈ R+.

Consequently,

‖wn,T ‖V ≤ 2C

T
+

1

2
ωpC ≤ 2C +

1

2
ωpC = Cp for T > 1,

which proves (3.30).
From (3.30), we deduce that for T > 1, wn,T converges weakly in V as n→ +∞

(for a subsequence still denoted by wn,T ). But vn ⇀ v̄ = ūt weakly in L2(0, T ;H) as
n→ +∞, hence for all T > 1, we have

wn,T ⇀ w̄T weakly in H as n→ +∞.
So by uniqueness of the limit for the weak convergence in H, we obtain

wn,T ⇀ w̄T weakly in V as n→ +∞,(3.31)

which proves the first part of Lemma 3.1.
Using (3.31) and (3.30), we obtain

‖w̄T ‖ ≤ Cp for all T > 1.(3.32)

We deduce that w̄T converges weakly in V as T → +∞ (for a subsequence still denoted
w̄T ). But it can be proved that, for η = ±1 and for all p ∈ N,

1

T

∫ T

0

1 + ηcos(ωpt)

2
ūt(t)dt −→ 1

4
ηϕp strongly in H as T → +∞,(3.33)

i.e., w̄T −→ 1

4
ηϕp strongly in H as T → +∞.

This convergence is a consequence of the fact that (3.20) converges in H uniformly in

t. It consists as in [1] in multiplying (3.20) by
1+ηcos(ωpt)

2 and computing the limit.
In [1], (3.20) converges in V uniformly in t and the convergence (3.33) is proved in
V . Here the convergence is only true in H, but the proof is the same (for details, see
[11]). So by uniqueness of the limit, we deduce that

w̄T ⇀
1

4
ηϕp weakly in V as T → +∞,

which proves the second part of Lemma 3.1.
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3.2. Remark concerning the definition of Q. In the following examples, for
all v ∈ D(Q), Q(v) will be defined on E by

∀ϕ ∈ E , 〈Q(v), ϕ〉V ′,V =

∫
Y

a(y)q(v(y))ϕ(y)dm(y)(3.34)

(see (H2)(ii)).

Q(v) is linear continuous from E into R and it can be extended to a linear con-
tinuous application from V into R still denoted Q(v). So for all v ∈ D(Q), Q(v) is
defined and Q(v) ∈ V ′. But in order to verify hypothesis (H2)(ii), we still have to
verify that equation (3.34) is still true for ϕ = v, i.e., we have to prove that

∀v ∈ D(Q), 〈Q(v), v〉V ′,V =

∫
Y

a(y)q(v(y))v(y)dm(y).(3.35)

In this paper, we will omit this technical point in the proofs of Corollaries 2.1,
2.2, and 2.3. It is generally based on “smooth truncation” results in Sobolev spaces.
For details, see [11].

Note that, in the proof of Theorem 2.1, relation (3.35) is only used in (3.1) in
order to obtain the “energy equality” (3.2). In most examples, if we add assumptions
ensuring existence of global solutions, the “energy equality” (3.2) will be obtained
naturally, and consequently, it will not be necessary to verify (3.35).

3.3. Proof of Corollary 2.1. We set the following:

• (X,µ) = (Ω, dx) where dx is the Lebesgue’s measure on RN .
H = L2(Ω, dx).
• V = {v ∈ H1(Ω) | v|Γ∗ = 0}.
D(A) = {u ∈ V | ∆u ∈ L2(Ω) and ∂u

∂ν = 0 on Γ0} (note that ∂u
∂ν |Γ is defined

and ∂u
∂ν |Γ ∈ H−

1
2 (Γ) because u ∈ H1(Ω) with ∆u ∈ L2(Ω), see [8] or [4]).

For u ∈ D(A), Au = −∆u, and for (u, v) ∈ V ×V, 〈Ãu, v〉V ′,V =
∫

Ω
∇u∇vdx.

• (Y,m) = (Γ, dσ) where dσ is the superficial measure on Γ.
The trace mapping τ : V → L1(Γ, dσ) is continuous (it is actually continuous

into H
1
2 (Γ, dσ)) .

• a(.) is defined on Γ0 and we extend it in a function still denoted by a(.) and
defined on Γ by a(x) for x ∈ Γ0 and 0 for x ∈ Γ∗.

Then we can apply Theorem 2.1, and weak asymptotic stability is obtained if the
following “uniqueness” result is true:

(
−∆ϕ = ω2ϕ in Ω, ϕ = 0 on Γ∗,

∂ϕ

∂ν
= 0 on Γ0 and ϕ = 0 on Γ0

)
=⇒ ϕ ≡ 0 in Ω.

This result is true because Γ0 is not too “thin” (for example Γ0 contains B(x0, ε)∩Γ
where x0 ∈ Γ, see [1]).

3.4. Proof of Corollary 2.2. We set the following:

• (X,µ) = (Y,m) = (Ω, dx) where dx is the Lebesgue’s measure on RN .
H = L2(Ω, dx).
• V = {v ∈ H2(Ω) | v = 0 on Γ}.
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D(A) = {u ∈ V | ∆2u ∈ L2(Ω) and ∆u|Γ = 0 on Γ} (note that ∆u|Γ is

defined and ∆u|Γ ∈ H−
1
2 (Γ) because ∆u ∈ L2(Ω) with ∆2u ∈ L2(Ω), see

[8]).
For u ∈ D(A) , Au = ∆2u and for (u, v) ∈ V ×V , 〈Ãu, v〉V ′,V =

∫
Ω

∆u∆vdx.
Then we can apply Theorem 2.1 and weak asymptotic stability is obtained because

the following “uniqueness” result is true:(
ϕ ∈ V, ∆2ϕ = ω2ϕ in Ω, and ϕ(x) = 0 a.e. x ∈ supp(a)

)
=⇒ ϕ ≡ 0 in Ω.

Indeed it implies that ϕ is analytic on Ω (see [4]), and consequently, ϕ ≡ 0 in Ω
since Ω is connected and meas(supp(a)) > 0.

3.5. Proof of Corollary 2.3. We set the following:
• (X,µ) = (Ω, dxdy) = (]0, a[×]0, b[, dxdy) where dxdy is the Lebesgue’s mea-

sure in R2.
H = L2(]0, a[×]0, b[, dxdy).
• V = {v ∈ H2(Ω) | v = 0 on Γ = ∂Ω}.
D(A) = {u ∈ V | ∆2u ∈ H and ∆u = 0 on Γ}.
For u ∈ D(A) , Au = ∆2u and for (u, v) ∈ V×V , 〈Ãu, v〉V ′,V =

∫
Ω

∆u∆vdxdy.
• Y = {(x0, y0)} and m is the Dirac masse δ(· − x0, · − y0).
• We define a : Y → R by a(x0, y0) = 1.

Then we can verify that (H1) and (H2) are satisfied. Indeed, A is self-adjoint,
coercive on H, and the resolvent of A is compact (see, for example, [12]). Moreover,
V ⊂ H2(Ω) ↪→ C0(Ω) (because Ω ⊂ R2) so that ∀v ∈ V , v(x0, y0) exists and v 7→
v(x0, y0) is linear continuous from V → R. Finally, Theorem 2.1 can be applied and
we obtain weak asymptotic stability of all global solutions if and only if the following
“uniqueness” result is true:(

ϕ ∈ V, Aϕ = ω2ϕ on Ω and ϕ(x0, y0) = 0
)

=⇒ ϕ ≡ 0 on Ω.(3.36)

As in [1], we can prove that (3.36) is verified as follows: let ϕ ∈ V be such that
Aϕ = ω2ϕ on Ω. Then, we have

ϕ(x, y) =
∑
r,s

αr,s sin
rπx

a
sin

sπy

b
,

where r, s ∈ N are such that ω4 = ( r
2

a2 + s2

b2 )2π4. But the eigenvalues are all simple

because a2

b2 6∈ Q. Indeed, if ω is not a simple eigenvalue, then there exists (m,n) ∈ N2

and (m′, n′) ∈ N2 such that (m′, n′) 6= (m,n) and ω2 = (m
2

a2 + n2

b2 )π2 = (m
′2
a2 + n′2

b2 )π2.

So, we obtain m2−m′2
n′2−n2 = a2

b2 6∈ Q, which is absurd. So the hypothesis (2.10) implies
that

ϕ(x, y) = αm,n sin
mπx

a
sin

nπy

b
,

with ω2 = ( r
2

a2 + s2

b2 )π2. Clearly, sin mπx0

a sin nπy0

b 6= 0 if and only if x0

a 6∈ Q
and y0

b 6∈ Q, so (3.36) is true if and only if x0

a 6∈ Q and y0

b 6∈ Q, which ends the
proof.
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Abstract. We investigate the efficiency of approximation by linear combinations of ridge func-
tions in the metric of L2(Bd) with Bd the unit ball in Rd. If Xn is an n-dimensional linear space
of univariate functions in L2(I), I = [−1, 1], and Ω is a subset of the unit sphere Sd−1 in Rd of
cardinality m, then the space Yn := span{r(x · ξ) : r ∈ Xn, ω ∈ Ω} is a linear space of ridge functions
of dimension ≤ mn. We show that if Xn provides order of approximation O(n−r) for univariate
functions with r derivatives in L2(I), and Ω are properly chosen sets of cardinality O(nd−1), then Yn
will provide approximation of order O(n−r−d/2+1/2) for every function f ∈ L2(Bd) with smoothness
of order r+d/2−1/2 in L2(Bd). Thus, the theorems we obtain show that this form of ridge approx-
imation has the same efficiency of approximation as other more traditional methods of multivariate
approximation such as polynomials, splines, or wavelets. The theorems we obtain can be applied
to show that a feed-forward neural network with one hidden layer of computational nodes given
by certain sigmoidal function σ will also have this approximation efficiency. Minimal requirements
are made of the sigmoidal functions and in particular our results hold for the unit-impulse function
σ = χ

[0,∞)
.
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1. Introduction. A ridge function is a multivariate function of the form r(x·ω),
where r is a univariate function, ω is a fixed vector in Rd, the variable x ∈ Rd, and
x · ω is the inner product of x and ω. These functions appear naturally in harmonic
analysis, special function theory, and in several applications such as tomography and
neural networks. In most applications, we are interested in representing or approx-
imating a general function f on a domain Ω ⊂ Rd by linear combinations of ridge
functions. It is surprising therefore that the most fundamental questions concerning
the efficiency of approximation by ridge functions are unanswered.

In this paper, we shall consider approximating functions in L2(Bd), Bd the unit
ball in Rd, d ≥ 2, by linear combinations of ridge functions. Using extension theorems,
the set Bd can be replaced by more general sets Ω ⊂ Rd.

Let Xn be a linear space of univariate functions in L2(I), I := [−1, 1] and let
Ωn ⊂ Sd−1 be a finite subset of the unit sphere Sd−1 in Rd. Then

Yn := span{r(x · ω) : r ∈ Xn, ω ∈ Ωn}(1.1)

is a space of multivariate ridge functions of dimension ≤ n#Ωn, where #Ωn is the
cardinality of Ωn. We shall relate the approximation efficiency of Yn to that of Xn

and the distribution of the vectors of Ωn in Sd−1.
Let W s(L2(I)) denote the univariate Sobolev spaces. We say that a sequence of

spaces Xn, n = 1, 2, . . . , dim(Xn) = n, provides approximation of order s if

E(g,Xn)L2(I) ≤ c(s)n−s‖g‖W s(L2(I)), g ∈W s(L2(I)),(1.2)

∗ Received by the editors June 13, 1997; accepted for publication (in revised form) February 5,
1998; published electronically October 20, 1998. This research was supported by ONR Research
Contracts N00014-96-1-1003 and DAAG55-98-1-0002.

http://www.siam.org/journals/sima/30-1/32295.html
†Department of Mathematics, University of South Carolina, Columbia, SC 29208 (pencho@math.

sc.edu).

155



156 PENCHO PETRUSHEV

where

E(g,Xn)L2(I) := inf
r∈Xn

‖g − r‖L2(I)

is the error in approximating the univariate function g in the L2(I) norm by the
elements of Xn. We denote similarly the multivariate Sobolev space W s(L2(Bd)) on
Bd and the approximation error

E(f, Yn)L2(Bd) := inf
R∈Yn

‖f −R‖L2(Bd)

for any f ∈ L2(Bd). Our main result, given in section 8, shows that for any sequence of
spaces Xn, n = 1, 2, . . . , which provide approximation of order s, and for appropriately
chosen sets Ωn with #Ωn = O(nd−1), the sequence of spaces Yn, n = 1, 2, . . . , given
in (1.1), provide the following approximation: for λ := s+ (d− 1)/2,

E(f, Yn)L2(Bd) ≤ c(λ)n−λ‖f‖Wλ(L2(Bd)), f ∈Wλ(L2(Bd)).(1.3)

Note that there is in a certain sense an unexpected gain in the multivariate approx-
imation order s + (d − 1)/2 over the univariate order s. This gain will be explained
later (see section 9).

One can generate the space Yn appearing in (1.3) by using very general univariate
spaces Xn such as splines or wavelets. In particular, our results apply to feed-forward
neural networks using a very general activation function σ. A complete discussion of
the application to neural networks is given in section 9. In this introduction, we wish
to illustrate the typical result by considering the following simple example. Let σ =
χ

[0,∞)
and define Xn as the univariate space spanned by σ(x−k/n), 0 ≤ k < n. Then,

defining Yn for this Xn as described above, we obtain a space of dimension O(nd) of
certain piecewise constant functions. The space Yn can be realized computationally
by a feed-forward neural network with O(nd−1) computational nodes. In this case
(see section 9 for details), (1.3) provides the approximation order 1 + d−1

2 . One
might expect the estimate (1.3) to be 1 since we are using piecewise constants in the
approximation. As noted in (1.3), the gain of d−1

2 in the approximation rate persists
in general (see also Theorem 8.2).

There is a standard method in approximation theory (see [DL, Chapter 7]) which
derives from (1.3) the estimate

E(f, Yn)L2(Bd) ≤ c
(
ωr(f, n

−1)L2(Bd) + ‖f‖L2(Bd)n
−r) , f ∈ L2(Bd)(1.4)

with ωr the rth order modulus of smoothness of f . In the case that Yn contains all
polynomials of total degree < r (in d variables), the last term on the right can be
eliminated.

Since Yn is a linear space of dimension O(nd) then it follows from the general
theory of n-widths that for all m > 0,

sup
‖f‖

Wm(L2(Bd))
≤1

E(f, Yn) ≥ c0n−m(1.5)

with c0 > 0 a constant depending only on m and d. In this sense, the estimates (1.3)
cannot be improved.

We also note that (1.3) shows that, in general, linear spaces of ridge functions are
at least as efficient as other methods of multivariate approximation such as polyno-
mials, wavelets, and splines.
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This paper is an extension of the results from [DOP], where we considered the
case d = 2. Throughout the paper we assume that d > 2, although most of the
statements hold when d = 2.

The results of this paper differ from other work in this field in the following
respects. We are able to begin with a very general class of univariate spaces Xn.
Other authors (most notably Mhaskar and Micchelli [MM], [MM1], and Mhaskar [M])
have also considered approximation problems of the type treated here. The work of
Mhaskar and Micchelli does not give the best order of approximation. Mhaskar [M]
has given best possible results but only in the case that Xn is generated using a rather
restrictive class of sigmoidal functions.

Our results are, for the present, limited to approximation in L2, and it remains an
important open question in ridge approximation to understand to what extent results
such as those presented in this paper are valid in Lp, p 6= 2.

It is also an interesting question to understand which sets Ωn ⊂ Sd−1, when used
in defining the spaces Yn, will provide the approximation order of (1.3). In the case
d = 2, as was shown in [DOP], n equally spaced points on S1 are the most natural
choice. There is no direct analogy of equally spaced points in Sd−1, d > 2. It will
become clear from section 4 that any set Ωn which permits a cubature formula that
is exact for spherical polynomials of degree ≤ n and with good localization properties
will provide spaces Yn which satisfy (1.3). Since we could not find in the literature
examples of such sets Ωn, we construct some in section 4. There should be more
elegant and more natural constructions than ours. In some sense, one might expect
that a natural quadrature formula might provide the analogue of equally spaced points
in Sd−1, d > 2.

We prove (1.3) by first understanding well the structure of ridge polynomials.
Our main vehicle (given in section 3) is a fundamental orthogonal decomposition of
a general function f ∈ L2(Bd) into ridge polynomials. This decomposition uses the
univariate Gegenbauer polynomials.

An outline of this paper is the following. The properties we need about Gegen-
bauer polynomials are given in section 2. In section 3, we give the fundamental
orthogonal decomposition of functions in L2(Bd) in terms of ridge polynomials. In
section 4, we give our construction of cubature (quadrature) formulas. In sections 5–6,
we introduce smoothness spaces (the Sobolev spaces) and recall their characterization
by polynomial approximation. In section 7, we prove the main theorem about approx-
imation by ridge functions. In section 8, we discuss how to improve the theorem of
section 7 to be more amenable to applications. In section 9, we give some applications
of our results, in particular to feed-forward neural networks.

Throughout the paper, the constants are denoted by c, c1, . . . and they may vary
at every occurrence. The constants usually depend on some parameters (like the
dimension d) that will be sometimes indicated explicitly.

2. The Gegenbauer (ultraspherical) polynomials. Special functions ap-
pear naturally when we represent a general function in terms of ridge polynomials as
will be done in the next section. In particular, the Gegenbauer polynomials will play
an important role in this paper. In this section, we shall present the essential proper-
ties of Gegenbauer polynomials and bring out their role in the Radon transform. We
refer the reader to [E] and [Sz] as general references for this section.

The Gegenbauer polynomials are usually defined by the following generating func-
tion



158 PENCHO PETRUSHEV

(1− 2tz + z2)−λ =
∞∑
m=0

Cλm(t)zm,

where |z| < 1, |t| ≤ 1, and λ > 0. The coefficients Cλm(t) are algebraic polynomials
of degree m which are called the Gegenbauer polynomials associated with λ. The
family of polynomials {Cλm}∞m=0 is a complete orthogonal system for the weighted

space L2(I, w), I := [−1, 1], w(t) := wλ(t) := (1− t2)λ−
1
2 and we have∫

I

Cλm(t)Cλn(t)w(t) dt =

{
0, m 6= n
hn,λ, m = n

with hn,λ :=
π1/2(2λ)nΓ(λ+ 1

2 )

(n+ λ)n!Γ(λ)
,(2.1)

where we use here and later the standard notation

(a)0 := 0, (a)n := a(a+ 1) . . . (a+ n− 1) = Γ(a+ n)/Γ(a).

Also, we have

Cλn(−t) = (−1)nCλn(t), Cλn(1) =
(2λ)n
n!

, and Cλ0 (t) = 1.(2.2)

The Gegenbauer polynomials can also be defined by the following identity (called
Rodrigues’ formula):

Cλn(t) = (−1)nαn,λ(1− t2)−λ+ 1
2

(
d

dt

)n
(1− t2)n+λ− 1

2 , αn,λ :=
(2λ)n

n!2n(λ+ 1
2 )n

.(2.3)

There is an identity that relates Gegenbauer polynomials with different weights:(
d

dt

)m
Cλn(t) = 2m(λ)mC

λ+m
n−m(t), m = 1, 2, . . . , n.(2.4)

Special cases of the Gegenbauer polynomials are the Legendre polynomials Pn
and the Chebyshev polynomials of second kind Un which correspond to λ = 1/2 and
λ = 1, respectively. Namely,

Pn(t) :=
(−1)n

2nn!

(
d

dt

)n
(1− t2)n = C1/2

n (t),

Un(t) :=
sin(n+ 1) arccos t√

1− t2 = C1
n(t).

The Chebyshev polynomials of the first kind Tn(t) := cosn arccos t can be considered

as the Gegenbauer polynomials C0
n associated with the weight w0(t) = (1− t2)−

1
2 .

We shall also need the Gegenbauer polynomials Cλn when λ < 0 and, in partic-
ular, when λ = −1,−2, . . . . Note that αn,λ = 0 when λ = −1,−2, . . . and n > 2ν.
Therefore, we cannot use (2.3) to define C−νn when ν = 1, 2, . . . . However, we can
define (see [Sz, Chapter IV ])

Cλn(t) := α(1− t2)−λ+ 1
2

(
d

dt

)n
(1− t2)n+λ− 1

2 , λ < 0,(2.5)

where α is any constant independent of t. To our goals the normalization of Cλn
(λ < 0) is not essential. Identity (2.4) remains valid except for a constant factor (see
[Sz, Chapter IV ]): for any λ, we have(

d

dt

)m
Cλn(t) = cCλ+m

n−m(t), m = 1, 2, . . . , n,(2.6)

where c is independent of t.
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The Gegenbauer polynomials play a fundamental role in inverting the Radon
transform. We shall show in Lemma 2.1 that follows that the Gegenbauer polynomials
Cλn for λ = k and λ = k+ 1/2 (k an integer) are eigenfunctions for certain differential
operators that occur in the Radon transform inversion formula. These operators will
play an important role in defining an equivalent norm for the weighted Sobolev spaces
W s(L2(I, w)) (see section 8).

We begin with a brief discussion of the Hilbert transform H on R and its analogue
H for the interval I := [−1, 1]. For any g ∈ L1(I) we define

Hg := Hg� with g�(t) :=

{
g(t), t ∈ I,
0, t ∈ (−∞,∞)\I,(2.7)

where Hg� is the Hilbert transform of g�. It follows that

Hg(t) =
1

π
p.v.

∫
R1

g�(s)
t− s ds =

1

π
p.v.

∫
I

g(s)

t− s ds.

The analogue of the Hilbert transform on the circle T is the conjugate operator
(see [Z, Chapter II]). If g ∈ L1(T), we denote its conjugate function by

g̃(τ) :=
1

2π
p.v.

∫
T

g(θ) cot
τ − θ

2
dθ.

For any (nonnegative) weight function w, let L0
2(I, w) be the space of all g ∈

L2(I, w) with weighted mean value zero:
∫
I
g(t)w(t)dt = 0. The following proposition

gives some properties of H which we shall use.
Proposition 2.1. If g ∈ L1(I), we define Tg(θ) := sgn θg(cos θ) sin θ for θ ∈

[−π, π). The Hilbert transform H satisfies the following properties:
(a) If g ∈ L1(I) then

Hg(cos τ) = − 1

sin τ
T̃ g(τ) a.e. on (0, π).(2.8)

(b) We have, on (−1, 1), Hw−1
1 = 0,

H[w−1
1 Tn+1] = −Un and H[w1Un] = Tn+1 for n = 0, 1, . . .,(2.9)

and hence

H
d

dt
[w1Un] = (n+ 1)Un.(2.10)

(c) The functions Vn := w−1
1 Tn, n = 0, 1, . . . (in analogy to {Un}∞n=0) form a

complete orthogonal system for L2(I, w1).
(d) H is a one-to-one mapping of L0

2(I, w1) onto L2(I, w1) with

H−1h = − 1

w1
H(w1h) for h ∈ L2(I, w1)

and

‖Hg‖L2(I,w1) = ‖g‖L2(I,w1) for g ∈ L0
2(I, w1).(2.11)
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(e) The operators H and d
dt commute: for any polynomial P , we have

H

(
d

dt
(w1P )

)
=

d

dt
(H(w1P )) .

Proof. (a) We apply the substitution s = cos θ to the integral that defines Hg
and replace t by cos τ , 0 < τ < π and obtain

Hg(cos τ) =
1

π
p.v.

∫ π

0

Tg(θ)

cos τ − cos θ
dθ

=
1

2π
p.v.

∫ π

−π

Tg(θ)

cos τ − cos θ
dθ,

since the integrand is even. Note that p.v.
∫
I
. . . ds = p.v.

∫ π
0
. . . dθ above since the

substituting function and its inverse are smooth enough. Now, we use the identity

1

cos τ − cos θ
= − 1

2 sin τ

(
cot

τ − θ
2

+ cot
τ + θ

2

)
to obtain

Hg(cos τ) = − 1

2 sin τ

[
1

2π
p.v.

∫ π

−π
Tg(θ) cot

τ − θ
2

dθ +
1

2π
p.v.

∫ π

−π
Tg(θ) cot

τ + θ

2
dθ

]
.

After substituting θ = −θ′ in the second integral above and using that Tg is even, we
see that the two integrals are equal and, therefore, we obtain (a).

(b) For any function g ∈ L1(I, w−1
1 ), we have T [w−1

1 g](θ) = g(cos θ). Since the
conjugate function of cosnθ is sinnθ, n = 0, 1, . . . , the first two statements in (b)
follow from (a). Similar calculations give the last two statements.

(c) This is trivial.
(d) This follows from (b) by using the two bases for L2(I, w1) given in (c).
(e) This follows from (2.10).
We shall next show that the Gegenbauer polynomials are eigenfunctions of certain

differential operators that arise in inverting the Radon transform. For functions g
defined on Bd, we introduce the following differential operators:

Λg :=

(
d

dt

)d−1 [
wd/2g

]
,(2.12)

and

D := Λ, d odd, D := HΛ, d even.(2.13)

Lemma 2.1. Let d ≥ 2 and define Un := C
d/2
n for n = 0, 1, . . . . Then we have

DUn = (−1)[ d−1
2 ]µnUn, n = 0, 1, . . . ,(2.14)

and

Λ2Un = (−1)d−1µ2
nUn, n = 0, 1, . . . ,(2.15)

where

µn = (n+ 1)d−1 � nd−1, n = 0, 1, . . . .(2.16)
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Proof. We first consider (2.14) in the case when d is odd, d = 2k + 1. From (2.3)
and (2.4), we find

DUn = DCk+1/2
n =

(
d

dt

)2k [
w2k

1 Ck+1/2
n

]
= c

(
d

dt

)n+2k

w2n+2k
1

= c1

(
d

dt

)k
C

1/2
n+k = c2C

k+1/2
n = c2Un.

By examining the coefficients of tn we obtain that c2 = (−1)kµn. Thus (2.14) is
proved in this case.

Assume now that d is even, d =: 2k. Then, again using (2.3), (2.4), and (2.10)
(recall that C1

n = Un) and the commutativity of d
dt and H, we obtain

DUn = DCkn =

(
d

dt

)2k−1

H
[
w2k−1

1 Ckn
]

= c

(
d

dt

)2k−1

H

(
d

dt

)n
w2n+2k−1

1

= c

(
d

dt

)k−1

H

(
d

dt

)n+k

w2n+2k−1
1 = c1

(
d

dt

)k−1

H
d

dt

[
w1C

1
n+k−1

]
= c2

(
d

dt

)k−1

C1
n+k−1 = c3C

k
n = c3C

d/2
n = c3Un.

We can calculate c3 as follows. Let Ckn(t) =: cnt
n + · · · and Ur(t) =: art

r + · · ·
with r := n+ 2k − 2. We find(

d

dt

)2k−1

H
[
w2k−1

1 Ckn(t)
]

= cn

(
d

dt

)2k−1

H
[
w1(t)

(
(−1)k−1tn+2k−2 + · · ·)]

= (−1)k−1 cn
ar

(
d

dt

)2k−2 [
H
d

dt
[w1(t)Un+k−2(t) + · · ·]

]
= (−1)k−1 cn

ar
(n+ 2k − 1)

(
d

dt

)2k−2

[Un+2k−2(t) + · · ·]

= (−1)k−1cn(n+ 2k − 1)

(
d

dt

)2k−2 (
tn+2k−2 + · · ·)

= (−1)k−1(n+ 1)2k−1cn (tn + · · ·) = (−1)k−1(n+ 1)2k−1C
k
n(t),

where we used identities (2.3), (2.4), and (2.10). Thus (2.14) is proved in this case as
well.

Finally, we consider (2.15). From (2.3) and (2.5), respectively, we have

ΛUn = ΛCd/2n = c

(
d

dt

)n+d−1 [
(1− t2)n+d/2−1/2

]
= c

(
d

dt

)n+d−1 [
(1− t2)n+d−1(1− t2)−d/2+1/2

]
= c1(1− t2)−d/2+1/2C

−d/2+1
n+d−1 .

Hence, applying Λ once again and using (2.6) gives

Λ2Un = Λ2Cd/2n = c1

(
d

dt

)d−1

C
−d/2+1
n+d−1 = c2C

d/2
n = c2Un.

By calculating the coefficients of tn, we find that c2 = (−1)d−1µ2
n and we arrive at

(2.15).
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3. An orthogonal decomposition of L2(Bd) in terms of ridge polyno-
mials. Since we are interested in approximating functions f ∈ L2(Bd) by elements
from spaces of ridge functions, it is natural to find a decomposition of f in terms of
fundamental building blocks of ridge functions. We shall show in this section that
we can take as the building blocks certain ridge polynomials. We begin by describing
this decomposition.

If f, g ∈ L2(Bd), we define the inner product

〈f, g〉 :=

∫
Bd
f(x)g(x) dx.(3.1)

This inner product induces the norm

‖f‖L2(Bd) :=

(∫
Bd
|f(x)|2 dx

)1/2

.

We also define, for f, g ∈ L2(Sd−1), the inner product

(f, g) :=

∫
Sd−1

f(ξ)g(ξ) dξ(3.2)

and the norm

‖f‖L2(Sd−1) :=

(∫
Sd−1

|f(ξ)|2 dξ
)1/2

,

where dξ stands for the area (volume) element on Sd−1 the unit sphere in Rd.

The Gegenbauer polynomials C
d/2
n are the building blocks for our decomposition.

Let

Un :=
(
hn,d/2

)−1/2
Cd/2n , n = 0, 1, . . . ,(3.3)

where hn,d/2 is from (2.1). Then ‖Un‖L2(I,w) = 1 and hence {Un}∞n=0 is a complete

orthonormal system for the weighted space L2(I, w), w(t) := wd/2(t) = (1−t2)
d−1

2 . Of
course, Un depends on the space dimension d, but we are suppressing this dependence
in our notation. The reader should think of the space dimension d as arbitrary but
fixed throughout.

Let Pn denote the set of all algebraic polynomials of total degree n in d real vari-
ables. That is, each P ∈ Pn is a linear combination of monomials xm := xm1

1 . . . xmdd
with x := (x1, . . . , xd), m is a d-tuple (m1, . . . ,md) of nonnegative integers, and
|m| := m1 + · · ·+md ≤ n.

The polynomials Un(ξ · x), ξ ∈ Sd−1, are in Pn and Un(ξ · x) are orthogonal to
Pn−1 in L2(Bd) (proved in the appendix):∫

Bd
Un(ξ · x)P (x) dx = 0 for ξ ∈ Sd−1 and P ∈ Pn−1.(3.4)

This is why the ridge polynomials Un(ξ · x) occur in our decomposition of L2(Bd).
Theorem 3.1. Each function f ∈ L2(Bd) can be represented uniquely as

f
L2=
∞∑
n=0

Qn(f),(3.5)
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where

Qn(f,x) := νn

∫
Sd−1

An(f, ξ)Un(ξ · x) dξ(3.6)

with

An(f, ξ) :=

∫
Bd
f(y)Un(ξ · y) dy,(3.7)

and

νn :=
(n+ 1)d−1

2(2π)d−1
=

(n+ 1)(n+ 2) · · · (n+ d− 1)

2(2π)d−1
.(3.8)

Moreover, the operators Qn, n = 0, 1, . . . , are the orthogonal projectors from L2(Bd)
onto Pn ª Pn−1 and the following Parseval identity holds

‖f‖2L2(Bd) =

∞∑
n=0

‖Qn(f)‖2L2(Bd) =

∞∑
n=0

νn‖An‖2L2(Sd−1).(3.9)

Next we make a few remarks which will help explain the nature of this decompo-
sition.

(i) For each n = 0, 1, . . . , the function Qn(f) is an algebraic polynomial (in d
variables) of degree n. Indeed, each of the Un(ξ · x) is a ridge polynomial of degree n
and Qn(f) is a linear combination of these.

(ii) For each n = 0, 1, . . . , the function An(f, ξ), ξ ∈ Sd−1, is a spherical polyno-
mial of degree n. This follows from the fact that each of the Un(ξ · x), x ∈ Bd, is of
this type.

(iii) The constants νn, n = 0, 1, . . . , are eigenvalues which occur in the Radon
inversion formula (see (3.26)).

(iv) Among other reasons, the polynomials Un occur in this formula because for
each ξ ∈ Sd−1 the weight wd/2(t) = (1 − t2)(d−1)/2 is a constant multiple of the

d− 1-dimensional volume of the intersection of Bd with the hyperplane x · ξ = t.
(v) The orthogonality of the functions Qn(f) occurs because for each ξ ∈ Sd−1,

the polynomial Un(x · ξ) is orthogonal to all algebraic polynomials of degree < n on
Bd (see (3.4)).

(vi) One can imagine that the integral representation of Qn(f) can be rewritten as
a discrete sum by using some sort of quadrature formula on Sd−1 and thereby obtain a
discrete decomposition of f in terms of ridge polynomials. In the case d = 2, one can
simply take the canonical quadrature formula for integrating spherical polynomials
(i.e., trigonometric polynomials) which uses equally spaced points on the unit circle.
This then gives the orthonormal system {Un(ω · x)}, ω ∈ Ωn, n = 0, 1, . . . , where
Ωn := {(cos kπ/n, sin kπ/n)}nk=1. This was used in [DOP] as the vehicle for proving
approximation results for ridge functions in two variables. In the case d ≥ 3, we know
no analogous quadrature formula. This necessitates a substantial effort (executed in
the following section) to derive (less elegant) quadrature formulas which can be used
to discretize the integral representation of Qn(f).

(vii) The decomposition of Theorem 3.1 is in essence known (see, e.g., [RK] and
[LS] for the case d = 2). However, we could find no reference which gives it in the
above form.
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There are several ways in which the decomposition of Theorem 3.1 can be de-
rived. One approach is to derive it from the theory of spherical harmonics. A second
approach is Radon transforms and in particular (3.5) is a rewriting of the Radon
inversion formula (see [RK]). We shall briefly explain this at the end of this section.

We shall give a simple and direct proof of this decomposition using fundamental
identities for the ridge polynomials Un(ξ · x), ξ ∈ Sd−1. To keep our exposition
more fluid, we shall state these identities without proof and relegate the proofs to the
appendix.

We start with the following two fundamental identities (proved in the appendix):
for each ξ, η ∈ Sd−1, we have∫

Bd
Un(ξ · x)Un(η · x) dx =

Un(ξ · η)

Un(1)
,(3.10)

and, for each η ∈ Sd−1, we have∫
Sd−1

Un(ξ · x)Un(ξ · η) dξ =
Un(1)

νn
Un(η · x).(3.11)

Proof of Theorem 3.1. Let f ∈ L2(Bd), d > 2. From remark (i) and (3.4),
it follows that Qn(f) is in Pn ª Pn−1. From identities (3.10) and (3.11), we have
Qn(g) = g whenever g(x) = Un(η · x), η ∈ Sd−1. Therefore, Q2

n = Qn and hence Qn
is a projector onto a subspace Yn of PnªPn−1. Thus, to prove (3.5), it remains only
to show that

dim (Yn) = dim (Pn ª Pn−1) = dim (Phn),(3.12)

where Phn denotes the space of all homogeneous polynomials of degree n.
To prove (3.12), we recall a few well-known facts about spherical harmonics which

can be found in Stein and Weiss [SW, Chapter 4]; see also [Se]. Let Hn denote the
space of spherical harmonics of degree n; i.e., Hn is the set of those functions on Sd−1

which are the restriction to Sd−1 of a function from Phn which is harmonic in Bd. The
spherical harmonics of degree n are orthogonal to those of dimension m 6= n with
respect to the inner product (3.2). We have

dim (Hn) = N(d, n) :=

(
n+ d− 1

n

)
−
(
n+ d− 3
n− 2

)
(3.13)

and

dim (Phn) = dim (Hn ⊕Hn−2 ⊕ · · · ⊕ Hε),(3.14)

where ε = 0 if n is even and ε = 1 if n is odd.
Write

Kn(t) :=
N(d, n)

|Sd−1|C(d−2)/2
n (1)

C(d−2)/2
n (t),

where |Sd−1| := ∫
Sd−1 1 dξ = 2πd/2

Γ(d/2) is the surface area of Sd−1. The function Kn(ξ ·η)

is the reproducing kernel for Hn; i.e.,∫
Sd−1

S(ξ)Kn(ξ · η)dξ = S(η), S ∈ Hn.(3.15)
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Moreover, a simple identity for Gegenbauer polynomials (see Appendix A3) gives that

Kn +Kn−2 + · · ·+Kε =
C
d/2
n

|Sd−1| =
νnUn
Un(1)

.(3.16)

Hence, the right side of (3.16) is the reproducing kernel for Hn ⊕ Hn−2 ⊕ · · · ⊕ Hε;
i.e., ∫

Sd−1

S(ξ)
νn
Un(1)

Un(ξ · η)dξ = S(η), S ∈ Hn ⊕Hn−2 ⊕ · · · ⊕ Hε.(3.17)

Note that An(f, ξ) is a spherical polynomial of degree n since Un(ξ · y) is a
spherical polynomial of degree n in ξ. We have Un(−t) = (−1)nUn(t) (see (2.2)) and
hence An(f,−ξ) = (−1)nAn(f, ξ). Therefore, An(f) ∈ Hn ⊕Hn−2 ⊕ · · · ⊕ Hε. Thus,
Qn can be considered as a linear operator mapping Hn ⊕ Hn−2 ⊕ · · · ⊕ Hε into Yn.
On the other hand, after multiplying both sides of (3.6) by Un(η · x) and integrating
over Bd we obtain∫

Bd
Qn(f,x)Un(η · x) dx =

∫
Sd−1

An(f, ξ)

(
νn

∫
Bd
Un(η · x)Un(ξ · x) dx

)
dξ

=

∫
Sd−1

An(f, ξ)
νn
Un(1)

Un(η · ξ) dξ = An(f, ξ),

where we used (3.10) and (3.17). Hence, An is an operator mapping Yn onto Hn ⊕
Hn−2⊕· · ·⊕Hε and it is the inverse operator of Qn. Therefore, dim (Yn) = dim (Hn⊕
Hn−2 ⊕ · · · ⊕ Hε) which together with (3.14) implies (3.12).

Since Qn(f) is in Pn ª Pn−1, it is orthogonal to Qj(f), j 6= n, and therefore we
have the first equality in (3.9). For the proof of the second equality in (3.9), we use
(3.10) to write∫

Bd
Qn(f,x)2 dx = ν2

n

∫
Sd−1

∫
Sd−1

∫
Bd
An(f, ξ)An(f, η)Un(ξ · x)Un(η · x) dx dξ dη

= ν2
n

∫
Sd−1

∫
Sd−1

An(f, ξ)An(f, η)
Un(ξ · η)

Un(1)
dξ dη.

Since An(f) ∈ Hn⊕Hn−2⊕ · · ·⊕Hε, then we can use (3.17) to complete the integral
with respect to η above. We get∫

Bd
Qn(f,x)2 dx = νn

∫
Sd−1

An(f, ξ)2 dξ.

This completes the proof of (3.9) and the theorem.
In the same way that we have proved (3.9) of Theorem 3.1 we obtain the following

formulas for calculating inner products:

〈f, g〉 =

∞∑
n=0

νn

∫
Sd−1

An(f, ξ)An(g, ξ) dξ.(3.18)

We next consider the decomposition (3.5) for ridge functions. Let r be a univariate
function in L2(I, w), w := wd/2. Then

r(t) =

∞∑
n=0

r̂(n)Un(t), r̂(n) :=

∫
I

r(t)Un(t)w(t) dt.(3.19)
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It follows that for any ρ ∈ Sd−1, the ridge function R(x) := r(ρ · x) has the represen-
tation

R(x) =

∞∑
n=0

r̂(n)Un(ρ · x).(3.20)

Using (3.10) and (3.4), we see that

An(R, ξ) = r̂(n)
Un(ρ · ξ)
Un(1)

.(3.21)

Moreover, if R1 and R2 are two such ridge functions corresponding to r1, ρ1 and r2,
ρ2, respectively, then from (3.4), (3.11), and (3.18) we have

〈R1, R2〉 =
∞∑
n=0

r̂1(n)r̂2(n)
Un(ρ1 · ρ2)

Un(1)
.(3.22)

There is another approach to deducing the decomposition of Theorem 3.1 which
we want to mention since it brings out the connections between this paper and Radon
transforms. For each f ∈ L1(Bd) the Radon transform is defined by

R(f ; ξ, t) :=

∫
ξ⊥
⋂

Bd
f(tξ + y) dy,(3.23)

where ξ ∈ Sd−1, t ∈ [−1, 1], and ξ⊥ := {y ∈ Rd : y · ξ = 0}. So, the integration is
over the intersection of the hyperplane y · ξ = t and Bd.

We can recover f from its Radon transform by using the Radon transform in-
version formula. The Radon transform inversion formula uses the operator (see, e.g.,
[L])

Kg(t) := Ktg(t) :=


(−1)

d−1
2

2(2π)d−1

(
d
dt

)d−1
g(t) for d odd,

(−1)
d
2
−1

2(2π)d−1 H
(
d
dt

)d−1
g(t) for d even,

(3.24)

where H is the Hilbert transform (see (2.7)). The following relation is the Radon
inversion formula for functions defined on Bd: for every sufficiently smooth function
f supported on Bd

f(x) =

∫
Sd−1

h(ξ,x · ξ) dξ with h(ξ, t) := KtR(f ; ξ, t).(3.25)

Lemma 2.1 gives that the functions Un are eigenfunctions for the operator K(w•):
K(wUn) = νnUn.(3.26)

We now show the idea of using the Radon inversion formula to derive a represen-
tation of f in terms of the ridge polynomials {Un(x · ξ)}. Since {Un}∞n=0 is a complete
orthonormal system for L2(I, w), we can expand R(f ; ξ, •)/w in terms of the {Un}∞n=0

to obtain

R(f ; ξ, •)
w

=
∞∑
n=0

An(ξ)Un,(3.27)
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with

An(ξ) :=

∫
I

R(f ; ξ, t)Un(t) dt =

∫
Bd
f(y)Un(y · ξ) dy.(3.28)

After multiplying both sides of (3.27) by the weight w and applying the operator
K := Kt we get

KR(f ; ξ, •) =
∞∑
n=0

An(ξ)K [w Un] =
∞∑
n=0

νnAn(ξ)Un,

where we used (3.26). Finally, we insert the above in (3.25) and find

f(x) =

∫
Sd−1

KR(f ; ξ,x · ξ) dξ =
∞∑
n=0

νn

∫
Sd−1

An(ξ)Un(x · ξ) dξ

which is the decomposition from Theorem 3.1. We leave the details of verifying this
approach to the reader.

4. Discrete representation of functions and norms. In this section we shall
deduce from Theorem 3.1 a discrete representation of functions by ridge polynomials.
To this end we shall use a cubature formula for integration on Sd−1, d > 2. We
need a cubature formula that is exact for all spherical polynomials of degree n. In
the case d = 2 we used in [DOP] a quadrature formula with equally spaced nodes
on the unit circle. Unfortunately, we do not know any “equally spaced points” on
Sd−1, d > 2. Also, we do not know effectively any cubature formula with near equally
spaced nodes on Sd−1. For this reason we shall use a cubature formula, determined
by using spherical coordinates on Sd−1. The results of this section are somewhat
technical and the reader may just wish to read them briefly at first and proceed to
section 5.

The spherical coordinates (θ, φ) := (θ1, θ2, . . . , θd−2, φ) on Sd−1 are defined as
usual by

ξ1 = cos θ1, ξ2 = sin θ1 cos θ2, . . . , ξd−2 = sin θ1 sin θ2 . . . sin θd−3 cos θd−2,
ξd−1 = sin θ1 sin θ2 . . . sin θd−3 sin θd−2 cosφ, ξd = sin θ1 sin θ2 . . . sin θd−3 sin θd−2 sinφ,

0 ≤ θj ≤ π, j = 1, 2, . . . , d − 2; 0 ≤ φ < 2π. We shall denote these identities in
vector form briefly by ξ := ξ(θ, φ). In these coordinates, the surface element dξ of
Sd−1 becomes

dξ = (sin θ1)d−2(sin θ2)d−3 . . . sin θd−2 dθ1 dθ2 . . . dθd−2 dφ =: J(θ) dθ dφ.(4.1)

We have the following identity for integration in spherical coordinates∫
Sd−1

f(ξ) dξ =

∫ π

0

. . .

∫ π

0

∫ 2π

0

f(ξ(θ, φ))J(θ) dθ1 . . . dθd−2 dφ,(4.2)

where J(θ) is the Jacobian given by (4.1). We shall use this to define our cubature.
We wish to construct a cubature that is exact for all spherical polynomials of

degree 2n. Every spherical polynomial of degree 2n can obviously be represented in
spherical coordinates as a linear combination of terms

(cosφ)kd−1(sinφ)`d−1

d−2∏
j=1

(cos θj)
kj (sin θj)

`j ,(4.3)
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where kj , `j ≥ 0, and max{kj+`j : j = 1, 2, . . . , d−1} ≤ 2(d−1)n. Also, the Jacobian
J is represented in the same terms (see (4.1)). So, we need quadrature formulas for
integration over [0, 2π] and [0, π] that are exact for trigonometric polynomial of degree
2(d− 1)n+ d− 2.

We shall use the following quadrature formula for integration on [0, 2π] with
respect to φ

Qφ,k(g) :=
2k∑
j=0

%jg(γj) ∼
∫ 2π

0

g(φ) dφ,(4.4)

where γj := π
2k+1 + 2πj

2k+1 and %j := 2π
2k+1 . The quadrature (4.4) is exact for all

trigonometric polynomials of degree k (see [Z, Chapter X]).
Since 0 ≤ θj ≤ π, we need a quadrature for integration over [0, π] that is exact for

all trigonometric polynomials of degree k. In addition to this, the quadrature should
have good localization properties. We also need to control (asymptotically) the nodes
and the coefficients of the quadrature. Since we do not know any quadrature like this,
we shall construct one in the following lemma.

Lemma 4.1. For any k = 1, 2, . . . , there exists a quadrature

Qθ,k(g) =

2k∑
j=0

λjg(βj) ∼
∫ π

0

g(θ) dθ(4.5)

with the following properties:
(a) Qθ,k(g) is exact for all trigonometric polynomials of degree k;
(b) 0 < β0 < β1 < · · · < β2k < π,

βj − βj−1 ≤ πk−1, j = 0, 1, . . . , 2k + 1;(4.6)

(c)

0 < λj ≤ c
(
βj+1 − βj−1

)
, j = 0, 1, . . . , 2k,(4.7)

where β−1 := 0, β2k+1 := π, and c is an absolute constant.
The exact values of the nodes βj and the coefficients λj of the quadrature (4.5)

are given in Remark 4.1 below.
Proof. For symmetry reasons we shall prove the lemma with the interval of

integration [0, π] replaced by [−π/2, π/2]. We shall build a quadrature

Qk(g) =
k∑

j=−k
λjg(θj) ∼

∫ π/2

−π/2
g(θ) dθ(4.8)

with symmetric nodes θj and coefficients λj (θ−j = θj , θ0 := 0, and λ−j = λj). Then
Qk(g) will be automatically exact for odd polynomials. Therefore, it is enough to
construct Qk(g) exact only for all even trigonometric polynomials of degree k. To
this end it is sufficient to have

Qk(P (cos θ)) :=
k∑

j=−k
λjP (cos θj) =

∫ π/2

−π/2
P (cos θ) dθ = 2

∫ π/2

0

P (cos θ) dθ(4.9)
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for each algebraic polynomial P of degree k. We shall apply the substitution θ :=
θ(α) := arccos

(
cos2 α

2

)
to the last integral in (4.9). Simple calculations show that

∆(α) :=
d

dα
θ(α) =

cos α2√
1 + cos2 α

2

(4.10)

and hence θ(α) is increasing on [0, π] and maps [0, π] on [0, π/2]. We obtain∫ π/2

0

P (cos θ) dθ =

∫ π

0

P
(

cos2 α

2

)
∆(α) dα =

1

2

∫ π

−π
P
(

cos2 α

2

)
∆(α) dα,(4.11)

where we used that the integrand is even. We now extend ∆(α) 2π-periodically by
∆(α) := | cos α2 |

/√
1 + cos2 α

2 .

We shall use the Dirichlet kernel Dk(u) := sin(k+1/2)u
2 sinu/2 to interpolate the trigono-

metric polynomial of degree m: P
(
cos2 α

2

)
= P

(
1+cosα

2

)
at the points αj :=

2πj
2k+1 , j = 0,±1, . . . ,±k. We have (see [Z, Chapter X])

P
(

cos2 α

2

)
=

2

2k + 1

k∑
j=−k

P
(

cos2 αj
2

)
Dk(α− αj).

This and (4.11) imply∫ π/2

0

P (cosα) dα =
1

2k + 1

k∑
j=−k

P
(

cos2 αj
2

)∫ π

−π
∆(α)Dk(α− αj) dα

=

k∑
j=−k

ηjP
(

cos2 αj
2

)
(4.12)

= η0P
(

cos2 α0

2

)
+

k∑
j=1

2ηjP
(

cos2 αj
2

)
,

where

ηj :=
1

2k + 1

∫ π

−π
∆(α)Dk(α− αj) dα(4.13)

and we used that η−j = ηj since ∆ is even and α−j = −αj .
We now define the nodes and the coefficients of our quadrature. Set

θj := arccos
(

cos2 αj
2

)
for j = 0, 1, . . . , k and θj := −θ−j for j = −1,−2, . . . ,−k.

Also, set

λj := 2ηj for j = 0, 1, . . . , k and λj := λ−j for j = −1,−2, . . . ,−k.

We obtain by (4.9), (4.12) and the symmetry that quadrature (4.8) with the above
defined nodes and coefficients is exact for all trigonometric polynomials of degree m.
It remains to prove that the nodes and the coefficients of the quadrature satisfy the
required properties.
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We have θj − θj−1 = θ′(ζj)(αj − αj−1) = ∆(ζj)(αj − αj−1) for some ζj ∈
(αj−1, αj) and hence, by (4.10),

1√
2

(
cos

αj
2

) 2π

2k + 1
≤ θj − θj−1 ≤

(
cos

αj
2

) 2π

2k + 1
<
π

k
, j = 1, 2, . . . , k.(4.14)

Therefore, the proof will be completed if we show that

0 < ηj ≤ ck−1 cos
αj
2
, j = 1, 2, . . . , k.(4.15)

By (4.13) it follows that

ηj = π(2k + 1)−1Sk(∆)(αj), where Sk(∆)(α) := 1
π

∫ π
−π ∆(β)Dk(β − α) dβ

is the kth partial Fourier sum of ∆. In order to simplify our further calculations we
shift ∆ by π and obtain

ϕ(α) := ∆(α+ π) =
∣∣∣sin α

2

∣∣∣/√1 + sin2 α

2
.

The function ϕ is even and, therefore, its Fourier coefficients associated with sin να
are all equal to zero. Let

a0 :=
1

2π

∫ 2π

0

ϕ(α) dα and aν :=
1

π

∫ 2π

0

ϕ(α) cos να dα, ν = 1, 2, . . .

be the Fourier coefficients of ϕ associated with cos να. Obviously, a0 > 0. Let
ν = 1, 2, . . . . Then using integration by parts (twice) we get

aν = − 1

πν

∫ 2π

0

ϕ′(α) sin να dα

=
1

πν2

[
ϕ′(2π−)− ϕ′(0+)

]− 1

πν2

∫ 2π

0

ϕ′′(α) cos να dα

=
1

πν2

∫ 2π

0

ϕ′′(α)(1− cos να) dα.

Therefore,

aν =
2

πν2

∫ 2π

0

ϕ′′(α) sin2 να

2
dα.(4.16)

Simple calculations show that

ϕ′(α) =
1

2
cos

α

2

/(
1 + sin

α

2

)3/2

and ϕ′′(α) < 0 for 0 < α < 2π.

This and (4.16) imply that aν < 0 and

|aν | ≤ 2

πν2

∫ 2π

0

|ϕ′′(α)| dα = − 2

πν2

∫ 2π

0

ϕ′′(α) dα = − 2

πν2

[
ϕ′(2π−)− ϕ′(0+)

]
=

2

πν2
.

Thus, we have

− 2

πν2
≤ aν < 0, ν = 1, 2, . . ..(4.17)
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Therefore ϕ(α) = a0 +
∑∞
ν=1 aν cos να, where a0 > 0 and aν < 0, ν = 1, 2, . . . , and

hence

Sk(ϕ)(α) = a0 +
k∑
ν=1

aν cos να ≥ a0 +
k∑
ν=1

aν = Sk(ϕ)(0)

= Sk(ϕ)(0)− ϕ(0) = −
∞∑

ν=k+1

aν > 0.

Thus Sk(ϕ)(α) > 0 for α ∈ [−π, π) and hence Sk(∆)(α) > 0 for α ∈ [−π, π) which
implies the lower bound in (4.15).

The inequalities (4.17) imply

‖∆− Sk(∆)‖C = ‖ϕ− Sk(ϕ)‖C ≤ ck−1.

Using this, we obtain

|ηj | ≤ ck−1|Sk(∆)(αj)| ≤ ck−1 (|∆(αj)|+ ‖∆− Sk(∆)‖C)

≤ ck−1
(

cos
αj
2

+ k−1
)
≤ ck−1

(
cos

αj
2

+ cos
αk
2

)
≤ ck−1 cos

αj
2
,

where we used that cos(αk/2) = cos (πk/(2k + 1)) > ck−1. Thus the upper estimate
in (4.15) is proved. Lemma 4.1 is proved.

Remark 4.1. The exact values of the nodes βj and the coefficients λj of the
quadrature (4.5) from Lemma 4.1 are the following:

βj =
π

2
− arccos

(
cos2 (k − j)π

2k + 1

)
, j = 0, 1, . . . , k,

and βj = π − β2k−j , j = k + 1, k + 2, . . . , 2k;

λj =
2

2k + 1

∫ π

−π
cos

α

2

(
1 + cos2 α

2

)−1/2

Dk

(
α− 2π(k − j)

2k + 1

)
dα, j = 0, 1, . . . , k,

and λj = λ2k−j , j = k + 1, k + 2, . . . , 2k, where Dk is the Dirichlet kernel of degree
k.

We are now in a position to construct our cubature formula for integration over
Sd−1 (d > 2). We shall use (4.2), (4.3), and the quadratures from (4.4) and (4.5).

Definition of cubature Qn. Given n = 1, 2, . . . we select k := 2(d − 1)n + d − 2.
Let Jn be the set of all indices j := (j1, . . . , jd−1) such that 0 ≤ jν ≤ 2k; i.e.,
Jn := {0, 1, . . . , 2k}d−1. Note that the cardinality of Jn is #Jn = (2k+1)d−1 � nd−1.

Set βj := (βj1 , . . . , βjd−2
), γj := γjd−1

, ωj := ξ(βj, γj), and λj := J(βj)%jd−1

∏d−2
ν=1 λjν ,

where γj , %j , βj , and λj are the nodes and the coefficients of quadratures (4.4) and
(4.5), respectively, and J is from (4.1). We define

Qn(f) :=
∑
j∈Jn

λjf(ωj) ∼
∫

Sd−1

f(ξ) dξ.(4.18)

When it is possible we shall write this cubature with the following simpler indices.
Let Ωn be the set of all nodes ω = ωj, and λω := λωj

:= λj, j ∈ Jn. Then cubature
(4.18) can be rewritten in the form

Qn(f) :=
∑
ω∈Ωn

λωf(ω) ∼
∫

Sd−1

f(ξ) dξ.(4.19)

Observe that #Ωn � nd−1.



172 PENCHO PETRUSHEV

As we mentioned in the beginning of this section, every spherical polynomial of
degree 2n can be represented in spherical coordinates as a linear combination of terms
like those in (4.3) and the Jacobian J is represented in a similar way (see (4.1)). On
the other hand, quadratures (4.4) and (4.5) are exact for trigonometric polynomials
of degree k := 2(d− 1)n+ d− 2. Therefore (see (4.2)), cubature (4.18) (or (4.19)) is
exact for all spherical polynomials of degree 2n; i.e., for every spherical polynomial S
of degree ≤ 2n we have

Qn(S) :=
∑
ω∈Ωn

λωS(ω) =

∫
Sd−1

S(ξ) dξ.(4.20)

Note that λω > 0 and, since (4.20) holds for S = 1, then∑
ω∈Ωn

λω =

∫
Sd−1

1 dξ =: |Sd−1|.(4.21)

Identity (4.20) implies discrete representations of the projection Qm(f) of any f ∈
L2(Bd) onto PmªPm−1 and ‖Am(f)‖L2(Sd−1) (see (3.6) and (3.7) from Theorem 3.1).
Namely, since Am(f, ξ)Um(x · ξ) and A2

m(f, ξ), for m ≤ n, are spherical polynomials
of degree ≤ 2m ≤ 2n, then

Qm(f,x) := νm

∫
Sd−1

Am(f, ξ)Um(x · ξ) dξ = νm
∑
ω∈Ωn

λωAm(f, ω)Um(x · ω)(4.22)

and

‖Am‖2L2(Sd−1) :=

∫
Sd−1

|Am(f, ξ)|2 dξ =
∑
ω∈Ωn

λω|Am(f, ω)|2.(4.23)

Since quadratures (4.4) and (4.5) have good localization properties, then cubature
(4.18) (or (4.19)) has such properties. We shall use them to prove the following lemma.

Lemma 4.2. Let n = 1, 2, . . . , m = 1, 2, . . . , and let, for γ ∈ (0, π], Km(cos γ) :=
c0 min{md−1,md−1/(mγ)d} with c0 > 0 a constant. Then we have

Qn(Km(• · η)) ≤ c[1 + (m/n)d−1] for η ∈ Sd−1,(4.24)

where Qn is the cubature from (4.19) and c depends only on d and c0.
Proof. In what follows, we shall assume that n > n0, where n0 is sufficiently large

and depends only on the dimension d. Estimate (4.24) obviously holds for n ≤ n0

by (4.21). We first construct a tiling of Sd−1 which is determined by the nodes of
cubature (4.18). We associate with each node ωj the spherical box (tile) Tj consisting
of all points ξ ∈ Sd−1 for which ξ = ξ(θ, φ) with

(θ, φ) ∈ [aj1 , aj1+1)× · · · × [ajd−2
, ajd−2+1)× [bjd−1

, bjd−1+1),

where aj := 1
2 (βj +βj−1) and bj := 1

2 (γj +γj−1) with βj from (4.5) and γj from (4.4).
Observe that ωj ∈ Tj is the (spherical) center of Tj. Obviously Tj

⋂
Ti = ∅, j 6= i, and

the tiles Tj cover Sd−1 excluding small regions around the poles. The most important
property of our cubature is that

0 < λj ≤ c
∫
Tj

1 dξ =: c|Tj| for j ∈ Jn.(4.25)
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This property follows readily by (4.7), the definition of γj from (4.4), and the definition
of our cubature (see (4.18)).

The second important property of our tiling is that the diameter of each tile Tj is
≤ cn−1. We let ρ(ξ, η) := arccos ξ ·η, ξ, η ∈ Sd−1 denote the angular distance on Sd−1

(the angle between vectors ξ and η). It is easily seen that ρ(ξ, η) satisfies the axioms
for a distance on Sd−1. Since βj − βj−1 ≤ cn−1, by (4.6), and γj − γj−1 ≤ cn−1, by
the definition of γj , then

sup{ρ(ξ, η) : ξ, η ∈ Tj} < c1n
−1,(4.26)

where c1 depends only on d.
Suppose that η ∈ Sd−1 is fixed. We select a new coordinate system such that η =

e′1 := (1, 0, . . . , 0) is its first coordinate vector. This can be done by a suitable rotation
of the old coordinate system. For ξ ∈ Sd−1, we shall denote by θ′ := (θ′1, . . . , θ

′
d−2)

and φ′ the new spherical coordinates of ξ.
We define, for ν = 1, 2, . . . , n,

Zν :=

{
ξ ∈ Sd−1 :

π(ν − 1)

n
≤ ρ(ξ, e′1) ≤ πν

n

}
=

{
ξ ∈ Sd−1 :

π(ν − 1)

n
≤ θ′1 ≤

πν

n

}
and

Z∗ν :=

{
ξ ∈ Sd−1 : max

{
π(ν − 1)− c1

n
, −π

}
≤ θ′1 ≤ min

{
πν + c1

n
, π

}}
,

where c1 is from (4.26). Obviously
⋃n
ν=1Zν = Sd−1.

Let Tν be the set of all tiles Tj with centers ωj ∈ Zν . It follows by (4.26) that⋃
T∈Tν T ⊂ Z∗ν and hence∑

T∈Tν
|T | ≤ |Z∗ν | :=

∫
Z∗ν

1 dξ ≤ c
∫
Zν

1 dξ =: c|Zν |, ν = 1, 2, . . . , n.(4.27)

We are now ready to estimate Qn(Km(• · η)). If ν = 1, then we obtain, using
(4.25), (4.27), and the assumptions of the lemma,∑

ωj∈Z1

λjKm(ωj · e′1) ≤ cmax{Km(cos θ1) : 0 ≤ θ′1 ≤ π/n}
∑
T∈T1

|T |

≤ cmd−1|Z1| ≤ cmd−1

∫ π/n

0

sind−2 θ′1 dθ
′
1 ≤ c(m/n)d−1.

If ν ≥ 2, then∑
ωj∈Zν

λjKm(ωj · e′1) ≤ cmax{Km(cos θ′1) : π(ν − 1)/n ≤ θ′1 ≤ πν/n}
∑
T∈Tν

|T |

≤ cKm
(

cos
π(ν − 1)

n

)
|Z∗ν | ≤ cKm

(
cos

πν

n

)
|Zν | ≤ c

∫
Zν
Km(ξ · e′1) dξ,

where we used that Km(cos π(ν−1)
n ) ≤ cKm

(
cos πνn

)
, ν ≥ 2, which follows by the

definition of Km(cos γ) from the assumptions of the lemma. Therefore,∑
j∈Jn

λjKm(ωj · e′1) ≤ c(m/n)d−1 + c

∫
Z
Km(ξ · e′1) dξ,(4.28)
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where Z :=
⋃n
ν=2Zν . We obtain, using again the definition of Km(cos γ),∫

Z
Km(ξ · e′1) dξ = |Sd−2|

∫ π

π/n

Km(cos θ′1) sind−2 θ′1 dθ
′
1

≤ c
∫ ∞

0

min{md−1,md−1/(mθ′1)d}(θ′1)d−2 dθ′1 ≤ c <∞.

The above estimates and (4.28) imply (4.24).
We shall deal with discrete sums of spherical polynomial values. For this, we need

a rapidly decaying reproducing kernel for the space of spherical polynomials of degree
m. The following well-known proposition gives us such a kernel.

Proposition 4.1. There exists a constant m0 = m0(d) such that for every
m ≥ m0 there exists an algebraic polynomial Wm of degree dm with the properties:

(a)

S(η) =

∫
Sd−1

Wm(η · ξ)S(ξ) dξ, η ∈ Sd−1,

for each spherical polynomial S of degree ≤ m;
(b)

|Wm(cos τ)| ≤ c0 min{md−1,md−1/(mτ)d} for 0 < τ ≤ π,(4.29)

and hence
(c) ∫

Sd−1

|Wm(η · ξ)| dξ ≤ c <∞, η ∈ Sd−1,(4.30)

where c0 and c are independent of m and η.
Since we do not have a good reference for Proposition 4.1, we shall show how it

can be deduced from the following results of Kogbetliantz and Stein (see also [P]).
Proposition 4.2 (see [K]). Let Sm(t) :=

∑m
ν=0(ν + λ)Cλν (t), λ > 0, m =

0, 1, . . . , and let σ
(δ)
m be the Cesàro means of order δ of Sm; i.e.,

σ(δ)
m (t) :=

(
Aδm
)−1

m∑
ν=0

Aδm−ν(ν + λ)Cλν (t) with Aδν := Γ(ν+δ+1)
Γ(δ+1)Γ(ν+1) .(4.31)

Then, for −1 < δ ≤ 2λ+ 1,

|σ(δ)
m (cos γ)| ≤ cmin

{
(m+ 1)2λ+1, (m+ 1)2λ−δ

/(
sin

γ

2

)δ+1
}
, 0 < γ ≤ π,(4.32)

with c depending only on λ.
Proposition 4.3 (see [St]). For each positive integer r and for m = 0, 1, . . . ,

there exist r + 1 parameters α1(m), . . . , αr+1(m) (depending only on m and r) which
are uniformly bounded: |αν(m)| ≤ A, A independent of m, and there exists a fixed
integer N , so that the following holds:

If
∑∞
ν=0 aν is a series of real numbers and if σ

(r)
m , m = 0, 1, . . . , are the Cesàro

means of order r of the partial sums Sm, m = 0, 1, . . . , of this series (see (4.31)), then

τ (r)
m := α1(m)σ

(r)
m−1 + α2(m)σ

(r)
2m−1 + · · ·+ αr+1(m)σ

(r)
(r+1)m−1
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can be represented in the form

τ (r)
m =

m∑
ν=0

aν +

(r+1)m∑
ν=m+1

βνaν if m ≥ N ,

where βν are constants depending on m and r.
Proof of Proposition 4.1. We have already mentioned in (3.15) that

Km(t) :=
N(d,m)

|Sd−1|C(d−2)/2
m (1)

C(d−2)/2
m (t)

gives the reproducing kernel Km(ξ · η) for Hm. Therefore,
∑m
ν=0Kν(ξ · η) is a repro-

ducing kernel for all spherical polynomials of degree ≤ m. Simple calculations show
that

Km(t) = 2
[|Sd−1|(d− 2)

]−1
(m+ λ)Cλm(t) with λ := (d− 2)/2.

Therefore, 2
[|Sd−1|(d− 2)

]−1∑m
ν=0(ν + λ)Cλν (t) gives a reproducing kernel for the

spherical polynomials of degree ≤ m.
We now apply Proposition 4.2 with λ := (d− 2)/2 and δ := 2λ+ 1 = d− 1. Then

we apply Proposition 4.3 to the resulting Cesàro means {σ(r)
ν } with r := δ = d − 1

to conclude that Wm := 2
[|Sd−1|(d− 2)

]−1
τ

(r)
m satisfies (4.29) (by (4.32) and since

αν(m) are uniformly bounded) and Wm(ξ ·η) is a reproducing kernel for the spherical
polynomials of degree ≤ m (by Proposition 4.3).

Lemma 4.2 and Proposition 4.1 allow us to estimate discrete lp(Ωn) norms of
spherical polynomials by their Lp(S

d−1) norms. In this part we use ideas from [O].
Lemma 4.3. Let n = 1, 2, . . . , and let m ≥ m0, where m0 is from Proposition 4.1.

Then for every spherical polynomial S of degree m and for 1 ≤ p ≤ ∞ we have∑
ω∈Ωn

λω|S(ω)|p ≤ c[1 + (m/n)d−1]

∫
Sd−1

|S(ξ)|p dξ,(4.33)

where λω and Ωn are from (4.19), and c is independent of S, n, and m.
Proof. By Proposition 4.1 we get S(ω) =

∫
Sd−1 Wm(ω · ξ)S(ξ) dξ, ω ∈ Ωn. We

obtain, using Hölder’s inequality,

|S(ω)| ≤
∫

Sd−1

|Wm(ω · ξ)S(ξ)| dξ =

∫
Sd−1

|Wm(η · ξ)|1−1/p|Wm(ω · ξ)|1/p|S(ξ)| dξ

≤
(∫

Sd−1

|Wm(ω · ξ)| dξ
)1−1/p(∫

Sd−1

|Wm(ω · ξ)||S(ξ)|p dξ
)1/p

and hence

|S(ω)|p ≤ Ap−1

∫
Sd−1

|Wm(ω · ξ)||S(ξ)|p dξ, where A :=
∫
Sd−1 |Wm(ω · ξ)| dξ.

We now multiply both sides of the above inequality by λω and sum over ω ∈ Ωn to
obtain ∑

ω∈Ωn

λω|S(ω)|p ≤ Ap−1

∫
Sd−1

( ∑
ω∈Ωn

λω|Wm(ω · ξ)|
)
|S(ξ)|p dξ

≤ Ap−1 max
ξ∈Sd−1

Qn(|Wm(• · ξ)|)
∫

Sd−1

|S(ξ)|p dξ.
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It follows, by (4.29), that |Wm(• · ξ)| ≤ Km(• · ξ), where Km is defined in Lemma 4.2
with c0 from Proposition 4.1. Then Proposition 4.1 and Lemma 4.2 imply

max
ξ∈Sd−1

Qn(|Wm(• · ξ)|) ≤ max
ξ∈Sd−1

Qn(Km(• · ξ)) ≤ c[1 + (m/n)d−1] and A ≤ c

which completes the proof of Lemma 4.3.
The following lemma relates the L2(Sd−1) norms and discrete l2(Ωn) norms of

spherical polynomials written in terms of νmUm(ξ · ω)/Um(1), the reproducing kernel
for the space Hm ⊕Hm−2 ⊕ · · · ⊕ Hε (see (3.17)).

Lemma 4.4. Let n = 1, 2, . . . , and let c(ω), ω ∈ Ωn, be real constants. Let
m ≥ m0, where m0 is from Proposition 4.1. Then the spherical polynomial

S(ξ) :=
∑
ω∈Ωn

λωc(ω)
νm
Um(1)

Um(ξ · ω)

satisfies

‖S‖2L2(Sd−1) ≤ c[1 + (m/n)d−1]
∑
ω∈Ωn

λω|c(ω)|2.(4.34)

Proof. Using (3.11) we get

‖S‖2L2(Sd−1) =

∫
Sd−1

|S(ξ)|2 dξ

=
∑
ω∈Ωn

∑
η∈Ωn

λωληc(ω)c(η)

(
νm
Um(1)

)2 ∫
Sd−1

Um(ξ · ω)Um(ξ · η) dξ

=
∑
ω∈Ωn

∑
η∈Ωn

λωληc(ω)c(η)
νm
Um(1)

Um(ω · η) =
∑
η∈Ωn

ληc(η)S(η)

≤
∑
η∈Ωn

λη|c(η)|2
1/2∑

η∈Ωn

λη|S(η)|2
1/2

.

By Lemma 4.3, the last quantity above does not exceed c[1+(m/n)d−1]
1
2 ‖S‖L2(Sd−1).

Finally, we divide by ‖S‖L2(Sd−1) to complete the proof of the lemma.

5. Smoothness spaces in L2(Bd). In this section, we shall recall results about
approximation by algebraic polynomials. As earlier, we let Pn denote the space of
algebraic polynomials in d-variables. For n ≥ 1, let

En(f) := En(f)L2(Bd) := inf
P∈Pn

‖f − P‖L2(Bd)

be the error in approximating f ∈ L2(Bd) by algebraic polynomials P of degree ≤ n.
By Theorem 3.1 we have the following representation of the polynomial Pn(f,x) of
best L2(Bd)-approximation to f :

Pn(f,x) =
n∑

m=0

νm

∫
Sd−1

Am(ξ)Um(x · ξ) dξ,(5.1)

where

An(ξ) := An(f, ξ) :=

∫
Bd
f(y)Um(y · ξ) dy.
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Since Am(ξ)Um(x · ξ) is a spherical polynomial of degree ≤ 2m ≤ 2n in ξ, we can use
the quadrature formula (4.19) to obtain

Pn(f,x) =
∑
ω∈Ωn

λω

n∑
m=0

νmAm(ω)Um(x · ω).(5.2)

From Theorem 3.1, we have

En(f)2 = ‖f − Pn(f)‖2L2(Bd) =
∑
m>n

νm‖Am(f)‖2L2(Sd−1)

�
∑
m>n

md−1‖Am(f)‖2L2(Sd−1).(5.3)

For α > 0, let Wα(L2(Bd)) be the Sobolev space for the domain Bd. When
α = k is an integer, then a function f ∈ L2(Bd) is in W k(L2(Bd)) if and only if its
distributional derivatives Dνf of order k are in L2(Bd), and

|f |2Wk(L2(Bd)) :=
∑
|ν|=k

‖Dνf‖2L2(Bd)

gives the seminorm for W k(L2(Bd)). The norm for W k(L2(Bd)) is obtained by adding
‖f‖L2(Bd) to |f |Wk(L2(Bd)). For other values of α, we obtain Wα as the interpolation
space

Wα(L2(Bd)) = (L2(Bd),W k(L2(Bd)))θ,2, θ = α/k, 0 < α < k,

given by the real method of interpolation (see, e.g., Bennett and Sharpley [BS]).
A fundamental result in approximation known as the Jackson theorem states that

En(f) ≤ c(k)n−k‖f‖Wk(L2(Bd)),(5.4)

where the norm on the right can be replaced by the seminorm if k is an integer.
This theorem can be deduced easily from the results on univariate approximation in
Chapter 7 of [DL]. By interpolation (see, e.g., [DL, Chapter 7]), one obtains

∞∑
n=1

[nαEn(f)]2n−1 ≤ c(α)‖f‖2Wα(L2(Bd)), α > 0,(5.5)

with c(α) depending at most on α. From (5.3) and (5.5), it is easy to deduce that

∞∑
n=1

n2α+d−1‖An(f)‖2L2(Sd−1) ≤ c(α)‖f‖2Wα(L2(Bd)), α > 0,(5.6)

with c(α) depending at most on α.

6. Approximation of functions in L2(I, w). We shall also need certain re-
sults about the approximation of univariate functions in L2(I, w) where I := [−1, 1]
and w := wd/2. As we know by section 2, the Gegenbauer polynomials {Um}∞m=0 form
a complete orthonormal system for L2(I, w) (see (3.3)). For any g ∈ L2(I, w) we have

g =

n∑
m=0

ĝ(m)Um with ĝ(m) :=

∫
I

g(s)Um(s)w(s) ds.(6.1)
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We shall use approximation of functions in L2(I, w) as an intermediate tool in
establishing our results on ridge approximation. Let Pn(I) denote the space of uni-
variate algebraic polynomials of degree ≤ n. For a function g ∈ L2(I, w), we let

En(g)L2(I,w) := inf
p∈Pn(I)

‖g − p‖L2(I,w)

be the error in approximating g by the elements of Pn(I). The polynomial

pn :=
n∑

m=0

ĝ(m)Um(6.2)

is the best L2(I, w) approximation to g by elements of Pn(I), and we have

En(g)2
L2(I,w) = ‖g − pn‖2L2(I,w) =

∑
m>n

|ĝ(m)|2.(6.3)

We introduce the univariate Sobolev spaces Wα(L2(I, w)), α ∈ R, whose norms
are defined by

‖g‖2Wα(L2(I,w)) :=
∞∑
m=0

[(m+ 1)α|ĝ(m)|]2.(6.4)

It follows that for each g ∈Wα(L2(I, w)),

En(g)L2(I,w) ≤ c(α)n−α‖g‖Wα(L2(I,w)).(6.5)

Moreover, similar to (5.5), we have

∞∑
n=1

[nαEn(g)L2(I,w)]
2n−1 ≤ c(α)‖g‖2Wα(L2(I,w)), α > 0.(6.6)

There is also a Bernstein-type inequality for polynomials in Pn(I) with respect
to L2(I, w) which follows trivially from the definition: for every p ∈ Pn(I) and α > 0,

‖p‖Wα(L2(I,w)) ≤ (n+ 1)α‖p‖L2(I,w).(6.7)

It is well known (see [DL, Chapter 7]) that companion inequalities like (6.5) and
(6.7) imply a characterization of approximation spaces by interpolation spaces. In
our context, the approximation spaces are the Sobolev spaces Wα(L2(I, w)) defined
by (6.4) and we therefore obtain for each 0 < α < k,

Wα(L2(I, w)) = (L2(I, w),W k(L2(I, w)))θ,2, θ = α/k.(6.8)

Further properties of the spaces Wα(L2(I, w)) are given in section 7.

7. Approximation by ridge functions. In this section, we assume that Xn is
a subspace of L2(I, w), w = wd/2, of dimension n with the following property. There
is a real number s > 0 such that, for each univariate function g ∈W s(L2(I, w)), there
is a function r ∈ Xn which provides the Jackson estimate

‖g − r‖L2(I,w) ≤ c0n−s‖g‖W s(L2(I,w)),(7.1)

with c0 a constant independent of g and n.
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We define Yn to be the space of functions R in d variables of the form

R(x) =
∑
ω∈Ωn

rω(x · ω), rω ∈ Xn, ω ∈ Ωn,(7.2)

where Ωn is the set of vectors in Sd−1 from (4.19). Then Yn is a linear space of
dimension ≤ n#Ωn ≤ cnd. We prove the following theorem about approximation
from Yn.

Theorem 7.1. Let Xn, n = 1, 2, . . . , satisfy inequality (7.1) for some s > 0. If f

is a function from the space W s+ d−1
2 (L2(Bd)), then there is a function R in Yn such

that

‖f −R‖L2(Bd) ≤ cn−s−
d−1

2 ‖f‖
W s+

d−1
2 (L2(Bd))

(7.3)

with c a constant depending only on s and d.
Remark 7.1. If s + (d − 1)/2 − 1 is an integer and the space Yn contains

Ps+(d−1)/2−1, then we have that ‖f‖W s+(d−1)/2(L2(Bd)) can be replaced by the seminorm
|f |W s+(d−1)/2(L2(Bd)).

An important element of the proof of Theorem 7.1 is the idea to get rid of the “low
frequencies” when approximating. To this end we shall use the following geometric
construction which was proven for us by Boris Kashin.

Lemma 7.1. Let H be a Hilbert space with norm ‖ · ‖ and let A, B ⊂ H be finite-
dimensional linear subspaces of H with dimA ≤ dimB. If there exists δ, 0 < δ < 1/2,
such that

sup
x∈A
‖x‖≤1

inf
y∈B
‖x− y‖ ≤ δ,(7.4)

then there is a constant c depending only on δ and a linear operator L : A→ B such
that for every x ∈ A,

‖Lx− x‖ ≤ c inf
y∈B
‖x− y‖,(7.5)

and

Lx− x⊥A (Lx− x is orthogonal to A).

Proof. See [DOP, Lemma 6].
Proof of Theorem 7.1. Estimate (7.3) trivially holds if n < m0, where m0 = m0(d)

is the constant from Proposition 4.1.
Suppose that n ≥ m0. Let P = Pn be the polynomial in Pn given by (5.1) (or

(5.2)). Since P is the best L2(Bd) approximation of f , it satisfies (see (5.4))

‖f − P‖L2(Bd) ≤ cn−s−(d−1)/2‖f‖W s+(d−1)/2(L2(Bd))(7.6)

with c and all subsequent constants in this proof depending only on s and d. We
shall approximate P by an element R of YN , N = k0n, where k0 is a sufficiently large
constant depending only on s and d.

We have Am(P, ξ) = Am(f, ξ), m ≤ n, and Am(P, ξ) = 0, m > n. Since f ∈
W s+(d−1)/2(L2(Bd)), we know from (5.6) that

n∑
m=0

(m+ 1)2s+2(d−1)‖Am(f)‖2L2(Sd−1) ≤ c‖f‖2W s+(d−1)/2(L2(Bd)).(7.7)
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From this, using (4.23), we obtain

n∑
m=0

(m+ 1)2s+2(d−1)
∑
ω∈Ωn

λω|(Am(f, ω))|2 ≤ c‖f‖2W r+(d−1)/2(L2(Bd)).(7.8)

We introduce the univariate polynomials

pω(t) :=
n∑

m=0

νmAm(f, ω)Um(t) =
n∑

m=0

νmAm(P, ω)Um(t), ω ∈ Ωn.(7.9)

We have, by (4.22) and (7.9),

P (x) =

n∑
m=0

νm
∑
ω∈Ωn

λωAm(P, ω)Um(x · ω) =
∑
ω∈Ωn

λωpω(x · ω).(7.10)

According to (6.4), we have

‖λ1/2
ω pω‖2W s(L2(I,w)) =

n∑
m=0

(m+ 1)2sν2
mλω|Am(f, ω)|2

�
n∑

m=0

(m+ 1)2s+2(d−1)λω|Am(f, ω)|2.

Hence, from (7.8),

∑
ω∈Ωn

‖λ1/2
ω pω‖2W s(L2(I,w)) ≤ c

n∑
m=0

(m+ 1)2s+2(d−1)
∑
ω∈Ωn

λω|(Am(f, ω))|2

≤ c‖f‖2W s+(d−1)/2(L2(Bd)).(7.11)

We shall approximate each polynomial pω by elements of XN . We apply Lemma 7.1
in the following setting. We take for H the Hilbert space L2(I, w) and take A = Pn(I)
and B = XN with N ≥ k0n and k0 a positive integer. We next show that if k0 is
large enough then the assumption (7.4) is satisfied. We mentioned earlier in (6.7) that
Pn(I) satisfies the Bernstein inequality

‖p‖W s(L2(I,w)) ≤ (n+ 1)s‖p‖L2(I,w), p ∈ Pn(I).

If p ∈ Pn(I), then from this Bernstein inequality and from (7.1), there is an r ∈ XN

such that

‖p− r‖L2(I,w) ≤ c0N−s‖p‖W s(L2(I,w)) ≤ c0N−s2sns‖p‖L2(I,w) ≤ c02sk−s0 ‖p‖L2(I,w).

Thus, if k0 is large enough, condition (7.4) is satisfied. Therefore, for each ω ∈ Ωn,
we can find rω ∈ XN such that rω − pω ⊥ Pn(I) with respect to the inner product in
L2(I, w) and, by (7.1) and (7.5),

‖pω − rω‖2L2(I,w) ≤ cn−2s‖pω‖2W s(L2(I,w)).

Therefore,

rω − pω =
∞∑

m=n+1

r̂ω(m)Um(7.12)
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with

r̂ω(m) :=

∫
I

rω(s)Um(s)w(s) ds

and
∞∑

m=n+1

|r̂ω(m)|2 = ‖pw − rω‖2L2(I,w) ≤ cn−2s‖pω‖2W s(L2(I,w)).(7.13)

We define

R(x) :=
∑
ω∈Ωn

λωrω(x · ω)

which is an element of YN . Then we have, by (7.10) and (7.12),

R(x)− P (x) =
∑
ω∈Ωn

∞∑
m=n+1

λω r̂ω(m)Um(ω · x) =
∞∑

m=n+1

∑
ω∈Ωn

λω r̂ω(m)Um(ω · x).

We write

Rm(x) :=
∑
ω∈Ωn

λω r̂ω(m)Um(x · ω).

We have by Theorem 3.1 (see also (3.19)–(3.21))

Rm(x) = νm

∫
Sd−1

Am(Rm, ξ)Um(ξ · x) dξ,

where

Am(Rm, ξ) =

∫
Bd
Rm(y)Um(y · ξ) dy =

∑
ω∈Ωn

λω r̂ω(m)

∫
Bd
Um(ω · y)Um(ξ · y) dy

=
∑
ω∈Ωn

λω r̂ω(m)
Um(ξ · ω)

Um(1)
.

We now use Theorem 3.1 and Lemma 4.4 to obtain

‖Rm‖2L2(Bd) = νm‖Am(Rm, ω)‖2L2(Sd−1) = ν−1
m

∥∥∥∥∥ ∑
ω∈Ωn

λω r̂ω(m)
νm
Um(1)

Um(ξ · ω)

∥∥∥∥∥
2

L2(Sd−1)

≤ cν−1
m (m/n)d−1

∑
ω∈Ωn

λω|r̂ω(m)|2 ≤ cn−d+1
∑
ω∈Ωn

λω|r̂ω(m)|2,

where we used that νm � md−1 (see (3.8)). From this, (7.11), and (7.13), we find,
using the Parseval identity (3.9),

‖R− P‖2L2(Bd) =
∞∑

m=n+1

‖Rm‖2L2(Bd) ≤ cn−d+1
∞∑

m=n+1

∑
ω∈Ωn

λω|r̂ω(m)|2

= cn−d+1
∑
ω∈Ωn

λω

∞∑
m=n+1

|r̂ω(m)|2

≤ cn−2s−d+1
∑
ω∈Ωn

‖λ1/2
ω pω‖2W s(L2(I,w))

≤ cn−2s−d+1‖f‖2W s+(d−1)/2(L2(Bd)).
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Thus there is a function R ∈ YN , N = k0n, such that (7.3) holds. Theorem 7.1 is now
proved.

Remark 7.2. As in [DOP], it is possible to prove Theorem 7.1 without using
Lemma 7.1. In place of this lemma one uses a slightly stronger assumption than
estimate (7.1). The corresponding proof would be more constructive than the present
one. We do not provide the details of this approach but instead refer the reader to
[DOP].

8. Elimination of the weight w. The result of section 7 (Theorem 7.1) gives
sufficient conditions on a sequence of univariate spaces Xn, n = 1, 2, . . . , in order that
the spaces Yn defined by (7.2) with Ωn from (4.19) provide approximation rates for
functions in Sobolev spaces Wα(L2(Bd)) comparable with polynomials and splines.
However, the assumption (7.1) imposed on Xn is inconvenient for direct application
because of the appearance of the weight w(t) := wd/2(t) := (1− t2)(d−1)/2. We shall
show in this section how the weight factor w can be avoided so that the result of
section 7 applies more directly. We shall consider approximation on the ball Bd

1/2 :=

{x ∈ Rd : |x| ≤ 1/2} rather than Bd. Approximation on Bd or other balls follows by
a change of variables.

We begin by assuming that we have in hand n-dimensional linear spaces Zn of
univariate functions defined on J := [−1/2, 1/2] which satisfy a Jackson-type estimate
similar to (7.1) but with weight = 1. Let Wm(L2(J)), m = 1, 2, . . . , be the Sobolev
space of functions g ∈ L2(J) such that g(m) is in L2(J). The seminorm and norm for
Wm(L2(J)) are defined by

|g|Wm(L2(J)) := ‖g(m)‖L2(J) ; ‖g‖Wm(L2(J)) := ‖g(m)‖L2(J) + ‖g‖L2(J).

For 0 < s < m not an integer, we define W s(L2(J)) by interpolation:

W s(L2(J)) := (L2(J),Wm(L2(J)))θ,2, θ := s/m,(8.1)

with the norm as the interpolation space norm. For a given value of s, different values
of m > s give equivalent norms (see [DL]).

Our assumption on Zn is that for a certain fixed value of s, we have that for each
g ∈W s(L2(J)), there is a function ζn ∈ Zn such that

‖g − ζn‖L2(J) ≤ c(s)n−s‖g‖W s(L2(J))(8.2)

with the constant c(s) depending only on s.
Let Xn be the space of univariate functions r such that for some p ∈ Pn(I) and

some ζ ∈ Zn,

r(t) =

{
p(t), t ∈ I \ J ,
ζ(t), t ∈ J .

(8.3)

We shall show that under the assumption (8.2) on the Zn, the spaces Xn, n =
1, 2, . . . , satisfy the assumption (7.1). To prove this, we recall the definition (6.4) of
the spaces Wα(L2(I, w)) and the operator Λ of (2.12):

Λg :=

(
d

dt

)d−1

[wg] .(8.4)

According to (2.15), we have Λ2Un = (−1)d−1µ2
nUn. Since µn � nd−1 (see (2.16)), it

follows that for each g ∈Wmλ(L2(I, w)), λ = 2(d− 1), m = 1, 2, . . . , we have

‖g‖Wmλ(L2(I,w)) � ‖Λ2mg‖L2(I,w)(8.5)
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with the constants of equivalency depending only on d.
Lemma 8.1. For each m = kλ, with λ := 2(d − 1) and k a nonnegative integer,

we have

‖g‖Wm(L2(J)) ≤ c(d,m)‖g‖Wm(L2(I,w)) for g ∈Wm(L2(I, w))(8.6)

with the constant c(d,m) depending only on d and m.
Proof. We first observe that the weight w is strictly positive on J and, therefore,

w−1 is infinitely times differentiable on J . Then the following identity holds:

g(`(d−1)) =

`(d−1)−1∑
j=0

ujg
(j) + u`(d−1)Λ

`g, ` = 1, 2, . . . ,(8.7)

where uj are obtained from w−1 and its derivatives. Indeed, (8.7) can be proved by
induction on `. For ` = 1, (8.7) follows from Leibniz’s formula for differentiating the
product g = w−1(wg). Suppose that (8.7) holds for some ` ≥ 1. Then one writes Λ`g
as w−1

(
wΛ`g

)
and differentiates both sides of (8.7) d− 1 times to prove it for `+ 1.

It follows from (8.7), with ` = 2k and m = kλ, that

‖g(m)‖L2(J) ≤ c
m−1∑
j=0

‖g(j)‖L2(J) + c‖Λkg‖L2(J).(8.8)

We shall use next the following well-known inequality (see, e.g., [BS])

‖g(j)‖L2(J) ≤ c
(
δ−j‖g‖L2(J) + δm−j‖g(m)‖L2(J)

)
, j = 1, 2, . . . ,m,(8.9)

where δ > 0 is arbitrary and c depends only on m. Combining (8.8) with (8.9) we
get, for 0 < δ < 1,

‖g(m)‖L2(J) ≤ c∗δ−m+1‖g‖L2(J) + c∗δ‖g(m)‖L2(J) + c∗‖Λkg‖L2(J),(8.10)

where c∗ > 1 is independent of δ. We now select δ such that c∗δ = 1/2 and bring the
second term on the right in (8.10) to the left-hand side. We obtain

‖g(m)‖L2(J) ≤ c(‖g‖L2(J) + ‖Λkg‖L2(J))

≤ c(‖wg‖L2(I) + ‖wΛkg‖L2(I))
≤ c‖g‖Wm(L2(I,w)).

Theorem 8.1. If the sequence of spaces Zn, n = 1, 2, . . . , satisfies (8.2), then the
spaces Xn, n = 1, 2, . . . , defined by (8.3) satisfy the Jackson estimates (7.1); i.e., for
each univariate function g ∈W s(L2(I, w)), there is a function r ∈ Xn which provides
the Jackson estimate

‖g − r‖L2(I,w) ≤ cn−s‖g‖W s(L2(I,w)),(8.11)

with c a constant independent of g and n.
Proof. Consider the linear operator T that associates with every function g ∈

L2(I, w) the restriction of g on J . Since w is strictly positive on J , T is a bounded
operator from L2(I, w) into L2(J). By Lemma 8.1, T is bounded from Wm(L2(I, w))
into Wm(L2(J)) for each m = 2k(d − 1), k = 1, 2, . . . . This implies that, for each
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0 < s ≤ 2k(d − 1) and θ := s/(2k(d − 1)), we have by interpolation (see (6.8) and
(8.1)) that for each g ∈W s(L2(I, w)),

‖g‖W s(L2(J)) � ‖g‖(L2(J),W 2k(d−1)(L2(J)))
θ,2

≤ c‖g‖(L2(I,w),W 2k(d−1)(L2(I,w)))
θ,2

� ‖g‖W s(L2(I,w)).

Now, given g ∈W s(L2(I, w)), we let ζ ∈ Zn satisfy (8.2). Then, from (8.6),

‖g − ζ‖L2(J) ≤ cn−s‖g‖W s(L2(J)) ≤ cn−s‖g‖W s(L2(I,w)).

Similarly, let p be the best approximation in L2(I, w) to g from Pn(I). Then, from
(6.5),

‖g − p‖L2(I,w) ≤ n−s‖g‖W s(L2(I,w)).

It now follows that the function r ∈ Xn defined by (8.3) for these ζ and p satisfies
(8.11).

Theorem 8.2. If the sequence of spaces Zn, n = 1, 2, . . . , satisfy (8.2), then for
any function f ∈W s+(d−1)/2(L2(Bd

1/2)), there are functions rω ∈ Zn such that

R(x) =
∑
ω∈Ωn

rω(ω · x)(8.12)

satisfies

‖f −R‖L2(Bd
1/2

) ≤ cn−s−(d−1)/2‖f‖W s+(d−1)/2(L2(Bd
1/2

))(8.13)

with c independent of f and n.

Proof. We first recall (see, e.g., [A, Chapter IV]) that f can be extended to a
function f0 defined on all of Rd such that f0 vanishes outside of Bd

3/4 and

‖f0‖W s+(d−1)/2(L2(Bd)) ≤ c‖f‖W s+(d−1)/2(L2(Bd
1/2

))

with a constant c depending only on s and d.

We define Xn as in (8.3). From Theorem 8.1, we obtain that condition (7.1) is
satisfied. Therefore, from Theorem 7.1 there are functions rω ∈ Xn, ω ∈ Ωn, such
that the function

R(x) =
∑
ω∈Ωn

rω(ω · x)

satisfies

‖f0 −R‖L2(Bd) ≤ cn−r−(d−1)/2‖f0‖W r+(d−1)/2(L2(Bd))

≤ cn−r−(d−1)/2‖f‖W r+(d−1)/2(L2(Bd
1/2

)).(8.14)

On the ball Bd
1/2, f0 = f and rω is in Zn for each ω ∈ Ωn. Therefore, (8.13) follows

from (8.14).
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9. Examples and further remarks. In this section, we shall give some appli-
cations of the results of section 8. Theorem 8.2 implies that for any sequence of spaces
Zn, n = 1, 2, . . . , contained in L2(J), J = [−1/2, 1/2], that satisfy (8.2) we have the
estimate (8.13) for f ∈W s+(d−1)/2(L2(J)). The condition (8.2) is satisfied by all the
standard spaces of approximation such as algebraic polynomials and spline functions
(discussed in more detail later in this section). We wish to single out, for further
elaboration, one particular example which appears frequently in wavelet theory, as
well as in computer aided design.

Let φ be a univariate function with compact support on R. Let ` be the smallest
integer such that φ or one of its shifts φ(x − k), k ∈ Z, is supported on [0, `]. If
necessary, we can redefine φ to be one of its integer shifts and thereby require that
φ is supported on [0, `]. We denote by S := S(φ) the shift-invariant space which is
the L2(R)-closure of finite linear combinations of the shifts φ(· − j), j ∈ Z, of φ. By
dilation, we obtain the univariate spaces

Sk := {S(2k·) : S ∈ S}, k ∈ Z.

The approximation properties of the family of spaces Sk is well understood. In
[BDR], there is a complete characterization (in terms of the Fourier transform of φ)
of when the spaces Sk provide the Jackson estimates

dist(g,Sk)L2(R) ≤ C2−ks‖g‖W s(L2(R)).(9.1)

For an integer s, we say that φ satisfies the Strang–Fix conditions of order s if

φ̂(0) 6= 0, and Dj φ̂(2kπ) = 0, k ∈ Z, k 6= 0, j = 0, 1, . . . , s− 1.(9.2)

If φ satisfies (9.2) and φ is piecewise continuous and of bounded variation, then Sk
provides the approximation estimate (9.1) (see, e.g., [DL, Chapter 13]).

We denote by Sk(J), k ≥ 1, the restrictions of the spaces Sk to the interval
J := [−1/2, 1/2]. The functions φ(2kt − j), j = −` + 1 − 2k−1, . . . , 2k−1 − 1, span
Sk(J). Each function g in W s(L2(J)) can be extended to R with

‖g‖W s(L2(R)) ≤ c‖g‖W s(L2(J)).

It follows therefore that the spaces Sk(J) provide the approximation property (8.2)
and hence Theorem 8.2 applies with n = 2k. The functions R appearing in Theo-
rem 8.2 are of the form

R(x) =

2k−1∑
j=−`+1−2k−1

∑
ω∈Ω

2k

c(j, ω)φ(2kx · ω − j).

There is another representation of the functions in Sk(J) related to sigmoidal
functions. Let

σ(t) :=

∞∑
j=0

φ(t− j).(9.3)

Then the functions σ(2kt− j), j = −`+ 1− 2k−1, . . . , 2k−1− 1, also span Sk(J). The
function σ is 0 for t sufficiently large negative and 1 for t sufficiently large positive.
However, it is not necessarily monotone (without additional assumptions on φ).
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Corollary 9.1. Let φ satisfy the Strang–Fix conditions (9.2) of order s. Then
for each function f ∈W s+(d−1)/2(L2(Bd

1/2)), there is a function

R(x) =

2k−1−1∑
j=−`+1+2k−1

∑
ω∈Ω

2k

c(j, ω)σ(2kx · ω − j)

such that

‖f −R‖L2(Bd
1/2

) ≤ c 2−(s+(d−1)/2)k‖f‖W s+(d−1)/2(L2(Bd
1/2

)), k = 1, 2, . . . ,

with c independent of f and k.

For certain choices of φ above, we obtain that σ of (9.3) is a sigmoidal function
in the terminology of neural networks. We recall that a sigmoidal function is a non-
negative, monotone, univariate function which has limits = 0 as t → −∞ and = 1
as t → ∞. To obtain examples of such sigmoidal functions, we can take φ to be a
B-spline. Let φ := N0,s, where for each j ∈ Z and s = 1, 2, . . . , Nj,s := s−1Mj,s is the
B-spline of order s (see [DL, Chapter 5]) with breakpoints j

2n , . . . ,
j+s
2n . The function

σs(t) :=
∞∑

j=−s+1

Nj,s(t), t ∈ R

of (9.3) is a sigmoidal function, and, in the case s = 1, it is the unit impulse function
χ

[0,∞)
. The functions σs(t − j

2n ), j = −n, . . . , n + s − 1, form a basis for Sn,s the

space of all splines of degree s− 1 defined on J with breakpoints belonging to the set
{−n+1

2n , −n+2
2n , . . . , n−1

2n }. From Theorem 8.2, we obtain the following.

Corollary 9.2. For any f ∈W s+(d−1)/2(L2(Bd
1/2)), there are constants c(k, ω),

ω ∈ Ωn, k = −n, . . . , n+ s− 1, such that

R(x) =
∑
ω∈Ωn

n+s−1∑
k=−n

c(k, ω)σs

(
x · ω − k

2n

)
(9.4)

satisfies

‖f −R‖L2(Bd
1/2

) ≤ cn−s−(d−1)/2‖f‖W s+(d−1)/2(L2(Bd
1/2

))

with c independent of f and n.

The functions R in (9.4) correspond to the outputs of a feed-forward neural net-
work with O(nd−1) nodes of computation. Thus, the corollary shows that such neural
networks have computational efficiency comparable with standard methods of approx-
imation like splines and wavelets.

The special case s = 1 in Corollary 9.2 is also noteworthy. In this case the
function σ is the unit-impulse function and the functions R are piecewise constant.
The order of approximation provided by Corollary 9.2 is somewhat surprising. One
might expect that such piecewise constants could only provide approximation order
1 while the corollary gives approximation order (d+ 1)/2.
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10. Appendix.

A1. Proof of (3.4). Since Pn is invariant under rotations, it is sufficient to
prove that 〈P (x),Un(x1)〉 = 0 for each P ∈ Pn−1 or that

〈xm,Un(x1)〉 :=

∫
Bd

xmUn(x1) dx = 0 when |m| ≤ n− 1.

Write

Bx1
:= {x′ = (x2, . . . , xd) : x2

2 + · · ·+ x2
d ≤ 1− x2

1}.
We have

〈xm,Un(x1)〉 =

∫
I

xm1
1

(∫
Bx1

xm2
2 . . . xmdd dx′

)
Un(x1) dx1.

Because of the symmetry it is obvious that the inner integral above is equal to zero
if at least one of m2, . . . ,md is odd. Consider the case when all m2, . . . ,md are even.
We now change the rectangular coordinates in the inner integral to spherical and find∫

Bx1

xm2
2 . . . xmdd dx′ = c

∫ (1−x2
1)1/2

0

rm2+···+md+d−2 dr = c(1− x2
1)

1
2 (m2+···+md+d−1),

where c depends on d,m2, . . . ,md. Therefore,

〈xm, Cn(x1)〉 = c

∫
I

xm1
1 (1− x2

1)
1
2 (m2+···+md)Un(x1)(1− x2

1)
d−1

2 dx1 = 0

since the univariate polynomial Un is orthogonal to Pn−1(I) in L2(I, w) (see (3.3) and
(2.1)).

A2. Proof of (3.10). We first show that for each g ∈ L1(I, w(d−1)/2)

R(g(η ·x); ξ, t) = |Bd−2|(1−t2)
d−1

2

∫
I

g(cos θ cosψ+u sin θ sinψ)(1−u2)
d−2

2 du,

(10.1)
where t =: cos θ, t ∈ I, ψ ∈ [0, π] is the angle between ξ and η (cosψ = ξ · η), |Bd−2|
is the volume of the unit ball Bd−2 in Rd−2, |Bd−2| = 2πd/2−1

(d−2)Γ(d/2−1) , and R is the

Radon transform defined in (3.23). Indeed, it is easily seen that

R(g(η · x); ξ, t) = |Bd−2|
∫ √1−t2

−√1−t2
g(t cosψ + v sinψ)(1− t2 − v2)

d−2
2 dv.

Substituting v = (1− t2)1/2u in the above integral we get (10.1).
Our second step is to prove that

R(Cd/2n (η · x); ξ, t) = |Bd−2|2
d−1Γ2(d/2)n!

Γ(n+ d)
(1− t2)

d−1
2 Cd/2n (t)Cd/2n (ξ · η).(10.2)

Indeed, the classical addition theorem for Legendre (Gegenbauer) polynomials can be
written as follows (see [E, p. 178]):

Cλn(cos θ cosψ + sin θ sinψ cosϕ)

=
n∑

m=0

2m(2λ+ 2m− 1)(n−m)!
[(λ)m]2

(2λ− 1)n+m+1

× (sin θ)mCλ+m
n−m(cos θ)(sinψ)mCλ+m

n−m(cosψ)Cλ−1/2
m (cosϕ)
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and hence, for λ = d/2, and u := cosϕ, u ∈ I, we have

Cd/2n (cos θ cosψ + u sin θ sinψ)

=
n∑

m=0

2m(d+ 2m− 1)(n−m)!
[(d/2)m]2

(d− 1)n+m+1

× (sin θ)mC
d/2+m
n−m (cos θ)(sinψ)mC

d/2+m
n−m (cosψ)C(d−1)/2

m (u).

We now insert this into (10.1) and use the fact that C
(d−1)/2
m (u), m = 1, 2, . . ., are

orthogonal to the constants in L2(I, w(d−1)/2) to obtain

R(Cd/2n (η · x); ξ, t)

= |Bd−2|(1− t2)(d−1)/2 (d− 1)n!

(d− 1)n+1
Cd/2n (cos θ)Cd/2n (cosψ)

∫
I

(1− u2)(d−2)/2 du.

This implies (10.2).
We finally use (10.2) to obtain∫

Bd
Cd/2n (η · x)Cd/2n (ξ · x) dx =

∫
I

R(Cd/2n (η · x); ξ, t)Cd/2n (t) dt

= |Bd−2|2
d−1Γ2(d/2)n!

Γ(n+ d)
Cd/2n (η · ξ)

∫
I

[Cd/2n (t)]2(1− t2)(d−1)/2 dt

= γn,dC
d/2
n (η · ξ),

where

γn,d := |Bd−2|2
d−1Γ2(d2 )n!

Γ(n+ d)
hn,d/2.

Simple calculations show that this is (3.10). See [RK].

A3. Proof of (3.16). The following relation between contiguous Gegenbauer
polynomials holds (see [E, p. 178], (36)):

(n+ λ)Cλ−1
n+1 = (λ− 1)

[
Cλn+1 − Cλn−1

]
, λ > 1.

Also, Cλ0 (t) = 1 and Cλ1 (t) = 2λt. These identities readily imply

Cλn =

[n/2]∑
j=0

n− 2j + λ− 1

λ− 1
Cλ−1
n−2j .(10.3)

Simple calculations show that (10.3) with λ = d/2 (d > 2) is (3.16).

A4. Proof of (3.11). Identity (3.11) follows from the fact that Un(ξ · x) (as a
function of ξ) is a spherical polynomial in Hn⊕Hn−2⊕· · ·⊕Hε and νnUn(ξ ·η)/Un(1)
is the reproducing kernel for this space (see (3.17)).
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Abstract. An integral representation formula in BV (Ω;Rp) for the relaxation H(u,Ω) with
respect to the L1 topology of functionals of the general form

H(u,Ω) :=

∫
Ω

h(x, u(x),∇u(x)) dx+

∫
∂Ω

θ(x, T u(x)) dHN−1(x), u ∈W 1,1(Ω;Rp),

is obtained. Here Ω ⊂ RN is an open, bounded set of class C2, T is the trace operator on ∂Ω,
and HN−1 is the N − 1-dimensional Hausdorff measure. The main hypotheses on the functions
h and θ are that h(x, u, ·) is quasiconvex and has linear growth, and that θ(x, ·) is Lipschitz. The
understanding of nucleation phenomena for materials undergoing phase transitions leads to the study
of constrained minimization problems of the type

inf

{
H(u,Ω) +

∫
Ω

τ(x, u(x)) dx : u ∈ BV (Ω;K)

}
,

where K is a nonempty compact subset of Rp, and τ : Ω × K → R is a continuous function. It
is shown that if τ(x, ·) is a double well potential vanishing only at α and β, then minimizers u of
the total energy are given by pure phases; that is, there exists Ωu ⊂ Ω such that u(x) = α for LN
a.e. x ∈ Ωu (liquid) and u(x) = β for LN a.e. x ∈ Ω\Ωu (solid). This conclusion is closely related
to results previously obtained by Visintin, and where the interfacial energy is assumed to satisfy a
generalized co-area formula. Here this condition is replaced by a property which may be verified by
energies for which the co-area formula might not hold.

Key words. functions of bounded variation, nucleation, relaxation, bulk and contact energies,
generalized co-area formula
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PII. S0036141097325563

1. Introduction. This paper is divided into two parts. In the first part we
obtain an integral representation formula in BV (Ω;Rp) for the relaxation H(u,Ω)
with respect to the L1 topology of functionals of the general form

(1.1)

H(u,Ω) :=

∫
Ω

h(x, u(x),∇u(x)) dx+

∫
∂Ω

θ(x, T u(x)) dHN−1(x), u ∈W 1,1(Ω;Rp),

where Ω ⊂ RN is an open, bounded set of class C2, T is the trace operator on ∂Ω,
and HN−1 is the N − 1-dimensional Hausdorff measure. The main hypotheses on the
functions h and θ are that h(x, u, ·) is quasiconvex and has linear growth, and that
θ(x, ·) is Lipschitz.
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Under a degenerate coercivity assumption on h(x, u, ·) we obtain the following
integral representation for u ∈ BV (Ω;Rp):

H(u,Ω) =

∫
Ω

h(x, u(x),∇u(x)) dx+

∫
Ω

h∞(x, u(x), dC(u))

+

∫
S(u)∩Ω

Kh(x, u−(x), u+(x), νu(x)) dHN−1(x)(1.2)

+

∫
∂Ω

θ(x, T u(x)) dHN−1(x),

where ∇u is the density of the absolutely continuous part of the distributional deriva-
tive Du with respect to the N -dimensional Lebesgue measure LN , (u+ − u−) is the
jump across the interface S(u), and C(u) is the Cantor part of Du. For the canonical
model where h(x, u,∇u) := σ|∇u|, σ > 0, the relaxed energy H(u,Ω) reduces to

H(u,Ω) = σ

∫
Ω

|Du|+
∫
∂Ω

θ(x, T u) dHN−1, u ∈ BV (Ω;Rp).(1.3)

In the scalar case where p = 1, the lower semicontinuity of the functional (1.3) was
proved by Massari and Pepe [MP] when θ(x, u) := σ̂|u|, with |σ̂| ≤ σ, and by Modica
[Mo2] under the assumption that

|θ(x, u)− θ(x, u1)| ≤ σ|u− u1|(1.4)

for all x ∈ ∂Ω and all u, u1 ∈ R.
One of the motivations for the introduction of a relaxed energy is that noncon-

vex variational problems may not have a minimizer in the space of smooth functions;
therefore, in order to apply the direct method of calculus of variations one has to
extend the original functional. Although Sobolev spaces are considered to be the nat-
ural extension to the space of smooth functions, in recent years the theory of phase
transitions, and the need to determine effective energies for materials exhibiting in-
stabilities such as fractures and defects, have led us to further extend the domain of
functionals of the form (1.1) in order to include functions u which present disconti-
nuities along surfaces. Motivated somewhat by Lebesgue’s definition of surface area,
Serrin in [Se1, Se2] proposed the following notion for the relaxed energy of H(u,Ω)
(in the case where θ ≡ 0):

H(u,Ω) := inf
{un}

{
lim inf
n→∞ H(un,Ω) : un ∈W 1,1(Ω;Rp), un → u in L1(Ω;Rp)

}
.

One of the main issues in the calculus of variations concerns the search and charac-
terization of an integral representation for H(u,Ω) in the space BV (Ω;Rp).

In the scalar case where p = 1 and h(x, u, ·) is convex, the integral represen-
tation (1.2) was first obtained by Goffman and Serrin [GSe] when h = h(∇u) (see
also [Re]), and by Giaquinta, Modica, and Souc̆ek [GMS] for h = h(x,∇u). These
results were then extended by Dal Maso [DM] who considered the general case where
h = h(x, u,∇u) and emphasized the important role of the coercivity condition in
establishing (1.2). Indeed, Dal Maso showed that, while (1.2) holds for nonnegative
functions h = h(u,∇u) without any lower bound on h, when h = h(x,∇u), or, more
generally, when h = h(x, u,∇u), the representation (1.2) may fail unless one requires
a weak coercivity assumption of the form

h(x, u,∇u) ≥ g(x, u)|∇u|.(1.5)
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In the vectorial case where p > 1 and h(x, u, ·) is quasiconvex, Ambrosio and Dal Maso
[ADM2] proved (1.2) when h = h(∇u) and without (1.5). Independently, Fonseca and
Müller [FM2] obtained this result for general functions h(x, u,∇u) which verify (1.5).

In all the works mentioned above θ ≡ 0, and one of the purposes of this paper
is to extend these results to the new case where possibly θ 6≡ 0. The relaxation
of functionals of the type (1.1) arises in the van der Waals–Cahn–Hilliard theory of
phase transitions for fluids (cf. [vdW, CH1, CH 2]). In this context the boundary
term

∫
∂Ω
θ(x, T u) dHN−1 represents the contact energy between the fluid and the

container walls, where θ(x, u) is the contact energy per unit area when the density is
u (see [C, G, Mo1]).

We present here two relaxation results. In Theorem 3.5 we show that, without
any a priori coercivity on the function h, the functional on the right-hand side of (1.2)
actually gives the integral representation for the following relaxed energy:

Hb(u,Ω) = inf
{un}

{
lim inf
n→∞ H(un,Ω) : un ∈W 1,1(Ω;Rp), un → u inL1(Ω;Rp),

sup
n
||un||W 1,1 <∞},

while in Theorem 3.2 we prove that Hb(u,Ω) = H(u,Ω) if h satisfies a condition of
the type (1.5). Therefore we may conclude that the right-hand side of (1.2) always
coincides with Hb(u,Ω), and we restate all the results mentioned above by saying
that Hb(u,Ω) = H(u,Ω) in the scalar case if either h = h(u,∇u) or if h = h(x, u,∇u)
satisfies (1.5), and in the vectorial case if either h = h(∇u) or if h = h(x, u,∇u)
satisfies (1.5). In the remaining cases it may happen that H(u,Ω) < Hb(u,Ω).

It is worth mentioning that the fact that the relaxation H(u,Ω) is simply given
by the decoupled sum of the relaxation of the functional

∫
Ω
h(x, u,∇u) dx and the

contact energy may be somewhat deceiving, since it hides the competition between
the bulk energy and the contact energy. A more insightful way to look at (1.1), and
consequently, at (1.2), is perhaps to consider the equivalent form

H(u,Ω) =

∫
Ω

{
h(x, u(x),∇u(x)) + ϕ(x) · ∇uT (x)∇uθ(x, u(x))

}
dx

(1.6)

+

∫
Ω

θ(x, u(x))divϕ(x) dx+

∫
Ω

ϕ(x) · ∇xθ(x, u(x)) dx,

where ϕ ∈ C1(RN ;RN ) depends only on Ω and |ϕ(x)| < 1 in Ω (see Lemma 2.1). In
particular, in the isotropic case where h(x, u,∇u) := σ|∇u|, σ > 0, we obtain

H(u,Ω) =

∫
Ω

{
σ |∇u(x)|+ ϕ(x) · ∇uT (x)∇uθ(x, u(x))

}
dx

+

∫
Ω

θ(x, u(x))divϕ(x) dx+

∫
Ω

ϕ(x) · ∇xθ(x, u(x)) dx,

and it is clear that the functional H is not bounded from below in general, unless one
assumes a condition of the type

|∇uθ(x, u)| ≤ σ for a.e. x ∈ Ω and for all u ∈ Rp,

which is essentially the condition found by Massari and Pepe [MP] and by Modica
[Mo2]. We note that once (1.1) is written in the form (1.6), well-known integral
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representation results for relaxation of bulk energy functionals apply (see [FM2, FR]).
This is illustrated first in section 2 in the scalar case p = 1 and for a class of energies
including the typical ones considered by Visintin (see [V1, V2]),

h(x, u, ξ) := σ |ξ|, θ(x, u) := σ̂ u.

More general models, relevant to the study of anisotropic materials and nonlinear
contact forces, are studied in section 3. In particular, degenerate bounds for the bulk
energy density h, as introduced in [FM2] in the vectorial case, may prove to be useful
in the analysis of phase transition problems.

In the second part of the paper, sections 4 and 5, we are concerned with con-
strained minimization problems of the type

inf

{
H(u,Ω) +

∫
Ω

τ(x, u(x)) dx : u ∈ BV (Ω;K)

}
,

where K is a nonempty compact set of Rp, and τ : Ω × K → R is a continuous
function. These kinds of problems have important applications in the study of phase
transformations and in nucleation phenomena (cf. [V1, V2]). According to the van
der Waals–Cahn–Hilliard theory of phase transitions (cf. [CH1, CH2, vdW]), the total
energy of a fluid of total mass m and density u(x), confined in a bounded container
Ω ⊂ RN , is given by

(1.7)

Eε(u) := ε2

∫
Ω

|∇u|2 dx+

∫
Ω

W1(u) dx+ ε

∫
∂Ω

W2(T u) dHN−1, u ∈W 1,1(Ω;R),

where the coarse-grain energy W1(u) is a double well potential vanishing only at α and
β and corresponding to the stable two-phase configuration of the fluid, the gradient
term ε2|∇u|2 models the interfacial energy across a smooth transition layer, with ε
a small parameter, and W2 represents the contact energy between the fluid and the
container walls. The stable configurations of the fluid correspond to solutions of the
problem (see [C])

inf

{
Eε(u) : u ∈W 1,1(Ω;R),

∫
Ω

u dx = m

}
.

Confirming a conjecture of Gurtin [G], Modica in [Mo2] was able to show that if
a sequence of minimizers {uε} converges in L1 to a function u0, then u0 solves the
liquid-drop problem

inf {H(u,Ω) : u ∈ BV (Ω; {α, β})} ,
where H(u,Ω) is the relaxed energy of

H(u,Ω) =

∫
Ω

|∇u| dx+ σ̂

∫
∂Ω

T u dHN−1, u ∈W 1,1(Ω;R).

Here σ̂ depends only on W1 and W2. The liquid-drop problem admits a solution if
and only if |σ̂| ≤ 1. An analogous result is due to Alberti, Bouchitté, and Seppecher
[ABS] who recently showed that if the parameter ε in front of the contact energy in
(1.7) is replaced by λε, where

lim
ε→0

ε log λε = K ∈ (0,∞)
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and W2 is a double well potential which vanishes only at α1 and β1, then the limit
problem is given by a different model for capillarity with line tension. It is worth
noting that in this case the effective energy takes the form

H(u,Ω) =

∫
Ω

|D(G(u))|

+ inf

{∫
∂Ω

|G(T u)−G(v)| dHN−1 +
K

π

∫
∂Ω

|Dv|2 : v ∈ BV (∂Ω; {α1, β1})
}

for u ∈ BV (Ω; {α, β}) and H(u,Ω) =∞ otherwise. Here G is a primitive of 2
√
W1. It

can be seen immediately that in this capillarity model the contact energy is nonlocal
and strongly nonlinear, and again this leads us to consider functions θ other than
θ(x, u) = σ̂ u (see [V1, V2] and section 3).

In the last section of the paper we prove some minimization results which are
related to solid nucleation. For a complete description of this phenomenon we refer to
the recent monograph of Visintin [V1] and to the bibliography contained therein. By
solid nucleation we mean the formation of a new solid phase, that is, of a connected
component of solid in a liquid. If the new solid phase is formed in the interior of the
liquid, the nucleation is called homogeneous, while if it is also in contact with other
substances, such as the container, impurities dispersed in the liquid or nucleants,
then we name it heterogeneous nucleation (cf. [V1, Ch. VII.2]). By thinking of these
impurities or particles as holes in the domain Ω, we can represent the contact energy
by an integral term over the boundary of Ω. Furthermore, since the new solid phase
is formed through crystallization, and crystals are anisotropic, the classical isotropic
interfacial energy σ

∫
Ω
|Du| is now replaced by

∫
Ω
h(x,Du). In the applications one

sees often h(x,Du) = |A(x)Du|, where A(x) is a nonnegative definite N ×N tensor
(cf. [V1, p. 157]).

The main results of this part are Theorems 5.1 and 5.4, where we show that
minimizers u of the total energy are given by pure phases; that is, there exists Ωu ⊂ Ω
such that u(x) = α for LN a.e. x ∈ Ωu (liquid) and u(x) = β for LN a.e. x ∈ Ω\Ωu
(solid). This result is closely related to Theorem 2 in [V2], where the interfacial energy
is assumed to satisfy a generalized co-area formula. We replace here this condition by
some hypotheses which are easy to verify and allow us to include interfacial energies
of the form

∫
Ω
h(x,Du), where h(x, ·) is convex and positively homogeneous of degree

one, and for which the co-area formula might not hold.

2. Relaxation: A simple model problem. In what follows Ω ⊂ RN is an
open, bounded set of class C2, and T stands for the trace operator on ∂Ω.

In this section we characterize the relaxed energy H when
(A1) h : Ω× RN → [0,+∞) is a continuous function;
(A2) h(x, ·) is convex for all x ∈ Ω;
(A3) σ|ξ| ≤ h(x, ξ) ≤ C(1 + |ξ|), for some σ,C > 0, and for all (x, ξ) ∈ Ω××RN ;
(A4) θ(x, u) := σ̂ u, for some |σ̂| ≤ σ and for all (x, u) ∈ Ω× R.
The main idea is to rewrite

H(u,Ω) :=

∫
Ω

h(x,∇u(x)) dx+

∫
∂Ω

σ̂ T u(x) dHN−1(x), u ∈W 1,1(Ω;Rp),

as a bulk energy and then apply known relaxation results from W 1,1 to BV (see, e.g.,
[DM, FM2]).

We start with some notation. For any ν ∈ SN−1 := {x ∈ RN : |x| = 1} let
{ν1, . . . , νN−1, ν} be an orthonormal basis of RN varying continuously with ν, and
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Qν := {x ∈ RN : |x ·νi| < 1/2, |x ·ν| < 1/2, i = 1, . . . , N −1} be a unit cube centered
at the origin with two of its faces orthogonal to the direction ν.

If g is a positively homogeneous function of degree one and if µ is an Rm-valued
measure, then we define ∫

Ω

g(dµ) :=

∫
Ω

g(α(x)) d|µ(x)|,

where |µ| is the nonnegative total variation measure of µ, and α : Ω → Sm−1 is the
Radon–Nikodym derivative of µ with respect to |µ|.

We recall briefly some facts about functions of bounded variation which will be
useful in the sequel. A function u ∈ L1(Ω;Rp) is said to be of bounded variation if for
all i = 1, . . . , p, and j = 1, . . . , N , there exists a Radon measure µij such that∫

Ω

ui(x)
∂ϕ

∂xj
(x) dx = −

∫
Ω

ϕ(x) dµij

for every ϕ ∈ C1
0 (Ω;R). The distributional derivativeDu is the matrix-valued measure

with components µij . Given u ∈ BV (Ω;Rp) the approximate upper and lower limit
of each component ui, i = 1, . . . , p, are given by

u+
i (x) := inf

{
t ∈ R : lim

ε→0+

1

εN
LN ({y ∈ Ω ∩B(x, ε) : ui(y) > t}) = 0

}
and

u−i (x) := sup

{
t ∈ R : lim

ε→0+

1

εN
LN ({y ∈ Ω ∩B(x, ε) : ui(y) < t}) = 0

}
,

while the jump set of u, or singular set, is defined by

S(u) := ∪pi=1{x ∈ Ω : u−i (x) < u+
i (x)}.

It is well known that S(u) is N − 1 rectifiable; i.e.,

S(u) = ∪∞n=1Kn ∪ E,
where HN−1(E) = 0 and Kn is a compact subset of a C1 hypersurface. If x ∈ Ω\S(u),
then u(x) is taken as the common value of (u+

1 (x), . . . , u+
p (x)) and (u−1 (x), . . . , u−p (x)).

It can be shown that u(x) ∈ Rp for HN−1 a.e. x ∈ Ω\S(u). Furthermore, for HN−1

a.e. x ∈ S(u) there exist a unit vector νu(x) ∈ SN−1, normal to S(u) at x, and two
vectors u−(x), u+(x) ∈ Rp (the traces of u on S(u) at the point x) such that

lim
r→0

1

rN

∫
{y∈B(x0,r): (y−x)·νu(x)>0}

|u(y)− u+(x)|N/(N−1)dy = 0

and

lim
r→0

1

rN

∫
{y∈B(x0,r): (y−x)·νu(x)<0}

|u(y)− u−(x)|N/(N−1)dy = 0.

Note that in general (ui)
+ 6= (u+)i and (ui)

− 6= (u−)i. Moreover, the Sobolev
inequality (∫

Ω

|u(x)|N/(N−1)dx

)(N−1)/N

≤ C(N)||u||BV
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holds in BV (Ω;Rp) when N > 1. Finally, Du may be represented as

Du = ∇uLN + (u+ − u−)⊗ νuHN−1bS(u) + C(u),

where ∇u is the density of the absolutely continuous part of Du with respect to the
N -dimensional Lebesgue measure LN . These three measures are mutually singular.

Lemma 2.1. There exists ϕ ∈ C1
0 (RN ;RN ) with |ϕ(x)| < 1 in Ω such that for

any v ∈ BV (Ω;Rp),∫
∂Ω

T v(x) dHN−1(x) =

∫
Ω

v(x)divϕ(x) dx+

∫
Ω

ϕ(x) · d(D(v(x))).

Proof. Since ∂Ω is compact and of class C2, we can find a finite open covering
{Uj}j of ∂Ω, where Uj are balls centered at points of ∂Ω, j = 1, . . . , P , and for each
Uj there is a C2 diffeomorphism Φj : Uj → Φj(Uj) such that Φj(Uj) ⊂ B(0, Rj) ⊂ RN
for some Rj > 0,

Ω ∩ Uj = {x ∈ Uj : (Φj(x))N < 0}(2.1)

and for x ∈ ∂Ω ∩ Uj the exterior normal to ∂Ω at x is given by

n(x,Ω) =
∇ΦTj (x) eN

|∇ΦTj (x) eN | .

Let Ψ be a partition of the unity for ∪Pj=1Uj subordinate to {Uj}j . For any ψ ∈ Ψ
there exists j ∈ {1, . . . , P} such that ψ ∈ C∞0 (Uj), and we define

ϕψ(x) :=
∇ΦTj (x) eN

|∇ΦTj (x) eN |
(

1 +
(Φj(x))N

Rj

)
ψ(x);(2.2)

then ϕψ(x) ∈ C1
0 (Uj ;RN ) and |ϕψ(x)| < 1 for x ∈ Ω ∩ Uj . If we set ϕψ to be zero

outside Uj we obtain that ϕψ(x) ∈ C1
0 (RN ;RN ), and thus we can apply the trace

theorem (cf. [EG, Thm. 5.3.1]) to the BV function v, and we have∫
∂Ω

ϕψ(x)·n(x,Ω)T v(x) dHN−1(x)

=

∫
Ω

v(x)divϕψ(x) dx+

∫
Ω

ϕψ(x) · d(D(v(x))).

On the other hand, since by (2.1) ϕψ(x) = n(x,Ω)ψ(x) if x ∈ ∂Ω∩Uj , while ϕψ(x) = 0
if x ∈ ∂Ω\Uj , we get∫

∂Ω

ϕψ(x) · n(x,Ω)T v(x) dHN−1(x) =

∫
∂Ω

ψ(x)T v(x) dHN−1(x).

Hence∫
∂Ω

T v(x) dHN−1(x) =
∑
ψ∈Ψ

∫
∂Ω

ψ(x)T v(x) dHN−1(x)

=

∫
Ω

v(x) div

∑
ψ∈Ψ

ϕψ(x)

 dx+

∫
Ω

∑
ψ∈Ψ

ϕψ(x)

 · d(D(v(x))).
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The proof of Lemma 2.1 is complete if we show that ϕ(x) :=
∑
ψ∈Ψ ϕψ(x) satisfies

|ϕ(x)| < 1 in Ω. Fix x ∈ Ω. If x /∈ ∪Pj=1Uj , then ϕ(x) = 0. If x ∈ ∪Pj=1Uj , then∑
ψ∈Ψ ψ(x) = 1, and so there exists at least one ψ0 ∈ Ψ such that ψ0(x) > 0. Let

j ∈ {1, . . . , P} be such that ψ0 ∈ C∞0 (Uj). Then by (2.1) and (2.2)

|ϕψ0
(x)| =

(
1 +

(Φj(x))N
Rj

)
ψ0(x) < ψ0(x),

and consequently, since ψ(x) = 0 for all but finitely many ψ ∈ Ψ,

|ϕ(x)| ≤
∑
ψ∈Ψ

|ϕψ(x)| <
∑
ψ∈Ψ

ψ(x) = 1.

Using this lemma, we are now in position to obtain an integral representation for
the relaxed energy

H(u,Ω) := inf
{un}

{
lim inf
n→∞ H(un,Ω) : un ∈W 1,1(Ω;Rp), un → u in L1(Ω;Rp)

}
.

Theorem 2.2. We have that

H(u,Ω) =

∫
Ω

h(x,∇u(x)) dx+

∫
Ω

h∞(x, dC(u))

+

∫
S(u)∩Ω

h∞(x, (u+(x)− u+(x))⊗ νu(x)) dHN−1(x)

+

∫
∂Ω

σ̂ T u(x) dHN−1(x),

where the recession function h∞ of h is defined as

h∞(x, ξ) := lim
t→∞

h(x, t ξ)

t
.

Proof. In light of Lemma 2.1 we may rewrite the energy H(u,Ω) as

H(u,Ω) =

∫
Ω

[h(x,∇u(x)) + σ̂ ϕ(x) · ∇u(x)] dx+

∫
Ω

σ̂ u(x)divϕ(x) dx

=

∫
Ω

f(x,∇u(x)) dx+

∫
Ω

σ̂ u(x)divϕ(x) dx,

where |ϕ| < 1 in Ω, and f(x, ξ) := h(x, ξ) + σ̂ ϕ(x) · ξ. Since

(σ − σ̂ |ϕ(x)|)|ξ| ≤ f(x, ξ) ≤ C ′(1 + |ξ|)

for some C ′ > 0, we may use the relaxation arguments introduced in [FM1, FM2], tak-
ing into account that the relaxation method is local, so that on each ball B(x0, ε) ⊂⊂ Ω
there is an upper bound |ϕ(x)| < α < 1 and thus f is coercive. Therefore, and in
view of the strong continuity in L1 of the mapping

u 7→
∫

Ω

σ̂ u(x)divϕ(x) dx,
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we conclude that (see also [ADM2, DM])

H(u,Ω) =

∫
Ω

f(x,∇u(x)) dx+

∫
Ω

f∞(x, dC(u))

+

∫
S(u)∩Ω

f∞(x, (u+(x)− u+(x))⊗ νu(x)) dHN−1(x) +

∫
Ω

σ̂ u(x)divϕ(x) dx

=

∫
Ω

h(x,∇u(x)) dx+

∫
Ω

h∞(x, dC(u))

+

∫
S(u)∩Ω

h∞(x, (u+(x)− u+(x))⊗ νu(x)) dHN−1(x) +

∫
∂Ω

σ̂ T u(x) dHN−1(x),

where we have used once again Lemma 2.1 in the last equality.

3. Relaxation: A general model. Here we consider a more general model
corresponding to the functional

H(u,Ω) :=

∫
Ω

h(x, u(x),∇u(x)) dx+

∫
∂Ω

θ(x, T u(x)) dHN−1(x)

defined on the Sobolev space W 1,1(Ω;Rp), where Ω ⊂ RN is an open, bounded set of
class C2, T is the trace operator on ∂Ω, HN−1 is the N − 1-dimensional Hausdorff
measure, and the functions

h : Ω× Rp ×Mp×N → [0,∞), θ : ∂Ω× Rp → R

satisfy the following hypotheses:
(H1) h is continuous;
(H2) h(x, u, ·) is quasiconvex for all (x, u) ∈ Ω× Rp;
(H3) there exist a nonnegative, bounded, continuous function g : Ω×Rp → [0,∞)

and a constant C > 0 such that

g(x, u)|ξ| ≤ h(x, u, ξ) ≤ C g(x, u)(1 + |ξ|)(3.1)

for all (x, u, ξ) ∈ Ω×Rp×Mp×N , where Mp×N is the vector space of p×N matrices;
(H4) for every x0 ∈ Ω and δ > 0 there exists ε > 0 such that

h(x0, u, ξ)− h(x, u, ξ) ≤ δ(1 + g(x, u) |ξ|)(3.2)

for all x ∈ Ω with |x− x0| ≤ ε and for all (u, ξ) ∈ Rp ×Mp×N ;
(H5) there exist C ′ > 0 and m ∈ (0, 1) such that

|h∞(x, u, ξ)− h(x, u, ξ)| ≤ C ′g(x, u)(1 + |ξ|1−m)

for all (x, u, ξ) ∈ Ω× Rp ×Mp×N , where the recession function h∞ of h is defined as

h∞(x, u, ξ) := lim sup
t→∞

h(x, u, t ξ)

t
;

(H6) θ admits an extension θ ∈ C(Ω× Rp;R) ∩ C1(Ω× Rp;R) such that

|∇xθ(x, u)| ≤ a1(x) + C1(1 + |u|qc)
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for LN a.e. x ∈ Ω and all u ∈ Rp, where a1 ∈ L1(Ω,R), C1 > 0, and qc is the Sobolev
exponent qc := N/(N − 1) if N > 1 and qc <∞ if N = 1. Moreover, for every x0 ∈ Ω
and δ > 0 there exists ε > 0 such that

|∇uθ(x0, u)−∇uθ(x, u)| ≤ δ g(x, u)(3.3)

for all x ∈ Ω with |x− x0| ≤ ε and for all u ∈ Rp;
(H7) g(x, u) ≥ |∇uθ(x, u)| for all (x, u) ∈ Ω× Rp.
Remark 3.1. (i) Conditions (H1)–(H5) were considered by Fonseca and Müller

(see [FM2]), who treated the case where θ ≡ 0. Actually, in [FM2] hypothesis (H4)
included:

(H4)1 For every compact set K b Ω × Rp there exists a continuous function
ω : [0,∞)→ [0,∞), with ω(0) = 0, such that

|h(x, u, ξ)− h(x1, u1, ξ)| ≤ ω(|x− x1|+ |u− u1|)(1 + |ξ|)
for all (x, u, ξ), (x1, u1, ξ) ∈ K ×Mp×N .

As it turns out, this property follows from (H1), (H2), (H5). Indeed using the fact
that the recession function h∞ of h is still quasiconvex and is positively homogeneous
of degree one in the ξ variable (see [FM2, M]), by (H1), (H2), (H5), it is possible to
show that h∞ is actually continuous in Ω×Rp ×Mp×N and, in turn, that h satisfies
condition (H4)1 of [FM2]. We omit the details.

(ii) By the mean value theorem and conditions (H3) and (H7) we have

|θ(x, u)− θ(x, u1)| ≤ |∇uθ(x, û)| |u− u1| ≤ ||g||L∞ |u− u1|(3.4)

for all x ∈ Ω and all u, u1 ∈ Rp. Taking u1 = 0 it follows by (H6) and (3.4) that

|θ(x, u)| ≤ ||g||L∞ |u|+ ||θ(x, 0)||L∞(3.5)

for all (x, u) ∈ Ω×Rp. This growth condition, together with (3.1), implies in particular
that the functional H(u,Ω) is well defined and finite for u ∈W 1,1(Ω;Rp).

(iii) A typical example of the energy densities is (see Visintin [V1, V2] and sec-
tion 2)

h(x, u, ξ) := σ |ξ|, θ(x, u) := σ̂ u,(3.6)

where σ > 0 and σ̂ ∈ R. It is easy to see that conditions (H1)–(H6) hold with
g(x, u) := σ, while assumption (H7) reduces to the inequality |σ̂| ≤ σ. More generally,
(H6) is trivially satisfied if θ = θ(u).

(iv) If in (1.3) we take θ(x, u) := σ̂|u| for (x, u) ∈ ∂Ω × Rp (cf. [MP]), then it is
possible to extend θ to Ω× Rp as follows:

θ(x, u) := σ̂
√
|u|2 + ψ2(x),

where ψ ∈ C1(Ω;R) is such that ψ(x) > 0 for x ∈ Ω and ψ(x) = 0 for x ∈ ∂Ω.
Conditions (H1)–(H7) are then verified with g(x, u) := σ, provided |σ̂| ≤ σ. The
problem of finding an extension of θ : ∂Ω × Rp → R to Ω × Rp which satisfies (H6)–
(H7) for the functional (1.3), and when (1.4) holds, will be addressed in a forthcoming
paper.

Our goal in this section is to generalize the integral representation obtained in
section 2 to the relaxed energy of H(u,Ω) in BV (Ω;Rp) with respect to the L1

topology; that is,

H(u,Ω) := inf
{un}

{
lim inf
n→∞ H(un,Ω) : un ∈W 1,1(Ω;Rp), un → u in L1(Ω;Rp)

}
.
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From the definition of H(u,Ω) it follows immediately that the functional H(u,Ω) is
lower semicontinuous in L1(Ω;Rp).

Before stating the main theorems of this section we introduce the surface energy
associated with the function h. For fixed a, b ∈ Rp we define A(a, b, ν) as the class of
all functions ψ ∈W 1,1(Qν ;Rp) such that

T ψ(y) =

{
a if y · ν = −1/2,
b if y · ν = 1/2,

and which are periodic of period one in the remaining directions ν1, . . . , νN−1. The
surface energy associated with the function h, Kh(x, a, b, ν), is defined by

Kh(x, a, b, ν) := inf

{∫
Qν

h∞(x, ψ(y),∇ψ(y)) dy : ψ ∈ A(a, b, ν)

}
.

For a detailed study of the properties of the function Kh(x, a, b, ν) we refer to [FR].
For u ∈ BV (Ω;Rp) we define the functional

L(u,Ω) :=

∫
Ω

h(x, u(x),∇u(x)) dx+

∫
Ω

h∞(x, u(x), dC(u))

+

∫
S(u)∩Ω

Kh(x, u−(x), u+(x), νu(x)) dHN−1(x) +

∫
∂Ω

θ(x, T u(x)) dHN−1(x).

Theorem 3.2. Let (H1)–(H7) hold. If u ∈ BV (Ω;Rp), then

H(u,Ω) = L(u,Ω).

Corollary 3.3. If h = h(x, ξ), then

H(u,Ω) =

∫
Ω

h(x,∇u(x)) dx+

∫
Ω

h∞(x, dC(u))

+

∫
S(u)∩Ω

h∞(x, (u+(x)− u−(x))⊗ νu(x)) dHN−1(x)

+

∫
∂Ω

θ(x, T u(x)) dHN−1(x).

The proof of Corollary 3.3 follows from Remark 2.17 in [FM2].
Remark 3.4. (i) Rather surprisingly, in general the functional L(u,Ω) is not lower

semicontinuous in L1 if the domain Ω is only Lipschitz. This fact was first pointed out
by Modica in [Mo2] who gave the following simple example. Let Ω := (0, 1)× (0, 1) ⊂
R2 and take h and θ as in (3.6), with −σ ≤ σ̂ < −σ√2/2. Then (H1)–(H7) are
satisfied (see Remark 3.1(iii)), and

L(u,Ω) = σ

∫
Ω

|Du|+ σ̂

∫
∂Ω

T u dH1, u ∈ BV (Ω;R).

Consider the sequence

un(x1, x2) :=

{
0 if x1 + x2 ≥ 1/n,
n if x1 + x2 < 1/n.

Then un(x)→ 0 in L1(Ω;R) but L(un,Ω) = σ
√

2 + 2σ̂ < L(0,Ω) = 0, and this shows
that H(u,Ω) 6= L(u,Ω) since H(u,Ω) is lower semicontinuous in L1.
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It is worth noting that in the special case where θ(x, u) = σ̂ |u−ψ(x)| in (1.3), with
|σ̂| ≤ σ and ψ ∈ L1(∂Ω;R), one can still prove lower semicontinuity of L for Lipschitz
subdomains of RN . The first result in this direction is due to Massari and Pepe
[MP] who treated the case where ψ ≡ 0. Modica [Mo2] then extended it to include

ψ ∈ L1(∂Ω;R). The idea in [MP, Mo2] is to find a function ψ̂ ∈ BV (RN\Ω;R) whose
trace is ψ and then use an extension theorem (see [EG, Thm. 5.4.1]) to rewrite the
integral

∫
∂Ω
|T u− ψ| dHN−1 as∫
∂Ω

|T u− T ψ̂| dHN−1 =

∫
RN
|Dû| −

∫
Ω

|Du| −
∫
RN\Ω

|Dψ̂|,

where

û(x) :=

{
u(x) if x ∈ Ω,

ψ̂(x) if x ∈ RN\Ω.

(ii) Without condition (H7) Theorem 3.2 may fail. As an example, let Ω :=
(0, 1) ⊂ R and take h and θ as in (3.6). In this case condition (H7) is equivalent to
the inequality |σ̂| ≤ σ. Assume that σ < σ̂ and consider the sequence

un(x) :=

{
−n3(x− 1)− n if 1− 1/n2 ≤ x ≤ 1,
0 otherwise.

Then un(x)→ 0 in L1(Ω;R) but L(un,Ω) = (σ − σ̂)n < L(0,Ω) = 0.
Theorem 3.5. Let (H1)–(H6) hold, with (3.1) and (H7) replaced by the weaker

hypothesis

|∇uθ(x, u)| |ξ| ≤ h(x, u, ξ) ≤ C g(x, u)(1 + |ξ|)(3.7)

for all (x, u, ξ) ∈ Ω× Rp ×Mp×N , and some C > 0. Then the relaxation of H(u,Ω)

Hb(u,Ω) = inf
{un}

{
lim inf
n→∞ H(un,Ω): un ∈W 1,1(Ω;Rp),

un → u inL1(Ω;Rp), sup
n
||un||W 1,1 <∞}

in BV (Ω;Rp) with respect to the L1 topology has the integral representation

Hb(u,Ω) = L(u,Ω).

Remark 3.6. Under the assumptions of Theorem 3.5, the functional L(u,Ω) pro-
vides the correct integral representation for Hb(u,Ω) but not necessarily for H(u,Ω).
Indeed, in the scalar case where p = 1 and when θ ≡ 0, Dal Maso has shown in
[DM] that H(u,Ω) = L(u,Ω) when h = h(u, ξ) satisfies only (3.7), while possibly
H(u,Ω) < L(u,Ω) for h = h(x, ξ) unless one assumes a condition of the type (3.1).

In the vectorial case where p > 1 and when θ ≡ 0, Ambrosio and Dal Maso
[ADM2] proved that H(u,Ω) = L(u,Ω) when h = h(ξ) satisfies only (3.7). Inde-
pendently, Fonseca and Müller [FM2] have obtained this result for general functions
h(x, u, ξ) which verify (3.1), still in the case where θ ≡ 0.

We proceed with the proofs of Theorems 3.2 and 3.5. We start with some prelim-
inary results. In what follows, and unless otherwise specified, we always assume that
conditions (H1)–(H7) hold.
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Lemma 3.7. If u ∈ BV (Ω;Rp), then the function v(x) := θ(x, u(x)) ∈ BV (Ω;R)
and

Dv =

{∇xθ(x, u)LN +DuT∇uθ(x, u) on Ω\S(u),
(θ(x, u+)− θ(x, u−))⊗ νuHN−1bS(u) on S(u).

Moreover

T v(x) = θ(x, T u(x)).

The proof of Lemma 3.7 is straightforward in light of related results on the chain
rule for BV functions (see [ADM1] and the references contained therein).

By Lemmas 2.1 and 3.7, if u ∈ BV (Ω;Rp), then

(3.8)∫
∂Ω

θ(x, T u(x)) dHN−1(x) =

∫
Ω

θ(x, u(x))divϕ(x) dx+

∫
Ω

ϕ(x) · d(D(θ(x, u(x)))).

In turn, by (3.8) we can rewrite the functional H(u,Ω) as

H(u,Ω) =

∫
Ω

{
h(x, u(x),∇u(x)) + ϕ(x) · ∇uT (x)∇uθ(x, u(x))

}
dx

(3.9)

+

∫
Ω

θ(x, u(x)) divϕ(x) dx+

∫
Ω

ϕ(x) · ∇xθ(x, u(x)) dx.

This equivalent form gives us a better insight into the competing roles played by the
two energy integrals

∫
Ω
h(x, u,∇u) dx and

∫
∂Ω
θ(x, T u) dHN−1. In particular, it is

now clear that without a condition of the type

h(x, u, ξ) ≥ |∇uθ(x, u)| |ξ|

one may have H(u,Ω) = −∞, as in the example in Remark 3.4(ii).
Define f(x, u, ξ) := h(x, u, ξ) +ϕ(x) · ξT∇uθ(x, u) for (x, u, ξ) ∈ Ω×Rp ×Mp×N ,

set

F (u,Ω) :=

∫
Ω

f(x, u(x),∇u(x)) dx, u ∈W 1,1(Ω;Rp),

and let

F(u,Ω) := inf
{un}

{
lim inf
n→∞ F (un,Ω) : un ∈W 1,1(Ω;Rp), un → u in L1(Ω;Rp)

}
.

Lemma 3.8. If u ∈ BV (Ω;Rp), then

H(u,Ω) = F(u,Ω) +

∫
Ω

θ(x, u(x)) divϕ(x) dx+

∫
Ω

ϕ(x) · ∇xθ(x, u(x)) dx.

Proof. Clearly it is enough to show that

lim inf
n→∞ H(un,Ω)= lim inf

n→∞ F (un,Ω)

+

∫
Ω

θ(x, u(x)) divϕ(x) dx+

∫
Ω

ϕ(x) · ∇xθ(x, u(x)) dx
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for any sequence {un} ⊂W 1,1(Ω;Rp) such that un → u in L1(Ω;Rp). We first observe
that, since ϕ ∈ C1

0 (RN ;RN ), the functions ϕ and divϕ are bounded in Ω. Moreover,
by (3.4)

|θ(x, un(x))− θ(x, u(x))| ≤ ||g||L∞ |un(x)− u(x)| for LN a.e. x ∈ Ω.

Hence

lim
n→∞

∫
Ω

θ(x, un) divϕdx =

∫
Ω

θ(x, u) divϕdx.

By (H6), by virtue of the Sobolev inequality, and due to the fact that ϕ is bounded,
the functional u 7→ ∫

Ω
ϕ · ∇xθ(x, u(x)) dx is continuous in L1(Ω;Rp) (see [K, Thm.

2.1]) and thus

lim
n→∞

∫
Ω

ϕ · ∇xθ(x, un) dx =

∫
Ω

ϕ(x) · ∇xθ(x, u) dx.

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. By Lemma 3.8, in order to find an integral representation

for H(u,Ω) in BV (Ω;Rp) it is sufficient to determine one for F(u,Ω). The idea is to
apply Theorem 2.16 of [FM2]. In order to do so we need to show that the function

f(x, u, ξ) = h(x, u, ξ) + ϕ(x) · ξT∇uθ(x, u)

satisfies conditions (H1)–(H5) which are essentially the same as [FM2].
Condition (H1) is trivially verified since the functions θ and ϕ are of class C1.

As f is the sum of a quasiconvex function and a function linear in ξ, it is clear that
f(x, u, ·) is still quasiconvex and that

f∞(x, u, ξ) = h∞(x, u, ξ) + ϕ(x) · ξT∇uθ(x, u),

which, in turn, implies that

|f∞(x, u, ξ)− f(x, u, ξ)| = |h∞(x, u, ξ)− h(x, u, ξ)| ≤ C ′g(x, u)(1 + |ξ|1−m)

by (H5). Thus f verifies also (H2) and (H5).
We prove (3.2). Fix x0 ∈ Ω and δ > 0. There exists ε > 0 such that for x ∈ Ω

with |x− x0| ≤ ε and (u, ξ) ∈ Rp ×Mp×N ,

h(x0, u, ξ)−h(x, u, ξ) ≤ 1
3 δ(1 + g(x, u)|ξ|), |ϕ(x)− ϕ(x0)| ≤ 1

3 δ,

|∇uθ(x0, u)−∇uθ(x, u)| ≤ 1
3 δ g(x, u)

by the continuity of ϕ, (3.2), and (3.3). Hence

f(x0, u, ξ) = h(x0, u, ξ) + ϕ(x0) · ξT∇uθ(x0, u)

= f(x, u, ξ) + h(x0, u, ξ)− h(x, u, ξ)

+ [ϕ(x0)− ϕ(x)] · ξT∇uθ(x, u) + ϕ(x0) · ξT [∇uθ(x0, u)−∇uθ(x, u)]

≤ f(x, u, ξ) + 1
3 δ(1 + g(x, u)|ξ|) + 2

3 δ g(x, u)|ξ|
which is (3.2), and where we have used (H7) and the fact that |ϕ(x0)| ≤ 1.

Finally, condition (H3) is replaced by the condition

g(x, u)|ξ|(1− |ϕ(x)|) ≤ f(x, u, ξ) ≤ 2C g(x, u)(1 + |ξ|),(3.10)
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which follows from (3.1) and (H7). Although (3.10) is weaker than condition (H3) in
[FM2], the proof there carries out even with (3.10). Indeed, condition (H3) was used
in [FM2] only to show that

F(u,Ω) ≥
∫

Ω

f(x, u,∇u) dx+

∫
Ω

f∞(x, u, dC(u))

+

∫
S(u)∩Ω

Kf (x, u−, u+, νu) dHN−1(x).

The proof of this inequality relies on the blow-up argument introduced in [FM1]
which is a local argument, in the sense that in order to prove the three main pointwise
inequalities (2.10)–(2.11) in [FM2] at points x0 ∈ Ω, one is only interested in what
happens in a ball B(x0, ε). Since in our case |ϕ(x0)| < ε0 < 1 for some ε0 > 0, if we
take ε sufficiently small we can assume that |ϕ(x)| ≤ ε0 for all x ∈ B(x0, ε) and thus
(3.10) reduces to

g(x, u)|ξ|(1− ε0) ≤ f(x, u, ξ) ≤ 2C g(x, u)(1 + |ξ|)

for all (x, u, ξ) ∈ B(x0, ε)× Rp ×Mp×N , which is the local version of (H3) in [FM2].
In conclusion, we may apply Theorem 2.16 of [FM2] (see Remark 3.10 below) to

obtain that for u ∈ BV (Ω;Rp)

F(u,Ω) =

∫
Ω

{
h(x, u,∇u) + ϕ · ∇uT∇uθ(x, u)

}
dx+

∫
Ω

h∞(x, u, dC(u))

+

∫
Ω

(ϕ⊗∇uθ(x, u)) · dCT (u) +

∫
S(u)∩Ω

Kf (x, u−, u+, νu) dHN−1,

where

Kf (x, a, b, ν) = inf

{∫
Qν

[
h∞(x, ψ(y),∇ψ(y)) + ϕ(x) · ∇ψT (y)∇uθ(x, ψ(y))

]
dy :

ψ ∈ A(a, b, ν)

}
.

Given any ψ ∈ A(a, b, ν) we have∫
Qν

ϕ(x) · ∇ψT (y)∇uθ(x, ψ(y)) dy =

∫
∂Qν

ϕ(x) · n(y,Qν) θ(x, T ψ(y)) dHN−1(y)

= ϕ(x) · (θ(x, b)− θ(x, a)) ν,

and so

Kf (x, a, b, ν) = Kh(x, a, b, ν) + ϕ(x) · (θ(x, b)− θ(x, a)) ν.

If we now use Lemmas 2.1, 3.7, and 3.8, we finally obtain that H(u,Ω) = L(u,Ω).
This concludes the proof of Theorem 3.2.

Remark 3.9. The continuity hypotheses (H1), (H4), and (3.3) may be replaced by
(H1)′ h is Carathéodory;
(H4)′ for all (x0, u0) ∈ Ω× Rp and for all δ > 0 there exists ε > 0 such that

|h(x, u1, ξ)− h(x, u2, ξ)| ≤ ε(1 + |ξ|)
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for all x ∈ Ω with |x − x0| ≤ ε, u1, u2 ∈ B(u0, ε), and ξ ∈ Mp×N , provided ξ 7→
f(x, u, ·) is coercive (e.g., if g(x, u) ≥ α > ||∇uθ||L∞ for some α > 0). In this case, in
Theorem 3.2 we would use the integral representation obtained by Bouchitté, Fonseca,
and Mascarenhas [BFM] in place of the corresponding result by Fonseca and Müller
[FM2].

Proof of Theorem 3.5. By Lemma 3.8 it is enough to find an integral representation
for the corresponding Fb(u,Ω) in BV (Ω;Rp). Let fε(x, u, ξ) := f(x, u, ξ) + ε |ξ|, for
ε ∈ (0, 1), where, as before, f(x, u, ξ) := h(x, u, ξ) + ϕ(x) · ξT∇uθ(x, u), and define

Fε(u,Ω) := inf
{un}

{
lim inf
n→∞ Fε(un,Ω) : un ∈W 1,1(Ω;Rp), un → u in L1(Ω;Rp)

}
,

where

Fε(u,Ω) :=

∫
Ω

fε(x, u(x),∇u(x)) dx, u ∈W 1,1(Ω;Rp).

We claim that

lim
ε→0
Fε(u,Ω) = Fb(u,Ω).

Fix u ∈ L1(Ω;Rp). For any given δ > 0 there exists a sequence {un} ⊂ W 1,1(Ω;Rp),
with supn ||un||W 1,1 = M <∞, such that un → u in L1(Ω;Rp) and

Fb(u,Ω) + δ ≥ lim
n→∞

∫
Ω

f(x, un(x),∇un(x)) dx.

In turn, for all ε > 0,

Fb(u,Ω) + δ ≥ lim inf
n→∞

∫
Ω

fε(x, un(x),∇un(x)) dx− εM,

and using the definition of Fε(u,Ω) we obtain

Fb(u,Ω) + δ ≥ Fε(u,Ω)− εM.

Therefore

lim sup
ε→0

Fε(u,Ω) ≤ Fb(u,Ω) + δ,

and it suffices to let δ → 0 to conclude that

lim sup
ε→0

Fε(u,Ω) ≤ Fb(u,Ω).

Conversely, fix u ∈ L1(Ω;Rp) and ε > 0. Then there exists a sequence {uεn} ⊂
W 1,1(Ω;Rp) such that uεn → u in L1(Ω;Rp) as n→∞ and

(3.11)

Fε(u,Ω) + ε ≥ lim
n→∞

∫
Ω

[f(x, uεn,∇uεn) + ε|∇uεn|] dx ≥ lim inf
n→∞

∫
Ω

f(x, uεn,∇uεn) dx.

Without loss of generality we can assume that Fε(u,Ω) <∞. Since |ϕ(x)| < 1 in Ω,
by (3.7) we have

f(x, u, ξ) = h(x, u, ξ) + ϕ(x) · ξT∇uθ(x, u) ≥ 0;
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hence by (3.11) it follows that supn ||uεn||W 1,1 <∞ and so

Fε(u,Ω) + ε ≥ Fb(u,Ω).

We conclude that

lim inf
ε→0

Fε(u,Ω) ≥ Fb(u,Ω)

and the claim is proven.
It is not difficult to show that the function fε(x, u, ξ) satisfies conditions (H1)–

(H5). We omit the details since the proof is very similar to that of Theorem 3.2.
By Theorem 2.16 of [FM2] we obtain that for u ∈ BV (Ω;Rp)

Fε(u,Ω) =

∫
Ω

{f(x, u,∇u) + ε|∇u|} dx+

∫
Ω

f∞(x, u, dC(u)) + ε

∫
Ω

|dC(u)|
(3.12)

+

∫
S(u)∩Ω

Kfε(x, u
−, u+, νu) dHN−1.

If we let ε→ 0 in (3.12) we obtain that

lim
ε→0
Fε(u,Ω) =

∫
Ω

f(x, u,∇u) dx+

∫
Ω

f∞(x, u, dC(u))

+

∫
S(u)∩Ω

Kf (x, u−, u+, νu) dHN−1,

where we have used the fact that

lim
ε→0

∫
S(u)∩Ω

Kfε(x, u
−, u+, νu) dHN−1 =

∫
S(u)∩Ω

Kf (x, u−, u+, νu) dHN−1.(3.13)

This convergence follows easily from the Lebesgue dominated convergence theorem
and because we may find a constant C1 independent of ε such that (see the proof of
Lemma 2.15 in [FM2])

0 ≤ Kfε(x, a, b, ν) ≤ C1|a− b|.
This concludes the proof of the theorem.

Remark 3.10. In the proof of Theorem 2.16 of [FM2] the inequality

F(u, S(u) ∩ Ω) ≤
∫
S(u)∩Ω

Kf (x, u−, u+, νu) dHN−1(x)(3.14)

was derived by using a result of [FR] which requires the function f(x, u, ·) to be
coercive, that is, to satisfy the inequality

f(x, u, ξ) ≥ c1|ξ| − c2(3.15)

for all (x, u, ξ) ∈ Ω×Rp×Mp×N , which is stronger than condition (H3). To circumvent
this difficulty consider the function fε(x, u, ξ) defined as in the proof of Theorem 3.5.
Since it satisfies conditions (H1)–(H5) and (3.15), the inequality (3.14) holds for fε.
Also the inequality f ≤ fε clearly implies that

F(u, S(u) ∩ Ω) ≤ Fε(u, S(u) ∩ Ω) ≤
∫
S(u)∩Ω

Kfε(x, u
−, u+, νu) dHN−1(x).

If we now let ε→ 0 and use (3.13), we conclude that (3.14) holds also for f .
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4. Mesoscopic scale. We are interested in the following constrained minimiza-
tion problem:

inf

{
H(u,Ω) +

∫
Ω

τ(x, u(x)) dx : u ∈ BV (Ω;Rp), u(x) ∈ K for LN a.e. x ∈ Ω

}
,

where K is a nonempty compact set of Rp, and τ : Ω × K → R is a Carathéodory
function such that

|τ(x, u)| ≤ a0(x) for LN a.e. x ∈ Ω and for all u ∈ K,(4.1)

for some function a0 ∈ L1(Ω;R). In applications in phase transitions, often K = {a, b}
or K is a convex set.

For u ∈ L1(Ω;Rp) we define the functional

I(u,Ω) := H(u,Ω) + IK(u,Ω),

where

IK(u,Ω) :=

{∫
Ω
τ(x, u(x)) dx if u(x) ∈ K for LN a.e. x ∈ Ω,

+∞ otherwise.

Lemma 4.1. If (H1)–(H7) hold, then the functional I(u,Ω) is lower semicontin-
uous in L1(Ω;Rp).

Proof. Consider un, u ∈ L1(Ω;Rp) such that un → u in L1(Ω;Rp). If lim infn→∞
I(un,Ω) = ∞ there is nothing to prove. Assume that lim infn→∞ I(un,Ω) < ∞ and
take a subsequence {unk} which converges pointwise to u for LN a.e. x ∈ Ω, and such
that

lim
k→∞

I(unk ,Ω) = lim inf
n→∞ I(un,Ω) <∞.

For k sufficiently large we can assume that I(unk ,Ω) <∞; hence

I(unk ,Ω) = H(unk ,Ω) +

∫
Ω

τ(x, unk(x)) dx

and unk(x) ∈ K for LN a.e. x ∈ Ω. Since {unk} converges pointwise to u for
LN a.e. x ∈ Ω, we obtain that u(x) ∈ K for LN a.e. x ∈ Ω. In turn I(u,Ω) =
H(u,Ω) +

∫
Ω
τ(x, u(x)) dx. The assertion now follows from the lower semicontinuity

of H(u,Ω) in L1(Ω;Rp) and the fact that

lim
k→∞

∫
Ω

τ(x, unk(x)) dx =

∫
Ω

τ(x, u(x)) dx

by (4.1) and by the Lebesgue dominated convergence theorem.
In addition to conditions (H1)–(H7) we now assume the following hypotheses:
(F1) There exist a function ρ ∈ C(Ω × Rp;Rp) ∩ C1(Ω × Rp;Rp) and a function

b ∈ L1(Ω;R) such that

|∇xρ(x, u)| ≤ b(x) for LN a.e. x ∈ Ω and for all u ∈ K,(4.2)

and

h∞(x, u, ξ) ≥ |∇uρ(x, u)| |ξ|(4.3)
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for all (x, u, ξ) ∈ Ω×K ×Mp×N ;

(F2) for LN a.e. x ∈ Ω the function ρ(x, ·) : K b Rp → ρ(x,K) b Rp is invertible
and (x, y) 7→ (ρ(x, ·))−1(y) is Carathéodory. In addition, there exists a function
c ∈ L1(Ω;R) such that

|ρ(x, ·)−1(v)| ≤ c(x) forLN a.e.x ∈ Ω and for all v ∈ ρ(x,K).(4.4)

Let

D(I) := {u ∈ L1(Ω;Rp) : I(u,Ω) <∞}.

Then

D1 :=
{
u ∈ BV (Ω;Rp) : u(x) ∈ K for LN a.e. x ∈ Ω

} ⊂ D(I)

but in general the two sets do not coincide, unless one assumes that h(x, u, ·) is
coercive.

Theorem 4.2. There exists a function u ∈ D(I) such that

I(u,Ω) ≤ inf {I(w,Ω) : w ∈ D1} .

Proof. Let {un} ⊂ D1 be a minimizing sequence; that is,

lim
n→∞ I(un,Ω) = inf {I(w,Ω) : w ∈ D1} < M <∞.

Then, for n sufficiently large,

I(un,Ω) = H(un,Ω) +

∫
Ω

τ(x, un(x)) dx ≤M.(4.5)

We claim that T un(x) ∈ K for HN−1 a.e. x ∈ ∂Ω. Indeed let En := {x ∈ ∂Ω :
T un(x) /∈ K} and suppose for contradiction that HN−1(En) > 0. Take x0 ∈ En for
which (cf. [Z, Thm. 5.14.4])

lim
r→0

1

LN (B(x0, r) ∩ Ω)

∫
B(x0,r)∩Ω

|un(x)− T un(x0)|N/(N−1)dx = 0.

Since K is compact we have dist(T un(x0),K) = ε0 > 0, while from the fact that
un(x) ∈ K for LN a.e. x ∈ Ω, it follows that

ε
N/(N−1)
0 ≤ |un(x)− T un(x0)|N/(N−1)

for LN a.e. x ∈ B(x0, r)∩Ω. Taking the average over B(x0, r)∩Ω and letting r → 0,
we get a contradiction. Therefore the claim holds, and by (4.5), Theorem 3.2, and
(3.5) we have∫

Ω

h(x, un,∇un) dx+

∫
Ω

h∞(x, un, dC(un))

(4.6)

+

∫
S(un)∩Ω

Kh(x, u−n , u
+
n , νun) dHN−1 ≤M1
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for some constant M1 independent of n. By (H5), (3.1), and (4.6)

∫
Ω

h∞(x, un,∇un) dx ≤
∫

Ω

(h∞(x, un,∇un)− h(x, un,∇un)) dx+M1

≤ C ′||g||L∞ + C ′||g||mL∞
∫

Ω

h1−m(x, un,∇un) dx+M1.

Using Hölder’s inequality and (4.6) again, we conclude that there exists M2 ∈ (0,∞)
such that for all n,

∫
Ω

h∞(x, un,∇un) dx+

∫
Ω

h∞(x, un, dC(un))

(4.7)

+

∫
S(un)∩Ω

Kh(x, u−n , u
+
n , νun) dHN−1 ≤M2.

Define vn := ρ(x, un(x)). As in Lemma 3.7, we can show that vn(x) ∈ BV (Ω;Rp)
with

Dvn =

{∇xρ(x, un)LN +∇uρ(x, un)Dun on Ω\S(un),
(ρ(x, u+

n )− ρ(x, u−n ))⊗ νun HN−1bS(un) on S(un).
(4.8)

Furthermore

∫
Ω

|Dvn| =
∫

Ω

|∇vn| dx+

∫
Ω

|∇uρ(x, un) dC(un)|
(4.9)

+

∫
S(vn)∩Ω

|(v+
n − v−n )⊗ νvn |dHN−1.

By Remark 2.17 in [FM2] and the fact that S(vn) = S(un) and νvn = νun , we can
rewrite the last integral as

∫
S(un)∩Ω

K|·|(x, v−n , v
+
n , νun) dHN−1,

where

K|·|(x, v−n , v
+
n , νun) := inf

{∫
Qνun

|∇ψ(y)| dy : ψ ∈ A(v−n (x), v+
n (x), νun)

}
.

Given η ∈ A(u−n (x), u+
n (x), νun), it is clear that the function ψ(y) := ρ(x, η(y)) belongs

to A(v−n (x), v+
n (x), νun) and that ∇ψ(y) = ∇uρ(x, η(y))∇η(y). By (4.3) this implies

that
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K|·|(x, v−n , v
+
n , νun)

≤ inf

{∫
Qνun

|∇uρ(x, η(y))| |∇η(y)| dy : η ∈ A(u−n (x), u+
n (x), νun)

}
≤ Kh(x, u−n , u

+
n , νun).

Therefore, also by (4.2), (4.3), (4.7), (4.8), and (4.9)∫
Ω

|Dvn| ≤
∫

Ω

|∇xρ(x, un)| dx+

∫
Ω

|∇uρ(x, un)| |∇un| dx

+

∫
Ω

|∇uρ(x, un)| |dC(un)|(4.10)

+

∫
S(un)∩Ω

Kh(x, u−n , u
+
n , νun)dHN−1 ≤ ||b||L1 +M2.

Finally, since vn(x) ∈ ρ(x,K) for LN a.e. x ∈ Ω, ρ(x,K) is a compact set of Rp,
and by (4.10) there exists a subsequence, still denoted {vn}, which converges strongly
in L1(Ω;Rp) and pointwise almost everywhere to a function v ∈ BV (Ω;Rp) (see [Z,
Cor. 5.3.4]), with v(x) ∈ ρ(x,K) for LN a.e. x ∈ Ω. Define u(x) := (ρ(x, ·))−1(v(x)).
By (F2) the function u is measurable. Since un(x) = (ρ(x, ·))−1(vn(x)) it follows that
un(x) → u(x) for LN a.e. x ∈ Ω; thus, u(x) ∈ K for LN a.e. x ∈ Ω. Moreover,
by (4.4) we have that |un(x)| ≤ c(x) for LN a.e. x ∈ Ω; therefore, by the Lebesgue
dominated convergence theorem un → u strongly in L1(Ω;Rp). By Lemma 4.1 we
conclude that

I(u,Ω) ≤ inf {I(u,Ω) : u ∈ D1} .
Corollary 4.3. Assume that conditions (F1) and (F2) in Theorem 4.2 are

replaced by the assumption

h∞(x, u, ξ) ≥ α|ξ| for all (x, u, ξ) ∈ Ω×K ×Mp×N

for some α > 0. Then D1 = D(I) and there exists a function u ∈ D1 such that

I(u,Ω) = inf {I(w,Ω) : w ∈ D1} .
Proof. It suffices to take ρ(x, u) := αu in Theorem 4.2. Then vn = αun converge

strongly in L1(Ω;Rp) to a function v ∈ BV (Ω;Rp), and therefore u := 1
α v is the

desired minimizer.

5. Nucleation: The scalar case. In this section we study the constrained
minimization problem introduced in section 4, restricted to the scalar case p = 1,
when K is a closed, connected subset of R (not necessarily bounded), and when the
potential τ(x, u) is given by

τ(x, u) := τ1(x, u) + ψ(x) τ2(u),

where τ1(x, u) is a Carathéodory function, concave in the u variable, ψ is a nonnega-
tive, measurable function, and τ2 is a continuous function such that

(5.1)

all the connected components of S := {u ∈ int K : τ∗∗2 (u) < τ2(u)} are bounded,
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where τ∗∗2 is the convex envelope of τ2. As remarked in [V2], (5.1) holds if

lim sup
|u|→∞

τ2(u)

|u| =∞.

Furthermore we assume that

τ(x, u) ≥ −L1 − L2|u| for LN a.e. x ∈ Ω and for all u ∈ K(5.2)

for some L1, L2 > 0.
Under appropriate assumptions on the functions h and θ, we prove that minimiz-

ers u ∈ L1(Ω;Rp) of

I : v ∈ L1(Ω;K) 7→ H(v,Ω) +

∫
Ω

τ(x, v(x)) dx

have the phase structure

u(Ω) ⊂ K\S.
In particular, if K = [a, b], if τ2 is concave in [a, b], and if u is a minimizer of I, then
u must have a two-phase structure, i.e., there exists a set Ω0 ⊂ Ω such that u(x) = a
for LN a.e. x ∈ Ω0 and u(x) = b for LN a.e. x ∈ Ω\Ω0. This result has important
applications in nucleation phenomena which have been studied extensively by Vis-
intin in [V1, V2], where usually K is bounded, τ1(x, u) := −ξ(x)u, ξ ∈ L∞(Ω;R) is
proportional to the relative temperature, and ψ(x) τ2(u) is the double well potential
ψ(x)(b− u)(u− a) (see Remark 5.2 below). Given a simple function u ∈ L1(Ω;K) of
the form

u(x) =

k∑
i=1

ci χωi(x),(5.3)

with ci ∈ K, LN (ωi) > 0 for all i = 1, . . . , k, and LN (Ω\ ∪ki=1 ωi) = 0, without loss of
generality we may assume that

inf K ≤ c1 < c2 < · · · < ck ≤ supK.(5.4)

Theorem 5.1. Let E be an algebra of measurable subsets of Ω, and consider a
functional V : L1(Ω;R)→ [0,∞] such that

S1 :=

{
u ∈ L1(Ω;R) : u =

k∑
i=1

ci χωi , ωi ∈ E , k ∈ N
}
⊂ D(V),

where

D(V) := {u ∈ L1(Ω;R) : V(u) <∞},
and

(i) for any u ∈ D(V) ∩ L1(Ω;K) there exists a sequence {un} ⊂ S1 ∩ L1(Ω;K)
converging to u in L1(Ω;K) and such that

lim sup
n→∞

V(un) ≤ V(u).
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(ii) For any u ∈ S1 of the form (5.3)–(5.4), with k ≥ 2, there holds

V(u) =

k−1∑
i=1

(ci+1 − ci)V(χ∪k
r=i+1

ωr ).(5.5)

(iii) The function c 7→ V(c) is concave in K.
In addition, suppose that the functional u 7→ ∫

Ω
τ(x, u(x)) dx is continuous in

D(V) ∩ L1(Ω;K). Then

inf {V(u) + IK(u,Ω) : u ∈ D(V)} = inf
{V(u) + IK(u,Ω) :u ∈ D(V), u(x) ∈ K\S

for LN a.e. x ∈ Ω
}
.

Remark 5.2. (i) The functional V(u) + IK(u,Ω) is well defined by (5.2).
(ii) Theorem 5.1 is closely related to Theorem 2 in [V2], where K = R and

conditions (i) and (ii) are replaced by the assumption that V satisfies the generalized
co-area formula

V(u) =

∫
R
V(χ{x∈Ω:u(x)≥t}) dt.(5.6)

It is easy to see that (5.6) reduces to (5.5) for functions u of the form (5.3)–(5.4).
Therefore, (5.5) is weaker than (5.6). On the other hand, conditions (i) and (5.6) do
not seem to be related. Indeed, consider the functional

V(u) :=

∫
Ω

|Du|+
{∫

Ω
max{u(x), 0}dx if HN−1(S(u) ∩ Ω) = 0,

0 otherwise.

From the proof of Theorem 5.4 below it follows that V satisfies hypotheses (i)–(iii) of
Theorem 5.1. Take u(x) := 1 in (5.6); then V(1) = LN (Ω), while the right-hand side
of (5.6) is infinite. Therefore, (5.6) fails. We note that V is not lower semicontinuous
in L1.

We remark that Theorem 5.1 may be applied to a large class of functionals of the
form (1.1), for which the co-area formula might not hold.

(iii) If, in addition to hypotheses (i)–(iii) in Theorem 5.1, we assume that V is
lower semicontinuous in L1(Ω;R), that K = R, and that there exists a set ω ∈ E with
0 < LN (ω) < LN (Ω), then V satisfies the following properties:

(1) V(c) = 0 for all c ∈ R;
(2) V(λu) = λV(u) for all λ > 0 and u ∈ D(V);
(3) V(u+ c) = V(u) for all c ∈ R and u ∈ D(V);
(4) V(u) ≥ ∫R V(χ{x∈Ω:u(x)≥t}) dt for all u ∈ D(V).
In order to prove the first property, define

un(x) :=

{
c+ εn if x ∈ ω,
c if x ∈ Ω\ω,

where εn := 1
n min{1, 1/V(χω)} if V(χω) > 0, and εn := 1

n otherwise. Clearly un → c
in L1(Ω;R); therefore, by the lower semicontinuity of V and (5.5)

0 ≤ V(c) ≤ lim inf
n→∞ V(un) = lim

n→∞ εnV(χω) = 0,

where we have used the fact that V(χω) <∞ because S1 ⊂ D(V).
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We omit the proofs of properties (2) and (3) since they follow quite easily from
hypotheses (i) and (ii) of Theorem 5.1 and from the lower semicontinuity of V.

In order to show (4), fix u ∈ D(V). By (i) there exists a sequence {un} ⊂ S1

converging to u in L1(Ω;R) and LN a.e. x ∈ Ω such that

V(u) ≥ lim
n→∞V(un) = lim

n→∞

∫
R
V(χ{x∈Ω:un(x)≥t}) dt ≥

∫
R

lim inf
n→∞ V(χ{x∈Ω:un(x)≥t}) dt

by (5.5) and Fatou’s lemma. Since LN ({x ∈ Ω : u(x) = t}) = 0 for all t ∈ R\M ,
where L1(M) = 0, we fix t ∈ R\M and take a subsequence {unk} of {un} such that

lim inf
n→∞ V(χ{x∈Ω:un(x)≥t}) = lim

k→∞
V(χ{x∈Ω:unk (x)≥t}).

Then {χ{x∈Ω:unk (x)≥t}} converges pointwise to χ{x∈Ω:u(x)≥t} for LN a.e. x ∈ Ω

and, by the Lebesgue dominated convergence theorem, also strongly in L1(Ω;R).
Therefore, by the lower semicontinuity of V,

lim inf
n→∞ V(χ{x∈Ω:un(x)≥t}) ≥ V(χ{x∈Ω:u(x)≥t})

for L1 a.e. t ∈ R, and we conclude that∫
R

lim inf
n→∞ V(χ{x∈Ω:un(x)≥t}) dt ≥

∫
R
V(χ{x∈Ω:u(x)≥t}) dt.

We do not know if the reversed inequality of (4) holds, i.e., if the co-area formula
(5.6) is satisfied.

Let

β := inf
{V(u) + IK(u,Ω) : u ∈ D(V), u(x) ∈ K\S for LN a.e. x ∈ Ω

}
.

Lemma 5.3. If u ∈ S1, then

V(u) + IK(u,Ω) ≥ β.
Proof. As IK(u,Ω) = ∞ for u /∈ L1(Ω;K) it suffices to prove the result for

u ∈ S1 ∩ L1(Ω;K). By (5.1) we can decompose the open set S as a disjoint union of
bounded intervals

S = ∪r∈R(ar, br).

Following Visintin [V2] we replace the function τ2 by

τ̃2(u) :=


τ2(u) if u ∈ R\S,

τ2(br)− τ2(ar)

br − ar (u− ar) + τ2(ar) if u ∈ (ar, br),

and denote by τ̃ and ĨK(u,Ω) the corresponding functionals. Define

βi := V(χ∪k
r=i+1

ωr ), αi(c) :=

∫
ωi

τ̃(x, c) dx.

Then by (5.3), (5.4), and (5.5)

V(u) + ĨK(u,Ω) =
k−1∑
i=1

(ci+1 − ci)βi +
k∑
i=1

αi(ci).
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Let r ∈ R be such that ci ∈ (ar, br) for some i ∈ {1, . . . , k}. There can only be finitely
many such r. Assume that k ≥ 2, and suppose that cl ∈ (ar, br), l ∈ {2, . . . , k − 1},
ci ≤ ar for all i < l (the cases where l = 1 or l = k can be treated analogously).
Define the function

Φ(t) :=

k−1∑
i=1, i 6=l−1, l

βi+1(ci+1− ci) +βl(t− cl−1) +βl+1(cl+1− t) +
k∑

i=1, i 6=l
αi(ci) +αl(t)

for t ∈ [ar, d], where d := cl+1 if cl+1 ≤ br and d := br if cl+1 > br. Since τ2(u) ≥ τ̃2(u)
by construction, then clearly V(u) + IK(u,Ω) ≥ V(u) + ĨK(u,Ω) = Φ(cl). Observe
that since τ̃(x, ·) = τ1(x, ·) + ψ(x) τ̃2(·) is concave in [ar, d], then the function αl(·)
is also concave in [ar, d], and Φ(t), being the sum of a linear function and a concave
function, attains its minimum at one of the endpoints Q of [ar, d]. It follows that

V(u) + IK(u,Ω) ≥ V(u) + ĨK(u,Ω) = Φ(cl) ≥ Φ(Q) = V(ū) + ĨK(ū,Ω),

where

ū(x) :=


∑k
i=1, i 6=l ci χωi(x) + arχωl(x) if Q = ar,∑k
i=1, i 6=l ci χωi(x) + brχωl(x) if Q = br,∑k
i=1, i 6=l,l+1 ci χωi(x) + cl+1χωl∪ωl+1

(x) if Q = cl+1.

If k = 1, namely, if u(x) ≡ c, then

V(u) + IK(u,Ω) ≥ V(u) + ĨK(u,Ω) = V(c) +

∫
Ω

τ̃(x, c) dx.(5.7)

Assume that c ∈ (ar, br) for some r ∈ R. Since by (iii) in the statement of Theorem
5.1 and by the construction of τ̃2 the right-hand side of (5.7) is a concave function of
c ∈ [ar, br], its infimum is attained at one of the endpoints, say, at br, and thus we
can replace u(x) by ū(x) := br ∈ K \ S.

We conclude that it is energetically possible to reduce at least by one the number
of values ci between ar and br. Repeating this procedure for the finite number of
intervals (ar, br), which contain at least one of the ci, by means of a finite induction
argument we can construct a simple function û of the form

û(x) =

k̂∑
i=1

ĉi χω̂i(x),

where k̂ ≤ k, such that û(Ω) ⊂ K\(ar, br) for any r ∈ R and V(u) + IK(u,Ω) ≥
V(û)+ ĨK(û,Ω). Since τ2(u) = τ̃2(u) for u ∈ K\S, it follows that IK(û,Ω) = ĨK(û,Ω)
and thus V(u) + IK(u,Ω) ≥ V(û) + IK(û,Ω) ≥ β. This concludes the proof of the
lemma.

Proof of Theorem 5.1. Let u ∈ D(V) ∩ L1(Ω;K). By (i) there exists a sequence
{un} ⊂ S1 ∩ L1(Ω;K) converging to u in L1(Ω;K) such that

lim sup
n→∞

V(un) ≤ V(u).

Moreover, by hypothesis,

lim
n→∞

∫
Ω

τ(x, un(x)) dx =

∫
Ω

τ(x, u(x)) dx,
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and since by Lemma 5.3 V(un) + IK(un,Ω) ≥ β, it follows that

V(u) + IK(u,Ω) ≥ β,
and we conclude that

inf {V(u) + IK(u,Ω) : u ∈ D(V)} ≥ β.
The reversed inequality is trivially satisfied.

In order to apply Theorem 5.1 to functionals of the form (1.1), we consider the
special case where

h = h(x, ξ) is positively homogeneous of degree one in ξ, θ(x, u) := σ̂ u, σ̂ 6= 0,

and hypotheses (A1)–(A7) in section 2 are satisfied. Clearly h(x, ξ) = h∞(x, ξ), and
by Theorem 2.2 (see also Corollary 3.3, (3.9), and Lemma 3.8), for u ∈ BV (Ω;R) we
have

H(u,Ω) =

∫
Ω

f(x,∇u) dx+

∫
Ω

f(x, dC(u))

+

∫
S(u)∩Ω

f(x, (u+ − u−)νu) dHN−1 + σ̂

∫
Ω

u divϕdx,

where, we recall,

f(x, ξ) = h(x, ξ) + σ̂ ϕ(x) · ξ for all (x, ξ) ∈ Ω× RN .
Furthermore, we assume that the potential τ also satisfies the growth condition

τ(x, u) ≤ b1(x) +M1(1 + |u|qc) for LN a.e. x ∈ Ω and all u ∈ K,(5.8)

where b1 ∈ L1(Ω,R), M1 > 0, and, as before, qc is the Sobolev exponent qc :=
N/(N − 1) if N > 1 and qc <∞ if N = 1. Define

V(u) :=

{∫
Ω
f(x,Du) if u ∈ BV (Ω;R),

∞ otherwise,

where∫
Ω

f(x,Du) :=

∫
Ω

f(x,∇u) dx+

∫
Ω

f(x, dC(u)) +

∫
S(u)∩Ω

f(x, (u+ − u−)νu) dHN−1,

and take E to be the algebra generated by the class of open polyhedral subsets of Ω.
If u ∈ S1 ∩ L1(Ω;K) has the form (5.3), then either ωi = Ei or ωi = Ω\Ei, where Ei
is an open polyhedral set of Ω. Therefore, in both cases ∂ωi ∩Ω = ∂Ei ∩Ω, which is
given by the intersection of a finite union of hyperplanes. Consequently, if i < j for
HN−1 a.e. x ∈ ∂ωj ∩ ∂ωi, the outward unit normal νj(x) to the set ωj at the point x
coincides with −νi(x). Moreover, for j < i < l we have

HN−1(∂ωj ∩ ∂ωi ∩ ∂ωl ∩ Ω) = 0(5.9)

and

(5.10)

Ω = ∪ki=1 ωi ∩ Ω, ∂ωi ∩ Ω = ∪j 6=i ∂ωi ∩ ∂ωj ∩ Ω,

∂
(∪kl=i ωl ∩ Ω

)
= ∂

(∪kl=i+1 ωl ∩ Ω
) \ (∪kl=i+1 ∂ωl ∩ ∂ωi ∩ Ω

) ∪ (∪i−1
j=1 ∂ωj ∩ ∂ωi ∩ Ω

)
.
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These properties will be useful in the sequel.
The main result of the section is the following theorem.
Theorem 5.4. If (H1)–(H7) and (5.8) are verified, then

inf {I(u,Ω) : u ∈ BV (Ω;K)} = inf {I(u,Ω) : u ∈ BV (Ω;K\S)} .
Remark 5.5. Theorem 5.4 no longer holds in general if θ(x, ·) is nonlinear. Indeed,

consider the simple case where Ω := (c, d), K := [−1, 1],

H(u,Ω) := σ

∫
Ω

|Du(x)| −
∫
∂Ω

sin(π T u(x)) dHN−1(x), u ∈ BV (Ω;R),

and τ(x, u) := a(1 − u2). Here K \ S = {−1, 1}, and if σ > π, then all conditions
(H1)–(H7) are satisfied. Let u ∈ BV (Ω;R), with u(x) ∈ {−1, 1} for LN a.e. x ∈ Ω.
Then I(u,Ω) = σ

∫
Ω
|Du(x)| ≥ 0. On the other hand, if we take ū(x) ≡ 1

2 , then

I(ū,Ω) = −2 + 3
4 a(d− c) < 0 provided a(d− c) < 8

3 .
For the proof of the lemma below we refer to [F], [LM], and [Re].
Lemma 5.6. Let f : Ω× RN → R be a continuous function such that ξ ∈ RN 7→

f(x, ξ) is positively homogeneous of degree one for all x ∈ Ω, and

0 ≤ f(x, ξ) ≤ C(1 + |ξ|) for some C > 0, all x ∈ Ω and ξ ∈ RN .

Let {µn} be a sequence of Radon measures converging weakly-? to a Radon measure
µ and

lim
n→∞ |µn|(Ω) = |µ|(Ω).

Then

lim
n→∞

∫
Ω

f(x, dµn) =

∫
Ω

f(x, dµ).

Proof of Theorem 5.4. We claim that V satisfies conditions (i)–(iii) of Theorem 5.1.
To prove (i) fix u ∈ BV (Ω;K). We can find a sequence {un} of the form

un(x) =

kn∑
i=1

cn,i χωn,i(x)

such that un converges strongly to u in L1(Ω;R) and
∫

Ω
|Dun| →

∫
Ω
|Du| (see [AMT]).

Here cn,i ∈ R, the sets ωn,i are open polyhedral set of Ω, ∪kni=1ωn,i ∩Ω = Ω, and as in
(5.4)

cn,1 < cn,2 < · · · < cn,kn .

By (5.10) it is not difficult to see that

S(un) = ∪(i,j)∈Jn(∂ωn,i ∩ ∂ωn,j),
where Jn = {(i, j) ∈ N2 : 1 ≤ i < j ≤ kn}. Furthermore, if x0 ∈ ∂ωn,i ∩ ∂ωn,j , then
u+
n (x0) = cn,j , u

−
n (x0) = cn,i, and∫
Ω

|Dun| =
∑

(i,j)∈Jn
(cn,j − cn,i)HN−1(∂ωi ∩ ∂ωj ∩ Ω).
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Let ūn(x) :=
∑kn
i=1 dn,i χωn,i(x), where

dn,i =


supK if cn,i ≥ supK,
cn,i if − inf K < cn,i < supK,
inf K if cn,i ≤ inf K.

Since 0 ≤ (dn,j − dn,i) ≤ (cn,j − cn,i), it follows that
∫

Ω
|Dūn| ≤

∫
Ω
|Dun|. Conse-

quently

lim sup
n→∞

∫
Ω

|Dūn| ≤
∫

Ω

|Du|.

On the other hand, since u(x) ∈ K for LN a.e. x ∈ Ω, then |u(x)− ūn(x)| ≤ |u(x)−
un(x)| by construction, and so {ūn} converges strongly to u in L1(Ω;R). By the lower
semicontinuity of the total variation we have that

∫
Ω
|Du| ≤ lim infn→∞

∫
Ω
|Dūn|; thus

lim
n→∞

∫
Ω

|Dūn| =
∫

Ω

|Du|

and from Lemma 5.6 we conclude that

lim
n→∞

∫
Ω

f(x,Dūn) =

∫
Ω

f(x,Du).

In order to verify (ii) in the statement of Theorem 5.1, fix u ∈ BV (Ω;R) of the
form (5.3)–(5.4), where ci ∈ K, ωi ∈ E , ∪ki=1ωi ∩ Ω = Ω, k ≥ 2, and

c1 < c2 < · · · < ck.

Since by homogeneity f(x, 0) = 0, we have

V(u) =
∑

(i,j)∈J
(cj − ci)

∫
∂ωi∩∂ωj∩Ω

f(x, νj) dHN−1

with J = {(i, j) ∈ N2 : 1 ≤ i < j ≤ k}, or, equivalently,

(5.11)

V(u) = ck

k−1∑
j=1

∫
∂ωk∩∂ωj∩Ω

f(x, νk) dHN−1 − c1
k∑
l=2

∫
∂ωl∩∂ω1∩Ω

f(x, νl) dHN−1

+
k−1∑
i=2

ci

i−1∑
j=1

∫
∂ωi∩∂ωj∩Ω

f(x, νi) dHN−1 −
k∑

l=i+1

∫
∂ωl∩∂ωi∩Ω

f(x, νl) dHN−1

 .

By (5.9) and (5.10) we can rewrite the first two terms as, respectively,

ck

∫
∂ωk∩Ω

f(x, νk) dHN−1 and − c1
∫
∂(∪k

l=2
ωl)∩Ω

f(x,−ν1) dHN−1,

and for i ∈ {2, . . . , k − 1}
(5.12)

i−1∑
j=1

∫
∂ωi∩∂ωj∩Ω

f(x, νi) dHN−1 −
k∑

l=i+1

∫
∂ωl∩∂ωi∩Ω

f(x, νl) dHN−1

=

∫
∂(∪k

l=i
ωl)∩Ω

f(x, ν̂i) dHN−1 −
∫
∂(∪k

l=i+1
ωl)∩Ω

f(x, ν̂i+1) dHN−1,
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where ν̂i and ν̂i+1 are, respectively, the outward unit normals to the sets ∪kl=i ωl and
∪kl=i+1 ωl. It now follows from (5.11)–(5.12) that

V(u) = ckV(χωk)− c1V(χ∪k
l=2

ωl) +
k−1∑
i=2

ciV(χ∪k
l=i

ωl)−
k−1∑
i=2

ciV(χ∪k
l=i+1

ωl),

which is (ii) in the statement of Theorem 5.1.
Finally, by (5.2), (5.8), and the Sobolev inequality, the functional u 7→ ∫

Ω
τ(x, u(x)) dx

is continuous in BV (Ω;K) (see [K, Thm. 2.1]). Therefore, we can now apply Theorem
5.1 (with τ(x, u) replaced by τ(x, u) + σ̂ u divϕ(x)) to obtain that

inf {I(u,Ω) : u ∈ BV (Ω;K)} = inf {I(u,Ω) : u ∈ BV (Ω;K\S)} .
Corollary 5.7. Assume that K = [a, b] in Theorem 5.4. Then there exists a

function u ∈ BV (Ω; [a, b]\S) such that

I(u,Ω) = inf {I(u,Ω) : u ∈ BV (Ω; [a, b])} .
Proof. By Theorem 5.4,

inf {I(u,Ω) : u ∈ BV (Ω; [a, b])} = inf {I(u,Ω) : u ∈ BV (Ω; [a, b]\S)} = β.

To complete the proof it suffices to apply Corollary 4.3, with K := [a, b]\S, to find
u ∈ BV (Ω; [a, b]\S) such that I(u,Ω) = β.

Remark 5.8. If we assume that τ2 is concave in [a, b], then S = (a, b) and conse-
quently the minimizer u in Corollary 5.7 has the property that u(x) ∈ {a, b} for LN
a.e. x ∈ Ω.
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Abstract. The problem of determining a portion Γ of the boundary of a bounded planar domain
Ω from Cauchy data arises in several contexts, for example, such as in corrosion detection from
electrostatic measurements. We investigate this severely ill-posed problem establishing logarithmic
continuous dependence of Γ from Cauchy data.
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1. Introduction. Let Ω be a bounded open subset of R2 and let Γ indicate a
portion of the boundary of Ω. Let ψ be a function on ∂Ω having zero mean value and
such that supp (ψ)γ, where γ ⊂ ∂Ω\Γ. Consider the Neumann problem

∆u = 0 in Ω,
∂u
∂n = 0 on Γ,
∂u
∂n = ψ on ∂Ω\Γ,

(1.1)

where n denotes the outer unit normal to ∂Ω. If we normalize u setting, for example,∫
∂Ω

uds = 0,(1.2)

then the solution u to (1.1) is uniquely determined.
In this paper we shall deal with the inverse problem of determining Γ from the

knowledge of the additional boundary measurement

u|γ = g

when one suitable Neumann datum ψ in (1.1) is assigned. This problem occurs, for
example, in corrosion detection by electrostatic measurements [KS], [KSV]. In this
case Γ represents the damaged part of the boundary of a conducting specimen and
one tries to identify Γ by assigning a suitable flux ψ and measuring the corresponding
potential u on the accessible part of the boundary, γ.

Another application of this problem is planar crack detection in nonferrous metals
from electromagnetic measurements [McI], [AP], [ABJ].

In this paper we address the question of continuous dependence of Γ from the
Cauchy data (ψ, g). Since it is necessary to determine the interior values of u from the
Cauchy data, one expects the problem to be severely ill-posed. In fact, in [A1] Alessan-
drini proves that logarithmic type continuous dependence of Γ from the Cauchy data
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(ψ, g) is the best possible. An indication of the ill-posedness of the problem is also
given in [AP].

In this paper we prove that, under suitable a priori assumptions on the unknown
curve Γ, the continuous dependence of Γ from the data is in fact of logarithmic type.

In order to give an idea of the proof of our result let us begin by illustrating the
proof of the uniqueness of Γ. Let ψ 6= 0 and let Γ1,Γ2 be two simple curves having
common endpoints. Let u1 = u2 on γ (here uj , j = 1, 2, is harmonic in Ωj , the
bounded smooth subset corresponding to Γj). Let Λ be the connected component of
Ω1 ∩ Ω2 containing γ. Uniqueness of the Cauchy problem for the Laplace equation
and analytic continuation of harmonic functions give that u1 = u2 in Λ. Therefore, if
for instance Ω1\Ω2 6= ∅, then by the inclusion ∂(Ω1\Λ) ⊂ (∂Λ ∩ Γ2) ∪ Γ1, by the fact
that ∂u2

∂n = 0 on Γ2, and by the divergence theorem one has∫
Ω1\Ω2

|∇u1|2dx ≤
∫

Ω1\Λ
|∇u1|2dx =

∫
∂Λ∩Γ2

u1
∂(u1 − u2)

∂n
ds.(1.3)

Therefore, from (1.3) it follows that |∇u1| = 0 in Ω1\Ω2 and by analytic continuation
of harmonic functions it follows that ∇u1 = 0 in Ω1, contradicting the assumption
∂u1

∂n |γ 6= 0.
To prove our result we use (1.3) in order to estimate the Lebesgue measure of the

set Ω1 4 Ω2. In fact, choosing a suitable function ψ, by [A2], it follows that u1 has no
critical points in Ω1\γ and a pointwise lower bound on |∇u1| holds; cf. Lemma 3.3.
Coupling this fact with stability estimates for the Cauchy problem applied to u1−u2,
using (1.3) we derive a first rough stability estimate for the Lebesgue measure of the
set Ω1 4 Ω2. This estimate is refined in the second part of Theorem 2.1. Finally
we obtain the desired estimate on the Hausdorff distance of Γ1 from Γ2 establishing
an upper bound for the Hausdorff distance of Γ1 from Γ2 in terms of the Lebesgue
measure of the set Ω1 4 Ω2, Proposition 3.4.

The paper is organized as follows. In section 2 we describe the a priori assumptions
on Ω, Γ, and on the measurements and we state our main result (Theorem 2.1). In
section 3 we derive some bounds on u and on the measure of Ω and of ∂Ω, which
are consequences of the a priori information illustrated in section 2. In section 4 we
prove Theorem 2.1. Finally in the Appendix we give the proof of Proposition 3.4 of
section 3.

2. The main result. We start by giving some notation and by listing the re-
quired a priori assumptions.

Let x0 ∈ R2, r > 0, A,B be two measurable subsets of R2. In the sequel we will
use the following notation:

(i) B(x0, r) = {x ∈ R2 : |x− x0| < r};
(ii) |A| denotes the measure of the set A; if ∂A is smooth, then |∂A| denotes

the length of ∂A;
(iii) d(x0, A) = infx∈A |x− x0|, d(A,B) = infx∈A d(x,B);
(iv) (A)r = {x ∈ A : d(x,R2\A) ≥ r};
(v) δH(A,B) = sup{supx∈A d(x,B), supx∈B d(x,A)}, Hausdorff distance be-

tween the sets A and B;
(vi) C = C(a, b, c, . . .) indicates that C depends only on the parameters a, b, c, . . ..

In the sequel we will indicate different constants with the same letter C.
Given the positive constants A,L0, L1, R we suppose that Ω indicates a simply

connected bounded open C2 subset of R2 satisfying the following conditions.
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Prior information on Ω.

|Ω| ≤ A;(2.1a)

{ ∀x ∈ ∂Ω there exist two disks of radius R tangent in x,
the first contained in Ω and the second in R2\Ω.

(2.1b)

Prior information on the unknown boundary Γ. Let γ ⊂ ∂Ω denote an arc
of endpoints a0 and a1 where we will make our measurements. Denote with Γ an arc
with Γ ⊂ int(∂Ω\γ) and of endpoints b0 and b1 such that

d(γ,Γ) ≥ L0(2.2a)

and

|Γ| ≥ L0.(2.2b)

Prior information on the measurements. Given two points p1, p2 ∈ γ such
that

|p1 − p2| ≥ L1,(2.3)

we consider two functions η1, η2 ∈ C2(∂Ω) such that∫
∂Ω

ηids = 1, i = 1, 2,(2.4a)

and

supp(ηi) ⊂ γ ∩B(pi, h), i = 1, 2,(2.4b)

where h ∈ (0, L1/2).
Let

ψ = η1 − η2.(2.5)

We will consider the solution u of the following Neumann problem

∆u = 0 in Ω,
∂u
∂n = 0 on Γ,
∂u
∂n = ψ on ∂Ω\Γ,∫

∂Ω
uds = 0,

(2.6)

where n denotes the exterior unit normal to ∂Ω. Observe that by (2.4a)–(2.4b) ψ = 0
on ∂Ω\γ.

Given two curves Γi, i = 1, 2, let u1, u2 indicate the solutions of problem (2.6)
corresponding to the curves Γ1,Γ2, respectively. Then the following result holds.

Theorem 2.1. Assume conditions (2.1)–(2.5). Given ε ∈ (0, 1), if

maxx∈γ |u1(x)− u2(x)| ≤ ε,
then for any η > 0 there exists a positive constant C = C(L0, L1, A,R, η) such that

δH(Γ1,Γ2) ≤ C| ln ε|− 1
3 +η.

See section 4 for the proof.
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3. Some preliminary results. In this section we will expose and prove some
consequences of the a priori information listed in the previous section.

Proposition 3.1. Let the a priori conditions (2.1a) and (2.1b) be satisfied. Let
κ(x) indicate the curvature at the point x ∈ ∂Ω. Then, for any r ∈ [0, R], the following
bounds hold:

|κ(x)| ≤ 1

R
(3.1)

for any x ∈ ∂Ω. We also have that

|∂Ω| ≤ cA
R
,(3.2)

|Ω\(Ω)r| ≤ cA
R
r,(3.3)

and

|∂(Ω)r| ≤ cA
R
,(3.4)

where c = 24 3
√

6e2.
Proof. The bound (3.1) follows immediately from assumption (2.1b).
By [V] one has that for r ∈ [0, R],

|∂(Ω)r| = |∂Ω| − r
∫
∂Ω

κ(x)ds(3.5)

and

|Ω\(Ω)r| =
∫ r

0

|∂(Ω)t|dt = r|∂Ω| − r2

2

∫
∂Ω

κ(x)ds.(3.6)

Let f(r) = |Ω\(Ω)r| for r ∈ [0, R]. By [G] the interpolation inequality for f follows:

|∂Ω| = f ′(0) ≤ 12e2‖f‖2/3∞
(
‖f ′′′‖∞ +

6

R2
‖f‖∞

)1/3

(3.7)

≤ 12
3
√

6e2 |Ω|
R
≤ 12

3
√

6e2A

R
,

which gives estimate (3.2). From (3.5), (3.1), and (3.7) it follows that for r ∈ [0, R]

|∂(Ω)r| ≤ |∂Ω|+ r

R
|∂Ω| ≤ 2|∂Ω| ≤ 24

3
√

6e2A

R

from which one gets (3.4). Finally (3.6), (3.1), and (3.7) lead to

|Ω\(Ω)r| ≤ r|∂Ω|
(

1 +
r

2R

)
≤ 18

3
√

6e2A

R

for r ∈ [0, R] and (3.3) follows, completing the proof.
Observe that from bound (3.2) of Proposition 3.1 it follows immediately that

diam(Ω) ≤ cA
R
.(3.8)
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Now we derive some upper and lower bounds for the solution u of problem (2.6).
Proposition 3.2. Let the a priori assumptions (2.1a)–(2.1b) be satisfied. Then

for any q > 2 there exist three positive constants Ei = Ei(A,R, ‖ψ‖C2(∂Ω), q), i =
0, 1, 2, such that

‖u‖L∞(Ω) ≤ E0, ‖∇u‖L∞(Ω) ≤ E1, ‖D2u‖Lq(Ω) ≤ E2.(3.9)

Proof. Let φ(s) =
∫ s

0
ψ(t)dt, where s is the arclength parameter on ∂Ω. Then the

harmonic conjugate v, of u, satisfies the Dirichlet problem

∆v = 0 in Ω,
v = φ on ∂Ω.

(3.10)

Let Φ ∈ C2(Ω) be an extension of φ to Ω such that Φ|∂Ω = φ and ‖Φ‖C2(Ω) ≤
C‖φ‖C2(∂Ω). Then a priori estimates for elliptic equations [GT] give

‖v‖2,q ≤ C‖ψ‖C2(∂Ω).

From Sobolev immersion theorem and by the fact that

|∇u(x)| = |∇v(x)|, |D2u(x)| = |D2v(x)|,
it follows that

‖u‖L∞(Ω) ≤ E0, ‖∇u‖L∞(Ω) ≤ E1, ‖D2u‖Lq(Ω) ≤ E2,

where E0, E1, E2 depend on A,R, ‖ψ‖C2(∂Ω), and q, which then proves the propo-
sition.

Lemma 3.3. Assume conditions (2.1)–(2.5) hold and let u be the solution of
problem (2.6). Then there exists a positive constant C = C(L0, A,R, ‖ψ‖C2(∂Ω)) such
that

|∇u(x)| ≥ C for any x ∈ Ω : d(x, γ) ≥ L0

2
.(3.11)

Proof. As in Proposition 3.2 we consider the harmonic conjugate of u, v satisfying

∆v = 0 in Ω,
v = φ on ∂Ω,

where φ =
∫ s

0
ψ(t)dt. Let z = x + iy and let f(z) = ξ + iη = ζ denote a conformal

mapping such that
(a) f maps Ω one to one onto B+(0, 1) = {ζ : |ζ| < 1, η > 0};
(b) f(γ) consists of the semicircle {ζ : |ζ| = 1, η > 0} and f(∂Ω\γ) consists of

the segment {ζ : ξ ∈ [−1, 1], η = 0}.
Then f ∈ C2(Ω\{a0, a1}) and the following bounds for |f ′| hold:

k−1
1

R

A
≤ |f ′| ≤ k2

1

L0
in Ω,(3.12)

where k1 = (12
√

2 3
√

6e2) and k2 =
√

2π.
The regularity of f follows from the fact that ∂Ω ∈ C2 and f |∂Ω is smooth except

at the endpoints of γ, a0, and a1. To prove the lower bound in (3.12) let us consider
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the inverse mapping f−1 : B+(0, 1) → Ω. Then f−1 ∈ C2(B+(0, 1)\{q0, q1}), where
q0, q1 are the singular points of ∂B+(0, 1). Moreover, if f−1(ζ) = ϕ+ iω, then by the
Cauchy–Riemann equations and by estimate (3.2) of Proposition 3.1 it is easy to see
that

|ϕξ|, |ϕη| ≤ k1
A

R
on ∂B+(0, 1).(3.13)

By the weak maximum principle it follows that (3.13) holds in B+(0, 1). Hence

|(f−1)′| = |∇ϕ| ≤ k1
A

R
in B+(0, 1)

from which the lower bound in (3.12) follows. To show the upper bound for |f ′| we
proceed similarly estimating |ξx|, |ξy| on ∂Ω and using the a priori information (2.2b).

Let w = v◦f−1 : B+(0, 1)→ R and consider the odd reflection of w, w∗ satisfying

∆w∗ = 0 in B(0, 1),

w∗ = φ∗ on ∂B(0, 1).

By our choice of φ, ∂B(0, 1) can be split into two arcs on which alternatively φ∗ is
a nondecreasing and nonincreasing function of the arclength parameter. Then, by
Theorem 2.7 of [AM], w∗ has no interior critical points. Furthermore by [A2] there
exists a positive constant C = C(d, ‖φ∗‖

C2(B(0,1)
) such that

|∇w∗(ζ)| ≥ C for any ζ ∈ B(0, 1) : d(ζ, ∂B(0, 1)) ≥ d > 0.

Hence

|∇w(ζ)| ≥ C for any ζ ∈ B+(0, 1) : d(ζ, ∂B+(0, 1)\{η = 0}) ≥ d > 0.(3.14)

Let ζ ∈ B+(0, 1) satisfy (3.14) and let z ∈ Ω be such that ζ = f(z). Then d(z, γ) ≥
dL0

k1
. Choose d = k1

4 . Then by (3.13) and (3.14) it follows that

|∇u(z)| = |∇v(z)| = |∇w(f(z))| · |f ′(z)| ≥ C > 0

for z ∈ Ω such that d(z, γ) ≥ L0

4 . Finally, since φ◦f−1 ∈ C2(B+(0, 1)), ψ has support

in γ and f−1 ∈ C2(B+(0, 1)\{q0, q1}) one has that C = C(L0, A,R, ‖ψ‖C2(∂Ω)), which
completes the proof.

Proposition 3.4. Let Ω1,Ω2 denote two bounded simply connected C2 subsets
of R2 satisfying conditions (2.1a)–(2.1b) and such that Ω1,Ω2 ⊂ B(z, 2d), where
d = max{diam(Ω1), diam(Ω2)} and z ∈ R2. Then

δH(∂Ω1, ∂Ω2) ≤ 16d

(π)1/3R2/3
|Ω1 4 Ω2|1/3.(3.15)

Since the proof is rather technical we postpone the proof to the Appendix.

4. Proof of Theorem 2.1. Let ui be the solution of the problem

∆ui = 0 in Ωi,

∂ui
∂n

= 0 on Γi,

(4.1)
∂ui
∂n

= ψ on ∂Ωi\Γi,∫
∂Ωi

uids = 0,
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where Ωi indicates the subset corresponding to Γi.
Proof of Theorem 2.1. Every time we will say in the sequel that a property is

true for ε sufficiently small, we will mean that there exists a positive number ε0 =
ε0(A,R,L0, L1, ‖ψ‖C2(∂Ω), q) such that for every ε ∈ (0, ε0) the property holds.

Let R1 = min(R,L0) and u = u1 − u2 be defined in Ω1 ∩ Ω2. Let

J1 =

{
x ∈ Ω1 ∩ Ω2|d(x, γ) ≤ R1; d(x, a0), d(x, a1) ≥ R1

4

}
and

J2 =

{
x ∈ Ω1 ∩ Ω2|d(x, γ) ≤ R1; d(x, a0), d(x, a1) ≥ R1

3

}
.

Then by [P] it follows that for x ∈ J1,

|∇u(x)| ≤ Cελ,(4.2)

where λ ∈ (0, 1) depends on γ and R1.
We divide the proof into two steps.
Step 1. In this first part of the proof we establish a first rough estimate of

δH(Γ1,Γ2). For let r ∈ (0, R1/3). In the sequel we will indicate with γr the set
γr = {x ∈ Ω1|d(x, γ) = r} and with Λr the connected component of (Ω1)r ∩ (Ω2)r
containing γr. The following inclusions hold:

Ω1\Ω2 ⊂ [Ω1\(Ω1)r] ∪ [(Ω1)r\(Ω2)r],(4.3)

(4.3i) (Ω1)r\(Ω2)r ⊂ (Ω1)r\Λr.
Setting Γ′r = ∂Ωj\γ for j = 1, 2, we have that the set Γ′j,r indicates the set Γ′i,r =
{x ∈ Ωi|d(x,Γ′i) = r}:
(4.3ii) ∂[(Ω1)r\Λr] ⊂ [∂Λr ∩ Γ′2,r] ∪ Γ′1,r.

From (3.9), (4.3), and (4.3ii) it follows that∫
Ω1\Ω2

|∇u1|2dx ≤ E2
1 |Ω1\(Ω1)r|+

∫
(Ω1)r\Λr

|∇u1|2dx.(4.4)

From the divergence theorem, from (3.9), and from (4.3ii) one has∫
(Ω1)r\Λr

|∇u1|2dx =

∫
∂[(Ω1)r\Λr]

u1
∂u1

∂n
ds

(4.5)

≤ E0

(∫
∂Λr∩Γ′2,r

∣∣∣∣∂u1

∂n

∣∣∣∣ ds+

∫
Γ′1,r

∣∣∣∣∂u1

∂n

∣∣∣∣ ds
)
.

Now, let x ∈ ∂Λr ∩ Γ′2,r and let y ∈ Γ′2 be such that x = y − rny, where ny indicates

the exterior outer unit normal at ∂Ω2 at the point y. Since nx = ny and ∂u2

∂n = 0 on
Γ′2 it follows that ∣∣∣∣∂u1

∂n
(x)

∣∣∣∣ ≤ |∇u(x)|+ |∇u2(x)−∇u2(y)|.(4.6)
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From (3.9), from the Sobolev immersion theorem, and from (4.6) one derives∣∣∣∣∂u1

∂n
(x)

∣∣∣∣ ≤ |∇u(x)|+ Cr1−2/q for x ∈ ∂Λr ∩ Γ′2,r and q > 2.(4.7)

Furthermore by (3.9) and since ∂u1

∂n = 0 on Γ′1 one has∣∣∣∣∂u1

∂n
(x)

∣∣∣∣ ≤ Cr1−2/q for x ∈ Γ′1,r.(4.8)

Hence by (4.4)–(4.8) and by the a priori information we derive∫
Ω1\Ω2

|∇u1|2dx ≤ E2
1 |Ω1\(Ω1)r|

+ E0

(
(|Γ′1,r|+ |Γ′2,r|)Cr1−2/q + |Γ′2,r| max

∂Λr∩Γ′2,r
|∇u|

)
(4.9)

≤ C
[(

r

R1

)1−2/q

+ max
∂Λr∩Γ′2,r

|∇u|
]
.

We now estimate max∂Λr∩Γ′2,r |∇u|. More precisely we will prove that

|∇u(x)| ≤ C(1 + ελ)1−αNr ελα
Nr

for x ∈ ∂Λr ∩ Γ′2,r,(4.10)

where α = ln 4/3
ln 4 , Nr = A

π( r4 )2 + 1, and λ ∈ (0, 1).

Now let x̄ ∈ ∂Λr ∩ Γ′2,r and y ∈ γr ∩ J2. Then one has that B(y, r/4) ⊂ J1 for
r < R1/3. Set

σ = max
B(y,r/4)

|∇u|.(4.11)

Let L be a simple curve contained in Λr having x̄ and y as endpoints. Then it is
possible to construct a chain of closed balls centered in L, of radius r/4, tangent two
by two, and internally nonoverlapping; the first ball is centered in y; the last is at
distance less than or equal to r/4 from x̄. If the distance is less than r/4, we add
to the chain the ball of radius r/4 whose center is x̄. The repeated use of the three
circles theorem leads to

‖∇u‖L∞(B(xi,r/4)) ≤ ‖∇u‖L∞(B(xi−1,3r/4))

≤ ‖∇u‖1−αL∞(B(xi−1,r))
· ‖∇u‖αL∞(B(xi−1,r/4)), i = 1, 2, . . . , n,

where α = ln 4/3
ln 4 . Hence from (4.11) we derive

|∇u(x̄)| ≤ (2E1 + σ)1−αn+1

σα
n+1

.

On the other hand

n ≤ |Λ|
π( r4 )2

≤ A

π( r4 )2
,
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where Λ is the connected component of Ω1 ∩ Ω2 containing γ. This last bound and
(4.2) give (4.10). From (4.9) and (4.10) it follows that for r ∈ (0, R1/3),∫

Ω1\Ω2

|∇u1|2dx ≤ C
[(

r

R1

)1−2/q

+ (1 + ελ)1−αNr · ελαNr
]
.(4.12)

Let r = R1

4

[
C

ln | ln ελ|
]1/2

. Then from (4.12) for ε sufficiently small one has∫
Ω1\Ω2

|∇u1|2dx ≤ C
(
ln | ln ελ|)− 1

2 (1− 2
q )
,

and by (3.11) one gets

|Ω1\Ω2| ≤ C
(
ln | ln ελ|)− 1

2 (1− 2
q )
.

Since a similar bound holds for |Ω2\Ω1|, it follows that

|Ω1 4 Ω2| ≤ C
(
ln | ln ελ|)− 1

2 (1− 2
q )
.(4.13)

Finally, (4.13) and (3.15) lead to

δH(∂Ω1, ∂Ω2) ≤ C (ln | ln ελ|)− 1
6 (1− 2

q )
(4.14)

for ε sufficiently small.
Step 2. From the divergence theorem and from (3.2) it follows that∫

Ω1\Ω2

|∇u1|2dx ≤ cE0A

R
· sup

(∂Λ∩Γ′2)\Γ′1
|∇u|.(4.15)

We will assume that ε is sufficiently small in such a way that

C
(
ln | ln ελ|)− 1

6 (1− 2
q ) ≤ R1

2
.(4.16)

Let x̄ ∈ (∂Λ ∩ Γ′2)\Γ′1 and let r = d(x̄, ∂Ω1). From (4.14) and (4.16) it follows that
x̄ ∈ ∂(Ω1)r and, moreover, (Ω1)r has the interior sphere property with radius R − r
and the exterior sphere property with radius R.

Let Bint(p,R1/2) and Bext(q,R1/2) indicate the interior and exterior disks to
(Ω1)r tangent in x̄ to ∂(Ω1)r. Let Bint(p

′, R1/2) and Bext(q
′, R1/2) be the interior

and exterior disks to Ω2 tangent in x̄ to ∂Ω2. We have that

Bint(p
′, R1/2) ∩Bext(q,R1/2) ⊂ Ω2\(Ω1)r.(4.17)

From (3.3), (4.13), (4.16), and (4.17) one has

Bint(p
′, R1/2) ∩Bext(q,R1/2) ≤ C (ln | ln ελ|)− 1

6 (1− 2
q )
.(4.18)

Let ȳ be the second intersection of ∂Bint(p,R1/2) with ∂Bint(p
′, R1/2) and let δ

denote the angle ȳˆ̄xp′. Since∣∣∣∣Bint(p′, R1

2

)
∩Bext

(
q,
R1

2

)∣∣∣∣ =
R2

1

4
(2δ − sin 2δ) ,
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by (4.18) it follows that

δ ≤ 2δ(ε),

where δ(ε) is defined by the relation

R2
1

4
(2(2δ(ε))− sin 2(2δ(ε))) = C

(
ln | ln ελ|)− 1

6 (1− 2
q )
.

Denote with B(m, ρ) the disk centered at m = p+p′

2 of radius ρ = 1 − sin δ. Then
it is easy to see that B(m, ρ) is the maximum disk contained in Bint(p,R1/2) ∩
Bint(p

′, R1/2).
Let δ0 ∈ (0, π/12) be fixed and let ε be sufficiently small so that

δ(ε) ≤ δ2
0 .

Let us describe the following geometric construction: consider the half-line originating
from x̄ intersecting ∂Bint(p,R1/2) at s and forming an angle of width π/2 − θ, θ ∈
(4δ0, π/2), with the half-line x̄m. Now let m′ = x̄+s

2 . As θ varies in the interval
(4δ0, π/2), the point m′ describes a curve of endpoints a and m. Now reflect this
curve across the line x̄m and denote with β the entire curve. From the three circles
theorem, one has

|∇u(x)| ≤ (2E1 + σ)
1−ω0 σω0 ∀x ∈ β,

where

ω0 =
ln
(

cos 3δ0
cos 4δ0

)
ln 2

and

σ = max
B(m,ρ/2)

|∇u|.

A Carleman estimate in a sector [C] leads to

|∇u(q)| ≤ (2E1 + σ)

(
σ

2E1 + σ

)ω0

(
l

R1/2 sin 2δ0

) 1

1− 8δ0
π

,

where q lies on the segment x̄m at distance l from x̄.
Setting t = l

R1
2 sin 2δ0

one has that t ∈ (0, 1) and, moreover,

|∇u(x̄)| ≤ C
(
tR1

2

)1− 2
q

+ (2E1 + σ)

(
σ

2E1 + σ

)ω0t

1

1− 8δ0
π

.(4.19)

For σ < 2E1

e let t = | ln
(

σ
2E1+σ

)
|−(1− 9δ0

π ). Then from (4.19) for σ small enough it

follows that

|∇u(x̄)| ≤ C
∣∣∣∣ln( σ

2E1 + σ

)∣∣∣∣−(1− 2
q )(1− 9δ0

π )

.
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Finally let us estimate σ. Using similar arguments as for the proof of estimate (4.10)
one has

σ ≤ C(1 + ελ)1−αN0
ελα

N0
,

where α = ln 4/3
ln 4 , N0 = 2A

π(
R1
32 )2

+ 1, and λ ∈ (0, 1). Then for ε sufficiently small

|∇u(x̄)| ≤ C| ln ε|−(1− 2
q )(1− 9δ0

π ).

The last inequality, (4.15), and (3.11) give

|Ω1\Ω2| ≤ C| ln ε|−(1− 2
q )(1− 9δ0

π ).

Since an analogous bound holds for |Ω2\Ω1| we derive

|Ω1 4 Ω2| ≤ C| ln ε|−(1− 2
q )(1− 9δ0

π ).

Finally Proposition 3.4, last inequality, and the fact that

δH(∂Ω1, ∂Ω2) = δH(Γ1,Γ2)

give

δH(Γ1,Γ2) ≤ C| ln ε|− 1
3 +η,

which proves Theorem 2.1.

5. Appendix.
Proof of Proposition 3.4. In order to prove inequality (3.15) we prove preliminarily

that

δH(Ω1,Ω2) ≤ 4d

(π)1/3R2/3
|Ω1 4 Ω2|1/3.(5.1)

Let σ = |Ω1 4 Ω2|. If σ ≥ πR2

8 , then

δH(Ω1,Ω2) ≤ 2d ≤ 2d

(
σ
πR2

8

)1/3

=
4d

R2/3π1/3
σ1/3,

which proves (5.1).

Let us consider the case σ < πR2

8 . Let x̄ ∈ Ω1\Ω2. From property (2.1b) there

exists a point p ∈ Ω1 such that B(p,R/2) ⊂ Ω1 and x̄ ∈ ∂B(p,R/2). Since σ < πR2

8
it is easy to see that B(p,R/2) ∩ Ω2 6= ∅.

Let y ∈ ∂Ω2 ∩B(p,R/2) be such that

|x̄− y| = d(x̄,Ω2 ∩B(p,R/2)).(5.2)

Again by (2.1b) there exists a point q ∈ R2\Ω2 such that B(q,R) ⊂ R2\Ω2 and
∂B(q,R) is tangent to ∂Ω2 at y. We now prove that

x̄ ∈ B(p,R/2) ∩B(q,R).(5.3)
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We distinguish two cases
(i) y ∈ B(p,R/2),
(ii) y ∈ ∂B(p,R/2).
In case (i) observe that by construction (x̄ − y)⊥∂Ω2. Moreover, |x̄ − y| <

diamB(p,R/2) = R from which (5.3) follows.
Let us now prove (5.3) in case (ii). From simple but lengthy geometric calculations

it follows that the outer normal n at ∂Ω2 in y belongs to the angle x̄ŷp. This fact

implies that the center q of the disk B(q,R) must lie on the arc
_
q1q2 of the circle

centered at y of radius R and with endpoints at q1 and q2, where q1 is the contact
point of ∂B(p,R/2) and ∂B(y,R) and q2 is the intersection of the half-line yx̄ with
∂B(y,R). Then one easily verifies

|x̄− q| ≤ |x̄− q1| ≤ |y − q1| = R.

Therefore x̄ ∈ B(q,R) which concludes the proof of (5.3). Set K = B(p,R/2) ∩
B(q,R). Since |x̄− y| ≤ diamK, the rest of the proof consists of finding a bound for
diamK in terms of σ. Without loss of generality we may assume that q = (0, 0) and
that p = (0, a) with a ≥ 0. We observe that a cannot be greater than 3(R/2) since

K 6= ∅; on the other hand a /∈ [0,
√

3R/2] since σ < πR2

8 . Let us now consider the case

a ∈ [R, 3R
2 ]. (For the case a ∈ [

√
3R/2, R] we may proceed analogously observing that

|K| ≥ |B(0, R) ∩ B((0, R), R/2)|.) Simple geometric arguments lead to the fact that
diamK = |m1 −m2|, where m1 and m2 denote the intersections of ∂B((0, a), R/2)

with ∂B((0, 0), R). Indicating with 2θ the angle m1

∧
0m2 one has

σ ≥ |K| ≥ R2(2θ − sin 2θ).(5.4)

Finally from (5.4) it is easy to see that

θ ≤
( σ

R2

)1/3

.(5.5)

By (5.5) we have that for x̄ ∈ Ω1,

d(x̄,Ω2) = |x̄− y| ≤ diamK = |m1 −m2| = 2R sin θ ≤ 2R
( σ

R2

)1/3

.(5.6)

Similarly if x̄ ∈ Ω2,

d(x̄,Ω1) ≤ 2R
( σ

R2

)1/3

,

which gives (5.1).
Let us finally prove (3.15). Let Ω′1 = B4d\Ω1 and Ω′2 = B4d\Ω2, where B4d is a

disk concentric with B2d and radius 4d.
Since Ω′1 4 Ω′2 = Ω1 4 Ω2 one has

δH(Ω′1,Ω
′
2) ≤ 16d

R2/3π1/3
σ1/3 = β.

We claim that

δH(∂Ω1, ∂Ω2) ≤ β.
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In fact, let x ∈ ∂Ω1.
If x /∈ ∂Ω2, then

d(x, ∂Ω2) = d(x,Ω2) ≤ δH(Ω1,Ω2) ≤ β.

If x ∈ ∂Ω2, then

d(x,Ω′2) ≤ δH(Ω′1,Ω
′
2) ≤ β.(5.7)

Since

d(x,Ω′2) = d(x, ∂Ω2)

from (5.7) we derive that

d(x, ∂Ω2) ≤ β.

Analogously if x ∈ ∂Ω2, one has

d(x, ∂Ω1) ≤ β,

which concludes the proof.
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Abstract. We study polynomials of several variables which occur as coupling coefficients for
the analytic continuation of the holomorphic discrete series of SU(1, 1). There are three types of
such polynomials, one corresponding to each conjugacy class of one-parameter subgroups. They may
be viewed as multivariable generalizations of Hahn, Jacobi, and continuous Hahn polynomials and
include many orthogonal and biorthogonal families occurring in the literature. We give a simple
and unified approach to these polynomials using the group theoretic interpretation. We prove many
formal properties, in particular a number of convolution and linearization formulas. We also de-
velop the corresponding theory for the Heisenberg group, leading to multivariable generalizations of
Krawtchouk and Hermite polynomials.

Key words. orthogonal polynomial, biorthogonal polynomials, coupling coefficient, spherical
harmonic, multivariable hypergeometric function, convolution formula, linearization formula

AMS subject classifications. 33C50, 33C55, 33C80

PII. S003614109732568X

1. Introduction. In [R], we introduced three classes of polynomials in several
variables. They appeared there as coupling coefficients for certain representations of
the group SU(1, 1) ' SL(2,R) and its covering groups. Special cases occur in the
work of many authors, cf. [A1], [A2], [AK], [E], [Ex], [FL], [KMT], [KM1], [KM2],
[K1], [KS], [LT], [M], [MP], [Pr], [Ra], [T1], [T2], [T4], [T5], and [V]. In this paper
we give a simple and unified approach to the study of these polynomials. We also
consider the case of the oscillator or Heisenberg group, leading to two more classes of
polynomials.

In many cases such multivariable polynomials arose naturally from problems in
physics or statistics. In view of the group theoretic interpretation, this is not sur-
prising, since symmetry groups play an important role in these sciences. There are
also close connections with spherical harmonics, as well as with the Wigner symbols
(recoupling coefficients) occurring in quantum mechanics.

We will work with the analytic continuation of the holomorphic discrete series
of SU(1, 1) ' SL(2,R). We realize these representations on the Hilbert spaces Aν
(ν > 0) of analytic functions on the complex unit disc, with the scalar product

〈f, g〉 =
∞∑
k=0

k!

(ν)k
f̂(k)ĝ(k),

where f(z) =
∑
f̂(k)zk and

(ν)k =
Γ(ν + k)

Γ(ν)
= ν(ν + 1) · · · (ν + k − 1)
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http://www.siam.org/journals/sima/30-2/32568.html
†Department of Mathematics, University of Lund, Box 118, S-221 00 Lund, Sweden (hjalmar@

maths.lth.se).

233



234 HJALMAR ROSENGREN

is the Pochhammer symbol. The norm is invariant under the transformations

f(z) 7→ f

(
αz + β

γz + δ

)
1

(γz + δ)ν
,

(
α β
γ δ

)
∈ SU(1, 1).

This may be used to define a unitary representation of the universal covering group
of SU(1, 1) on each space Aν , cf. [Sa] for the details.

We consider a Hilbert tensor productAν1⊗· · ·⊗Aνn of such spaces. It decomposes
under the group action as

Aν1 ⊗ · · · ⊗ Aνn '
∞⊕
s=0

(
n+ s− 2
n− 2

)
A|ν|+2s(1.1)

(where |ν| = ∑ νi). A highest weight vector Q is an image of the constant function 1
under an intertwining embedding

A|ν|+2s → Aν1 ⊗ · · · ⊗ Aνn .(1.2)

In our realization, this means that Q is a homogeneous polynomial of degree s, which
may be expressed as a function of differences zi− zj of the coordinates. Equivalently,
Q satisfies the identity

Q(az1 + b, . . . , azn + b) = asQ(z1, . . . , zn), a, b ∈ C.(1.3)

In agreement with (1.1), the space of such polynomials has dimension
(
n+s−2
n−2

)
.

In [R], we introduced three transforms which we will denote here by T1, T2, and
T3. Their role is to send highest weight vectors to coupling coefficients. They are
defined on zk ∈ Aν by

T1z
k(m) = (−1)k

(−m)k
(ν)k

, T2z
k(ξ) =

ξk

(ν)k
, T3z

k(X) = (−1)k
(ν2 − iX)k

(ν)k
(1.4)

and extended to power series by linearity. We will also denote by Ti the extension
Ti ⊗ · · · ⊗ Ti to a tensor product Aν1 ⊗ · · · ⊗ Aνn . Thus if we let

Q(z) =
∑
|t|=s

ct z
t1
1 · · · ztnn

be a highest weight vector in Aν1⊗· · ·⊗Aνn (throughout the paper we use multi-index
notation freely), the three transforms of Q are given by

T1Q(m1, . . . ,mn) = (−1)s
∑
|t|=s

ct
(−m1)t1 · · · (−mn)tn

(ν1)t1 · · · (νn)tn
,(1.5)

T2Q(ξ1, . . . , ξn) =
∑
|t|=s

ct
ξt11 · · · ξtnn

(ν1)t1 · · · (νn)tn
,(1.6)

T3Q(X1, . . . , Xn) = (−1)s
∑
|t|=s

ct
(ν1

2 − iX1)t1 · · · (νn2 − iXn)tn
(ν1)t1 · · · (νn)tn

.(1.7)

Note that the TiQ are again polynomials of degree s, though only T2Q is homogeneous.
Moreover, T1 and T3 are connected by the equation

T3Q(X) = T1Q
(
iX − ν

2

)
.(1.8)
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One may also prove that

T3Q(X) = (−1)s T3Q(−X),(1.9)

which is not obvious from the definition.
In [R] we proved that if Q and Q′ are two highest weight vectors, then the quan-

tities ∑
m1+···+mn=M

(ν1)m1
· · · (νn)mn

m1! · · ·mn!
T1Q(m1, . . . ,mn)T1Q′(m1, . . . ,mn)

for M = 0, 1, 2, . . ., ∫
ξ∈Rn

+
: |ξ|=C

T2Q(ξ)T2Q′(ξ) ξν1−1
1 · · · ξνn−1

n dξ,

where |ξ| = ξ1 + · · ·+ ξn and C > 0 is arbitrary, and∫
X∈Rn : |X|=C

T3Q(X)T3Q′(X)
∣∣∣Γ(ν1

2
+ iX1

)∣∣∣2 · · · ∣∣∣Γ(νn
2

+ iXn

)∣∣∣2 dX,
where C ∈ R is arbitrary, are all proportional to the scalar product

〈Q,Q′〉Aν1⊗···⊗Aνn .
In particular, given an orthogonal basis for the highest weight vectors, our transforms
give us three systems of orthogonal polynomials. The form of the orthogonality rela-
tions suggests that one eliminate one variable and consider, for instance, for fixed M ,

T1Q(m1, . . . ,mn−1,M −m1 − · · · −mn−1)

as a polynomial in n−1 variables. This is how these polynomials usually occur in the
literature.

In the case when all the νi are half-integers, there is a connection with spherical
harmonics. If we introduce the polynomial

R(x1, . . . , x2|ν|) = (T2Q)(x2
1 + · · ·+ x2

2ν1
, . . . , x2

2(ν1+···+νn−1)+1 + · · ·+ x2
2|ν|),

then the orthogonality relations for T2Q give corresponding orthogonality relations
for R on the unit sphere of R2ν . Moreover, the conditions on Q ensure that R is
harmonic. In fact one obtains precisely the space of harmonic polynomials of degree
s invariant with respect to the subgroup

O(2ν1)× · · · ×O(2νn) ⊆ O(2|ν|),
called polyspherical harmonics [V]. In [R] we gave an explanation of this, which
involved the “Howe dual pair” Mp(1)×O(k) ⊆ Mp(k).

The plan of the paper is as follows. In section 2 we describe some special cases
of our polynomials, in particular those that we have found in the literature. In sec-
tion 3 we review some fundamental facts on matrix elements of our representation
due to Basu and Wolf [BW1]. In section 4 we obtain the polynomials TiQ as cou-
pling coefficients for our representation. The proof is based on certain factorizations
of the Fourier transforms on Aν with respect to one-parameter subgroups. This is
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different from the approach in [R]. In section 5 we prove convolution formulas for our
polynomials. These generalize formulas recently found by Koelink and Van der Jeugt
[KV1]. In section 6 we introduce some polynomials in 2n variables which we call
coupling kernels. Whereas the coupling coefficients TiQ are connected with matrix
elements of the intertwining embeddings (1.2) (or of the corresponding projections
Aν1 ⊗ · · · ⊗ Aνn → A|ν|+2s), the coupling kernels are connected with matrix ele-
ments for the projection of Aν1 ⊗ · · · ⊗ Aνn onto the isotypic subspaces equivalent
to
(
n+s−2
n−2

)A|ν|+2s in (1.1). In section 7 we study formal properties of the coupling
kernels. These include some linearization formulas, which generalize the classical
Burchnall–Chaundy formula. In section 8 we prove that the coupling kernels may be
expressed in terms of certain generalized hypergeometric functions. Finally, in sec-
tion 9 we give the analogues of our results when SU(1, 1) is replaced by the Heisenberg
group and the spaces Aν are replaced by Fock spaces of entire functions.

2. Special cases. We will now describe some special cases of our polynomials.
We have found many occurrences of them in the literature after writing [R], so here
we will try to give more complete references. We first recall the definition of the
generalized hypergeometric function

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ x) =

∞∑
k=0

(a1)k · · · (ap)k xk
(b1)k · · · (bq)k k!

.

When a and k are vectors, we write

(a)k = (a1)k1
· · · (an)kn , k! = k1! · · · kn!.

We will also encounter Karlsson’s generalized Kampé de Fériet functions [Ka], [SK],
which we may then write, with a slight variation of Karlsson’s notation, as

F p:qr:s

(
a1, . . . , ap : b1, . . . , bq
c1, . . . , cr : d1, . . . , ds

∣∣∣∣ x)
(2.1)

=

∞∑
k1,...,kn=0

(a1)|k| · · · (ap)|k|(b1)k · · · (bq)k xk
(c1)|k| · · · (cr)|k|(d1)k · · · (ds)k k!

,

where the ai and ci are scalar parameters while the bi, di, and x are vectors of the
same dimension n. For n = 1, F p:qr:s reduces to the function p+qFr+s.

2.1. The bilinear case. The simplest case is when n = 2. Then the space of
highest weight vectors of each degree s is one-dimensional and spanned by the single
element

Q(z1, z2) = (z1 − z2)s.

In this case, the polynomials T1Q are Clebsch–Gordan coefficients, which may be
expressed in terms of Hahn polynomials. In fact,

T1Q(m1,m2) =
s∑

k=0

(
s
k

)
(−1)k

(−m1)k(−m2)s−k
(ν1)k(ν2)s−k

=
(−m1 −m2)s

(ν2)s
Qs(m1; ν1 − 1, ν2 − 1;m1 +m2),
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where Qs is the Hahn polynomial of degree s in the notation of [VK]. The poly-
nomials T2Q and T3Q are Clebsch–Gordan coefficients with respect to continuous
bases; they may be expressed in terms of Jacobi polynomials and “Hahn polynomials
of an imaginary argument,” respectively; cf. [MR], [BW2], [P2], and [VK, section 8.7].
Still in the notation of [VK], we have

T2Q(ξ1, ξ2) =
s∑

k=0

(
s
k

)
(−1)s−k

ξk1 ξ
s−k
2

(ν1)k(ν2)s−k

=
(−1)ss!

(ν1)s(ν2)s
(ξ1 + ξ2)sP (ν1−1,ν2−1)

s

(
ξ2 − ξ1
ξ1 + ξ2

)
,

T3Q(X1, X2) =
s∑

k=0

(
s
k

)
(−1)k

(ν1

2 − iX1)k(ν2

2 − iX2)s−k
(ν1)k(ν2)s−k

=
(ν1+ν2

2 − i(X1 +X2))s

(ν2)s
qs(X1; ν1

2 ,
ν2

2 − i(X1 +X2)).

Even in this case, the present paper gives new and simple deductions of properties of
these polynomials.

2.2. Polynomials of Appell-type. In the case of general n, the polynomials

Qt(z) = (z1 − zn)t1 · · · (zn−1 − zn)tn−1 , t1 + · · ·+ tn−1 = s,(2.2)

form a basis for the space of highest weight vectors of degree s. Expanding Qt by the
binomial theorem, one finds that the polynomials TiQt may be expressed in terms of
Karlsson’s generalized Kampé de Fériet functions (2.1) with the vector parameters of
dimension n− 1. In fact, one has

T1Qt(m1, . . . ,mn)

=
(−mn)s

(νn)s

∞∑
k1,...,kn−1=0

(1− νn − s)|k|(−t1)k1· · · (−tn−1)kn−1(−m1)k1 · · · (−mn−1)kn−1

(1 +mn − s)|k|(ν1)k1
· · · (νn−1)kn−1

k1! · · · kn−1!

=
(−mn)s

(νn)s
F 1:2

1:1

(
1− νn − s : −t,−(m1, . . . ,mn−1)
1 +mn − s : (ν1, . . . , νn−1)

∣∣∣∣ 1

)
(where, as is customary, we write the variable of the F 1:2

1:1-function as 1 = (1, . . . , 1)).
By (1.8), a similar expression is valid for T3Qt, while T2Qt is given by

T2Qt(ξ1, . . . , ξn)
(2.3)

=
(−ξn)s

(νn)s
F 1:1

0:1

(
1− νn − s : −t
− : (ν1, . . . , νn−1)

∣∣∣∣ − ξ1
ξn
, . . . ,−ξn−1

ξn

)
(Karlsson’s F 1:1

0:1-function is also known as the Lauricella FA-function).

2.3. Polynomials biorthogonal to the polynomials of Appell-type. The
family (2.2) is obviously nonorthogonal for n ≥ 3. Thus it is a problem to find the
dual basis. Applying the Ti to these two families then gives biorthogonal polynomial
systems. Though we have found no very simple expression for the basis dual to
(2.2), the polynomials obtained after applying the Ti are also expressible in terms of
Karlsson’s functions; cf. Corollary 6.2 below.
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The polynomials (2.3) were introduced by Appell [A1] for n = 3. The dual
basis was found by him [A2] when ν3 = 1 and by Engelis [E] and, independently, by
Fackerell and Littler [FL] in general. (For the work of Appell, see also the book [AK].)
Lam and Tratnik [LT] generalized these polynomials to general n. The corresponding
spherical harmonics occur in [KMT]. In the special case when all the νi equal 1, these
harmonics go back to Hermite, Didon, and Kampé de Fériet; cf. again [AK]. The
biorthogonal systems obtained using T1 were introduced by Rahman [Ra] for n = 3
and by Tratnik [T2] in general. For the transform T3, the corresponding polynomials
are also due to Tratnik [T1].

2.4. Polynomials of Proriol-type. There seems to be no canonical choice of
an orthogonal basis in the space of highest weight vectors. There is, however, a
general procedure, known as binary coupling (the coupling of angular momenta in
quantum physics), that allows one to construct many such bases. The corresponding
polynomials TiQ are given by products of n− 1 factors, each factor being a Clebsch–
Gordan coefficient, that is a Hahn, Jacobi, or continuous Hahn polynomial.

As an example, let us consider the case n = 3. Let Kν1,ν2
s denote the intertwining

embedding

Aν1+ν2+2s → Aν1 ⊗Aν2

such that Kν1,ν2
s 1 = (z1 − z2)s. Then the polynomials

Qst = (Kν1,ν2
s ⊗ id) ◦Kν1+ν2+2s,ν3

t 1, s+ t = N

form an orthogonal basis for the space of highest weight vectors in Aν1 ⊗Aν2 ⊗Aν3

of degree N . In [R] we found that

Qst(z) = (z1 − z2)s
∑
i+j=t

t!

i! j!

(ν1 + s)i(ν2 + s)j
(ν1 + ν2 + 2s)t

(z1 − z3)i(z2 − z3)j ,

T1Qst(m) =
(−m1 −m2)s(s−m1 −m2 −m3)t

(ν2)s(ν3)t
Qs(m1; ν1 − 1, ν2 − 1;m1 +m2)

×Qt(m1 +m2 − s; ν1 + ν2 + 2s− 1, ν3 − 1;m1 +m2 +m3 − s),
T2Qst(ξ) =

(−1)s+ts! t!(ξ1 + ξ2)s(ξ1 + ξ2 + ξ3)t

(ν1)s(ν2)s(ν1 + ν2 + 2s)t(ν3)t

×P (ν1−1,ν2−1)
s

(
ξ2 − ξ1
ξ1 + ξ2

)
P

(ν1+ν2+2s−1,ν3−1)
t

(
ξ3 − ξ1 − ξ2
ξ1 + ξ2 + ξ3

)
,

T3Qst(X) =
(ν1+ν2

2 − i(X1 +X2))s(
ν1+ν2+ν3+2s

2 − i(X1 +X2 +X3))t

(ν2)s(ν3)t

×qs
(
X1;

ν1

2
,
ν2

2
− i(X1 +X2)

)
×qt

(
X1 +X2;

ν1 + ν2 + 2s

2
,
ν3

2
− i(X1 +X2 +X3)

)
.

The polynomials T2Qst, with Qst as above, were introduced by Proriol in [Pr].
They were independently obtained and applied to genetics by Karlin and McGregor
in [KM1] and have also found applications in physics [M], [MP]. See the survey
[K1] for these and other two-variable analogues of Jacobi polynomials. The spherical
harmonics constructible by this method were, for general n, introduced in [V], cf.
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also [VK, section 10.5], and generalized further in [KMT]. For the special coupling
procedure

Qs1,...,sn−1
= (Kν1,ν2

s1 ⊗ id)◦ (Kν1+ν2+2s1,ν3
s2 ⊗ id)◦ · · · ◦Kν1+···+νn−1+2(s1+···+sn−2),νn

sn−1
1,

the polynomials T1Qs1,...,sn−1
were defined by Karlin and McGregor in [KM2], cf. also

[T5]; again they appear in the context of genetics. The corresponding polynomials
T3Qs1,...,sn−1

were introduced by Tratnik in [T4]. An interesting product formula for
the polynomials T2Qs1,...,sn−1

is given in [KS].

3. Matrix elements. In this section we write down some basic facts, due to
Basu and Wolf [BW1], cf. also [K2], about matrix elements of our representation.
Whereas these authors work with the oscillator realization on L2(R+), we will reformu-
late their results in terms of the analytic function spaces Aν . This has computational
advantages, allowing us to work with power series expansions.

Let D be the unit disc of C and G ' SU(1, 1)/{±1} be the group of conformal
automorphisms of D. There are three conjugacy classes of one-parameter subgroups
in G. They may be described in terms of the fixed point sets in C ∪ {∞} of the
corresponding Möbius maps. There are the elliptic elements, which fix one point
in D and one in the outside, the hyperbolic elements, which fix two points on the
boundary of D, and finally the parabolic elements, which have a single fixed point on
the boundary.

We choose a representative subgroup in each conjugacy class, namely, the elliptic
subgroup

φ1
t =

(
eit/2 0

0 e−it/2

)
,

corresponding to rotations z 7→ eitz of the disc, the parabolic subgroup

φ2
t =

(
1 + it/2 it/2
−it/2 1− it/2

)
,

and the hyperbolic subgroup

φ3
t =

(
cosh(t/2) − sinh(t/2)
− sinh(t/2) cosh(t/2)

)
.

One may check that

φisφ
i
t = φis+t, i = 1, 2, 3.

Note that if we choose ψ as the Cayley transform

ψ(z) =
i− z
i+ z

of the upper half-plane onto D, then

(ψ−1φ2
tψ)(z) = z + t,

so we may realize the parabolic subgroup as translations of the half-plane. Similarly

(γ−1φ3
tγ)(z) = z + t,
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where

γ(z) =
i− ez
i+ ez

,

which realizes the hyperbolic subgroup as translations of the strip {z | 0 < Imz < π}.
(Hyperbolic transformations may also be realized as dilatations of the half-plane.)

To clarify the group theoretic meaning of our formulas, we employ certain no-
tational conventions, which we will now state explicitly. Various objects connected
with the subgroup φit (i = 1, 2, 3) will be labelled with the index i. The letter z will
denote variables ranging in the disc (or polydisc). We will be concerned with three
versions of the Fourier transform, one for each subgroup. For the elliptic subgroup,
the variable dual to z is discrete; it will be denoted by k, l,m. For the parabolic and
hyperbolic subgroup, the dual variables are continuous; they will be denoted by ξ, η
and X,Y , respectively. The equations (1.5), (1.6), and (1.7) are examples of these
conventions.

Recall now the function spaces Aν (ν > 0) with scalar product

〈f, g〉 =

∞∑
k=0

k!

(ν)k
f̂(k)ĝ(k).

We will use this notation also when f or g is not in Aν , provided that the sum on the
right-hand side converges. This space has the reproducing kernel

kw(z) =
∞∑
k=0

(ν)k
k!

(zw̄)k =
1

(1− zw̄)ν
,

that is,

f(w) = 〈f, kw〉, f ∈ Aν , w ∈ D.

We denote the group action by

(f ∗ φ)(z) = f(φ(z))φ′(z)
ν
2 = f

(
αz + β

β̄z + ᾱ

)
1

(β̄z + ᾱ)ν
,

where φ ∈ G is given by

φ(z) =
αz + β

β̄z + ᾱ
, |α|2 − |β|2 = 1.

We also write

Uφ(f) = f ∗ φ−1

for the corresponding left action. Because of the indeterminacy of the power function,
one must pass to the universal covering group to get a unitary representation on each
space Aν . (If ν ∈ 2Z/k for an integer k, the k-fold cover is sufficient.)

It is easy to find joint eigenfunctions of our subgroups. Namely, since eiξz are
eigenfunctions of the translations, it follows that

eiξψ
−1(z)((ψ−1)′(z))

ν
2 ,
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with ψ as above, are eigenfunctions of φ2
t . It will be convenient to normalize them so

that they take the value 1 at the origin. This gives the functions

e2
ξ(z) =

1

(1 + z)ν
exp

(
ξz

1 + z

)
,

which indeed satisfy

e2
ξ ∗ φ2

t = eitξe2
ξ .

Replacing ψ by γ in this argument leads to the functions

e3
X(z) =

2
ν
2

(1− z) ν2−iX(1 + z)
ν
2 +iX

(the factor 2
ν
2 being chosen for convenience), which satisfy

e3
X ∗ φ3

t = eitXe3
X .

Finally we write

e1
k(z) = zk

for the eigenfunctions of the elliptic subgroup. We call (e1
k)∞k=0 the elliptic basis of Aν ,

while (e2
ξ)ξ>0 and (e3

X)X∈R are called the parabolic and the hyperbolic (generalized)
basis, respectively.

Note that, whereas clearly e1
k is an element of Aν , this is not true for e2

ξ or e3
X .

However, one may still define 〈f, eix〉 (i = 2, 3) for f in a dense subspace of Aν . Natural
choices are the space of polynomials and the linear hull of all reproducing kernels kz,
z ∈ D. With either of these choices the following Plancherel theorem is true.

Proposition 3.1. The operator (F2f)(ξ) = 〈f, e2
ξ〉 extends to a Hilbert space

isomorphism

F2 : Aν → L2

(
R+,

1

Γ(ν)
e−ξξν−1 dξ

)
.

Similarly, the operator (F3f)(X) = 〈f, e3
X〉 extends to an isomorphism

F3 : Aν → L2

(
R,

1

2πΓ(ν)

∣∣∣Γ(ν
2

+ iX
)∣∣∣2 dX) .

The transforms F2 and F3 are connected to the classical Fourier transform. For
instance F2f is essentially the Fourier transform of the boundary value distribution of
the function f(ψ(z))ψ′(z)ν/2 defined in the upper half-plane (they differ by a multi-
plicative factor). The proposition may be proved using this observation, cf. [P2], or
alternatively using the orthogonality relations for Laguerre and Meixner–Pollaczek
polynomials (whose role is made clear below).

By polarization, we have

〈f, g〉 =

∞∑
k=0

(ν)k
k!
〈f, e1

k〉〈e1
k, g〉

=
1

Γ(ν)

∫ ∞
0

〈f, e2
ξ〉〈e2

ξ , g〉 e−ξξν−1 dξ(3.1)

=
1

2πΓ(ν)

∫ ∞
−∞
〈f, e3

X〉〈e3
X , g〉

∣∣∣Γ(ν
2

+ iX
)∣∣∣2 dX
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with a suitable interpretation of the last two expressions. Choosing g = kz, it follows
that

f(z) =

∞∑
k=0

(ν)k
k!

(F1f)(k)e1
k(z)

=
1

Γ(ν)

∫ ∞
0

(F2f)(ξ)e2
ξ(z)e

−ξξν−1 dξ(3.2)

=
1

2πΓ(ν)

∫ ∞
−∞

(F3f)(X)e3
X(z)

∣∣∣Γ(ν
2

+ iX
)∣∣∣2 dξ,

where

F1f(k) = 〈f, e1
k〉 =

k!

(ν)k
f̂(k).

We now introduce the matrix elements

Kij(x, y, φ) = 〈eix, ejy ∗ φ〉, i, j = 1, 2, 3,

where φ ∈ G is such that this makes sense. By unitarity,

Kij(x, y, φ) = Kji(y, x, φ−1),

so there are six cases to consider. As remarked above, the Kij were computed by
Basu and Wolf [BW1]. We summarize their results in the following proposition.

Proposition 3.2. The matrix elements of Aν are given by

K11(k, l, φ) =


βkβ̄l

αν+k+l
(−1)k 2F1

(
−k,−l
ν

∣∣∣∣∣ − 1

|β|2
)

β 6= 0,

k!

(ν)kαν+2k
δkl β = 0,

K12(k, ξ, φ) =
(−1)k(ᾱ+ β)k

(α+ β̄)ν+k
exp

(
β̄ξ

β̄ + α

)
1F1

( −k
ν

∣∣∣∣ ξ

|α+ β̄|2
)
,

K13(k,X, φ) =
2
ν
2 (ᾱ− β)k

(α+ β̄)
ν
2−iX(α− β̄)

ν
2 +iX+k 2F1

( −k, ν2 − iX
ν

∣∣∣∣ 2

(α+ β̄)(ᾱ− β)

)
,

K22(ξ, η, φ) =
1

(2iIm(α− β))ν
exp

(
− (ᾱ+ β)ξ + (ᾱ− β̄)η

2iIm(α− β)

)
×0F1

( −
ν

∣∣∣∣ − ξη

4(Im(α− β))2

)
,

K23(ξ,X, φ) =
2
ν
2

(2Re(α− β))
ν
2 +iX(2iIm(α− β))

ν
2−iX

exp

(
(ᾱ− β)ξ

2Re(α− β)

)
×1F1

(
ν
2 − iX
ν

∣∣∣∣ iξ

2Re(α− β)Im(α− β)

)
,

K33(X,Y, φ) =
(iIm(α+ β))i(X−Y )

(Re(α− β))
ν
2 +iX(Re(α+ β))

ν
2−iY

×2F1

(
ν
2 + iX, ν2 − iY

ν

∣∣∣∣ 1

Re(α+ β)Re(α− β)

)
,

where φ(z) = (αz + β)/(β̄z + ᾱ), |α|2 − |β|2 = 1.
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One may check that these are well defined up to a choice of (φ′)ν/2. The matrix
elements may be identified with classical orthogonal functions as follows, cf. [K2]:

K11 : Meixner polynomials,

K12 : Laguerre polynomials,

K13 : Meixner–Pollaczek polynomials,

K22 : Bessel functions,

K23 : Laguerre functions,

K33 : Meixner–Pollaczek functions.

By inserting basis elements eix ∗ φ into (3.1), one may deduce a host of addition
theorems and orthogonality relations for these functions, cf. [VK, section 7.7].

The proposition does not give the matrix elements K22, K23, or K33 for φ = id.
However, by (3.2) it is natural to define

K22(ξ, η, id) = Γ(ν)eξξ1−νδ(ξ − η),(3.3)

K33(X,Y, id) = 2πΓ(ν)
∣∣∣Γ(ν

2
+ iX

)∣∣∣−2

δ(X − Y ),(3.4)

where δ is the Dirac measure. Similarly one may define

K23(ξ,X, id) =
Γ(ν)e

ξ
2

Γ(ν2 + iX)2iX
ξ−

ν
2 +iX

since this kernel has the property

e3
X(z) =

1

Γ(ν)

∫ ∞
0

K23(ξ,X, id) e2
ξ(z)e

−ξξν−1 dξ.

(This reduces to the usual definition of the Γ-function after a change of variables.)
These identities can be made precise by extending the transforms Fi to suitable classes
of distributions.

As for the proof, we remark that in the present realization, all of Proposition 3.2
may be deduced from Meixner’s expansion formula [Me]

∞∑
k=0

(ν)k
k!

2F1

( −k, α
ν

∣∣∣∣ x) 2F1

( −k, β
ν

∣∣∣∣ y) zk
(3.5)

=
1

(1− z)ν−α−β(1− z + xz)α(1− z + yz)β
2F1

(
α, β
ν

∣∣∣∣ xyz

(1− z + xz)(1− z + yz)

)
.

The case x = 0 gives the expressions for K11 and K13. To proceed, one may use the
expansion

K33(X,Y, φ) =
∞∑
k=0

(ν)k
k!

K13(k,X, id)K13(k, Y, φ),

which follows from the first identity in (3.1). The expression for K33 given in Pro-
position 3.2 now follows from the general case of Meixner’s formula.
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The matrix elements involving the parabolic subgroup are computed similarly,
using two degenerate cases of Meixner’s formula. If we replace y by y/β in (3.5) and
let β tend to infinity, we obtain the expansion

∞∑
k=0

(ν)k
k!

2F1

( −k, α
ν

∣∣∣∣ x) 1F1

( −k
ν

∣∣∣∣ y) zk
(3.6)

=
1

(1− z)ν−α(1− z + xz)α
exp

(
− yz

1− z
)

1F1

(
α
ν

∣∣∣∣ xyz

(1− z + xz)(1− z)
)
,

due to Weisner. Repeating this once more gives the Hardy–Hille formula

∞∑
k=0

(ν)k
k!

1F1

( −k
ν

∣∣∣∣ x) 1F1

( −k
ν

∣∣∣∣ y) zk
=

1

(1− z)ν exp

(
−z(x+ y)

1− z
)

0F1

( −
ν

∣∣∣∣ xyz

(1− z)2

)
.

We refer to [SM] for a large number of proofs of these formulas.

4. Coupling coefficients. In this section we will obtain the polynomials TiQ
as coupling coefficients of our representation. We consider transforms of the type

Fφi f(x) = Fi Uφf(x) = 〈f, eix ∗ φ〉, i = 1, 2, 3, φ ∈ G,
that is, the Fourier transform with respect to an arbitrary one-parameter subgroup of
G. We will factorize these into operators which interact nicely with the Lie algebra
action. More precisely, we will find factorizations of the type

Fφi = Mi Ti δaτb,

where δa and τb are the dilatation and translation operators defined by

δaf(z) = f(az), τbf(z) = f(z + b),

Mi are the multiplication operators

Mif(x) = eix ∗ φ(0)f(x) = (Fφi 1)(x)f(x),

and Ti are the transforms defined in (1.4).
We will use the explicit expressions for the matrix elements given in Proposition

3.2 to obtain our factorizations. Note, however, that we only need them in the easiest
special case, corresponding to x = 0 in (3.5) and (3.6).

Proposition 4.1. In the notation above, we have for φ =
(αβ
β̄ᾱ

)
the following

factorizations of densely defined operators:

Fφ1 = M1 T1 δ1/αβ̄ τ−β/α (β 6= 0),(4.1)

Fφ2 = M2 T2 δ1/(α+β̄)2 τ−(ᾱ+β)/(α+β̄),

Fφ3 = M3 T3 δ2/(α+β̄)(α−β̄) τ(ᾱ−β)/(α−β̄).

Proof. Test the action of both sides on the function e1
k(z) = zk. In general,

(δaτb e
1
k)(z) = (az + b)k = bk

∞∑
j=0

(−k)j
j!

(
−az
b

)j
.
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Thus one has for instance

M1 T1 δ1/αβ̄ τ−β/α e
1
k(m) =

β̄m

αν+m
T1

(−β
α

)k ∞∑
j=0

(−k)j
j!

(
z

|β|2
)j (m)

=
β̄m(−β)k

αν+m+k

∞∑
j=0

(−k)j(−m)j
j!(ν)j

(
− 1

|β|2
)j

=
β̄m(−β)k

αν+k+m 2F1

( −k,−m
ν

∣∣∣∣ − 1

|β|2
)

= K11(k,m, φ) = Fφ1 e1
k(m),

which proves (4.1). The other two identities follow similarly.
Now let us apply these factorizations to a general tensor product Aν1 ⊗· · ·⊗Aνn .

As in the case n = 1, we write

(f1 ⊗ · · · ⊗ fn) ∗ φ(z) = f1(φ(z1)) · · · fn(φ(zn))φ′(z1)
ν1
2 · · ·φ′(zn)

νn
2

for the group action and Fφi for the transforms

(Fφi f)(x1, . . . , xn) = 〈f, (eix1
⊗ · · · ⊗ eixn) ∗ φ〉, i = 1, 2, 3, φ ∈ G.

Applying Proposition 4.1 in each variable gives factorizations of these transforms.
We fix a highest weight polynomial Q of degree s and write

µ = |ν|+ 2s.

Then there is a unique intertwining embedding KQ of Aµ into Aν1 ⊗ · · · ⊗ Aνn such
that KQ1 = Q. We will henceforth denote by 〈 , 〉µ and 〈 , 〉ν the scalar product of
Aµ and Aν1 ⊗ · · · ⊗ Aνn , respectively.

Theorem 4.2. For g ∈ Aµ and φ ∈ G, we have the equalities

(Fφ1 KQg)(m) = T1Q(m)(Fφ1 g)(|m| − s),
(Fφ2 KQg)(ξ) = T2Q(ξ)(Fφ2 g)(|ξ|),

(Fφ3 KQg)(X) = T3Q(X)(Fφ3 g)(|X|).
Thus we may write

〈KQg, (zm1
1 · · · zmnn ) ∗ φ〉ν = T1Q(m1, . . . ,mn)〈g, z|m|−s ∗ φ〉µ,

while for T2 and T3 similar equalities are valid with a suitable interpretation. In
particular the matrix elements

〈KQeix, (ejy1
⊗ · · · ⊗ ejyn) ∗ φ〉ν

of the embedding KQ factor as TjQ(y) times a matrix element (in the sense of sec-
tion 3) for A|ν|+2s.

Proof. Since KQ commutes with the group action, we may assume that φ = id.
Moreover, it suffices to choose g = kw as a reproducing kernel. The first equality then
reduces to

〈KQkw, e1
m1
⊗ · · · ⊗ e1

mn〉ν = T1Q(m)w̄|m|−s.(4.2)
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First note that

kw = (1− |w|2)−
µ
2 1 ∗ φ−1

w ,

where φw is the disc automorphism φw(z) = (z + w)/(1 + w̄z), corresponding to the

matrix
(αβ
β̄ᾱ

)
, with

α =
1√

1− |w|2 , β =
w√

1− |w|2 .

This gives

KQkw = (1− |w|2)−
µ
2 Q ∗ φ−1

w .

Thus we have

〈KQkw, e1
m1
⊗ · · · ⊗ e1

mn〉ν = (1− |w|2)−
µ
2 〈Q ∗ φ−1

w , e1
m1
⊗ · · · ⊗ e1

mn〉ν
= (1− |w|2)−

µ
2 (Fφw1 Q)(m1, . . . ,mn).

We now apply the factorization (4.1) to each variable. Note that (1.3) may be written
as

(δaτb)
⊗nQ = asQ.

This gives

〈KQkw, e1
m1
⊗ · · · ⊗ e1

mn〉ν = (1− |w|2)−
µ
2

β̄|m|

α|ν|+|m|
(T1(δ1/αβ̄ τ−β/α)⊗sQ)(m)

= (1− |w|2)−
µ
2

β̄|m|−s

α|ν|+|m|+s
T1Q(m) = w̄|m|−sT1Q(m),

which proves (4.2). The rest of the theorem follows from the equalities

Fφw2 Q(ξ) = (1− |w|2)
µ
2 T2Q(ξ) e2

|ξ|(w),

Fφw3 Q(X) = (1− |w|2)
µ
2 T3Q(X) e3

|X|(w),

which are likewise easily obtained from Proposition 4.1.
Choosing as in the proof, g = kw, φ = id, and expressing the left-hand sides by

means of the adjoint K∗Q, one sees that the theorem is equivalent to the equalities

K∗Q e1
m1
⊗ · · · ⊗ e1

mn = T1Q(m) e1
|m|−s,

K∗Q e2
ξ1 ⊗ · · · ⊗ e2

ξn = T2Q(ξ) e2
|ξ|,

K∗Q e3
X1
⊗ · · · ⊗ e3

Xn = T3Q(X) e3
|X|.

This may also be proved using the explicit expression for K∗Q as a differential operator
(transvectant) given in [R]; cf. [P2] for the case n = 2.

We now combine Theorem 4.2 with the equalities (3.2), choosing f = KQeix. This
will give the expansions of KQeix in tensor products of the ejy. By the theorem, the

coefficients will involve the polynomial TjQ times the matrix element Kij . For i = j
this exhibits the polynomials TiQ as coupling coefficients of our representation. We
summarize this in a corollary.
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Corollary 4.3. In the notation above, we have the generalized Clebsch–Gordan
formulas

(µ)k
k!
KQe1

k(z1, . . . , zn) =
∑

|m|=k+s

(ν1)m1
· · · (νn)mn

m1! · · ·mn!
T1Q(m)zm1

1 · · · zmnn ,

ξµ−1

Γ(µ)
KQe2

ξ(z1, . . . , zn)

(4.3)

=
1

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=ξ

T2Q(η) e2
η1

(z1) · · · e2
ηn(zn)ην1−1

1 · · · ηνn−1
n dη,

∣∣Γ (µ2 + iX
)∣∣2

Γ(µ)
KQe3

X(z1, . . . , zn) =
1

(2π)n−1Γ(ν1) · · ·Γ(νn)

×
∫
Y ∈Rn : |Y |=X

T3Q(Y ) e3
Y1

(z1) · · · e3
Yn(zn)

∣∣∣Γ(ν1

2
+ iY1

)
· · ·Γ

(νn
2

+ iYn

)∣∣∣2 dY.
To obtain the latter two equalities, one may formally use (3.3) and (3.4). This

can be justified either by a duality argument or by first writing down an analogous
expansion for KQeix ∗ φ and then sending φ to id along a suitable one-parameter
subgroup.

Choosing i 6= j gives six additional expansion formulas. These follow, however,
from formulas which have been obtained already. For instance, i = 1, j = 2 gives

KQe1
k(z) =

(−1)k

Γ(ν1) · · ·Γ(νn)

∫
Rn

+

1F1

( −k
µ

∣∣∣∣ |η|)T2Q(η) e−|η|
n∏
r=1

e2
ηr (zr)η

νr−1
r dη.

Integrating over the hypersurfaces |η| = ξ and assuming (4.3), we see that this reduces
to

KQe1
k(z) =

(−1)k

Γ(µ)

∫ ∞
0

1F1

( −k
µ

∣∣∣∣ ξ)KQe2
ξ(z)e

−ξξµ−1 dξ.

However, this follows from applying KQ to each side of

e1
k(z) =

1

Γ(µ)

∫ ∞
0

K12(k, ξ, id) e2
ξ(z)e

−ξξµ−1 dξ,

which is a special case of (3.2).
As a consequence of the interpretation as coupling coefficients, we recover the

orthogonality relations for the polynomials TiQ with the exact proportionality con-
stants.

Corollary 4.4. Let Q and Q̃ be two highest weight polynomials in

Aν1 ⊗ · · · ⊗ Aνn ,
not necessarily of the same degree. Then if s is the degree of Q (or of Q̃) and µ =
|ν|+ 2s, the quantities

k!

(µ)k

∑
|m|=k+s

(ν1)m1
· · · (νn)mn

m1! · · ·mn!
T1Q(m)T1Q̃(m),
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Γ(µ)B1−µ

Γ(ν1) · · ·Γ(νn)

∫
ξ∈Rn

+
: |ξ|=B

T2Q(ξ)T2Q̃(ξ) ξν1−1
1 · · · ξνn−1

n dξ,

Γ(µ)

(2π)n−1
∣∣Γ (µ2 + iC

)∣∣2
∫
X∈Rn : |X|=C

T3Q(X)T3Q̃(X)
n∏
r=1

∣∣Γ (νr2 + iXr

)∣∣2
Γ(νr)

dX

are, for each k = 0, 1, 2, . . ., B ∈ R+ and C ∈ R, all equal to the scalar product
〈Q, Q̃〉ν .

Proof. First note that, as a consequence of Schur’s lemma,

〈KQf,KQ̃g〉ν = 〈Q, Q̃〉ν〈f, g〉µ,
where we have used KQ1 = Q. If we put ξ = B in the equality (4.3) and then take
the scalar product with KQ̃e2

B ∗ φ for a suitable φ, the left-hand side then equals

Bµ−1

Γ(µ)
〈Q, Q̃〉ν〈e2

B , e
2
B ∗ φ〉µ,

while the right-hand side equals

1

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=B

T2Q(η)〈e2
η1
⊗ · · · ⊗ e2

ηn ,KQ̃e2
B ∗ φ〉ν ην1−1

1 · · · ηνn−1
n dη

=
1

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=B

T2Q(η)T2Q̃(η)〈e2
B , e

2
B ∗ φ〉µ ην1−1

1 · · · ηνn−1
n dη.

Dividing out the matrix element 〈e2
B , e

2
B ∗φ〉µ we obtain the second part of the corol-

lary. The remaining parts are similar.

5. Convolution formulas. In this section we will obtain some convolution for-
mulas for the polynomials TiQ. The most general formulas of this type would follow
from considering a scalar product

〈KQeix ∗ φ, (ejy1
⊗ · · · ⊗ ejyn) ∗ ψ〉ν

and expanding this by applying formula number k in (3.1) on each variable. For
instance, with (i, j, k) = (1, 2, 3) this gives

〈KQe1
k ∗ φ, (e2

ξ1 ⊗ · · · ⊗ e2
ξn) ∗ ψ〉ν

=

∫
Rn
〈KQe1

k ∗ φ, e3
X1
⊗ · · · ⊗ e3

Xn〉ν〈e3
X1
⊗ · · · ⊗ e3

Xn , (e
2
ξ1 ⊗ · · · ⊗ e2

ξn) ∗ ψ〉ν dm(X),

where

dm(X) =
1

(2π)nΓ(ν1) · · ·Γ(νn)

∣∣∣Γ(ν1

2
+ iX1

)
· · ·Γ

(νn
2

+ iXn

)∣∣∣2 dX1 · · · dXn.

Now, by Theorem 4.2, this may be written as

T2Q(ξ)K12(k, |ξ|, ψφ−1) =

∫
Rn
T3Q(X)K13(k, |X|, φ−1)

n∏
r=1

K32(Xr, ξr, ψ) dm(X).

Inserting the expressions for matrix elements from Proposition 3.2, we obtain an
integral formula linking T2Q and T3Q.
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We will not write down all such formulas since they may be deduced from a
few special cases. Using addition formulas for the matrix elements we may reduce
ourselves to the case φ = id. As in the previous section, we may also assume that
i = k. In this case, the formulas follow from applying the transform Fψj to both sides
of the three generalized Clebsch–Gordan formulas of Corollary 4.3. Moreover, the
formulas with j = 3 follow from those with j = 1, by means of (1.8). After these
reductions, there remain the six cases

(i, j) = (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2),

which will give the following convolution formulas.
Theorem 5.1. Let, as above, Q be a highest weight polynomial in Aν1 · · · ⊗ Aνn

of degree s and let µ = |ν|+ 2s. Then the following formulas hold:

(µ)k
k!

cs2F1

( −k, s− |l|
µ

∣∣∣∣ c)T1Q(l)(5.1)

=
∑

|m|=k+s

(ν1)m1
· · · (νn)mn

m1! · · ·mn!
T1Q(m)

n∏
r=1

2F1

( −mr,−lr
νr

∣∣∣∣ c) ,
(µ)k
k!

1F1

( −k
µ

∣∣∣∣ |ξ|)T2Q(ξ)

= (−1)s
∑

|m|=k+s

(ν1)m1
· · · (νn)mn

m1! · · ·mn!
T1Q(m)

n∏
r=1

1F1

( −mr

νr

∣∣∣∣ ξr) ,
ξµ−1

Γ(µ)
1F1

(
s− |m|
µ

∣∣∣∣ ξ)T1Q(m)(5.2)

=
(−1)s

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=ξ

T2Q(η)
n∏
r=1

1F1

( −mr

νr

∣∣∣∣ ηr) ην1−1
1 · · · ηνn−1

n dη,

ξµ−1

Γ(µ)
0F1

( −
µ

∣∣∣∣ − ξ|ζ|)T2Q(ζ)

=
(−1)s

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=ξ

T2Q(η)
n∏
r=1

0F1

( −
νr

∣∣∣∣ − ηrζr) ην1−1
1 · · · ηνn−1

n dη,

∣∣Γ (µ2 + iX
)∣∣2

Γ(µ)
cs2F1

(
s− |m|, µ2 + iX

µ

∣∣∣∣ c)T1Q(m)(5.3)

=
1

(2π)n−1

∫
Y ∈Rn : |Y |=X

T3Q(Y )
n∏
r=1

∣∣Γ (νr2 + iYr
)∣∣2

Γ(νr)
2F1

( −mr,
νr
2 + iYr
νr

∣∣∣∣ c) dY,
∣∣Γ (µ2 + iX

)∣∣2
Γ(µ)

1F1

(
µ
2 + iX
µ

∣∣∣∣ |ξ|)T2Q(ξ)

=
is

(2π)n−1

∫
Y ∈Rn : |Y |=X

T3Q(Y )
n∏
r=1

∣∣Γ (νr2 + iYr
)∣∣2

Γ(νr)
1F1

(
νr
2 + iYr
νr

∣∣∣∣ iξr) dY.
The parameter c occurring in (5.1) and (5.3) depends on the choice of ψ. More

precisely, in the first of these identities c = −1/|β|2, where ψ(z) = (αz+β)/(β̄z+ ᾱ),
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and in the second one c = 2/(α + β̄)(ᾱ − β). Since both sides are polynomials in c
they are valid for arbitrary c. For the remaining four identities, different choices of ψ
give essentially the same result.

Quite a lot of information is contained in these formulas. Many known identities
follow from the three interesting special cases when (i) Q = 1, (ii) n = 2, or (iii) a
numerator parameter in the hypergeometric function on the left-hand side is 0, so
that this function reduces to 1. In particular, the case n = 2 of the first two identities
occurs in [KV1] with a similar group theoretic interpretation; cf. also [Su], [VdJ].

It should be noted that if Q is constructed by binary coupling as in section 2.4,
the theorem may be proved using the case n = 2 and induction on n. Since one may
construct a basis for the space of highest weight vectors in this way, this actually gives
an alternative proof of the general case.

Some degenerate cases of our convolution formulas seem interesting enough to
state explicitly. First, the polynomials T1Q (and thus T3Q) satisfy some related
identities.

Corollary 5.2. In the notation of Theorem 5.1, the following additional for-
mulas are valid:

(µ+ |l| − s)k
k!

T1Q(l) =
∑

|m|=k+s

(ν1 + l1)m1
· · · (νn + ln)mn

m1! · · ·mn!
T1Q(m),(5.4)

(µ+ |l| − s)k+s

(k + s)!
T1Q(l) =

∑
|m|=k+s

(ν1 + l1)m1
· · · (νn + ln)mn

m1! · · ·mn!
T1Q(m+ l),(5.5)

(s− |l|)k
k!

T1Q(l) = (−1)s
∑

|m|=k+s

(−l1)m1 · · · (−ln)mn
m1! · · ·mn!

T1Q(m),(5.6)

(s− |l|)k+s

(k + s)!
T1Q(l) =

∑
|m|=k+s

(−l1)m1 · · · (−ln)mn
m1! · · ·mn!

T1Q(l −m).(5.7)

Proof. This follows from the convolution formula (5.1). As remarked above, it is
valid for arbitrary values of c, though in the proof c = −1/|β|2 is negative. Putting
c = 1 and using the Chu–Vandermonde formula

2F1

( −m,−l
ν

∣∣∣∣ 1

)
=

(ν)m+l

(ν)m(ν)l

gives the equality (5.4). If we multiply both sides of (5.1) by c−k−s and use the limit
relation

lim
c→∞

1

cm
2F1

( −m,−l
ν

∣∣∣∣ c) = (−1)m
(−l)m
(ν)m

(m, l = 0, 1, 2, . . .),

we obtain (5.6). Incidentally, (5.6) also follows from (5.4) together with

T1Q(m) = (−1)s T1Q(−ν −m),(5.8)

which in turn follows from (1.8) and (1.9).
If we instead multiply both sides of (5.1) by c−|l| and let c→∞, we get

(−1)s
(µ)k(−k)|l|−s
k!(µ)|l|−s

T1Q(l) =
∑

|m|=k+s

(ν1)m1 · · · (νn)mn(−m1)l1 · · · (−mn)ln
m1! · · ·mn! (ν1)l1 · · · (νn)ln

T1Q(m).

Replacing k by k + |l| and m by m + l gives (5.5). The equality (5.7) follows from
(5.5) together with (5.8).
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We may also obtain two integral formulas for T1Q from Theorem 5.1. In the
bilinear case, the first of these is a known formula for the Hahn polynomials (see [VK,
Formula 8.2.4(7)]), while we have not found the second one in the literature.

Corollary 5.3. In the notation of Theorem 5.1, the following additional for-
mulas are valid:

1

Γ(µ+ |m| − s) T1Q(m)

=
1

Γ(ν1 +m1) · · ·Γ(νn +mn)

∫
η∈Rn

+
: |η|=1

T2Q(η) ηm1+ν1−1
1 · · · ηmn+νn−1

n dη,

Γ
(
µ
2 + iX

)
Γ
(
µ
2 − iX + |m| − s)

Γ(µ+ |m| − s) T1Q(m)

=
1

(2π)n−1

∫
Y ∈Rn : |Y |=X

T3Q(Y )
m∏
r=1

Γ
(
νr
2 + iYr

)
Γ
(
νr
2 − iYr +mr

)
Γ(νr +mr)

dY.

Proof. This follows from the convolution formulas (5.2) and (5.3), respectively.
In the integral in (5.2), replace η by ξη so that the integration is over {|η| = 1}. Then
let ξ →∞ and use the homogeneity of T2Q and the limit relation

lim
ξ→∞

1

ξm
1F1

( −m
ν

∣∣∣∣ ξη) =
(−1)m

(ν)m
ηm (m = 0, 1, 2, . . .).

The other half of the corollary is the case c = 1 of (5.3).

6. Coupling kernels. In this section we introduce some polynomials in 2n vari-
ables which we call coupling kernels. Let Vs be the subspace of Aν1 ⊗ · · · ⊗ Aνn con-
sisting of highest weight polynomials of degree s, and let Qs(z, w̄) be its reproducing
kernel. The coupling kernels are obtained by applying one of the transforms Ti to
each variable in Qs(z, w̄). If

Qs(z, w̄) =
∑

|t|=|u|=s
ct,u w̄

tzu,

we define the coupling kernels P ijs as

P ijs (x, y) =
∑

|t|=|u|=s
ct,u (Tiwt)(x) (Tjz

u)(y), i, j = 1, 2, 3.

Recall the decomposition

Aν1 ⊗ · · · ⊗ Aνn '
∞⊕
s=0

(
n+ s− 2
n− 2

)
A|ν|+2s.

Let Πs denote the orthogonal projection of Aν1⊗· · ·⊗Aνn onto the isotypic subspace
equivalent to

(
n+s−2
n−2

)A|ν|+2s. By general Hilbert space arguments, we may express
the reproducing kernel Qs as

Qs(z, w̄) =
∑

|t|=|u|=s

(ν)t(ν)u
t!u!

〈Πsz
t, zu〉ν w̄tzu

or as

Qs(z, w̄) =
∑
k∈Λs

Qk(w)Q′k(z),
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where (Qk)k∈Λs is any basis of Vs and (Q′k)k∈Λs is the dual basis (here Λs is a suitable
index set of cardinality

(
n+s−2
n−2

)
). Thus the coupling kernels are given by

P ijs (x, y) =
∑

|t|=|u|=s

(ν)t(ν)u
t!u!

〈Πsz
t, zu〉ν(Tiwt)(x) (Tjz

u)(y)(6.1)

=
∑
k∈Λs

TiQk(x)TjQ
′
k(y).(6.2)

It will turn out that the coupling kernels may be expressed more explicitly in terms
of Karlsson’s generalized Kampé de Fériet functions (2.1). Moreover, we will recover
as very special cases the dual Appell polynomials described in section 2.3.

To motivate the introduction of the coupling kernels, consider the matrix elements
of the projection Πs:

〈Πs(e
i
x1
⊗ · · · ⊗ eixn), (ejy1

⊗ · · · ⊗ ejyn) ∗ φ〉ν , i, j = 1, 2, 3.(6.3)

One may express Πs as

Πs =
∑
k∈Λs

KQ′
k
K∗Qk ,

where (Qk) and (Q′k) are as above. Using Theorem 4.2 one finds that the matrix
element (6.3) equals a matrix element (in the sense of section 3) for A|ν|+2s times the
coupling kernel P ijs (x, y). For instance, one has

〈Πs(e
1
l1 ⊗ · · · ⊗ e1

ln), (e2
ξ1 ⊗ · · · ⊗ e2

ξn) ∗ φ〉ν
=
∑
k∈Λs

〈K∗Qke1
l1 ⊗ · · · ⊗ e1

ln ,K∗Q′k(e2
ξ1 ⊗ · · · ⊗ e2

ξn) ∗ φ〉|ν|+2s

=
∑
k∈Λs

T1Qk(l)T2Q
′
k(ξ)〈e1

|l|−s, e
2
|ξ| ∗ φ〉|ν|+2s

= K12(|l| − s, |ξ|, φ)P 12
s (l, ξ).

We now give explicit expressions for the coupling kernels. It is clear that

P ijs (x, y) = P jis (y, x),(6.4)

so we may assume that i ≤ j. Moreover, it follows from (1.8) that

P i3s (x, Y ) = P i1s

(
x, iY − ν

2

)
,(6.5)

which leaves us with the three cases P 11
s , P 12

s , and P 22
s .

Theorem 6.1. The coupling kernels are given in terms of Karlsson’s functions
(2.1) by

P 11
s (k, l) =

(−1)s(−|k|)s(−|l|)s
(|ν|+ s− 1)ss!

F 2:2
2:1

( |ν|+ s− 1,−s : −k,−l
−|k|,−|l| : ν

∣∣∣∣ 1

)
,

P 12
s (k, ξ) =

(−|k|)s|ξ|s
(|ν|+ s− 1)ss!

F 2:1
1:1

( |ν|+ s− 1,−s : −k
−|k| : ν

∣∣∣∣ ξ

|ξ|
)
,

P 22
s (ξ, η) =

(−1)s|ξ|s|η|s
(|ν|+ s− 1)ss!

F 2:0
0:1

( |ν|+ s− 1,−s : −
− : ν

∣∣∣∣ ξη

|ξ||η|
)
.
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The proof of this theorem will be deferred to section 8. The variable of the
F 2:0

0:1-function should be interpreted as

ξη

|ξ||η| =
1

(ξ1 + · · ·+ ξn)(η1 + · · ·+ ηn)
(ξ1η1, . . . , ξnηn) .

We also remark that Karlsson’s F 2:0
0:1-function is Lauricella’s FC-function.

These expressions should be compared with what one gets from choosing a par-
ticular basis (Qk) in (6.2). This is particularly interesting when n = 2, when the sum
has only one term. In the case of P 22

s one gets an expression for the product of two
Jacobi polynomials as an F 2:0

0:1-series of two variables, that is, as an Appell F4-series.
This is a classical result of Watson [W]. For P 11

s one gets a similar expression for the
product of two Hahn polynomials due to Gasper [G1]; cf. also [G2]. For P 12

s one gets
the identity

(−1)ss!

(ν2)s
P (ν1−1,ν2−1)
s

(
ξ2 − ξ1
ξ1 + ξ2

)
Qs(k1; ν1 − 1, ν2 − 1; k1 + k2)

= F 2:1
1:1

(
ν1 + ν2 + s− 1,−s : −(k1, k2)

−k1 − k2 : (ν1, ν2)

∣∣∣∣ ξ1
ξ1 + ξ2

,
ξ2

ξ1 + ξ2

)
or equivalently

2F1

( −n, n+ a
b

∣∣∣∣ z) 3F2

( −n, n+ a, c
b, d

∣∣∣∣ 1

)
=

(−1)n(a− b+ 1)n
(b)n

F 2:1
1:1

( −n, n+ a : (c, d− c)
d : (b, a− b+ 1)

∣∣∣∣ z, 1− z) ,
which we have not found in the literature. For general n one may obtain generaliza-
tions of these formulas by choosing in (6.2) the basis (2.2) of Vs or a basis constructed
by binary coupling as in section 2.4.

As we mentioned above, the dual Appell polynomials described in section 2.3 may
be viewed as special cases of coupling kernels. This might first seem surprising, but
is easily understood.

Corollary 6.2. Let (Qt) be the basis

Qt(z) = (z1 − zn)t1 · · · (zn−1 − zn)tn−1 , |t| = t1 + · · ·+ tn−1 = s

of the space of highest weight polynomials in Aν1 ⊗ · · · ⊗ Aνn of degree s. Let (Q′t)
be the dual basis. For x = (x1, . . . , xn), let x̂ = (x1, . . . , xn−1). Then the polynomials
TiQ

′
t may be expressed in terms of Karlsson’s functions as

T1Q
′
t(m) =

(ν̂)t(−|m|)s
t! (|ν|+ s− 1)s

F 1:2
1:1

( |ν|+ s− 1 : −t,−m̂
−|m| : ν̂

∣∣∣∣ 1

)
,

T2Q
′
t(ξ) =

(ν̂)t(−|ξ|)s
t! (|ν|+ s− 1)s

F 1:1
0:1

( |ν|+ s− 1 : −t
− : ν̂

∣∣∣∣ ξ1|ξ| , . . . , ξn−1

|ξ|
)
,

T3Q
′
t(X) =

(ν̂)t(
|ν|
2 − i|X|)s

t! (|ν|+ s− 1)s
F 1:2

1:1

( |ν|+ s− 1 : −t, 1
2 ν̂ − iX̂

1
2 |ν| − i|X| : ν̂

∣∣∣∣ 1

)
.

Note that the vector parameters in Karlsson’s functions have dimension n − 1
here but dimension n in Theorem 6.1.

Proof. If u = (u1, . . . , un), |u| = s, we may write

Πsz
u =

∑
v

〈zu, Qv〉ν Q′v =
∑
v

T1Qv(u)Q′v.
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Thus

TiΠsz
u(x) =

∑
v

T1Qv(u)TiQ
′
v(x) = P 1i

s (u, x).(6.6)

Now choose

u = (t, 0) = (t1, . . . , tn−1, 0), |t| = s.(6.7)

Then

〈zu, Qv〉ν =
t1! · · · tn−1!

(ν1)t1 · · · (νn−1)tn−1

δt,v,

so that in fact

Q′t =
(ν1)t1 · · · (νn−1)tn−1

t1! · · · tn−1!
Πsz

u.(6.8)

Combining (6.6) and (6.8) gives

TiQ
′
t(x) =

(ν1)t1 · · · (νn−1)tn−1

t1! · · · tn−1!
P 1i
s (u, x), i = 1, 2, 3.

It is now easy to check that the expressions for P 1i
s (u, x) given in Theorem 6.1 simplify

to those of the corollary when u is of the form (6.7).

7. Further properties of the coupling kernels. We continue to study the
formal properties of the coupling kernels. Some formulas follow from Corollary 4.4
and Theorem 5.1 by choosing highest weight vectors Q of the form

Qisx =
∑
k∈Λs

TiQk(x)Q′k,

where as above (Qk)k∈Λs is any basis of Vs and (Q′k)k∈Λs is the dual basis. For such
Q one has

〈Q,Qisx〉ν = TiQ(x), Q ∈ Vs,
so Qisx is the kernel of Ti, viewed as an operator on Vs. We will write down these
formulas explicitly since we find them quite interesting.

Applying Corollary 4.4 with Q̃ = Qisx gives the following identities.
Proposition 7.1. Let Q be a highest weight polynomial in Aν1 ⊗ · · · ⊗ Aνn of

degree s, and let µ = |ν| + 2s. Then, for i = 1, 2, 3, k = 0, 1, 2, . . ., B ∈ R+, and
C ∈ R, one has the equalities

TiQ(x) =
k!

(µ)k

∑
|m|=k+s

(ν1)m1
· · · (νn)mn

m1! · · ·mn!
T1Q(m)P 1i

s (x,m)

=
Γ(µ)B1−µ

Γ(ν1) · · ·Γ(νn)

∫
ξ∈Rn

+
: |ξ|=B

T2Q(ξ)P 2i
s (x, ξ) ξν1−1

1 · · · ξνn−1
n dξ

=
Γ(µ)

(2π)n−1
∣∣Γ (µ2 + iC

)∣∣2
∫
X∈Rn : |X|=C

T3Q(X)P 3i
s (x,X)

n∏
r=1

∣∣Γ (νr2 + iXr

)∣∣2
Γ(νr)

dX.
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In particular, P iis is essentially the reproducing kernel for the space of coupling
coefficients TiQ of degree s. If we recall the connection between the polynomials
T2Q and spherical harmonics, we see that the reproducing kernels for Vilenkin’s poly-
spherical harmonics may be expressed in terms of P 22

s and thus in terms of Karlsson’s
function F 2:0

0:1. This is an interesting fact which we have not found in the literature.
If we choose Q̃ = Qisx and Q = Qjty in Corollary 4.4, we obtain addition formulas

for the coupling kernels.
Proposition 7.2. In the notation above, one has for i, j = 1, 2, 3 the equalities

P ijs (x, y) δs,t =
k!

(µ)k

∑
|m|=k+s

(ν1)m1 · · · (νn)mn
m1! · · ·mn!

P i1s (x,m)P 1j
t (m, y)

=
Γ(µ)B1−µ

Γ(ν1) · · ·Γ(νn)

∫
ξ∈Rn

+
: |ξ|=B

P i2s (x, ξ)P 2j
t (ξ, y) ξν1−1

1 · · · ξνn−1
n dξ

=
Γ(µ)

(2π)n−1
∣∣Γ (µ2 + iC

)∣∣2
∫
X∈Rn : |X|=C

P i3s (x,X)P 3j
t (X, y)

n∏
r=1

∣∣Γ (νr2 + iXr

)∣∣2
Γ(νr)

dX.

If we choose Q = Qisx in Theorem 5.1, we obtain eighteen convolution formulas.
Proposition 7.3. In the notation above, one has for i = 1, 2, 3 the equalities

(µ)k
k!

cs2F1

( −k, s− |l|
µ

∣∣∣∣ c)P i1s (x, l)

=
∑

|m|=k+s

(ν)m
m!

P i1s (x,m)
n∏
r=1

2F1

( −mr,−lr
νr

∣∣∣∣ c) ,
(µ)k
k!

1F1

( −k
µ

∣∣∣∣ |ξ|)P i2s (x, ξ)

= (−1)s
∑

|m|=k+s

(ν)m
m!

P i1s (x,m)
n∏
r=1

1F1

( −mr

νr

∣∣∣∣ ξr) ,
ξµ−1

Γ(µ)
1F1

(
s− |m|
µ

∣∣∣∣ |ξ|)P i1s (x,m)

=
(−1)s

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=ξ

P i2s (x, η)
n∏
r=1

1F1

( −mr

νr

∣∣∣∣ ηr) ην1−1
1 · · · ηνn−1

n dη,

ξµ−1

Γ(µ)
0F1

( −
µ

∣∣∣∣ − ξ|ζ|)P i2s (x, ζ)

=
(−1)s

Γ(ν1) · · ·Γ(νn)

∫
η∈Rn

+
: |η|=ξ

P i2s (x, η)
n∏
r=1

0F1

( −
νr

∣∣∣∣ − ηrζr) ην1−1
1 · · · ηνn−1

n dη,

∣∣Γ (µ2 + iX
)∣∣2

Γ(µ)
cs2F1

(
s− |m|, µ2 + iX

µ

∣∣∣∣ c)P i1s (x,m)

=
1

(2π)n−1

∫
Y ∈Rn : |Y |=X

P i3s (x, Y )
n∏
r=1

∣∣Γ (νr2 + iYr
)∣∣2

Γ(νr)
2F1

( −mr,
νr
2 + iYr
νr

∣∣∣∣ c) dY,
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)∣∣2

Γ(µ)
1F1

(
µ
2 + iX
µ

∣∣∣∣ i|ξ|)P i2s (x, ξ)

=
is

(2π)n−1

∫
Y ∈Rn : |Y |=X

P i3s (x, Y )
n∏
r=1

∣∣Γ (νr2 + iYr
)∣∣2

Γ(νr)
1F1

(
νr
2 + iYr
νr

∣∣∣∣ iξr) dY.
Degenerate cases of these formulas are obtained by choosing Q = Qisx in Corol-

laries 5.2 and 5.3.
We will now give some expansions which are different in nature from those ob-

tained so far. They are of a type known as linearization formulas, since they linearize
a product of orthogonal functions, expressing it as a sum of functions from the same
orthogonal system. Let Πs be the orthogonal projection introduced in section 6. Then
the scalar product of Aν1 ⊗ · · · ⊗ Aνn decomposes as

〈f, g〉ν =
∞∑
s=0

〈Πsf, g〉ν .(7.1)

We insert in this equality f = eix1
⊗ · · · ⊗ eixn , g = (eiy1

⊗ · · · ⊗ eiyn) ∗ φ. Then the
left-hand side is a product of matrix elements for the spaces Aνi , while, as we have
observed, each term on the right-hand side is the product of a coupling kernel P ijs (x, y)
and a matrix element for A|ν|+2s. In view of (6.4) and (6.5) it suffices to consider the
three cases

(i, j) = (1, 1), (1, 2), (2, 2).

This gives the following linearization formulas.
Proposition 7.4. In the notation above,

n∏
r=1

2F1

( −kr,−lr
νr

∣∣∣∣ c) =

min(|k|,|l|)∑
s=0

P 11
s (k, l) cs2F1

(
s− |k|, s− |l|
|ν|+ 2s

∣∣∣∣ c) ,(7.2)

n∏
r=1

1F1

( −kr
νr

∣∣∣∣ ξr) =

|k|∑
s=0

P 12
s (k, ξ)(−1)s1F1

(
s− |k|
|ν|+ 2s

∣∣∣∣ |ξ|) ,
n∏
r=1

0F1

( −
νr

∣∣∣∣ − ξrηr) =
∞∑
s=0

P 22
s (ξ, η) 0F1

( −
|ν|+ 2s

∣∣∣∣ − |ξ||η|) .
For n = 2, when the coupling kernels factor as a product of two Clebsch–Gordan

coefficients, the first of these formulas is the Burchnall–Chaundy formula [BC], while
the third one is attributed to Bateman in [VK]. The bilinear case is also treated in
[KV2].

It is not hard to prove these formulas directly or to obtain them as special cases
of more general expansion formulas. For instance, one may prove that (assuming
convergence)

n∏
r=1

2F1

(
Ar, Br
Cr

∣∣∣∣ x)
(7.3)

=

∞∑
s=0

(a)s(b)s(−1)s

s!(c+ s− 1)s
F 2:2

2:1

(
c+ s− 1,−s : A,B

a, b : C

∣∣∣∣ 1

)
xs2F1

(
a+ s, b+ s
c+ 2s

∣∣∣∣ x) ,
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which reduces to (7.2) for special values of the parameters and to Chaundy’s for-
mula [C]

2F1

(
A,B
C

∣∣∣∣ x)
(7.4)

=

∞∑
s=0

(a)s(b)s(−1)s

s!(c+ s− 1)s
4F3

(
c+ s− 1,−s,A,B

a, b, C

∣∣∣∣ 1

)
xs2F1

(
a+ s, b+ s
c+ 2s

∣∣∣∣ x)
for n = 1. In fact, (7.3) is a special case of an even more general expansion formula due
to H. M. Srivastava [S]; cf. also [SK, pp. 340–341, Formulas (251) and (254)]. (I would
like to thank Professor Srivastava for pointing this out to me.) In [R], we gave a group
theoretic interpretation of (7.4), where the 4F3-series occur as Racah coefficients (or
Wigner 6-j-symbols). It would be interesting to also have an interpretation of the
more general formula (7.3).

We finally note some degenerate cases of (7.2). If we put c = 1, we get

(ν1)k1+l1 · · · (νn)kn+ln

(ν1)k1
· · · (νn)kn(ν1)l1 · · · (νn)ln

=

min(|k|,|l|)∑
s=0

(|ν|+ 2s)|k|+|l|−2s

(|ν|+ 2s)|k|−s(|ν|+ 2s)|l|−s
P 11
s (k, l).

If we multiply (7.2) by 1/c|l| and let c→∞, we get

(−k1)l1 · · · (−kn)ln
(ν1)l1 · · · (νn)ln

= (−1)s
|l|∑
s=0

(s− |k|)|l|−s
(|ν|+ 2s)|l|−s

P 11
s (k, l).

The case |k| = |l| of this equation reads

k1! · · · kn!

(ν1)k1
· · · (νn)kn

δk,l =

|k|∑
s=0

(|k| − s)!
(|ν|+ 2s)|k|−s

P 11
s (k, l), |k| = |l|.

This may also be deduced by inserting f = zk1
1 · · · zknn , g = zl11 · · · zlnn in (7.1). For

n = 2, writing P 11
s (k, l) as the product of two 3F2-series gives the orthogonality

relations for the dual Hahn polynomials (Eberlein polynomials).

8. Proof of Theorem 6.1. In this section we will prove the explicit expressions
for the coupling kernels given in Theorem 6.1. The proof will be based on formula
(6.1). Thus we will first compute the matrix elements

〈Πsz
t, zu〉ν , |t| = |u| = s(8.1)

of the projection Πs.
We will work with the action of the universal enveloping algebra U(sl(2,C)) de-

rived from the group action. This associative algebra has three generators E, F , and
H. The action is given on Aν by the densely defined operators (cf. [R])

E = − d

dz
, F = z2 d

dz
+ νz, H = −

(
2z

d

dz
+ ν

)
and on Aν1 ⊗ · · · ⊗ Aνn by

E = −
n∑
i=1

∂

∂zi
, F =

n∑
i=1

(
z2
i

∂

∂zi
+ νizi

)
, H = −

n∑
i=1

(
2zi

∂

∂zi
+ νi

)
.
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These operators satisfy the structure equations

[EF ] = H, [HE] = 2E, [HF ] = −2F

and the reality conditions

E∗ = −F, F ∗ = −E, H∗ = H.

Let Hs be the subspace of Aν1⊗· · ·⊗Aνn consisting of homogeneous polynomials
of degree s. There is then an orthogonal decomposition

Hs = Vs ⊕ FHs−1,

and we are interested in the orthogonal projection Πs|Hs onto the first summand.
Lemma 8.1. We have

EF k
∣∣
Hs = F kE − k(|ν|+ 2s+ k − 1)F k−1.

Proof. First we observe that

EF
∣∣
Hs = (FE +H)

∣∣
Hs = FE − (|ν|+ 2s)Id.

Proceeding by induction on k, we find that

EF k+1
∣∣
Hs = EF k

∣∣
Hs+1

F
∣∣
Hs = F kEF − k(|ν|+ 2s+ k + 1)F k

= F k(FE − (|ν|+ 2s))− k(|ν|+ 2s+ k + 1)F k

= F k+1E − (k + 1)(|ν|+ 2s+ k)F k.

Lemma 8.2. The orthogonal projection of Hs onto Vs is given by

∞∑
k=0

(−1)k

k!(2− |ν| − 2s)k
F kEk.

Note that since Es+1
∣∣
Hs = 0, the sum terminates.

Proof. We first show that the operator maps into Vs. Using the previous lemma,
we find that in general

E

∞∑
k=0

ckF
kEk

∣∣
Hs =

∞∑
k=0

ckEF
k
∣∣
Hs−kE

k

=
∞∑
k=0

ck(F kE − k(|ν|+ 2s− k − 1)F k−1)Ek

=
∞∑
k=0

(ck − ck+1(k + 1)(|ν|+ 2s− k − 2))F kEk+1.

This vanishes if

ck+1 =
1

(k + 1)(|ν|+ 2s− k − 2)
ck,

which is indeed solved by

ck =
(−1)k

k!(2− |ν| − 2s)k
.
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We then have, for any f in Hs,

f =

∞∑
k=0

(−1)k

k!(2− |ν| − 2s)k
F kEkf −

∞∑
k=1

(−1)k

k!(2− |ν| − 2s)k
F kEkf,

where the first term is in Vs. Since the second term is in the image of F , it is
orthogonal to the first term. This completes the proof.

We use this lemma to compute the matrix elements (8.1).
Lemma 8.3. For |t| = |u| = s,

〈Πsz
t, zu〉ν =

(−1)ss!

(|ν|+ s− 1)s
F 1:2

1:1

( |ν|+ s− 1 : −t,−u
−s : ν

∣∣∣∣ 1

)
.(8.2)

Proof. Since F ∗ = −E, the previous lemma gives

〈Πsz
t, zu〉ν =

∞∑
k=0

1

k!(2− |ν| − 2s)k
〈Ekzt, Ekzu〉ν .(8.3)

Since E is the sum of the commuting operators − ∂
∂zj

, it follows from the multinomial

theorem that

Ek(zt) = (−1)sk!
∑
|j|=s−k

(−t)j
j!

zj

and thus that

〈Ekzt, Ekzu〉ν = (k!)2
∑
|j|=s−k

(−t)j(−u)j
j! (ν)j

.

Inserting this in (8.3), we obtain

〈Πsz
t, zu〉ν =

∞∑
k=0

∑
|j|=s−k

k! (−t)j(−u)j
(2− |ν| − 2s)kj! (ν)j

=
∞∑

j1,...,jn=0

(s− |j|)! (−t)j(−u)j
(2− |ν| − 2s)s−|j|j! (ν)j

=
(−1)ss!

(|ν|+ s− 1)s

∞∑
j1,...,jn=0

(|ν|+ s− 1)|j|(−t)j(−u)j

(−s)|j|j! (ν)j

=
(−1)ss!

(|ν|+ s− 1)s
F 1:2

1:1

( |ν|+ s− 1 : −t,−u
−s : ν

∣∣∣∣ 1

)
.

We are now ready to prove Theorem 6.1.
Proof of Theorem 6.1. Insert the expression (8.2) in (6.1). In the case of P 12

s this
gives

P 12
s (k, ξ) =

∑
|t|=|u|=s

(ν)t(ν)u
t!u!

〈Πsz
t, zu〉ν(−1)s

(−k)t ξ
u

(ν)t(ν)u

=
∑

|t|=|u|=s

s!

(|ν|+ s− 1)s
F 1:2

1:1

( |ν|+ s− 1 : −t,−u
−s : ν

∣∣∣∣ 1

)
(−k)t ξ

u

t!u!

=
s!

(|ν|+ s− 1)s

∑
|t|=|u|=s

∞∑
j1,...,jn=0

(|ν|+ s− 1)|j|(−t)j(−u)j(−k)t ξ
u

(−s)|j|(ν)jj! t!u!
.
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Since the terms for which ti ≤ ji or ui ≤ ji for some i vanish, we put

t = j + p, u = j + q

and interchange the order of summation. Then

(−t)j(−u)j
t!u!

=
(−j − p)j(−j − q)j

(j + p)! (j + q)!
=

1

p! q!

so that we get

P 12
s (k, ξ)

(8.4)

=
s!

(|ν|+ s− 1)s

∑
j : |j|≤s

(|ν|+ s− 1)|j|
(−s)|j|(ν)jj!

∑
|p|=s−|j|

(−k)j+p
p!

∑
|q|=s−|j|

ξj+q

q!
.

Now, by the generalized Chu–Vandermonde formula,∑
|p|=s−|j|

(−k)j+p
p!

= (−k)j
∑

|p|=s−|j|

(j − k)p
p!

= (−k)j
(|j| − |k|)s−|j|

(s− |j|)!
(8.5)

= (−1)|j|
(−|k|)s
s!

(−s)|j|(−k)j

(−|k|)|j| .

Similarly, the multinomial theorem gives∑
|q|=s−|j|

ξj+q

q!
= ξj

|ξ|s−|j|
(s− |j|)! = (−1)|j|

|ξ|s
s!

(−s)|j|ξj
|ξ||j| .

Inserting these expressions in (8.4) we finally obtain

P 12
s (k, ξ) =

(−|k|)s|ξ|s
(|ν|+ s− 1)ss!

∞∑
j1,...,jn=0

(|ν|+ s− 1)|j|(−s)|j|(−k)jξ
j

(−|k|)|j|(ν)j |ξ||j|

=
(−|k|)s|ξ|s

(|ν|+ s− 1)ss!
F 2:1

1:1

( |ν|+ s− 1,−s : −k
−|k| : ν

∣∣∣∣ ξ

|ξ|
)
.

The remaining two cases are similar except that for P 11
s one uses the generalized

Chu–Vandermonde formula twice and for P 22
s the multinomial theorem twice.

9. The Fock space. So far our discussion has been based on the unit disc.
However, one may study analogous problems for other Hermitean symmetric spaces.
In dimension 1 one has, apart from the disc, the Riemann sphere and the plane. For
the Riemann sphere, the spaces Aν should be replaced by finite-dimensional spaces
of polynomials. Since the group SU(2) has only one conjugacy class of one-parameter
subgroups, there will only be one analogue of the transforms Ti. This transform is
similar to T1 with the parameters νi replaced by negative integers.

A more interesting case is the plane C. We will write down the analogues of our
results in this section. Since most proofs are similar to the case of the disc, we will not
give the details. First we introduce the Fock space Fα (α > 0), consisting of entire
functions for which

‖f‖2 =
α

π

∫
C
|f(z)|2e−α|z|2 dxdy =

∞∑
k=0

k!

αk
|f̂(k)|2 <∞.
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This space may be viewed as a limit of Aν when ν →∞. In fact, if ν > 1, the norm
of Aν is given by

‖f‖2 =
ν − 1

π

∫
D

|f(z)|2(1− |z|2)ν−2 dxdy.

If we replace D with the disc {|z| < R} and let ν and R tend to infinity so that
ν/R2 → α, the weight tends to

lim
ν,R→∞

(
1− |z|

2

R2

)ν−2

= e−α|z|
2

.

At the level of Lie algebras, this corresponds to deforming su(1, 1) into the Heisenberg
algebra.

On the space Fα we introduce the Heisenberg operators

Uhf(z) = e−α|h|
2/2−αh̄zf(z + h), h ∈ C.

They satisfy the Heisenberg relation

Uh1Uh2 = eiαIm(h1h̄2)Uh1+h2

and are unitary operators.
As an analogue of the parabolic basis for Aν we introduce the Gauss–Weierstrass

functions

e2
x(z) = e−αz

2/2+xz,

and write F2 for the transform

F2f(x) = 〈f, e2
x〉.

We also write e1
k(z) = zk and

F1f(k) = 〈f, e1
k〉.

In analogy with (3.1), and with the same interpretation, we have the Plancherel
formulas

〈f, g〉 =

∞∑
k=0

αk

k!
F1f(k) F1g(k)

=
1√
2πα

∫ ∞
−∞

F2f(x) F2g(x) e−x
2/2α dx.(9.1)

The matrix elements of U〈 are given by

〈Uhe1
k, e

1
l 〉 = (−1)lhkh̄le−α|h|

2/2
2F0

( −k,−l
−

∣∣∣∣ − 1

α|h|2
)
,

which are essentially Charlier polynomials, and by

〈e1
k, e

2
x〉 =

xk

αk
2F0

( −k2 , 1
2 − k

2−
∣∣∣∣ − 2α

x2

)
=

∑
0≤j≤[ k2 ]

(−1)jk!xk−2j

(k − 2j)! j! 2jαk−j
,
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which are essentially Hermite polynomials. It will be convenient to denote the latter
quantity by Hk(x, α), so that

e2
x(z) =

∞∑
k=0

αk

k!
Hk(x, α)zk.(9.2)

In the standard notation for Hermite polynomials, cf. [VK], one has

Hk(x, α) =
1

(2α)k/2
Hk

(
x√
2α

)
, α > 0.

The operators Uh permute the functions e2
x, and thus the matrix elements 〈Uhe1

k, e
2
x〉

are also given by Hermite polynomials. For the same reason, the matrix elements
〈Uhe2

x, e
2
y〉 are essentially Dirac measures. We will also consider the matrix elements

〈δce2
x, e

2
y〉, where, as above, δc is the dilatation (δcf)(z) = f(cz). Expanding the scalar

product as in (9.1), we get

〈δce2
x, e

2
y〉 =

∞∑
k=0

αkck

k!
Hk(x, α)Hk(y, α).(9.3)

Mehler’s formula (see [VK, Formula 9.6.8(5)]) then gives

〈δce2
x, e

2
y〉 =

1√
1− c2 exp

(
2cxy − c2(x2 + y2)

2α(1− c2)

)
, |c| < 1(9.4)

(cf. [P1] for another computation of this scalar product).
Later we will need power series expansions of 1/e2

x and 1/〈δce2
x, e

2
y〉. Since

1

e2
x(z)

= eαz
2/2−xz

is obtained from e2
x(z) by replacing α with −α and z with −z, it follows from (9.2)

that

1

e2
x(z)

=
∞∑
k=0

αk

k!
Hk(x,−α)zk.(9.5)

Similarly, if in the right-hand side of (9.4) we formally replace α by −α and multiply
by 1−c2, we obtain the reciprocal quantity. Manipulating (9.3) in the same way gives

1

〈δce2
x, e

2
y〉

= (1− c2)

∞∑
k=0

(−1)kαkck

k!
Hk(x,−α)Hk(y,−α)

(9.6)

=

∞∑
k=0

(−1)kαkck

k!
Gk(x, y, α),

where

Gk(x, y, α) = Hk(x,−α)Hk(y,−α)− k(k − 1)

α2
Hk−2(x,−α)Hk−2(y,−α)

(9.7)

=
∑

0≤i,j≤[ k2 ]

k! (k − 2)! (k(k − 1)− 4ij)xk−2iyk−2j

(k − 2i)! (k − 2j)! i! j! 2i+jα2k−i−j .
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Let us now consider an arbitrary tensor product

Fα1
⊗ · · · ⊗ Fαn

of Fock spaces. It decomposes under the group action into infinitely many copies of
the space F|α|. To get a finer decomposition one may add to the group auxiliary
operators of the form

f(z) 7→ eimθf(eiθz),

where m is an integer; cf. [VK, section 8.6.1]. Temporarily writing Fα,m for the
corresponding representation space, we have a decomposition

Fα1,m1
⊗ · · · ⊗ Fαn,mn =

∞⊕
s=0

(
n+ s− 2
n− 2

)
F|α|,|m|+s.

This means that the intertwining embeddings F|α|,|m|+s → Fα1,m1
⊗· · ·⊗Fαn,mn are

required to increase homogeneity by s. If Q is an image of 1 under such an embedding,
then Q must satisfy the same condition (1.3) as in the case of the disc. In the case at
hand, there is a simple expression for the corresponding embedding KQ:

(KQg)(z1, . . . , zn) = Q(z1, . . . , zn) g

(
(α, z)

|α|
)
,(9.8)

where

(α, z) = α1z1 + · · ·+ αnzn.

From now on we write

〈f, g〉α = 〈f, g〉Fα1⊗···⊗Fαn , 〈f, g〉|α| = 〈f, g〉F|α| .
To proceed in analogy with the case of the disc, we should now seek factorizations

of the transforms

Fhi = Fi Uh, i = 1, 2.

However, we get a useful factorization only in the case i = 1. Then we may write

Fh1 = M1 T1 δ−1/h̄ τh (h 6= 0),

where

M1f(k) = e−α|h|
2/2(−1)kh̄kf(k)

and

T1z
k(m) = (−1)k

(−m)k
αk

.

Analogous to Theorem 4.2, we have

(Fh1 KQg)(m) = T1Q(m)(Fh1g)(|m| − s).(9.9)

Thus if

Q(z) =
∑
|t|=s

ct z
t1
1 · · · ztnn
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is a highest weight vector, we have a corresponding coupling coefficient

T1Q(m1, . . . ,mn) = (−1)s
∑
|t|=s

ct
(−m1)t1 · · · (−mn)tn

αt11 · · ·αtnn
,

which is again a polynomial of degree s.
For i = 2 we define

T2Q(x1, . . . , xn) = 〈Q, e2
x1
⊗ · · · ⊗ e2

xn〉α,
where Q is a highest weight vector. There is no very simple expression for T2Q; we
must be content with writing

T2Q(x1, . . . , xn) =
∑
|t|=s

ctHt1(x1, α1) · · ·Htn(xn, αn),

which shows that T2Q is a polynomial of degree s. One may also show that

T2Q(x1 + bα1, . . . , xn + bαn) = T2Q(x1, . . . , xn), b ∈ C.(9.10)

Note that in the case of the disc, the polynomial T2Q is homogeneous. Thus in both
cases something of the property (1.3) is preserved. As in Theorem 4.2, we have

(Fh2 KQg)(x) = T2Q(x)(Fh2g)(|x|)(9.11)

and, for the dilatations,

(F2δcKQg)(x) = csT2Q(x)(F2δcg)(|x|).(9.12)

In the bilinear case, n = 2, we may take Q(z) = (z1 − z2)s. Then T1Q are
essentially Krawtchouk polynomials; in the notation of [VK] we have

T1Q(m1,m2) =
(−m1 −m2)s

αs2
Ks(m1; α1

α1+α2
;m1 +m2),

while the polynomials T2Qmay be expressed in terms of Hermite polynomials. Indeed,
we may write

T2Q(x1, x2) =
s∑

k=0

(
s
k

)
(−1)s−kHk(x1, α1)Hs−k(x2, α2)

=

(
1

α1
+

1

α2

)s
Hs

(
x1

α1
− x2

α2
,

1

α1
+

1

α2

)
,

where the last equality is a special case of the addition formula for Hermite polyno-
mials (see [VK, Formula 9.6.8(7)]), which is in turn easily derived from (9.2). Note
that this expression is in agreement with (9.10). That Krawtchouk polynomials are
Clebsch–Gordan coefficients for the Heisenberg algebra is well known, cf. [VK], while
for the Hermite polynomial this fact, as far as we know, first occurs in [VdJ].

We now write down some properties of the coupling coefficients. First we have
the Clebsch–Gordan type formulas analogous to Corollary 4.3. In this case we may
use (9.8) to write them more explicitly as

Q(z)
(α, z)k

k!
=

∑
|m|=k+s

αm1
1 · · ·αmnn
m1! · · ·mn!

T1Q(m) zm1
1 · · · zmnn ,

Q(z) exp

(
− (x− (α, z))2

2|α|
)

=
1

(2π)
n−1

2

√
|α|

α1 · · ·αn

×
∫
y∈Rn : |y|=x

T2Q(y) exp

(
−
(

(y1 − α1z1)2

2α1
+ · · ·+ (yn − αnzn)2

2αn

))
dy,
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where in the last equality we have written the product of the generalized basis elements
and the weight of the Plancherel measures as

e2
y(z) e−y

2/2α = e−(y−αz)2/2α.

Next we have orthogonality relations as in Corollary 4.4. If Q and Q̃ are two
highest weight vectors, then their scalar product 〈Q, Q̃〉α equals both the sum

k!

|α|k
∑

|m|=k+s

αm1
1 · · ·αmnn
m1! · · ·mn!

T1Q(m) T1Q̃(m)

for each k = 0, 1, 2, . . . and, for each x ∈ R, the integral

1

(2π)
n−1

2

√
|α|

α1 · · ·αn

∫
y∈Rn : |y|=x

T2Q(y) T2Q̃(y) exp

(
−
(
y2

1

2α1
+ · · ·+ y2

n

2αn

))
dy.

There are also analogues of the convolution formulas of Theorem 5.1. If Q is a
highest weight polynomial of degree s, we have

|α|k
k!

cs2F0

( −k, s− |l|
−

∣∣∣∣ c

|α|
)

T1Q(l)

=
∑

|m|=k+s

αm1
1 · · ·αmnn
m1! · · ·mn!

T1Q(m)
n∏
r=1

2F0

( −mr,−lr
−

∣∣∣∣ c

αr

)
,

|α|k
k!

Hk(|x|, |α|) T2Q(x)

=
∑

|m|=k+s

αm1
1 · · ·αmnn
m1! · · ·mn!

T1Q(m)

n∏
r=1

Hmr (xr, αr),

exp

(
− x2

2|α|
)
H|m|−s(x, |α|) T1Q(m) =

1

(2π)
n−1

2

√
|α|

α1 · · ·αn

×
∫
y∈Rn : |y|=x

T2Q(y)
n∏
r=1

Hmr (yr, αr) exp

(
−
(
y2

1

2α1
+ · · ·+ y2

n

2αn

))
dy,

cs exp

(
2cx|z| − x2 − c2|z|2

2|α|(1− c2)

)
T2Q(z) =

1

(2π(1− c2))
n−1

2

√
|α|

α1 · · ·αn

×
∫
y∈Rn : |y|=x

T2Q(y) exp

 n∑
j=1

2cyjzj − y2
j − c2z2

j

2αj(1− c2)

 dy.

For n = 2, the first of these formulas is the addition formula for Charlier polynomials,
cf. [VK, section 8.6.5], while the second one is a generalization of the addition formula
for Hermite polynomials given in [VdJ] and [KV1]. As degenerate cases of the first of
these formulas we obtain analogues of the equations (5.5) and (5.6):

|α|k+s

(k + s)!
T1Q(l) =

∑
|m|=k+s

αm1
1 · · ·αmnn
m1! · · ·mn!

T1Q(m+ l),

(s− |l|)k
k!

T1Q(l) = (−1)s
∑

|m|=k+s

(−l1)m1
· · · (−ln)mn

m1! · · ·mn!
T1Q(m).
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They are proved similarly using the limit

lim
c→∞

1

cm
2F0

( −m,−l
−

∣∣∣∣ ca
)

= (−1)m
(−l)m
am

(m, l = 0, 1, 2, . . .).

We now turn to the coupling kernels for the present situation. They are defined
as in the case of the disc and have a similar group theoretic interpretation. We denote
them by Pij

s . We may reduce ourselves to the three cases

P11
s (k, l), P12

s (k, x), P22
s (x, y).

We first give explicit expressions for the coupling kernels similar to those given
in Theorem 6.1. It seems that the kernels P12

s and P22
s do not have simple expres-

sions in terms of Karlsson’s functions. Instead we give expansions involving Hermite
polynomials. Our explicit expressions are

P11
s (k, l) =

(−1)s(−|k|)s(−|l|)s
|α|ss! F 1:2

2:0

( −s : −k,−l
−|k|,−|l| : −

∣∣∣∣ |α|α
)
,(9.13)

P12
s (k, x)

=
(−|k|)s
|α|s

∑
m : |m|≤s

(−1)|m||α||m|(−k)m
(−|k|)|m|m!

∑
|p|=s−|m|

αp

p!
Hp+m(x, α)(9.14)

=
(−1)s(−|k|)s

s!

∞∑
m1,...,mn=0

(−1)|m|
(−s)|m|(−k)m

(−|k|)|m|m!
Hs−|m|(|x|,−|α|)Hm(x, α),(9.15)

P22
s (x, y)

=
(−1)ss!

|α|s
∑

m : |m|≤s

|α||m|αm
(−s)|m|m!

∑
|p|=s−|m|

αp

p!
Hp+m(x, α)

∑
|q|=s−|m|

αq

q!
Hq+m(y, α)(9.16)

=
(−1)s|α|s

s!

∞∑
m1,...,mn=0

(−s)|m|αm
|α||m|m!

Gs−|m|(|x|, |y|, |α|)Hm(x, α)Hm(y, α),(9.17)

where in (9.13) we write for short

|α|
α

=

(
α1 + · · ·+ αn

α1
, . . . ,

α1 + · · ·+ αn
αn

)
,

where

Hm(x, α) = Hm1(x1, α1) · · ·Hmn(xn, αn),

and where G is the polynomial defined in (9.7).
As for the proof, the expression (9.13) may be proved in a similar manner as in

the case of the disc, using instead of Lemma 8.2 the formula

Πs|H∫ =
∞∑
k=0

1

k!|α|kF
kEk,

where Πs is defined as the orthogonal projection of Fα1 ⊗· · ·⊗Fαn onto the subspace
spanned by all KQg, where g ∈ F|α| and Q is a highest weight polynomial of degree
s and where

E = −
n∑
i=1

∂

∂zi
, F =

n∑
i=1

αizi



MULTIVARIABLE ORTHOGONAL POLYNOMIALS 267

are Lie algebra operators derived from the group action. If one continues to imitate
the proof of Theorem 6.1, one arrives at the expressions (9.14) and (9.16). However,
in this case there is no “multinomial theorem” to sum the inner series. To prove (9.15)
and (9.17), which we believe are the natural analogues of the expressions in Theorem
6.1, we use a different approach.

Proof of (9.15). Consider a tensor product e2
x1
⊗ · · · ⊗ e2

xn . We try to decompose
it as

e2
x1
⊗ · · · ⊗ e2

xn =
∞∑
s=0

KQsxgsx,

where Qsx is a highest weight polynomial of degree s. Because of (9.11) we expect
that one must take gsx = e2

|x| for all s, and thus, in view of (9.8), that

e2
x1

(z1) · · · e2
xn(zn) = e2

|x|

(
(α, z)

|α|
) ∞∑
s=0

Qsx.

That there is such an expansion may be verified easily by checking that the function

e2
x1

(z1) · · · e2
xn(zn)

e2
|x|
(

(α,z)
|α|
) = exp

(
n∑
i=1

(
−αi

2
z2
i + xizi

)
+

(α, z)2

2|α| −
|x|(α, z)
|α|

)
(9.18)

is in the kernel of E and thus that its homogeneous parts are highest weight poly-
nomials. This may be made more transparent by rewriting the above expression as

e2
x1

(z1) · · · e2
xn(zn)

e2
|x|
(

(α,z)
|α|
) = exp

− 1

2|α|
∑
i<j

αiαj(zi − zj)2 + 2(xiαj − αixj)(zi − zj)
 .

Now, consider the matrix element

〈Πse
2
x, e

1
k〉α = 〈Πs e

2
x1
⊗ · · · ⊗ e2

xn , e
1
k1
⊗ · · · ⊗ e1

kn〉α
for Πs. As for the disc, it factors as

〈Πse
2
x, e

1
k〉α = P12

s (k, x)〈e2
|x|, e

1
|k|−s〉|α|.

On the other hand, (9.9) gives

〈Πse
2
x, e

1
k〉α = 〈KQsxe2

|x|, e
1
k〉α = T1Qsx(k)〈e2

|x|, e
1
|k|−s〉|α|.

Thus we have found that

P12
s (k, x) = T1Qsx(k),

where Qsx is the term of degree s in the homogeneous expansion of the function (9.18).
Now, by (9.2)

e2
x1

(z1) · · · e2
xn(zn) =

∞∑
m1,...,mn=0

αmzm

m!
Hm(x, α),

and by (9.5)

1

e2
|x|
(

(α,z)
|α|
) =

∞∑
l=0

(α, z)l

l!
Hl(|x|,−|α|).
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Thus

Qsx(z) =
∑

m : |m|≤s

αmzm

m!
Hm(x, α)

(α, z)s−|m|

(s− |m|)! Hs−|m|(|x|,−|α|).

Expanding the power (α, z)s−|m| gives

Qsx(z) =
∑

|m|+|p|=s

αm+pzm+p

m! p!
Hm(x, α)Hs−|m|(|x|,−|α|).

By the definition of T1, it follows that

T1Qsx(k) = (−1)s
∑

|m|+|p|=s

(−k)m+p

m! p!
Hm(x, α)Hs−|m|(|x|,−|α|).

Summing in p, we have as in (8.5) that∑
|p|=s−|m|

(−k)m+p

p!
= (−1)|m|

(−|k|)s
s!

(−s)|m|(−k)m

(−|k|)|m| .

Inserting this in the previous formula gives the desired expression (9.15).
Proof of (9.17). We consider the matrix element

〈δce2
x, e

2
y〉α = 〈(δc)⊗ne2

x1
⊗ · · · ⊗ e2

xn , e
2
y1
⊗ · · · ⊗ e2

yn〉α
of δc, |c| < 1, and expand it as

〈δce2
x, e

2
y〉α =

∞∑
s=0

〈Πsδce
2
x, e

2
y〉α.

By (9.12)

〈Πsδce
2
x, e

2
y〉α = cs P22

s (x, y)〈δce2
|x|, e

2
|y|〉|α|.

It follows that P22
s (x, y) is the coefficient of cs in

〈δce2
x, e

2
y〉α

〈δce2
|x|, e

2
|y|〉|α|

.

Using the expansions (9.2) and (9.6) one obtains the expression (9.17).
For n = 2, the coupling kernels factor as a product of two Clebsch–Gordan coef-

ficients. Choosing Q(z) = (z1 − z2)s, we may write

Pij
s ((x1, x2), (y1, y2)) =

1

‖Q‖2α
TiQ(x1, x2) TjQ(y1, y2), i, j = 1, 2,

where the norm is easily computed;

‖Q‖2α = s!

(
1

α1
+

1

α2

)s
.

Comparing with the expressions for Pij
s given above leads to Watson-type formulas,

which we have not found in the literature. The case i = j = 1 gives the identity

αs1
αs2
Ks(k1; α1

α1+α2
; k1 + k2)Ks(l1; α1

α1+α2
; l1 + l2)

= (−1)s F 1:2
2:0

( −s : −(k1, k2),−(l1, l2)
−k1 − k2,−l1 − l2 : −

∣∣∣∣ α1 + α2

α1
,
α1 + α2

α2

)
.
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Changing the names of the variables, this may be rewritten as

2F1

( −n, a
b

∣∣∣∣ x) 2F1

( −n, c
d

∣∣∣∣ x)
= (1− x)n F 1:2

2:0

( −n : (a, b− a), (c, d− c)
b, d : −

∣∣∣∣ x, x

x− 1

)
,

which is true for arbitrary a, b, c, d since the series terminate. The case i = 1, j = 2
gives

1

αs2
Ks(k1; α1

α1+α2
; k1 + k2)Hs

(
x1

α1
− x2

α2
,

1

α1
+

1

α2

)
= (−1)s

∞∑
m1,m2=0

(−1)m1+m2
(−s)m1+m2

(−k1)m1
(−k2)m2

(−k1 − k2)m1+m2
m1!m2!

×Hs−m1−m2(x1 + x2,−α1 − α2)Hm1(x1, α1)Hm2
(x2, α2).

Finally, the case i = j = 2 gives

Hs

(
x1

α1
− x2

α2
,

1

α1
+

1

α2

)
Hs

(
y1

α1
− y2

α2
,

1

α1
+

1

α2

)
= (−α1α2)s

∞∑
m1,m2=0

(−s)m1+m2
αm1

1 αm2
2

(α1 + α2)m1+m2m1!m2!
Gs−m1−m2

(x1 + x2, y1 + y2, α1 + α2)

×Hm1
(x1, α1)Hm2

(x2, α2)Hm1
(y1, α1)Hm2

(y2, α2).

We now discuss the biorthogonal polynomial systems analogous to the Appell and
dual Appell polynomials of sections 2.2 and 2.3. Thus we introduce the basis

Qt(z) = (z1 − zn)t1 · · · (zn−1 − zn)tn−1 , t1 + · · ·+ tn−1 = s

of the space of highest weight vectors of degree s in Fα1
⊗ · · · ⊗ Fαn and let (Q′t)

denote the dual basis. As in the case of the disc, it is easy to find expressions for the
polynomials TiQt using the definition of Ti directly, while the polynomials TiQ

′
t arise

as special cases of the coupling kernels; in fact

TiQ
′
t(x) =

αt11 · · ·αtn−1

n−1

t1! · · · tn−1!
P1i
s ((t1, . . . , tn−1, 0), (x1, . . . , xn)).

Writing as above x̂ = (x1, . . . , xn−1), where x = (x1, . . . , xn), we have

T1Qt(m) =
(−mn)s
αsn

F 0:2
1:0

( − : −t,−m̂
1 +mn − s : −

∣∣∣∣ − αn
α1
, . . . ,− αn

αn−1

)
,

T1Q
′
t(m) =

α̂t(−|m|)s
t! |α|s F 0:2

1:0

( − : −t,−m̂
−|m| : −

∣∣∣∣ |α|α1
, . . . ,

|α|
αn−1

)
,

T2Qt(x) = (−1)s
∞∑

k1,...,kn−1=0

(−t)k
k!

n−1∏
j=1

Hkj (xj , αj)Hs−|k|(xn, αn),

T2Q
′
t(x) =

α̂t

t!

∞∑
k1,...,kn−1=0

(−1)|k|
(−t)k
k!

n−1∏
j=1

Hkj (xj , αj)Hs−|k|(|x|,−|α|)

(Karlsson’s F 0:2
1:0-function equals Lauricella’s FB-function). The first of these bi-

orthogonal systems is Tratnik’s multivariable Krawtchouk polynomials [T3]. We have
not found the second one in the literature.



270 HJALMAR ROSENGREN

Continuing this exposition of the Fock space analogues of our results, we should
now proceed with section 7. Special choices of Q in the orthogonality and convolution
formulas above lead to analogues of Propositions 7.1, 7.2, and 7.3. The details of
this are left to the reader. There are also analogues of the linearization formulas of
Proposition 7.4. For P11

s we have the linearization formula

n∏
r=1

2F0

( −kr,−lr
−

∣∣∣∣ c

αr

)
=

min(|k|,|l|)∑
s=0

P11
s (k, l) cs2F0

(
s− |k|, s− |l|

−
∣∣∣∣ c

|α|
)
.

Degenerate cases of this formula are

(−k1)l1 · · · (−kn)ln
αl11 · · ·αlnn

= (−1)s
|l|∑
s=0

(s− |k|)|l|−s
|α||l|−s P11

s (k, l),

k1! · · · kn!

αk1
1 · · ·αknn

δk,l =

|k|∑
s=0

(|k| − s)!
|α||k|−s P11

s (k, l), |k| = |l|.

For P12
s and P22

s the linearization formulas seem to be of a more trivial nature.
For P12

s we obtain

n∏
r=1

Hkr (xr, αr) =

|k|∑
s=0

P12
s (k, x)H|k|−s(|x|, |α|).

This is, however, very easy to deduce from (9.15). For P22
s , the linearization formula

is
n∏
r=1

〈δcexr , eyr 〉αr =

∞∑
s=0

cs P22
s (x, y)〈δce|x|, e|y|〉|α|,

which we have already used in the proof of (9.17). As for the disc, when n = 2 we
may factor Pij

s as a product of two Clebsch–Gordan coefficients and obtain formulas
of Burchnall–Chaundy-type. In the case of P11

s we obtain the multiplication formula
for Charlier polynomials in this way; cf. [VK, section 8.6.5].
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[A2] P. Appell, Sur les fonctions hypergéométriques de deux variables, J. Math. Pure Appl. (3),
VIII (1882), pp. 173–216.
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THE EVANS FUNCTION AND GENERALIZED MELNIKOV
INTEGRALS∗
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Abstract. The Evans function, E(λ), is an analytic function whose zeros coincide with the
eigenvalues of the operator, L, obtained by linearizing about a travelling wave. The algebraic multi-
plicity of the eigenvalue λ0 is equal to the order of the zero of E(λ). If m is the geometric multiplicity
and p is the algebraic multiplicity of the eigenvalue, the term ∂p

λ
E(λ0) is shown to be proportional to

the determinant of an m×m matrix whose entries are given by the L2 inner products of the eigenfunc-
tions of the adjoint operator L∗ and the generalized eigenfunctions of L. Perturbation expressions
are then derived for coefficients in the Taylor expansion of E(λ) at λ = λ0 in the circumstance that
the algebraic multiplicity of the eigenvalue decreases under perturbation. The expressions are used
to study the eigenvalue structure for operators obtained by linearizing about bright solitary wave
solutions to perturbed nonlinear Schrödinger equations.

Key words. travelling waves, stability, Evans function

AMS subject classifications. 34A26, 34C35, 34C37, 35K57, 35P15

PII. S0036141097327963

1. Introduction. Consider the semilinear parabolic system

ut = Buxx + f(u, ux),(1.1)

where (x, t) ∈ R×R+, B is a positive semidefinite invertible n× n matrix, u ∈ Rn,
and the nonlinearity f is at least C3. A travelling wave solution φ(z) is a C2 function
of the variable z = x− ct which is a solution to (1.1) and satisfies

lim
z→±∞φ(z) = φ±, f(φ±, 0) = 0.

The approach to the constant states is assumed to be exponentially fast. For the rest
of this paper, assume that the wave exists when c = c∗, so that the wave is then a
time-independent solution to

ut = Buzz + c∗uz + f(u, uz).(1.2)

Once a wave has been shown to exist, one would then like to determine its stability
relative to small perturbations. When attempting to determine the stability of the
wave, it is natural to study the spectrum of the linear operator L, where

L = B∂2
z + P (z)∂z +N(z),(1.3)

and

P (z) = c∗ +Dfuz (φ, φz), N(z) = Dfu(φ, φz).
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Note that the assumption on the wave implies that

lim
z→±∞N(z) = N±, lim

z→±∞P (z) = P±,

with the approach being exponentially fast. By the assumption on the matrix B, L
generates a C0-semigroup [26]. The essential spectrum of L, hereby denoted σe(L),
is bounded by the curves

Γ± = {λ : | −Bτ2 + iP±τ +N± − λIn| = 0, τ ∈ R}

(see [11]). Set

Ω = C\σe(L).(1.4)

The only spectrum of L in Ω is the point spectrum, i.e., isolated eigenvalues of finite
multiplicity. If there exists a δ > 0 such that σe(L) ⊂ {λ : Reλ ≤ δ}, the constant
solutions u = φ± are stable solutions to (1.2) [11]. If the constant solutions are stable,
the stability of the wave is determined by the location of the point spectrum. If there
exists an eigenvalue λ0 with Reλ0 > 0, then the wave is exponentially unstable;
otherwise, the wave is marginally stable. If the only eigenvalue with Reλ ≥ 0 is the
one at λ = 0, and if this eigenvalue is semisimple, then the wave is exponentially
orbitally stable [6], [11].

The Evans function, E(λ), is an analytic function for λ ∈ Ω with the property that
the zeros coincide with the eigenvalues of L; furthermore, the order of the zero is the
algebraic multiplicity (a.m.) of the eigenvalue ([1], [29], and the references contained
therein). Once the location of an eigenvalue has been determined, i.e., once a λ0 ∈ Ω
has been found such that E(λ0) = 0, one usually wishes to determine ∂pλE(λ0), where
p is the order of the zero. This is especially the case if λ0 = 0 and one wishes to
determine the location of small eigenvalues near zero. Examples of such a calculation
are in a plethora of papers [1], [2], [3], [4], [7], [8], [9], [12], [15], [27], [28], [29], [30],
[31], [33], so that it is clearly of interest to make such a computation.

Solutions to (1.2) are invariant under spatial translation, so that Lφz = 0; thus,
λ0 = 0 is an eigenvalue of L. If (1.2) possesses no other symmetry, then the eigenvalue
λ0 = 0 is generically simple, so that E(0) = 0 with ∂λE(0) 6= 0. Alexander and Jones
[3], [4] developed the orientation index for determining the sign of ∂λE(0), and showed
that the index is related to the manner in which the wave is constructed in the ODE
phase space. Rubin [32], Rubin and Jones [33], and Sandstede [34] have shown that
the orientation index is equal to the formulation of ∂λE(0) given in this paper. A
limitation of the index is that if ∂λE(0) = 0, then one is unable to use it to determine
if an eigenvalue is moving through the origin into the right- or left-half plane, unless
it is known a priori that there is only one other eigenvalue near λ = 0. Thus, at a
minimum it is of interest to find a calculable way to determine ∂2

λE(0).
Let λ0 ∈ Ω be an eigenvalue with geometric multiplicity (g.m.) = m and a.m. = p.

Following Gardner and Jones [8] (see Lemma 2.1), the generalized eigenfunctions
ψj,i, i = 1, . . . ,m, j = 1, . . . , ai, with p =

∑m
i=1 ai, can be ordered such that

(L− λ0)ψj,i = ψj−1,i, ψ0,i = 0.(1.5)

Since g.m.= m, there exist adjoint solutions vi ∈ N ((L − λ0)∗), i = 1, . . . ,m. In
all that follows, let 〈·, ·〉 represent the L2 inner product of complex vector-valued
functions.
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Theorem 1.1. Suppose that λ0 is an isolated eigenvalue with g.m. = m and
a.m. = p. Let the functions ψj,i be as defined in (1.5), and let vi represent the adjoint
eigenfunctions. Then

∂pλE(λ0) = (−1)msp!

∣∣∣∣∣∣∣
〈ψa1,1, v1〉 · · · 〈ψa1,1, vm〉

...
...

〈ψam,m, v1〉 · · · 〈ψam,m, vm〉

∣∣∣∣∣∣∣ ,
where ms =

∑m−1
i=0 i.

Remark 1.2. As is done in Gardner and Jones [8], the above result can be
extended to the case where the differential operator has order higher than two.

For the moment, assume that λ0 = 0 and g.m. = a.m. = 1. Then ψ1,1 = φz, and
as a consequence of the above theorem,

∂λE(0) = 〈φz, v〉,
where v is the unique (up to scalar multiplication) adjoint eigenfunction of L. As is
discussed in Alexander and Jones [3], [4], ∂λE(0) describes the manner in which the
stable and unstable manifolds in the ODE phase space intersect each other at c = c∗;
i.e., it determines the manner in which the manifolds separate as c is varied from c∗.
Thus, the above theorem shows that there is a connection between the stability of the
wave and the Melnikov integral 〈φz, v〉 (see also [30], [32], [33], [34]). If λ0 = 0 and
g.m. = a.m. = m ≥ 2, then the PDE (1.2) possesses more than one symmetry, so that
∂mλ E(0), and hence the Melnikov integrals 〈ψ1,i, vj〉, measures the manner in which
manifolds separate as the different symmetry parameters are varied. For example,
when considering Ginzburg–Landau perturbations of the nonlinear Schrödinger equa-
tion, g.m. = a.m. = 2, and the PDE is invariant under both a SO(2) rotation and a
spatial translation. For this particular problem, the interested reader should consult
Kapitula [15] for a discussion in which the connection is made between ∂2

λE(0) and
the manner in which the stable and unstable manifolds intersect.

Pego and Weinstein [29] have formulated the Evans function in a manner which
is similiar to that presented in Jones [12]. Their formulation is applicable only in the
circumstance that the g.m. of an eigenvalue is necessarily one. Physical examples in
which g.m. = 1 include the KdV and the KdV–Burgers equations. This formulation is
less general than that given by Alexander, Gardner, and Jones [1]. Using Proposition
2.3, it can be shown that Pego and Weinstein’s evaluation of ∂λE(λ0) coincides with
that given in Theorem 1.1 in the case that g.m. = a.m. = 1. Pego and Weinstein
have also derived expressions for higher derivatives of the Evans function; however,
it is not immediately clear that the expressions are equivalent to those presented in
Theorem 1.1. Alexander et al. [2] have generalized Pego and Weinstein’s approach in
the circumstance that g.m. ≥ 2. It is not immediately apparent that one can rederive
the results of Theorem 1.1 using the formulation in [2], although one can hypothesize
that this is indeed the case.

Now that expressions are available for the derivatives of the Evans function in
terms of generalized Melnikov integrals, it will be of interest to determine the man-
ner in which perturbation calculations can be performed. Assuming that some of
the eigenvalues move under perturbation, one may naively attempt to take the par-
tial derivative with respect to ε of the determinant expression given in Theorem 1.1.
This approach is problematic, however, for if g.m. ≥ 2 and j > m the choices of the
generalized eigenfunctions must first be known for ε nonzero before taking deriva-
tives. Furthermore, if g.m. ≥ 2, it may turn out that generically ∂ε∂

j
λE(λ0) = 0, but
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∂2
ε ∂

j
λE(λ0) 6= 0. Using this idea, it might then be necessary to take two derivatives

with respect to ε of the eigenfunctions. As is seen in section 4 for the case g.m. = 2,
these technical difficulties can be circumvented.

The linear operator L will be written as

L(ε) = B(ε)∂2
z + P (z, ε)∂z +N(z, ε),

where the n × n matrices are assumed to be smooth in their arguments. Thus, the
perturbation expansions given in section 4 do not apply to those problems in which
the underlying wave is constructed via geometric singular perturbation theory. It will
be assumed that when ε = 0 the location and structure of the point eigenvalues for
L(0) are completely understood; thus, the zero set of E(λ, 0) is assumed to be known.
The determination of the eigenvalue structure for ε 6= 0 but small, i.e., the zero set of
E(λ, ε), can then be theoretically accomplished via a Lyapunov–Schmidt reduction.
However, if the a.m. of an eigenvalue is larger than its g.m., there could be difficulties,
i.e., the eigenvalues may not be smooth functions of ε. While this is not problematic if
g.m. = 1 (see Theorem 1.3), it may cause difficulties if g.m. ≥ 2. As it turns out, g.m.
= 2 for the nonlinear Schrödinger equation. It is desirable to avoid these potential
difficulties if possible. Of course, in doing so some information likely will be lost;
however, it may still be possible to recover that lost information via some symmetries
present in the eigenvalue problem. This scenario will be illustrated in section 5.1
when the linearized stability of solitary wave solutions to the parametrically forced
nonlinear Schrödinger equation is considered.

In section 4 expressions are derived for ∂jε∂
k
λE(λ0, 0), where λ0 is the eigenvalue

when ε = 0 and j and k depend on the a.m. and g.m. of the eigenvalue for both ε = 0
and ε 6= 0. While the expressions are computed only for g.m. ≤ 2, the algorithm used
to generate them can be used to find expressions when g.m. ≥ 3. It is of interest to
note the relationship between the various derivatives and the eigenfunction solvability
conditions. For example, consider the case that g.m. = 1 and a.m. = p when ε = 0.
In Lemma 4.3 it is shown that

∂εE(λ0, 0) = −〈∂εL(0)ψ1,1, v1〉.

Note that the solvability condition for ψ1,1 to remain an eigenfunction for ε 6= 0 is

〈∂εL(0)ψ1,1, v1〉 = 0.

If ∂εE(λ0, 0) = 0, so that the eigenvalue persists for ε 6= 0, and if a.m. ≥ 2 when ε = 0,
then as a consequence of Lemma 4.6

∂ε∂λE(λ0, 0) = 〈−∂εL(0)ψ2,1 + ∂εψ1,1, v1〉.

It should be noted that setting the right-hand side of the above expression to zero
is the solvability condition for ψ2,1 to remain an eigenfunction for ε 6= 0. Thus, the
eigenvalue λ0 will be simple for ε 6= 0 only if the solvability condition for ψ2,1 is not
satisfied. Examination of the results in section 4.2, where it is assumed that g.m. = 2
when ε = 0, also shows that there is a strong correlation between the derivatives of
the Evans function with respect to ε and the eigenfunction solvability conditions.

When g.m. = 1, it turns out that the location of all of the eigenvalues can be
determined for ε 6= 0. This fact is a consequence of the Taylor expansion of the Evans
function about λ = λ0 and a result of Kato [18]. Unfortunately, if g.m. ≥ 2, it is not
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clear at the moment as to how one would locate all of these perturbed eigenvalues.
This topic will be the focus of a future paper.

Theorem 1.3. Suppose that when ε = 0, λ0 is an eigenvalue with g.m. = 1 and
a.m. = p. Further suppose that for ε 6= 0, λ0 is an eigenvalue with a.m. = j, where
0 ≤ j ≤ p− 1. In this case,

∂ε∂
j
λE(λ0, 0) = j!〈−∂εL(0)ψj+1,1 + ∂εψj,1, v1〉,

and the location of the remaining p− j eigenvalues is given by

λ = λ0 + α1ω
hε1/(p−j) +O(ε2/(p−j)), h = 0, . . . , p− j − 1,

where

α1 = −〈−∂εL(0)ψj+1,1 + ∂εψj,1, v1〉
〈ψp,1, v1〉 , ω = e2πi/(p−j).

In order to evaluate the expressions given in section 4 for a specific problem, it
is necessary to have analytic expressions for the eigenfunctions of L(0). In general,
of course, this information will not be available. However, when one is considering
the stability of solitary wave solutions to perturbed integrable problems there is a
good likelihood that one can indeed compute the eigenfunctions. Examples of such
integrable equations include the KdV equation, the focusing and defocusing nonlin-
ear Schrödinger equation, and the Sine–Gordon equation. These eigenfunctions are
called the squared eigenfunctions [19], [20], [21], [22], [23], [24] and have been used
by Pego and Weinstein [29] for calculations with the KdV equation and Kapitula and
Sandstede [16], [17] for calculations with perturbed nonlinear Schrödinger equations.

In section 5 the theoretical results of section 4 are applied to perturbed nonlinear
Schrödinger equations. When considering the unperturbed problem, g.m. = 2 and
a.m. = 4 for the isolated eigenvalue λ = 0. Since the nonlinear Schrödinger equation
is integrable, analytic expressions are available for the eigenfunctions and adjoint
eigenfunctions [36]. For the perturbations of the equation under consideration, the
eigenvalue λ = 0 either becomes simple (section 5.1), ceases to exist (section 5.3),
or has g.m. = 2 and 2 ≤ a.m. ≤ 3 for ε 6= 0 (section 5.2). It should be noted that
in the first case ∂2

ε ∂λE(0) must be calculated, in the second case ∂2
εE(0) must be

determined, and in the final case ∂2
ε ∂

2
λE(0) must be found. In each case the first

derivative with respect to ε is found to be zero.
The paper is organized as follows. In the second section some preliminary results

are established. The proof of the theorem is given in the third section. In the fourth
section, some perturbation expressions are derived for the Evans function, and in the
final section some results are presented for perturbations of the nonlinear Schrödinger
equation.

2. Preliminary results. Let λ0 ∈ Ω be an eigenvalue of L. Set Tλ0 = L− λ0.
The ascent of Tλ0 is the smallest number a such that N (T a+1

λ0
) = N (T aλ0

) (N denotes
the null space) (Taylor and Lay [35]). It is known that

X = N (T aλ0
)⊕R(T aλ0

),

where X = BU(R; Rn) and R denotes the range space [35].
Lemma 2.1 (Gardner and Jones [8]). Let λ0 be an eigenvalue of g.m. = m,

a.m. = p, and ascent a. Then there exist functions ψj,i, i = 1, . . . ,m, j = 1, . . . , ai,
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with

p =
m∑
i=1

ai

such that

Tλ0ψj,i = ψj−1,i, ψ0,i = 0.

Furthermore,

N (T aλ0
) = Span{ψj,i}, i = 1, . . . ,m, j = 1, . . . , ai.

An observation yields the following proposition.
Proposition 2.2. Let v ∈ N (T ∗λ0

). Then

〈ψj,i, v〉 = 0, i = 1, . . . ,m, j = 1, . . . , ai − 1.

Proof. This follows immediately from

〈Tλ0
ψj,i, v〉 = 〈ψj−1,i, v〉

= 〈ψj,i, T ∗λ0
v〉

= 0

as v ∈ N (T ∗λ0
).

Upon setting Y = (u, u′), where ′ = d/dz, the eigenvalue equation (L− λ)u = 0
can be rewritten as the first-order system

Y′ = M(λ, z)Y,(2.1)

where M is the 2n× 2n matrix

M(λ, z) =

[
0 In

−B−1(N(z)− λIn) −B−1P (z)

]
.(2.2)

Proposition 2.3. Let Z = (Z1, Z2)T solve the adjoint equation

Z′ = −M∗(λ0, z)Z.

Then

T ∗λ0
(B−TZ2) = 0,

where B−T = (B−1)T .
Proof. The operator T ∗λ0

= L∗ − λ∗0 is given by

(L∗ − λ∗0)u = BT∂2
zu− ∂z(PTu) + (NT − λ∗0)u.

An examination of the adjoint equation associated with (2.1), i.e.,

Z ′1 = (NT − λ∗0 ∗ In)B−TZ2,
Z ′2 = −Z1 + PTB−TZ2,

reveals that Z̃2 = B−TZ2 does indeed satisfy (L∗ − λ∗0)Z̃2 = 0.
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For the rest of this article,

Mλ = ∂λM(λ0, z).

Lemma 2.4. Let Z = (Z1, Z2)T be a solution to the adjoint equation

Z′ = −M∗(λ0, z)Z

such that |Z(z)| → 0 as |z| → ∞. Let G : R → C2n be a uniformly bounded
continuous function. Then

〈MλG,Z〉 = 〈π(G), v〉,
where π : C2n → Cn is the projection onto the first n components and v = B−TZ2 ∈
N (T ∗λ0

).

Proof. Note that MλG = (0, B−1π(G))T . One can then write

〈MλG,Z〉 = 〈B−1π(G), Z2〉
= 〈π(G), v〉,

where v = B−TZ2. As a consequence of Proposition 2.3, the function v is an element
of N (T ∗λ0

).
Let φ1, . . . , φ2n be any linearly independent collection of solutions to (2.1). For

each i, consider the scaled (2n− 1)-form

ei = m(λ, z)φ1 ∧ · · · ∧ φi−1 ∧ φi+1 ∧ · · · ∧ φ2n,

where

m(λ, z) = exp

(
−
∫ z

0

trM(λ, s) ds

)
.

Note that Abel’s formula implies that φi ∧ ei is a nonzero constant for each i. The
following was stated in Alexander, Gardner, and Jones [1] and Kapitula [14]; however,
the proof will be given here for completeness.

Proposition 2.5. For each i = 1, . . . , 2n there exists a function YA
i such that

H ∧ ei = H ·YA
i,

where H : R → C2n is a uniformly bounded continuous function. Furthermore, the
functions YA

i form a linearly independent set of solutions to the adjoint equation
associated with (2.1) and satisfy

YA
i · φj = Ciδij ,

where Ci 6= 0 for all i.
Proof. By the Riesz representation theorem, for each i there exists a function

YA
i such that

H ∧ ei = H ·YA
i.

Since φj ∧ ei = Ciδij , by the above statement

φj ·YA
i = Ciδij ,

where the Ci’s are nonzero. Differentiating yields that

(YA′
i +M∗YA

i) · φj = 0,

from which one can conclude, since the φi’s are linearly independent, that YA
i must

be a solution to the adjoint equation.
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3. Proof of Theorem 1.1. For λ ∈ Ω there exist complex analytic functions
Yi(λ, z), i = 1, . . . , 2n, which are solutions to (2.1) and satisfy |Yi(λ, z)| → 0, i =
1, . . . , n, exponentially fast as z → −∞ and |Yi(λ, z)| → 0, i = n + 1, . . . , 2n, ex-
ponentially fast as z → ∞. Furthermore, these solutions can be chosen so that the
n-forms

Yu(λ, z) = (Y1 ∧ · · · ∧Yn)(λ, z), Ys(λ, z) = (Yn+1 ∧ · · · ∧Y2n)(λ, z)(3.1)

are nonzero for λ ∈ Ω [1]. The Evans function is then given by

E(λ) = m(λ, z) Yu(λ, z) ∧Ys(λ, z),(3.2)

where

m(λ, z) = exp

(
−
∫ z

0

trM(λ, s) ds

)
.

There is a considerable amount of arbitrariness in defining the functions Yi. Order
the functions so that

Yi(λ0, z) = Yn+i(λ0, z) = (ψ1,i, ψ
′
1,i)

T , i = 1, . . . ,m,(3.3)

and assume that this has been done in such a way that the definitions remain consis-
tent for λ near λ0. The Evans function can then be redefined to be

E(λ) = m(λ, z) Y1 ∧Yn+1 ∧ · · · ∧Ym ∧Yn+m ∧ Φ,(3.4)

where Φ(λ, z) ∈ Λ2(n−m)(C2n) 6= 0 for λ near λ0 is given by

Φ = Ym+1 ∧ · · · ∧Yn ∧Yn+m+1 ∧ · · · ∧Y2n.

Lemma 3.1 (Gardner and Jones [8]). Suppose that the g.m.=m and a.m.=p.
Then

∂pλE(λ0) =
p!∏m
i=1 ai!

[∂a1

λ (Y1 −Yn+1) ∧Y1] ∧ · · ·

∧ [∂amλ (Ym −Yn+m) ∧Ym] ∧ [m(λ0, z)Φ]
6= 0,

where

p =

m∑
i=1

ai.

Corollary 3.2 (Gardner and Jones [8]). Under the assumptions of the above
lemma, the functions

∂aiλ (Yi −Yn+i), i = 1, . . . ,m,

grow exponentially fast as z → ±∞.
In the subsequent discussion, it will be useful to note that the expression given

in Lemma 3.1 can be rewritten as

∂pλE(λ0) = (−1)ms
p!∏m
i=1 ai!

∂a1

λ (Y1 −Yn+1) ∧ · · · ∧ ∂amλ (Ym −Yn+m)

∧Y1 ∧ · · · ∧Ym ∧ [m(λ0, z)Φ],

(3.5)
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where

ms =
m−1∑
i=0

i.

Using Corollary 3.2 as a guide, define the solutions Ỹ1, . . . , Ỹm at λ = λ0 to
be such that the set {Ỹ1, . . . , Ỹm} is linearly independent and |Ỹi(z)| → +∞ as
|z| → +∞. Furthermore, let the solutions be scaled so that when λ = λ0,

D = m(λ0, z) Ỹ1 ∧ · · · ∧ Ỹm ∧Y1 ∧ · · · ∧Ym ∧ Φ = 1.(3.6)

As a consequence of Proposition 2.5 there exist solutions, YA
i, to the adjoint equation

such that

Ỹi ·YA
i = D, i = 1, . . . ,m.(3.7)

Since the functions Ỹi grow exponentially fast as |z| → +∞, by (3.7) these adjoint
solutions must satisfy

|YA
i(z)| ≤ Cie−αi|z|, i = 1, . . . ,m,(3.8)

for some positive constants Ci and αi. Now define the rest of the adjoint solutions,
YA

j , j = m+ 1, . . . , 2n, to be such that

Yi ·YA
m+i = D, i = 1, . . . , n,

Yi ·YA
i = D, i = n+m+ 1, . . . , 2n.

(3.9)

As a consequence of the fact that the functions |Yi| → 0 exponentially fast as |z| → ∞
for i = 1, . . . ,m, there exist positive constants Ci and αi such that

2Cie
(αi+δ)|z| ≥ |YA

i(z)| ≥ Cieαi|z|, i = m+ 1, . . . , 2m,(3.10)

for some 0 ≤ δ � 1. The remaining adjoint solutions are such that they approach zero
exponentially fast in one direction while blowing up exponentially fast in the other.

Let G± : R→ C2n be a uniformly bounded continuous function such that

|G+(z)| ≤ C|z|ke−αz, z ≥ 1,

|G−(z)| ≤ C|z|keαz, z ≤ −1,

(3.11)

for some positive constants C, α, and k. By using variation of parameters, the solution
to

Y′ = M(λ0, z)Y + G±(3.12)

is given by

Y± =
1

D

(
m∑
i=1

c±i (G±)Ỹi +
m∑
i=1

c̃i(G±)Yi

+
n∑

i=m+1

ci(G±)Yi +
2n∑

i=n+m+1

ci(G±)Yi

)

+

n∑
i=1

d−i Yi +
2n∑

i=n+1

d+
i Yi,

(3.13)
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where

c±i (G±) =

∫ z

±∞
G±(s) ·YA

i(s) ds, i = 1, . . . ,m,

c̃i(G±) =

∫ z

0

G±(s) ·YA
m+i(s) ds, i = 1, . . . ,m,

ci(G±) =



∫ z

+∞
G±(s) ·YA

m+i(s) ds, i = m+ 1, . . . , n,

∫ z

−∞
G±(s) ·YA

i(s) ds, i = n+m+ 1, . . . , 2n,

(3.14)

and d±i are constants [1], [14]. For the solution Y− one fixes d+
i = 0 for i = n +

1, . . . , 2n, while for Y+ one fixes d−i = 0 for i = 1, . . . , n. As a consequence of the
previous estimates and assumption (3.11),

|Y+(z)| ≤ C|z|k+1e−αz, z ≥ 1,

|Y−(z)| ≤ C|z|k+1eαz, z ≤ −1.

(3.15)

Lemma 3.3. Define

Ψj,i = (ψj,i, ψ
′
j,i)

T

for i = 1, . . . ,m and j = 1, . . . , ai. Then for each i = 1, . . . ,m and j = 1, . . . , ai − 1,

∂jλYi = ∂jλYn+i = j!Ψj+1,i.

Proof. See Gardner and Jones [8].
Let 1 ≤ i ≤ m be given. For 1 ≤ k ≤ ai, differentiation of (2.1) with respect to λ

and evaluating at λ0 yields

(∂kλYα)′ = M(λ0, z) ∂
k
λYα + kMλ(λ0, z) ∂

k−1
λ Yα, α = i, n+ i.(3.16)

Upon substituting the expression in Lemma 3.3 into (3.16) with k = ai, one then sees
that

(∂aiλ Yα)′ = M(λ0, z) ∂
ai
λ Yα +Mλ(λ0, z)(ai!Ψai,i), α = i, n+ i.(3.17)

Upon requiring that |∂aiλ Yi| → 0 as z → −∞ and |∂aiλ Yn+i| → 0 as z → +∞, and
using the solution formula (3.13), after subtracting the solutions one sees that

∂aiλ (Yi −Yn+i) =
ai!

D

m∑
k=1

〈MλΨai,i,Y
A
k〉 Ỹk+

2n∑
l=m+1

dlYl

=
ai!

D

m∑
k=1

〈ψai,i, vk〉 Ỹk+
2n∑

l=m+1

dlYl,

(3.18)

where the dl’s are some constants. In (3.18), vk ∈ N (T ∗λ0
) and the second equality is

a consequence of Lemma 2.4.
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Now substitute the expressions given in (3.18) into the derivative for the Evans
function given in (3.5). Using the fact that D has been normalized to unity, it is then
seen that

∂pλE(λ0) = (−1)msp!

∣∣∣∣∣∣∣
〈ψa1,1, v1〉 · · · 〈ψa1,1, vm〉

...
...

〈ψam,m, v1〉 · · · 〈ψam,m, vm〉

∣∣∣∣∣∣∣ .(3.19)

The proof of Theorem 1.1 is now complete.

4. Perturbation expressions. Now that expressions in terms of the eigenfunc-
tions and adjoint eigenfunctions are available for the derivatives of the Evans function,
it will be of interest to determine the manner in which calculations can be performed
under perturbation. In this section we will consider only a few special cases, which
are motivated by specific problems. However, the ideas presented herein can be gen-
eralized. In this section the linear operator L will be written as

L(ε) = B(ε)∂2
z + P (z, ε)∂z +N(z, ε),

where the n×n matrices are assumed to be smooth in their arguments. Furthermore,
it will be assumed that when ε = 0, the location and structure of the point eigenvalues
for L(0) are completely understood.

Before continuing, the following preliminary lemma will be necessary. In all that
follows, the explicit dependence of the matrix M on ε will be suppressed. In addition,
subscripted variables represent derivatives, and all derivatives will be evaluated at
(λ, ε) = (λ0, 0).

Lemma 4.1. Let Y = (ψ,ψ′)T be a bounded solution to Y′ = M(λ0, z)Y, and let
Z = (Z1, Z2)T be a bounded solution to the adjoint problem Z′ = −M(λ∗0, z)Z. Then

〈MεY,Z〉 = −〈Lεψ, v〉,
where v = B−TZ2 is a bounded solution to the adjoint problem (L∗(0) − λ∗0)v = 0.
Furthermore,

〈MελY,Z〉 = −〈BεB−1ψ, v〉,
and if Y varies smoothly with respect to ε, then

〈MλYε,Z〉 = 〈∂εψ, v〉.
Proof . First suppose that Bε 6= 0, so that

(B−1)ε = −B−1BεB
−1.

A routine calculation then shows that

〈MεY,Z〉 = 〈BεB−1((N − λ0In)ψ + Pψ′)− (Nεψ + Pεψ
′), B−TZ2〉.

Since

Lε = Bε∂
2
z + Pε∂z +Nε

and

(L(0)− λ0)ψ = B(0)∂2
zψ + P (z, 0)∂zψ + (N(z, 0)− λ0In)ψ = 0,
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upon substitution one sees that

BεB
−1((N − λ0In)ψ + Pψ′)− (Nεψ + Pεψ

′) = −Lεψ,
which completes the proof of the first part.

The second part of the lemma follows from the fact that

〈MελY,Z〉 = −〈BεB−1ψ,B−TZ2〉,
while the last part follows from

〈MλYε,Z〉 = 〈∂εψ,B−TZ2〉.
If Bε = 0, then it is routine to check that

〈MεY,Z〉 = 〈−(Nεψ + Pεψ
′), B−TZ2〉

= 〈−Lεψ,B−TZ2〉.
The proof of the following corollary is similiar to the one of the above lemma,

and is left for the interested reader.
Corollary 4.2. Suppose that when ε = 0

(L(0)− λ0)ψ1 = 0, (L(0)− λ0)ψ2 = ψ1.

Then for Y = (ψ2, ψ
′
2)T

〈MεY,Z〉 = −〈Lεψ2, v〉+ 〈BεB−1ψ1, v〉.
4.1. G.m. = 1. In this subsection it will be assumed that the eigenvalue λ0 has

g.m. = 1 and a.m. = p when ε = 0. Thus,

(L(0)− λ0)ψi = ψi−1

for i = 1, . . . , p, with ψ0 = 0. Furthermore, there is a unique (up to scalar multipli-
cation) bounded solution v to (L∗(0) − λ∗0)v = 0, and as a consequence of Theorem
1.1

∂pλE(λ0) = p!〈ψp, v〉.
Two situations will be discussed. The first is the case in which λ0 is not an eigenvalue
for ε 6= 0. In this scenario it will be desirable to calculate ∂εE(λ0). The second case
is one in which the eigenvalue becomes simple for nonzero ε. It will then be desirable
to know ∂ε∂λE(λ0).

Lemma 4.3. Suppose that λ0 is not an eigenvalue for ε 6= 0. Then

∂εE(λ0) = −〈Lεψ1, v〉.
Proof. First recall from (3.5) that

∂pλE(λ0) = ∂pλ(Y1 −Yn+1) ∧Y1 ∧ [m(λ0, z)Φ].

In a similiar fashion it is not difficult to show that

∂εE(λ0) = ∂ε(Y1 −Yn+1) ∧Y1 ∧ [m(λ0, z)Φ].
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The equation for ∂εYα, α ∈ {1, n+ 1}, is given by

(∂εYα)′ = M(λ0, z)∂εYα +Mε(λ0, z)Yα.

Upon requiring that |∂εY1| → 0 as z → −∞ and |∂εYn+1| → 0 as z → +∞, and by
using the ideas leading to (3.13) and (3.18), it can be seen that

∂ε(Y1 −Yn+1) =
1

D

(
〈MεY1,Y

A
1〉Ỹ1 +

2n∑
i=2

ciYi

)
.

Thus, upon substituting this expression into that for ∂εE(λ0) and using the fact that
D = 1, one gets that

∂εE(λ0) = 〈MεY1,Y
A

1〉,
which, as a consequence of Lemma 4.1, yields the final result.

Remark 4.4. If λ0 is a simple eigenvalue, then as a consequence of Theorem 1.1,
the above lemma, and the implicit function theorem, it is seen that

∂ελ0 =
〈Lεψ1, v〉
〈ψ1, v〉 .

Remark 4.5. Using standard perturbation theory, ψ1 will be an eigenfunction of
L(ε) with corresponding eigenvalue λ0 if ∂εE(λ0) = 0.

Lemma 4.6. Suppose that p ≥ 2 and that E(λ0) = 0 for ε 6= 0. Then

∂ε∂λE(λ0) = 〈−Lεψ2 + ∂εψ1, v〉.
Proof. Since p ≥ 2, it is a consequence of Lemma 3.3 that

∂λ(Y1 −Yn+1) = 0;

thus, a routine calculation shows that

∂ε∂λE(λ0) = ∂2
ελ(Y1 −Yn+1) ∧Y1 ∧ [m(λ0, z)Φ].

Now,

(∂2
ελYα)′ = M∂2

ελYα +MελYα +Mε∂λYα +Mλ∂εYα

for α ∈ {1, n+ 1}. Upon requiring that ∂2
ελY1 decay as z → −∞ and ∂2

ελYn+1 decay
as z → +∞, one then sees that

∂2
ελ(Y1 −Yn+1) =

1

D

(
(c−1 − c+1 )Ỹ1 +

2n∑
i=2

diYi

)
,(4.1)

where

c−1 − c+1 = 〈MελY1 +MεΨ2 +Mλ∂εY1,Y
A

1〉.
In the above expression, recall that Lemma 3.3 states that ∂λY1 = ∂λYn+1 = Ψ2.
Upon substituting back into the expression for ∂ε∂λE(λ0) and using the fact that
D = 1, it is now seen that

∂ε∂λE(λ0) = c−1 − c+1 .
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Upon using the results of Lemma 4.1 and Corollary 4.2, one gets

c−1 − c+1 = −〈BεB−1ψ1, v〉 − 〈Lεψ2, v〉+ 〈BεB−1ψ1, v〉+ 〈∂εψ1, v〉.
The proof is now complete.

Remark 4.7. Using standard perturbation theory, if ∂ε∂λE(λ0) = 0, then ψ2 will
remain as a generalized eigenfunction of L(ε) for ε 6= 0.

By following the proofs of the above lemmas, the perturbation results can clearly
be generalized for the case that a.m. = j < p for ε 6= 0. Furthermore, since g.m. = 1,
the location of the remaining eigenvalues can also be given. The proof of Theorem
1.3 is now complete.

Theorem 4.8. Suppose that for ε 6= 0 λ0 is an eigenvalue with a.m. = j, where
0 ≤ j ≤ p− 1. In this case,

∂ε∂
j
λE(λ0) = j!〈−Lεψj+1 + ∂εψj , v〉.

Furthermore, the location of the remaining p− j eigenvalues is given by

λ = λ0 + α1ω
hε1/(p−j) +O(ε2/(p−j)), h = 0, . . . , p− j − 1,

where

α1 = −〈−Lεψj+1 + ∂εψj , v〉
〈ψp, v〉 , ω = e2πi/(p−j).

Proof. The perturbation expression is a generalization of that given in the above
lemmas, and hence the proof will be left to the interested reader. In order to prove the
eigenvalue perturbation expression, consider the following argument. Set γ = λ− λ0.
For γ and ε small, the Evans function has the Taylor expansion

E(λ) = γj
(〈−Lεψj+1 + ∂εψj , v〉ε+ · · ·+ 〈ψp, v〉γp−j +O(|γ|p−j+1)

)
,

where all the coefficients below γp−j are O(ε). Following Kato [18], the remaining
zeros of the Evans function will be O(ε1/(p−j)). As such, it is then easy to see that
they must be given by

γ = α1ω
hε1/(p−j) +O(ε2/(p−j)), h = 0, . . . , p− j − 1,

where

α1 = −〈−Lεψj+1 + ∂εψj , v〉
〈ψp, v〉 , ω = e2πi/(p−j).

The result is now proved.

4.2. G.m. = 2. In this subsection it will be assumed that when ε = 0 the
eigenvalue λ0 has g.m. = 2 and a.m. = p ≥ 2. Thus, we have two chains:

(L(0)− λ0)ψj,i = ψj−1,i, ψ0,i = 0

for i = 1, 2 and j = 1, . . . , ai, with a1 + a2 = p. Without loss of generality it will be
assumed in this section that 1 ≤ a1 ≤ a2. As a consequence of Theorem 1.1, there
exists two bounded adjoint solutions, v1 and v2, such that

∂pλE(λ0) = −p!
∣∣∣∣ 〈ψa1,1, v1〉 〈ψa1,1, v2〉
〈ψa2,2, v1〉 〈ψa2,2, v2〉

∣∣∣∣ .
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Lemma 4.9. Suppose that λ0 is not an eigenvalue of L(ε) for ε 6= 0. Then

∂εE(λ0) = 0,

and

∂2
εE(λ0) = −2

∣∣∣∣ 〈Lεψ1,1, v1〉 〈Lεψ1,1, v2〉
〈Lεψ1,2, v1〉 〈Lεψ1,2, v2〉

∣∣∣∣ .
Proof. It is known that Y1 = Yn+1 = (ψ1,1, ψ

′
1,1)T and that Y2 = Yn+2 =

(ψ1,2, ψ
′
1,2)T . Using this information, a simple calculation shows that ∂εE(λ0) = 0.

A standard calculation shows that

∂2
εE(λ0) = −2∂ε(Y1 −Yn+1) ∧ ∂ε(Y2 −Yn+2) ∧Y1 ∧Y2 ∧ [m(λ0, z)Φ].

Since

(∂εY)′ = M∂εY +MεY,

by following the ideas presented in the previous section it can be seen that

∂ε(Y1 −Yn+1) =
1

D

(
〈−Lεψ1,1, v1〉Ỹ1 + 〈−Lεψ1,1, v2〉Ỹ2 +

2n∑
i=3

ciYi

)

and that

∂ε(Y2 −Yn+2) =
1

D

(
〈−Lεψ1,2, v1〉Ỹ1 + 〈−Lεψ1,2, v2〉Ỹ2 +

2n∑
i=3

diYi

)
.(4.2)

Upon substitution into the expression for ∂2
εE(λ0), and using the fact that D = 1,

the conclusion of the lemma follows.
Remark 4.10. The straightforward generalization of Lemma 4.9 to the case when

g.m. ≥ 3 will be left to the interested reader.
For the rest of this section the primary interest will be the case that a1 > 1. This

is due to the fact that for the applications of interest in this paper, i.e., perturbations
of the nonlinear Schrödinger equation, it turns out that a1 = a2 = 2. If a1 = 1, the
final results will be stated; however, the proof will be left to the interested reader.

Lemma 4.11. Suppose that for ε 6= 0 λ0 is a simple eigenvalue of L(ε). Further
suppose that the eigenfunction for ε 6= 0 is ψ1,1. Then if a1 > 1,

∂ε∂λE(λ0) = 0,

and

∂2
ε ∂λE(λ0) = 2

∣∣∣∣ 〈−Lεψ2,1 + ∂εψ1,1, v1〉 〈−Lεψ2,1 + ∂εψ1,1, v2〉
〈Lεψ1,2, v1〉 〈Lεψ1,2, v2〉

∣∣∣∣ .
Remark 4.12. If a1 = 1, then substitution of the expression for ∂ε(Y2 −Yn+2)

into (4.3) yields that

∂ε∂λE(λ0) =

∣∣∣∣ 〈ψ1,1, v1〉 〈ψ1,1, v2〉
〈Lεψ1,2, v1〉 〈Lεψ1,2, v2〉

∣∣∣∣ .
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Proof. The proof will be only sketched, as it has many similiar features to those
given above.

Since ψ1,1 is an eigenfunction for ε 6= 0, a routine calculation shows that

〈Lεψ1,1, v1〉 = 〈Lεψ1,1, v2〉 = 0.

This is the solvability condition needed in order to solve the equation ∂εψ1,1 = −(L−
λ0)−1Lεψ1,1.

First note that

∂ε∂λE(λ0) = −∂λ(Y1 −Yn+1) ∧ ∂ε(Y2 −Yn+2) ∧Y1 ∧Y2 ∧ [m(λ0, z)Φ].(4.3)

Since a1 > 1, by Lemma 3.3

∂λ(Y1 −Yn+1) = 0,

from which one immediately sees that ∂ε∂λE(λ0) = 0. Taking another derivative with
respect to ε, it can be seen that

∂2
ε ∂λE(λ0) = −2 ∂ελ(Y1 −Yn+1) ∧ ∂ε(Y2 −Yn+2) ∧Y1 ∧Y2 ∧ [m(λ0, z)Φ].

A slight modification of the argument leading to (4.1) yields that

∂2
ελ(Y1 −Yn+1)

=
1

D

(
〈−Lεψ2,1 + ∂εψ1,1, v1〉Ỹ1 + 〈−Lεψ2,1 + ∂εψ1,1, v2〉Ỹ2 +

2n∑
i=3

diYi

)
.

After recalling the expression for ∂ε(Y2−Yn+2) given in (4.2), and using the fact that
D = 1, upon substitution into the above expression for ∂2

ε ∂λE(λ0) the final result is
seen.

Lemma 4.13. Suppose that for ε 6= 0 λ0 is an eigenvalue of L(ε) with g.m. =
a.m. = 2. Then if a1 > 1,

∂ε∂
2
λE(λ0) = 0,

and

∂2
ε ∂

2
λE(λ0) = −4

∣∣∣∣ 〈−Lεψ2,1 + ∂εψ1,1, v1〉 〈−Lεψ2,1 + ∂εψ1,1, v2〉
〈−Lεψ2,2 + ∂εψ1,2, v1〉 〈−Lεψ2,2 + ∂εψ1,2, v2〉

∣∣∣∣ .
Remark 4.14. If a1 = 1, then the above expression reduces to

∂ε∂
2
λE(λ0) = −2

∣∣∣∣ 〈ψ1,1, v1〉 〈ψ1,1, v2〉
〈−Lεψ2,2 + ∂εψ1,2, v1〉 〈−Lεψ2,2 + ∂εψ1,2, v2〉

∣∣∣∣ .
Proof. This proof will be even sketchier than the previous one, since the idea is

essentially the same. Since a2 ≥ a1 > 1, by Lemma 3.3 it is known that

∂λ(Y1 −Yn+1) = ∂λ(Y2 −Yn+2) = 0.

Using this information, it can eventually be concluded that ∂ε∂
2
λE(λ0) = 0 and that

∂2
ε ∂

2
λE(λ0) = −4 ∂2

ελ(Y1 −Yn+1) ∧ ∂2
ελ(Y2 −Yn+2) ∧Y1 ∧Y2 ∧ [m(λ0, z)Φ].



EVANS FUNCTION AND GENERALIZED MELNIKOV INTEGRALS 289

The expression for ∂2
ελ(Y1 − Yn+1) is exactly that as given in the previous proof.

The expression for ∂2
ελ(Y2 −Yn+2) is found simply by substituting ψ1,2 for ψ1,1 and

ψ2,2 for ψ2,1 in that expression. Using the definition of ∂pλE(λ0) then yields the final
result.

Clearly, this process can be continued ad nauseam, in that one can derive expres-
sions for the case that g.m. = 3 or higher and the various subcases. This process will
be left for the interested reader. This section will close with one final lemma, the re-
sult of which is needed for one of the applications considered in the following section.
For the following lemma, note that if a2 = 2 for all ε, so that (L(ε)− λ0)ψ1,2 = 0 and
(L(ε)− λ0)ψ2,2 = ψ1,2, then it is necessarily true that

〈Lεψ1,2, v〉 = 〈−Lεψ2,2 + ∂εψ1,2, v〉 = 0(4.4)

for all bounded adjoint solutions v. Note that this implies that ∂2
ε ∂

2
λE(λ0) = 0.

Lemma 4.15. Suppose that a2 = 2 for all ε ≥ 0, and that g.m. = 2 for ε 6= 0.
Further suppose that a1 > 1 when ε = 0. Then

∂ε∂
3
λE(λ0) = −6

∣∣∣∣ 〈−Lεψ2,1 + ∂εψ1,1, v1〉 〈−Lεψ2,1 + ∂εψ1,1, v2〉
〈ψ2,2, v1〉 〈ψ2,2, v2〉

∣∣∣∣ .
Proof. Again, it is only sketched. Since a1 > 1, it is necessarily true that ∂λ(Y1−

Yn+1) = 0. This then implies that

∂ε∂
3
λE(λ0) = −3 ∂2

ελ(Y1 −Yn+1) ∧ ∂2
λ(Y2 −Yn+2) ∧Y1 ∧Y2 ∧ [m(λ0, z)Φ].

Since a2 = 2 for all ε, ∂2
λ(Y2 − Yn+2) 6= 0 is given by (3.18), so that the above

expression will be generically nonzero. Substituting in the expression for ∂2
ελ(Y1 −

Yn+1) yields the final result.

5. Examples. In this section the theory of the previous sections will be applied
to various perturbations of the nonlinear Schrödinger equation (NLS),

i∂tφ+ (∂2
x − ω)φ+ 4|φ|2φ = εR(x, φ, φ∗),(5.1)

where the perturbation term will be assumed to be smooth. When ε = 0, there is a
real-valued solitary wave solution given by

Φ(x, ω) =

√
ω

2
sech(

√
ω x).(5.2)

Breaking φ into its real and imaginary parts and linearizing about the wave, one gets
the linear operator L given by

L =

[
0 −Li
Lr 0

]
,(5.3)

where

Li = ∂2
x − ω + 4Φ2, Lr = ∂2

x − ω + 12Φ2.

Note that Li(Φ) = 0 and Lr(∂xΦ) = 0. Following Weinstein [36], one has the following
information concerning the operator L.
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Proposition 5.1. The eigenfunctions for the operator L are given by

ψ1,1 =

[
∂xΦ

0

]
, ψ2,1 =

[
0

− 1
2xΦ

]
and

ψ1,2 =

[
0
Φ

]
, ψ2,2 =

[
∂ωΦ

0

]
.

Furthermore, the bounded solutions to the adjoint equation are given by

v1 =
4

〈Φ,Φ〉
[

0
∂xΦ

]
, v2 =

2

∂ω〈Φ,Φ〉
[

Φ
0

]
.

Note that v1 and v2 have been scaled so that

〈ψ2,1, v1〉 = 〈ψ2,2, v2〉 = 1.

Upon using the results of Theorem 1.1 one is able to conclude the following information
about the Evans function at λ = 0. The information for λ 6= 0 follows immediately
from the fact that the wave Φ is a stable solution to (5.1) [37].

Lemma 5.2. The Evans function for the operator L satisfies

∂iλE(0) = 0, i = 0, . . . , 3,

and

∂4
λE(0) = −24.

Furthermore, E(λ) < 0 for Reλ > 0.
For ε 6= 0 the wave (assuming that it persists) will in general be complex-valued.

After breaking it into its real and complex parts, it will henceforth be denoted by
Φ(x, ω, ε), with Φ(x, ω, 0) = (Φ, 0)T .

5.1. Parametrically forced NLS. For the parametrically forced NLS (PFNLS)
the perturbation term is given by

R(x, φ, φ∗) = −i(γφ− µφ∗e−i2θ),

where γ, µ > 0 and

cos 2θ =
γ

µ
.

Here γ is the dissipation factor (linear loss) and µ is the parametric gain. For ε > 0
the wave is still real-valued and is given by Φ = (Φ, 0)T , where

Φ(x, ω, ε) =

√
β

2
sech(

√
β x),(5.4)

and

β = ω + εµ sin 2θ.(5.5)
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Due to the fact that the perturbation R breaks the rotation symmetry, when ε > 0
it will generically be true that ∂λE(0) 6= 0. Furthermore, the fact that the translation
symmetry is not broken implies that ψ1,1 remains as an eigenfunction for L. Since
a1 = a2 = 2 at λ = 0 when ε = 0, the result of Lemma 4.11 will then apply.

After linearizing the PFNLS about the wave, a simple calculation shows that

Lε =

[
0 −µ sin 2θ

−µ sin 2θ −2γ

]
+ 4∂ε(Φ

2)

[
0 −1
3 0

]
.

Since

∂ε(Φ
2) =

µ sin 2θ

ω

(
Φ2 +

1

2
x∂x(Φ2)

)
and Φ is even in x, it is a routine calculation to see that

〈∂εψ1,1, v1〉 = 〈Lεψ1,2, v1〉 = 〈−Lεψ2,1 + ∂εψ1,1, v2〉 = 0.

Thus, as a consequence of Lemma 4.11

∂2
ε ∂λE(0) = −2 〈Lεψ2,1, v1〉〈Lεψ1,2, v2〉.(5.6)

Since

〈xΦ2k, ∂x(Φ2)〉 = − 1

k + 1
〈Φ2k,Φ2〉, 〈Φ,Φ〉 = ω1/2, 〈Φ2,Φ2〉 =

1

3
ω3/2,

one can see that

〈Lεψ1,2, v2〉 = −8ωµ sin 2θ.

In addition, the fact that 〈xΦ, ∂xΦ〉 = −1/2 〈Φ,Φ〉 implies that

〈Lεψ2,1, v1〉 = −2γ.

Therefore, by (5.6)

∂2
ε ∂λE(0) = −32ωγµ sin 2θ.(5.7)

Lemma 5.3. Consider the PFNLS. Suppose that 0 < ε � 1. If sin 2θ < 0, then
the wave Φ is unstable. If sin 2θ > 0, then there are no positive eigenvalues which are
of O(ε).

Proof. The eigenvalues of L are symmetric about the lines Reλ = −εγ and
Imλ = 0. This is easily seen by noticing that (L − λ)P = 0 reduces to LiLrP1 =
−λ(λ+ 2εγ)P1 and LrLiP2 = −λ(λ+ 2εγ)P2, where P = (P1, P2)T .

If sin 2θ < 0, then as a consequence of (5.7), ∂λE(0) > 0 for ε > 0 sufficiently
small. By Lemma 5.2, it is necessarily true that E(λ) is negative for real λ sufficiently
large. This necessarily implies the existence of a real positive zero of E(λ), which in
turn implies the existence of a real positive eigenvalue.

Now suppose that sin 2θ > 0, so that ∂λE(0) < 0 for ε > 0 sufficiently small. If
there is a zero with positive real part, then there must be at two such zeros. Suppose
that two such zeros exist. Then there must also exist two other zeros with negative
real part which are symmetric with respect to the line Reλ = −εγ. Thus, recalling
that λ = 0 is always a zero, there must exist at least five zeros which are of O(ε).
This contradicts the fact that there can only be four such zeros.

Remark 5.4. Barashenkov, Bogdan, and Korobov [5] have previously shown that
sin 2θ < 0 implies the existence of an unstable eigenvalue. Their proof, however, is a
consequence of the results present in either Grillakis [10] or in Jones [13].

Remark 5.5. By (5.7) it is known that ∂λE(0) > 0 for ε > 0 sufficiently small. It
can be shown, however, that ∂λE(0) > 0 for all ε > 0 [2], [17], [25].
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5.2. Cubic-quintic NLS. For the cubic-quintic NLS (CQNLS) the perturba-
tion term is given by

R(x, φ, φ∗) = i(d1∂
2
xφ+ d2φ+ d3|φ|2φ+ d4|φ|4φ).

The positive parameter d1 describes spectral filtering, d2 describes the linear gain
(d2 > 0) or loss (d2 < 0) due to the fiber, and d3 and d4 describe the nonlinear gain
or loss due to the fiber. Note that this perturbation preserves both the rotation and
translation symmetry. One then generically expects that ∂2

λE(0) 6= 0, so that the
results of Lemma 4.13, and possibly Lemma 4.15, will apply.

In order for the solution φ = 0 to be stable, one must require that d2 < 0. Since
this is a minimal requirement for the wave to be stable, this assumption will hold for
the rest of the discussion. It is shown in Kapitula [15] that the wave persists if

H(x) = d1∂
2
xΦ + d2Φ + d3Φ3 + d4Φ5(5.8)

satisfies

〈H,Φ〉 = 0,(5.9)

i.e.,

d1 − 3

ω
d2 − d3 − 2

5
ωd4 = 0.

This condition ensures that L−1
i (H) is a bounded function for all x. Using standard

perturbation theory, and the fact that

L−1 =

[
0 L−1

r

−L−1
i 0

]
,

it is not difficult to see that

∂εΦ =

[
0

L−1
i (H)

]
.(5.10)

The two solutions to Liw = 0 are given by

w1 = Φ, w2 = xΦ +
1√
2

sinh(
√
ω x);

thus, upon using variation of parameters one can explicitly construct L−1(H). This
will not be done here, however, and will be left as an exercise for the interested reader.
It is enough to recognize that ∂εΦ is an even function in x.

Upon linearizing the CQNLS about the wave, a simple calculation shows that

Lε = (d1∂
2
x + d2)I2 + d3Φ2

[
3 0
0 1

]
+ d4Φ4

[
5 0
0 1

]
+ 8ΦL−1

i (H)

[ −1 0
0 1

]
.

Furthermore, another calculation shows that

∂εψ1,1 =

[
0

∂xL
−1
i (H)

]
, ∂εψ1,2 =

[ −L−1
i (H)
0

]
.
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Using the fact that Φ and L−1
i (H) are even in x, it is a trivial matter to show that

〈−Lεψ2,1 + ∂εψ1,1, v2〉 = 〈−Lεψ2,2 + ∂εψ1,2, v1〉 = 0.

Therefore, after using the result of Lemma 4.13 it can be seen that

∂2
ε ∂

2
λE(0) = −4 〈−Lεψ2,1 + ∂εψ1,1, v1〉〈−Lεψ2,2 + ∂εψ1,2, v2〉.

The above expressions are difficult to compute, and as such the problem was con-
sidered in Kapitula [15] for a more general perturbation of the NLS. In the following,
let Ci denote a positive constant. Assuming relation (5.9), i.e., after solving for d3

in terms of the other variables, as a consequence of the calculations in [15] it can be
shown that

〈−Lεψ2,1 + ∂εψ1,1, v1〉 = C1d1

and that

〈−Lεψ2,2 + ∂εψ1,2, v2〉 = C2

(
d2 − 2

15
ω2d4

)
.

As a consequence of Lemma 4.15, when

〈−Lεψ2,2 + ∂εψ1,2, v2〉 = 0,

then

∂ε∂
3
λE(0) = −6 〈−Lεψ2,1 + ∂εψ1,1, v1〉

= −6C1 d1.

It is now possible to describe the location of all of the O(ε) eigenvalues.
Lemma 5.6. Let d3 be such that the wave exists for 0 < ε � 1. Furthermore,

suppose that d1 > 0 and d2 < 0. Then if

d2 <
2

15
ω2d4,

there exists a real positive eigenvalue and a real negative eigenvalue, both of which are
O(ε). If

2

15
ω2d4 < d2 < 0,

then both O(ε) eigenvalues are real and negative.
Proof. From the above arguments it is seen that

∂2
ε ∂

2
λE(0) = −4C1C2 d1

(
d2 − 2

15
ω2d4

)
,

and if d2 − 2/15ω2d4 = 0, then

∂ε∂
3
λE(0) = −6C1 d1.

All that is left to recognize is that if ∂2
λE(0) > 0, then since ∂4

λE(0) < 0 there exists
one positive real zero of E(λ) which is of O(ε). When ∂2

λE(0) = 0, the fact that
∂3
λE(0) < 0 implies that the zero is moving to the left.

Remark 5.7. For a more complete discussion, the interested reader should consult
Kapitula [15] and Kapitula and Sandstede [17].
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5.3. Nonhomogeneous PFNLS. As a final example, consider the nonhomo-
geneous PFNLS (NPFNLS), where the perturbation term is given by

R(x, φ, φ∗) = −i(γφ− µh(x)φ∗e−i2θ).

Here h(x) is assumed to be even and satisfy the estimate

0 ≤ h(x) ≤ Ce−β|x|

for some β > 0. Unlike the PFNLS, it is being assumed here that the parametric gain
is spatially dependent.

Assumption 5.8. The wave perturbs smoothly for ε > 0.
Given that the wave perturbs smoothly, standard perturbation theory reveals that

the parameters must satisfy

cos 2θ =
γ

µ

〈Φ,Φ〉
〈h(x)Φ,Φ〉(5.11)

and that

∂εΦ =

[
µ sin 2θ L−1

r (h(x)Φ)
L−1
i ([−γ + µ cos 2θ h(x)]Φ)

]
.

Equation (5.11) and the fact that h(x) is even guarantee that ∂εΦ is uniformly
bounded in x.

Due to the fact that R breaks both the rotation and translation symmetry, it
is expected that E(0) 6= 0. The calculation of ∂2

εE(0) will be accomplished via an
application of Lemma 4.9. Set

G(x) = (−γ + µ cos 2θ h(x))Φ.

A routine calculation shows that

Lε = 8ΦL−1
i (G)

[ −1 0
0 1

]
+ 8µ sin 2θ L−1

r (h(x)Φ)

[
0 −1
3 0

]

−γI2 + µh(x)

[
cos 2θ − sin 2θ
− sin 2θ − cos 2θ

]
.

Since h(x) being even implies that ∂εΦ is also even, it is straightforward to see that

〈Lεψ1,1, v2〉 = 〈Lεψ1,2, v1〉 = 0.

Therefore, upon using the result of Lemma 4.9,

∂2
εE(0) = −2〈Lεψ1,1, v1〉〈Lεψ1,2, v2〉.(5.12)

In general, of course, it is impossible to explicitly compute the above quantities
without greater knowledge of the function h(x). As such, to facilitate the computation
it will be assumed for the rest of this discussion that

h(x) = 8αΦ2,(5.13)
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where α > 0 is arbitrary. Note that the existence condition then reduces to

cos 2θ =
γ

µ

3

8αω
.

For this particular h(x),

L−1
r (h(x)Φ) = αΦ;

therefore,

〈Lεψ1,2, v2〉 = − 2µ sin 2θ

∂ω〈Φ,Φ〉 (〈h(x)Φ,Φ〉+ 8〈ΦL−1
r (h(x)Φ),Φ2〉)

= −64

3
αµω2 sin 2θ.

In addition, upon using the fact that

(∂xΦ)2 = ω

(
Φ2 − 2

ω
Φ4

)
,

it can be seen that

〈Lεψ1,1, v1〉 = −4µ sin 2θ

〈Φ,Φ〉 (〈h(x), (∂xΦ)2〉 − 24〈ΦL−1
r (h(x)Φ), (∂xΦ)2〉)

=
64

15
αµω2 sin 2θ.

Using (5.12), it is now seen that

∂2
εE(0) =

213

32 · 5α
2µ2ω4 sin2 2θ.(5.14)

Lemma 5.9. Consider the NPFNLS. When h(x) is given by (5.13), then the
solitary wave is unstable.

Proof. By (5.14), E(0) > 0 for ε > 0 sufficiently small. Since E(λ) is negative for
real λ sufficiently large, there then exists a positive real zero for E(λ), and hence a
positive real eigenvalue.
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Abstract. Equations of the form du = (auxx + fx) dt+
∑

k
(σkux + gk) dwkt are considered for

t > 0 and x > 0. The unique solvability of these equations is proved in weighted Sobolev spaces with
fractional positive or negative derivatives, summable to the power p ∈ [2,∞).
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Introduction. We are considering the equation

du = (auxx + fx) dt+
∞∑
k=1

(σkux + gk) dwkt

in one space dimension for x > 0 and t > 0 with some initial condition at t = 0
and zero boundary condition at x = 0. Here wkt are independent one-dimensional
Wiener processes and f and gk are some given functions of (ω, t, x). The functions
a and σk are assumed to depend only on ω and t. Such equations with a finite
number of the processes wkt appear, for instance, in nonlinear filtering problems for
partially observable diffusions (see [11]). Considering infinitely many wkt turns out
to be instrumental in treating equations for measure valued processes, for instance,
driven by space–time white noise (see [8] or [6]).

Our main goal is to prove solvability of such equations in spaces similar to Sobolev
spaces, in which derivatives are understood as generalized functions, the number of
derivatives may be fractional or negative, and underlying power of summability is
p ∈ [2,∞).

The motivation for this goal is explained in detail in [5] or [8], where an Lp-theory
is developed for the equations in the whole space. We only mention that if p = 2, the
theory was developed long ago and an account of it can be found, for instance, in [11].
The case of equations in domains is also treated in [11]. However, the solvability is
only proved in spaces W 1

2 of functions having one generalized derivative in x square
summable in (ω, t, x). It turns out that going to better smoothness of solutions is not
possible in spaces Wn

2 and one needs to consider Sobolev spaces with weights, allowing
derivatives to blow up near the boundary. The theory of solvability in Hilbert spaces
like Wn

2 with weights is developed in [1] and [10], where n is an integer. Here we show
what happens if one takes a fractional or negative number of derivatives and replaces
2 with any p ≥ 2. By the way, according to [2], it is not possible to take p < 2 when
stochastic terms are present in the equation.
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Unlike the above mentioned works, we only concentrate on the one-dimensional
case. There are several reasons for that, the main being that even in the case of
Hilbert spaces in [1] the central estimates are first proved in the one-dimensional case
and after this there is still a rather long way to go to get to multidimensional domains.
Our treatment of the one-dimensional case is long itself.

One of main difficulties in developing the theory presented below was finding
right spaces. The idea was to find a scale of spaces like in [11], [5], or [8] generated
by fractional powers of a certain operator, which is 1 −∆ in [11], [5], and [8]. From
the results of [1] and [10] one can guess that xD = x∂/∂x should be such an operator
in our case. Elliptic second-order operators are more appropriate if one wants to
define fractional powers and expects them to have nice properties. Therefore, our
first attempt was to try the operator L = xD(xD) + xD − c, which is formally self-
adjoint for any constant c. However, after having constructed the theory we noticed
that the same spaces can be defined as images of spaces from [5] or [8] under certain
linear mapping. This made using the results from [5] and [8] easier and allowed us
to avoid developing solvability theory for L and investigating the semigroup and the
resolvent associated with this operator.

In [11], [5], and [8] the solution is sought for in the same scale of spaces (at
least as far as the space variables are concerned) as the one to which the free terms
f and g belong. Surprisingly enough this is not the case in our situation, and this
causes many difficulties practically at each step. The origin of all unusual features
of our theory lies in the fact that there are no operators commuting with ∂/∂x and
generating our scale of spaces. To give one more example of what is unusual we
state the following theorem, which can be obtained from Theorem 3.2 after changing
variables v(t, x) = ex(α−1)u(t, ex), where α = θ/p.

Theorem 0.1. Let α ∈ (0, 1), p ∈ (1,∞), T ∈ (0,∞], and f ∈ Lp([0,∞) × R).
Then in the class of functions v(t, x), t ∈ [0, T ], x ∈ R such that∫ T

0

∫
R
[|vx|p + |v|p] dxdt <∞,

the equation

e2xvt = vxx + (1− 2α)vx − (1− α)αv + fx(0.1)

on (0, T ) × R with zero initial condition has a unique solution. In addition, this
solution satisfies ∫ T

0

∫
R
[|vx|p + |v|p] dxdt ≤ N(α, p)

∫ T

0

∫
R
|f |p dxdt.

Surprising in this theorem is that if we replace e2x with 1 in (0.1), then the result
becomes well known and is true for any finite T (now withN depending on T too). The
presence of e2x makes (0.1) degenerate, and usually results for degenerate equations
differ very much from those for nondegenerate cases. Actually, we do not know much
about (0.1). In particular, it would be interesting to know whether Theorem 0.1
remains true if we replace the term (1−2α)vx in (0.1) with bvx where b is an arbitrary
constant.

The article is organized as follows. In section 1 we introduce and investigate basic
spaces with weights of functions of x ∈ (0,∞). Section 2 is devoted to stochastic
Banach spaces of functions of (ω, t, x) satisfying zero boundary condition at x = 0.
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This condition is expressed by means of requirement (2.1). In section 3 we prove our
main Theorem 3.2 about unique solvability of our equations. The reader will see the
very core of our technique in the proof of Lemma 3.6. Rather long section 4 contains
the proof of the main particular case of Theorem 3.2, which is stated as Lemma 3.5.

1. Sobolev spaces with weights. For γ ∈ R and p ∈ (1,∞) let Hγ
p = Hγ

p (R)
be the spaces of Bessel potentials (see, for instance, [13]) which are formally given
by Hγ

p = Λ−γLp(R), where Λ := (1 − D2)1/2 and D = d/dx. One knows that the
elements of Hγ

p are distributions and C∞0 = C∞0 (R) is dense in Hγ
p . Let D(R) and

D(R+) be the sets of all distributions on C∞0 (R) and C∞0 (R+), respectively, where
R+ = (0,∞). If f ∈ D(R+) and θ ∈ R, then the expression h(x) := f(ex)exθ/p is
well defined and is a distribution on R. Indeed, the action of h on a test function
φ ∈ C∞0 (R) is defined as (h, φ) = (f, ψ), where ψ(x) := φ(log x)xθ/p−1. We denote
h = Qp,θf in this way defining a one-to-one operator

Qp,θ : f(x)→ f(ex)exθ/p.

Definition 1.1. We write f ∈ Hγ
p,θ (= Hγ

p,θ(R+)) if and only if Qp,θf = h ∈ Hγ
p .

We write Lp,θ = H0
p,θ. For f ∈ Hγ

p,θ we define

||f ||Hγ
p,θ

= ||Qp,θf ||Hγp .

Remark 1.2. Since Hγ
p is a Banach space, so is Hγ

p,θ with the norm introduced

above. Also since C∞0 (R) is dense in Hγ
p , the set C∞0 (R+) is dense in Hγ

p,θ.

Remark 1.3. Define Λγp,θ = Q−1
p,θΛ

γQp,θ. Then for any γ, µ, θ ∈ R the operator

Λγp,θ is an isometric operator from Hµ
p,θ onto Hµ−γ

p,θ .
Indeed, by definition,

||Λγp,θu||Hµ−γ
p,θ

= ||Qp,θΛγp,θu||Hµ−γp
= ||ΛγQp,θu||Hµ−γp

= ||Qp,θu||Hµp = ||u||Hµ
p,θ
.

Remark 1.4. The norm in Hγ
p,θ contains norms of, so to speak, γ derivatives of

u. However, it scales in the same way for any γ. We mean that, due to translation
invariance of norms in Hγ

p , for any constant a > 0 and u ∈ Hγ
p,θ,

||u(a ·)||p
Hγ
p,θ

= a−θ||u||p
Hγ
p,θ

.

Remark 1.5. Define M as the operator of multiplying by x, M : u(x) → xu(x).
It turns out that for any γ ∈ R the operator MD is a bounded operator from Hγ

p,θ

into Hγ−1
p,θ and if, in addition, θ 6= 0, then MD maps Hγ

p,θ onto Hγ−1
p,θ and its inverse

is also bounded.
Indeed, an easy computation shows that

Qp,θMDu = LQp,θu, MDu = Q−1
p,θLQp,θu,

where Lv = Dv − vθ/p. One knows (see, for instance, p. 263 in [12]) that for any
constant ν the operator v → Dv+ νv is a bounded operator from Hγ

p into Hγ−1
p and

if ν is real and ν 6= 0, then it maps Hγ
p onto Hγ−1

p and its inverse is bounded. This
and the definition of Hγ

p,θ obviously imply our assertion.
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Remark 1.6. Functions in Hγ
p,θ are different from those in Hγ

p only in what
concerns their behavior near zero and infinity. More precisely, if [a, b] ⊂ R+ and f = 0
outside [a, b], then by the results on changing variables and pointwise multipliers (see
Theorem 4.3.2 and Corollary 4.2.2 of [13]) ||f ||Hγ

p,θ
≤ N ||f ||Hγp ≤ N ||f ||Hγ

p,θ
, where

N is independent of f .
It is convenient here also to notice that for the same f we have

||f ||Hγp ≤ N ||Df ||Hγ−1
p
≤ N ||f ||Hγp ,

with N independent of f .
Indeed, the inequality on the right is known to be true even for any f ∈ Hγ

p . As
far as the left inequality is concerned, by Remark 1.5 we have

||f ||Hγp ≤ N ||f ||Hγp,1 ≤ N ||MDf ||Hγ−1
p,1
≤ N ||ηDf ||Hγ−1

p
,

where η ∈ C∞0 (R) and η(x) = x on [a, b]. It only remains to remember (see [13]) that
such η is a pointwise multiplier in any space Hγ−1

p .
Remark 1.7. Upon noticing that DMu = MDu+u, as in Remark 1.5 we conclude

that for any γ ∈ R the operator DM is a bounded operator from Hγ
p,θ into Hγ−1

p,θ and

if, in addition, θ 6= p, then DM maps Hγ
p,θ onto Hγ−1

p,θ and its inverse is also bounded.

Remark 1.8. Let θ 6= 0, u ∈ ⋃µHµ
p,θ, and MDu ∈ Hγ

p,θ. Then u ∈ Hγ+1
p,θ and

||u||Hγ+1
p,θ
≤ N ||MDu||Hγ

p,θ
.

Indeed, by Remark 1.5 there is v ∈ Hγ+1
p,θ such that MDv = MDu and ||v||Hγ+1

p,θ
≤

N ||MDu||Hγ
p,θ

. Then v′ = u′ and v−u = c, where c is a constant. Since v, u ∈ Hµ
p,θ for

some µ, we have c ∈ Hµ
p,θ, which is only possible if c = 0. Therefore, u = v ∈ Hγ+1

p,θ .

Remark 1.9. Let θ 6= p, u ∈ ⋃µHµ
p,θ, and DMu ∈ Hγ

p,θ. Then u ∈ Hγ+1
p,θ and

||u||Hγ+1
p,θ
≤ N ||DMu||Hγ

p,θ
.

Indeed, one can repeat the argument in Remark 1.8 relying on Remark 1.7 instead
of Remark 1.5 and noticing that from the equality DMv = DMu it follows that
v − u = c/x, where c is a constant.

Remark 1.5 and the observation that H0
p,θ = Lp,θ is just an Lp-space of functions

on R+ with measure mθ(dx) = xθ−1 dx yield inequalities (1.1) in the following useful
result, which can also be restated in a natural way on the basis of Remark 1.7.

Theorem 1.10. If γ is an integer satisfying γ ≥ 1 and θ 6= 0, then for any
u ∈ Hγ

p,θ we have

||(MD)γu||Lp(R+,mθ) ≤ N ||u||Hγ
p,θ
≤ N ||(MD)γu||Lp(R+,mθ),(1.1)

γ∑
n=1

||MnDnu||Lp(R+,mθ) ≤ N ||u||Hγ
p,θ
≤ N

γ∑
n=1

||MnDnu||Lp(R+,mθ),(1.2)

where N is independent of u. Thus, the space Hγ
p,θ can also be defined as a closure of

the set C∞0 (R+) with respect to either of the norms

||(MD)γ · ||Lp(R+,mθ),

γ∑
n=1

||MnDn · ||Lp(R+,mθ).
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To prove (1.2) observe that for any integer k ≥ 1,

(MD)k =

k∑
n=1

ck,nMnDn,(1.3)

where ck,n are some constants and ck,k = 1. This and the inequality on the right in
(1.1) give us the inequality on the right in (1.2). On the other hand, one can solve
the triangular system (1.3) with respect to MnDn. Then from the inequality on the
left in (1.1) we get

γ∑
n=1

||MnDnu||Lp(R+,mθ) ≤ N
γ∑
n=1

||(MD)nu||Lp(R+,mθ)

≤ N
γ∑
n=1

||u||Hn
p,θ
≤ N ||u||Hγ

p,θ
,

which proves the inequality on the left in (1.2).
The following theorem will play the most important role in obtaining results for

equations on R+ from those on R.
Theorem 1.11. Let ζ ∈ C∞0 (R+), γ, θ ∈ R, and p ∈ (1,∞). Then there exists a

constant N depending only on ζ, γ, p, and θ such that, for any u ∈ Hγ
p,θ,

∞∑
n=−∞

enθ||ζu(en ·)||p
Hγp
≤ N ||u||p

Hγ
p,θ

.

In addition, if there is a δ > 0 such that

∞∑
n=−∞

e(n−x)θ|ζ(ex−n)|p ≥ δ(1.4)

for all x ∈ [0, 1], then

||u||p
Hγ
p,θ

≤ N
∞∑

n=−∞
enθ||ζu(en ·)||p

Hγp
,

where N depends on δ as well.
Proof. Since the functions ζ(x)u(enx) vanish outside the support of ζ, by the

change of variables (see Theorem 4.3.2 in [13])

enθ||ζu(en ·)||p
Hγp
≤ Nenθ||ζ(e·)u(e·+n)||p

Hγp

with N independent of n, u. By translation invariance of the norm in Hγ
p the last

expression equals

enθ||ζ(e·−n)u(e·)||p
Hγp

= ||η(e·−n)Qp,θu||pHγp ,

where η(ex−n) = ζ(ex−n)e(n−x)θ/p. Next it is easy to find a finite m such that for
x ∈ [0, 1],

I(x) :=

∞∑
n=−∞

|η(ex−n)|p =
∞∑

n=−∞
|ζ(ex−n)|pe(x−n)θ

=
∑
|n|≤m

|ζ(ex−n)|pe(x−n)θ.
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It follows that I(x) is bounded on [0, 1]. On the other hand I(x) is obviously periodic
with period 1. Thus I(x) is bounded on R. The same is true for

∞∑
n=−∞

|(η(ex−n))′|p,
∞∑

n=−∞
|(η(ex−n))′′|p,

and so on. By Theorem 2.2 and Remark 2.1 of [2]

∞∑
n=−∞

||η(e·−n)Qp,θu||pHγp ≤ N ||Qp,θu||
p
Hγp
,

which yields our first assertion.
To prove the second one we use the same resources as above and get

||Qp,θu||pHγp ≤ N
∞∑

n=−∞
||η(e·−n)Qp,θu||pHγp = N

∞∑
n=−∞

enθ||ζ(e·−n)u(e·)||p
Hγp

= N
∞∑

n=−∞
enθ||ζ(e·)u(e·+n)||p

Hγp
≤ N

∞∑
n=−∞

enθ||ζu(en ·)||p
Hγp
.

The theorem is proved.
Remark 1.12. Similar to properties of I(x) in the above proof, we find that

if ζ ∈ C∞0 (R+) and β ∈ R, then
∑
n e

(n+x)βζ(en+x) is bounded on R, which after
substituting log x in place of x implies that

∑
n e

nβζ(enx) ≤ Nx−β on R+.
The following theorem is used in establishing some properties of our stochastic

Banach spaces.
Theorem 1.13. Recall that the operator M is defined by Mu(x) = xu(x) and let

θ, γ ∈ R, θ 6= p. Then

M−1u ∈ Hγ+1
p,θ ⇐⇒ Du ∈ Hγ

p,θ and M
−1u ∈

⋃
µ

Hµ
p,θ.(1.5)

In addition, under either one of the above conditions

||M−1u||Hγ+1
p,θ
≤ N ||Du||Hγ

p,θ
≤ N ||M−1u||Hγ+1

p,θ
.(1.6)

Proof. If M−1u ∈ Hγ+1
p,θ , then by Remark 1.7 we have

Du = DM(M−1u) ∈ Hγ
p,θ

and the right inequality in (1.6) holds. On the other hand, under the condition on
the right in (1.5) we have

DM(M−1u) ∈ Hγ
p,θ and M−1u ∈

⋃
µ

Hµ
p,θ,

which by Remark 1.9 yields M−1u ∈ Hγ+1
p,θ and the inequality on the left in (1.6).

The theorem is proved.
The following result will also be used in the future.
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Lemma 1.14. For any constants p, θ, α we have

Q−1
p,θDQp,θ = bI +MD, Q−1

p,θD
2Qp,θ = (bI +MD)2, DM = MD + I,

MαΛ2
p,θM

−α = Λ2
p,θ + c1I + c2MD, MΛ2

p,θ − Λ2
p,θM = MP1,

Λ2
p,θD −DΛ2

p,θ = P1D,(1.7)

Λ2
p,θDM −DΛ2

p,θM = P1DM, Λ2
p,θD

2M −D2Λ2
p,θM = 4DP2,

where b = θ/p, I is the identity operator, ci are certain constants, and

P1 := (2b+ 1)I + 2MD, P2 := bDM + (MD)(DM).

Furthermore, for any θ, γ ∈ R there exists a constant N = N(γ, θ, p) such that
for any u ∈ Hγ+2

p,θ ,

||P1u||Hγ+1
p,θ

+ ||P2u||Hγ
p,θ
≤ N ||u||Hγ+2

p,θ
.(1.8)

Indeed, equalities (1.7) are checked out by straightforward computations and (1.8)
follows immediately from Remarks 1.5 and 1.7.

2. Stochastic Banach spaces on R+. Let (Ω,F , P ) be a complete probability
space, (Ft, t ≥ 0) be an increasing filtration of σ-fields Ft ⊂ F containing all P -null
subsets of Ω, and P be the predictable σ-field generated by (Ft, t ≥ 0). Let {wkt ; k =
1, 2, ...} be a family of independent one-dimensional Ft-adapted Wiener processes
defined on (Ω,F , P ). We are going to use the Banach spaces Hγp(τ), Hγp(τ, l2), and
Hγp(τ) introduced in [5] or [8], where we take d = 1. Also throughout the remaining
part of the paper θ 6= 0, θ 6= p, and p ≥ 2 unless another range of p is specified
explicitly.

Definition 2.1. Let τ be a stopping time, f and gk, k = 1, 2..., be D(R+)-valued
P-measurable functions defined on |(0, τ ]]. We write f ∈ Hγp,θ(τ) and g ∈ Hγp,θ(τ, l2) if
and only if Qp,θf ∈ Hγp(τ) and Qp,θg ∈ Hγp(τ, l2), respectively. We also denote

||f ||Hγ
p,θ

(τ) = ||Qp,θf ||Hγp(τ), ||g||Hγ
p,θ

(τ,l2) = ||Qp,θg||Hγp(τ,l2),

Hγp,θ = Hγp,θ(∞), Hγp,θ(l2) = Hγp,θ(∞, l2), L...... = H0
...... .

In the case f ∈ Hγp,θ(τ), g ∈ Hγ+1
p,θ (τ, l2) we write (f, g) ∈ Fγp,θ(τ) and

||(f, g)||Fγ
p,θ

(τ) = ||f ||Hγ
p,θ

(τ) + ||g||Hγ+1
p,θ

(τ,l2).

Finally, we introduce spaces of initial data. We write u0 ∈ Uγp,θ if and only if

M2/p−1u0 ∈ Lp(Ω,F0, H
γ−2/p
p,θ ) and denote

||u0||pUγ
p,θ

= E||M2/p−1u0||p
H
γ−2/p

p,θ

.

Definition 2.2. For a D(R+)-valued function u defined on Ω × [0,∞) with
u(0, ·) ∈ Uγ+1

p,θ and

M−1u ∈
⋃
µ

⋂
T>0

Hµp,θ(τ ∧ T ),(2.1)
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we write u ∈ Hγ+1
p,θ (τ) if and only if ux ∈ Hγp,θ(τ) and there exists (f, g) ∈ Fγ−1

p,θ (τ)
such that for any φ ∈ C∞0 (R+) we have

(u(t, ·), φ) = (u(0, ·), φ) +

∫ t

0

(M−1f(s, ·), φ) ds+
∞∑
k=1

∫ t

0

(gk(s, ·), φ) dwks(2.2)

for all t ≤ τ at once with probability one. In this situation we also write M−1f = D̃u,
g = S̃u,

du = M−1f dt+ gk dwkt

and define Hγ+1
p,θ,0(τ) = Hγ+1

p,θ (τ) ∩ {u : u(0, ·) = 0},
||u||p

Hγ+1
p,θ

(τ)
= ||ux||pHγ

p,θ
(τ)

+ ||(f, g)||pFγ−1
p,θ

(τ)
+ ||u(0, ·)||p

Uγ+1
p,θ

.(2.3)

As always, we drop τ in Hγp,θ(τ) and Fγp,θ(τ) if τ =∞.

Remark 2.3 (cf. Remark 3.3 in [8]). Given u ∈ Hγp,θ(τ), there exists only one pair

of functions f and g in Definition 2.2. Therefore, the notation M−1f = D̃u, g = S̃u,
and (2.3) make sense.

It is also worth noting that the last series in (2.2) converges uniformly in t on
each interval [0, τ ∧ T ], T ∈ (0,∞), in probability.

Remark 2.4. It follows from Theorem 1.13 that, in Definition 2.2, the two re-
quirements (2.1) and ux ∈ Hγp,θ(τ) can be replaced with only one: M−1u ∈ Hγ+1

p,θ (τ).
In addition,

||M−1u||Hγ+1
p,θ

(τ) ≤ N ||ux||Hγp,θ(τ) ≤ N ||M−1u||Hγ+1
p,θ

(τ),

where N = N(γ, θ, p).
Remark 2.5. The space Hγp,θ(τ) is not Q−1

p,θHγp(τ). However, obviously φu lies

in Q−1
p,θHγp(τ) for any φ ∈ C∞0 (R+) if u ∈ Hγp,θ(τ). By Theorem 3.7 of [8] this easily

implies that if u ∈ Hγp,θ(τ) and ||u||Hγ
p,θ

(τ) = 0, then u is indistinguishable from zero.

Of course, we identify elements of Hγp,θ(τ) which are indistinguishable.

Remark 2.6. The spaces Hγp,θ(τ) and Hγp,θ,0(τ) are Banach spaces.
Indeed, their completeness is obtained as follows. If un is a Cauchy sequence

in Hγp,θ(τ), then M−1un is a Cauchy sequence in Hγp,θ(τ) by Remark 2.4 and hence

it converges to some M−1u ∈ Hγp,θ(τ). Also, M D̃un → f and S̃un → g for some

(f, g) ∈ Fγ−2
p,θ (τ).

Next, for any φ ∈ C∞0 (R+) the sequence φun is a Cauchy sequence in Hγp(τ),
which is a Banach space by Theorem 3.7 of [8]. This easily implies that u has a
modification ū such that φū belongs to Hγp(τ) for any φ ∈ C∞0 (R+), and ū satisfies
(2.2), so that ū ∈ Hγp,θ(τ). One treats Hγp,θ,0(τ) similarly.

Remark 2.7. By Remark 1.5 it follows that f ∈ Hγ−1
p,θ (τ) if and only if there

exists a unique h ∈ Hγp,θ(τ) such that M−1f = Dh. In addition, the norms of f

and h are equivalent. Hence, one obtains the same space Hγ+1
p,θ (τ) if in Definition 2.2

one replaces M−1f with fx and instead of the condition (f, g) ∈ Fγ−1(τ) requires
f ∈ Hγp,θ(τ), g ∈ Hγp,θ(τ, l2). In this case one obtains an equivalent norm by replacing

||(f, g)||pFγ−1
p,θ

(τ)
in (2.3) with

||f ||pHγ
p,θ

(τ)
+ ||g||pHγ

p,θ
(τ,l2)

.
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Remark 2.8. If u ∈ Hγp,θ(τ), then v := MDu ∈ Hγ−1
p,θ (τ) and

||MDu||Hγ−1
p,θ

(τ) ≤ N(γ, θ, p)||u||Hγ
p,θ

(τ).

Indeed, we have M−1v = Du ∈ Hγ−1
p,θ (τ), which by Remark 2.4 gives us a part of

the needed properties of v. Also by Remark 2.7, du = fx dt+g
k dwkt with f ∈ Hγ−1

p,θ (τ)

and g ∈ Hγ−1
p,θ (τ, l2), so that dv = (MDf − f)x dt+MDgk dwkt , where by Remark 1.5

||MDf − f ||Hγ−2
p,θ

(τ) ≤ N ||f ||Hγ−1
p,θ

(τ), ||MDg||Hγ−2
p,θ

(τ,l2) ≤ N ||g||Hγ−1
p,θ

(τ,l2),

||M2/p−1v(0, ·)||
H
γ−1−2/p

p,θ

= ||MD(M2/p−1u(0, ·))− (2/p− 1)M2/p−1u(0, ·)||
H
γ−1−2/p

p,θ

≤ N ||M2/p−1u(0, ·)||
H
γ−2/p

p,θ

.

Remark 2.9. From Remark 1.3 we have

||Λγp,θu||Hµp,θ(τ) = ||u||Hµ+γ
p,θ

(τ).

The assertions of the following theorem are straightforward corollaries of Re-
mark 2.4 and of two Sobolev theorems. One says that Hγ

p ⊂ Cδ if δ := γ − 1/p > 0,

where Cδ = Cδ(R) is the Zygmund space (which differs from the usual Hölder space
Cδ = Cδ(R) only if δ is an integer; see [13]). The second one says that Hγ

p ⊂ Hµ
q if

µ < γ and γ − 1/p = µ − 1/q. These theorems are easily rewritten in terms of our
spaces Hγ

p,θ = Q−1
p,θH

γ
p .

Theorem 2.10. (i) If α := γ − 1/p > 0 and u ∈ Hγp,θ(τ), then Qp,θM
−1u ∈

Lp( |(0, τ ]], Cα), where Cα is the Zygmund space. In addition,

E

∫ τ

0

||Qp,θM−1u(t, ·)||pCα dt ≤ N(d, γ, p)||u||p
Hγ
p,θ

(τ)
.

(ii) If µ < γ, γ − 1/p = µ− 1/q, and u ∈ Hγp,θ(τ), then

E

∫ τ

0

||M−1u(t, ·)||p
Hµ
q,θq/p

dt ≤ N(d, γ, µ, p)||u||p
Hγ
p,θ

(τ)
.

In order to prove the solvability even of the simplest equations we need the fol-
lowing embedding theorem. However, the way in which the right-hand side of (2.4)
depends on T will not be used.

Theorem 2.11. Let T ∈ (0,∞) be a constant and let τ ≤ T . Then for any
function u ∈ Hγp,θ,0(τ), we have

E sup
t≤τ
||u(t, ·)||p

Hγ−1
p,θ

≤ N(p, θ, γ)T (p−2)/p||u||p
Hγ
p,θ

(τ)
.(2.4)

To prove this theorem we use the following fact, which is similar to Remark 2.2
of [5] or Remark 4.11 of [8].

Lemma 2.12. Let T ∈ (0,∞) be a constant and let τ ≤ T . Let u ∈ Hγp,0(τ) and

du = f dt+ gk dwkt . Then for any constant c > 0,

E sup
t≤τ
||ux(t, ·)||p

Hγ−2
p
≤ N(p)T (p−2)/2(c||uxx||pHγ−2

p (τ)

+c−1||f ||pHγ−2
p (τ)

+ ||gx||pHγ−2
p (τ,l2)

).(2.5)
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Proof. As always, it suffices to prove (2.5) for any particular γ and τ = T
(regarding τ see, for instance, the proof of Theorem 7.1 in [8]). We take γ = 2. Then
(2.5) becomes

E sup
t≤T
||ux(t, ·)||pLp ≤ N(p)T (p−2)/2(c||uxx||pLp(T )

+c−1||f ||pLp(T ) + ||gx||pLp(T,l2)).(2.6)

It suffices to prove this inequality for c = 1. Indeed, for any constant a > 0 we have
du(t, ax) = f(t, ax) dt+ gk(t, ax) dwkt and if (2.6) holds with c = 1, then

ap−1E sup
t≤T
||ux(t, ·)||pLp = E sup

t≤T
||(u(t, a ·))x||pLp

≤ NT (p−2)/2(||(u(·, a ·))xx||pLp(T ) + ||f(·, a ·)||pLp(T ) + ||(g(·, a ·))x||pLp(T,l2))

= NT (p−2)/2(a2p−1||uxx||pLp(T ) + a−1||f ||pLp(T ) + ap−1||gx||pLp(T,l2)).

This proves (2.6) with ap in place of c.
We further transform (2.6) with c = 1 by denoting v = ux and hk = gkx, so that

dv = fx dt+ hk dwkt and v ∈ H1
p,0(T ). We see that we only need to prove that

E sup
t≤T
||v(t, ·)||pLp ≤ N(p)T (p−2)/2(||vx||pLp(T )

+||f ||pLp(T ) + ||h||pLp(T,l2)).(2.7)

By Theorem 2.1 of [5] or Theorem 4.10 of [8] and by the observation that dv =
(vxx + (f − vx)x) dt+ hk dwkt , for any λ, T > 0 we have

E sup
t≤T

(e−pλt||v(t, ·)||pLp) ≤ N(||e−λtf̄ ||pLp(T ) + ||e−λth||pLp(T,l2)),

where N = N(p, λ) and f̄ = f − vx. For λ = 1/p this yields

E sup
t≤T
||v(t, ·)||pLp ≤ NeT (||f̄ ||pLp(T ) + ||h||pLp(T,l2)).

By using the self-similarity of the equation dv = (vxx + f̄x) dt + hk dwkt (that is,
by considering equations like (3.6)), for any constant c > 0 we get

E sup
t≤T
||v(c2t, c ·)||pLp ≤ NeT (||cf̄(c2t, c ·)||pLp(T ) + ||ch(c2t, c ·)||pLp(T,l2))

with N = N(p). Changing variables we obtain

E sup
t≤T
||v(t, ·)||pLp ≤ NeT/c

2

cp−2(||f̄ ||pLp(T ) + ||h||pLp(T,l2)).

For c2 = T this is even a little bit stronger than (2.7) and the lemma is proved.
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Proof of Theorem 2.11. For an appropriate ζ ∈ C∞0 (R+) we have

E sup
t≤τ
||u(t, ·)||p

Hγ−1
p,θ

≤ N
∞∑

n=−∞
enθE sup

t≤τ
||ζu(t, en ·)||p

Hγ−1
p

.(2.8)

Let du = fx dt+ gk dwkt . Then

d(ζ(x)u(t, enx)) = ζ(x)(fx)(t, enx) dt+ ζ(x)gk(t, enx) dwkt .

By Lemma 2.12 for un(t, x) := ζ(x)u(t, enx), fn(t, x) := ζ(x)(fx)(t, enx), gn(t, x) :=
ζ(x)g(t, enx), and c = e−np we have

E sup
t≤τ
||unx(t, ·)||p

Hγ−2
p
≤ NT (p−2)/2(e−np||unxx||pHγ−2

p (τ)

+enp||fn||pHγ−2
p (τ)

+ ||gnx||pHγ−2
p (τ,l2)

).(2.9)

To transform this inequality notice that all the functions un(t, x) as functions of x
have supports inside the support of ζ which is bounded. Therefore (see Remark 1.6),

||ζu(t, en ·)||Hγ−1
p

= ||un(t, ·)||Hγ−1
p
≤ N ||unx(t, ·)||Hγ−2

p
.

Furthermore, ||gnx||Hγ−2
p (l2) ≤ ||gn||Hγ−1

p (l2) and

∞∑
n=−∞

enθ||gn||pHγ−1
p (τ,l2)

≤ N ||g||pHγ−1
p,θ

(τ,l2)
≤ N ||u||p

Hγ
p,θ

(τ)
.

Also,

∞∑
n=−∞

en(θ+p)||fn||pHγ−2
p (τ)

=

∞∑
n=−∞

enθ||(M−1ζ)(MDf)(·, en ·)||pHγ−2
p (τ)

≤ N ||MDf ||pHγ−2
p,θ

(τ)
≤ N ||f ||pHγ−1

p,θ
(τ)
≤ N ||u||p

Hγ
p,θ

(τ)
,

∞∑
n=−∞

en(θ−p)||unxx||pHγ−2
p (τ)

≤
∞∑

n=−∞
en(θ−p)||un||pHγp(τ)

=
∞∑

n=−∞
enθ||(Mζ)(M−1u)(·, en ·)||pHγp(τ)

≤ N ||M−1u||pHγ
p,θ

(τ)
≤ N ||u||p

Hγ
p,θ

(τ)
.

By combining this with (2.9) and (2.8) we get (2.4). The theorem is proved.
As always the main role is played by the spaces Hγp,θ,0(τ) of functions with zero

initial conditions. In connection with this it is worth noting that while constructing
our theory we could replace

||u(0, ·)||p
Uγ+1
p,θ

:= E||M2/p−1u(0, ·)||p
H
γ+1−2/p

p,θ

(2.10)
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with

inf{||vx||pHγ+1
p,θ

+ ||M D̃v||pHγ−1
p,θ

+ ||S̃v||pHγ
p,θ

: u− v ∈ Hγ+1
p,θ,0}.

Such an axiomatic approach to defining a norm of u(0, ·) yields, of course, the solv-
ability results for the widest possible class of initial data, namely, for those which are
extendible at least in some way for t > 0. However, in applications we often want to
know how to describe “admissible” initial data by knowing only their analytic prop-
erties. A partial answer to this question is given in the following theorem, which also
shows why we use the norm given by (2.10).

Theorem 2.13. If 0 < θ < p and γ = 2 and 1 < p < ∞, then for every

u0 satisfying M2/p−1u0 ∈ H
γ−2/p
p,θ there exists a deterministic u ∈ Hγp,θ such that

du = D2u dt, u|t=0 = u0, and

||u||p
Hγ
p,θ

≤ N(p, γ, θ)||M2/p−1u0||p
H
γ−2/p

p,θ

.(2.11)

Proof. If u0 ∈ C∞0 (R+), then there is a unique function u(t, x) which is bounded
in R2

+ together with all its derivatives and which is a unique bounded solution of the
heat equation ∂u/∂t = D2u, t > 0 in R2

+ with initial condition u(0, x) = u0(x) and
boundary condition u(t, 0) = 0. Observe that u is given by u(t, ·) = pt ∗ ū0, where
pt(x) = (4πt)−1/2 exp(−|x|2/(4t)) and ū0 is an odd extension of u0 on R. By the way,
from this representation it follows that u(t, x)→ 0 exponentially fast as x→∞ and
the same is true for any derivative of u.

Next, we observe that ∂|u(t, x)|p/∂t = p|u|p−2uD2u, multiply this equality by xc,
with c := θ + 1− p ∈ (1− p, 1), and integrate by parts, and also use |u(t, x)| ≤ N |x|,
|u(t, x)|p−1xc ≤ Nxθ, |u(t, x)|pxc−1 ≤ Nxθ for x close to zero. Finally we fix T ∈
(0,∞) and find that∫

R+

xc|u(T, x)|p dx−
∫
R+

xc|u0(x)|p dx =

∫ T

0

∫
R+

pxc|u|p−2uD2u dxdt

(2.12)

= −c
∫ T

0

∫
R+

xc−1D(|u|p) dxdt− p(p− 1)I = c(c− 1)J − p(p− 1)I,

where

I :=

∫ T

0

∫
R+

xc|u|p−2(Du)2 dxdt, J :=

∫ T

0

∫
R+

xc−2|u|p dxdt.

To estimate I from below through J , denote v := |u|p/2 and observe that we have
|u|p−2(Du)2 = (2/p)2(Dv)2 and by Minkowski’s inequality∫ ∞

0

xc−2|u|p dx =

∫ ∞
0

xc−2v2 dx =

∫ ∞
0

xc
(∫ 1

0

v′(yx) dy

)2

dx

≤
(∫ 1

0

dy

(∫ ∞
0

xc(v′(yx))2 dx

)1/2
)2

=

∫ ∞
0

xc(v′(x))2 dx

(∫ 1

0

yb dy

)2

,



310 N. V. KRYLOV AND S. V. LOTOTSKY

where b = −1/2− c/2 > −1. By evaluating the last integral we get∫ ∞
0

xc−2|u|p dx ≤ p2(1− c)−2

∫ ∞
0

xc|u|p−2(Du)2 dx.(2.13)

Hence p(p− 1)I ≥ q−1(1− c)2J , where 1/q = 1− 1/p, and from (2.12) we get

[q−1(1− c)2 − c(c− 1)]J ≤
∫
R+

xc|u0(x)|p dx = ||M2/p−1u0||pLp,θ .(2.14)

Here Lp,θ ⊃ H2−2/p
p,θ with the corresponding inequality for the norms since 2−2/p > 0.

Also, one can easily check that q−1(1− c)2− c(c− 1) > 0 for 0 < θ < p and therefore,
after passing to the limit as T →∞, we obtain the following intermediate estimate:∫ ∞

0

||M−1u(t, ·)||pLp,θ dt ≤ N ||M2/p−1u0||p
H

2−2/p

p,θ

.(2.15)

An attentive reader might have noticed that the above derivation of (2.13) and
(2.15) falls into some trouble if 1 < p < 2. Indeed, then we get terms containing |u|
to a negative power and also the absolute continuity of v is not clear. However, the
following fact is true even if 1 < p < 2:

(i) the functions |u|p/2 and |u|p−2uux are absolutely continuous on R;
(ii) almost everywhere on R (∞ · 0 := 0)

(|u|p/2)x = p
2 |u|p/2−2uux,

(|u|p−2uux)x = |u|p−2uuxx + (p− 1)|u|p−2(ux)2.

Above we have only used this fact. However, we do not prove (i) and (ii). Instead,
we show how to get (2.15) for 1 < p < 2 by using an approximation argument.

For ε > 0 define Gε(s) = (s2 + ε)p/2 − εp/2. As it is easy to see, we have
|Gε(u)| ≤ (1 + εp/2)|u|p and, for |u| ≤ 1,

|G′ε(u)| = p(u2 + ε)p/2−1|u| ≤ N(ε)|u| ≤ N(ε)|u|p−1.

Also G′′ε ≥ 0. Hence, owing to ∂Gε(u)/∂t = G′ε(u)D2u and introducing

v(t, x) :=

∫ u(t,x)

0

(G′′ε (s))1/2 ds,

we get as above ∫
R+

xcGε(u(T, x)) dx−
∫
R+

xcGε(u0(x)) dx

= c(c− 1)

∫ T

0

∫
R+

xc−2Gε(u) dxdt−
∫ T

0

∫
R+

xc(v′)2 dxdt

≤ c(c− 1)

∫ T

0

∫
R+

xc−2Gε(u) dxdt− 4−1(1− c)2

∫ T

0

∫
R+

xc−2v2 dxdt.
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By letting ε ↓ 0, noticing that limε↓0G′′ε (s) = p(p − 1)|s|p−2 and c < 1, and using
Fatou’s lemma, we again arrive at (2.14) and (2.15).

Next, take a function ζ ∈ C∞0 (R+) and notice that for un(t, x) := u(e2nt, enx) we
have

∂

∂t
(ζun) = (ζun)xx − 2(ζxun)x + ζxxun.(2.16)

Hence by inequalities (IV.3.1) and (IV.3.2) in [9] (also see Remark 2.3.2 in [13]) for
any n we obtain ∫ ∞

0

||(ζun)xx(t, ·)||p
H−1
p
dt ≤ N ||ζun(0, ·)||p

H
1−2/p
p

+

∫ ∞
0

||((2ζxun)x − ζxxun)(t, ·)||p
H−1
p
dt.

We make the change of variable t replacing it with e2nt; then we multiply through
the inequality by e2n−np+θn and observe that by Remark 1.6

||(ζun)xx||H−1
p
≥ N ||(ζun)x||Lp ≥ N ||ζunx||Lp −N ||ζxun||Lp ,

where N = N(ζ, p). Also use the fact that

||(2ζxun)x − ζxxun||H−1
p
≤ 2||(ζxun)x||H−1

p
+N ||ζxxun||Lp ≤ N ||ηun||Lp ,

where N = N(ζ, p, η) and η is a more or less arbitrary function of class C∞0 (R+) with
support covering that of ζ.

Then we get∫ ∞
0

∑
n

eθn||ζux(t, en ·)||pLp dt ≤ N
∑
n

eθn||ξ(M2/p−1u0)(en ·)||p
H

1−2/p
p

+N

∫ ∞
0

∑
n

eθn||η1M
−1u(t, en ·)||pLp dt,

where ξ = M1−2/pζ and η1 is a function of type η. For the right choice of ζ we rewrite
the last inequality as∫ ∞

0

||ux(t, ·)||pLp,θ dt ≤ N ||M2/p−1u0||p
H

1−2/p

p,θ

+N

∫ ∞
0

||M−1u(t, ·)||pLp,θ dt.(2.17)

Next, we use (2.16) and inequalities (IV.3.1) and (IV.3.2) in [9] to write∫ ∞
0

||(ζun)xx(t, ·)||pLp,θ dt ≤ N ||ζun(0, ·)||p
H

2−2/p
p

+

∫ ∞
0

||((2ζxun)x − ζxxun)(t, ·)||pLp,θ dt.
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If η1 and η2 are functions of class C∞0 (R+) with supports covering that of ζ, then, for
the same reasons as before, this inequality yields∫ ∞

0

||ζunxx(t, ·)||pLp,θ dt ≤ N ||ζun(0, ·)||p
H

2−2/p
p

+

∫ ∞
0

||η1unx(t, ·)||pLp,θ dt+

∫ ∞
0

||η2un(t, ·)||pLp,θ dt,

and ∫ ∞
0

||Muxx(t, ·)||pLp,θ dt ≤ N ||M2/p−1u0||p
H

2−2/p

p,θ

+N

∫ ∞
0

||ux(t, ·)||pLp,θ dt+N

∫ ∞
0

||M−1u(t, ·)||pLp,θ dt.

Together with (2.15), (2.17), and the equation ∂u/∂t = M−1(Muxx) the last inequal-
ity implies that u ∈ H2

p,θ and that (2.11) holds with γ = 2.

Actually, above we have constructed a mapping u0 ∈ C∞0 (R+)→ u ∈ Hγp,θ. If we
introduce an operator Π : u0 → u, then what is proved means that (for γ = 2)

||Πu0||Hγ
p,θ
≤ N(p, θ)||M2/p−1u0||Hγ−2/p

p,θ

(2.18)

if u0 ∈ C∞0 (R+). Remembering that Hγp,θ is a Banach space and relying on the
usual continuity argument based on (2.18), we see that Π can be extended on all u0

satisfying M2/p−1u0 ∈ Hγ−2/p
p,θ in such a way that ∂Πu0/∂t = D2Πu0, Πu0|t=0 = u0,

and (2.18) holds. The theorem is proved.
Remark 2.14. We will see from Theorem 3.2 that Theorem 2.13 holds for any

γ ∈ R and the solution is unique in Hγp,θ.
In connection with this it is interesting to notice that Theorem 2.13 without

weights and on R instead of R+ cannot hold for all 1 < p < 2 if γ = 1. For instance,
if 1 < p < 3/2, then, for the solution u of the equation du = D2u dt, t > 0, x ∈ R,

with initial condition given by the delta function, we have u(0, ·) ∈ H1−2/p
p , but the

pth power of the function ux is not integrable over R+ × R.

3. SPDEs with constant coefficients on R+. Take a stopping time τ . On
R+ we will be dealing with the following equation:

du = (auxx + fx) dt+ (σkux + gk) dwkt , t ∈ (0, τ),(3.1)

where f and gk are given D(R+)-valued P-measurable functions, a and σk are given
real-valued P-measurable functions, u is an unknown D(R+)-valued function, and the
equation is understood in the sense of distributions as follows. We say that u is a
solution of (3.1) with given initial condition u0 if for any test function φ ∈ C∞0 (R+)
we have

(u(t, ·), φ) = (u0, φ)

+

∫ t

0

[a(s)(u(s, ·), φxx)− (f(s, ·), φx)] ds

+
∞∑
k=1

∫ t

0

[−σk(s)(u, φx) + (gk, φ)] dwkt(3.2)
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for all t ≤ τ with probability one, where all integrals are assumed to have sense and
the last series is also assumed to converge uniformly on each interval of time [0, T ∧ τ ]
in probability, where T is any finite constant.

Remark 3.1. If a function u belongs to Hγ+1
p,θ (τ), then it satisfies (3.1) with

f = (MD)−1M D̃u − aDu and gk = S̃ku − σkDu. In addition (see Remark 1.5),
we have f ∈ Hγp,θ(τ) and g ∈ Hγp,θ(τ, l2). Below we show that under an additional
assumption on a and σ the mapping u→ (f, g) is onto.

We always assume that for some constants K ≥ δ > 0 and all ω, t we have

K ≥ 2a ≥ 2a− |σ|2l2 ≥ δ.
Here is the main result of this section.
Theorem 3.2. (i) Let 0 < θ < p, 1 < p <∞, γ ∈ R, f ∈ Hγp,θ(τ), g ∈ Hγp,θ(τ, l2),

and u0 ∈ Uγ+1
p,θ . (ii) Assume that one of the following conditions is satisfied:

(a) p ≥ 2 and θ ∈ [p− 1, p);
(b) p ≥ 2 and σ ≡ 0;
(c) σ ≡ 0 and g ≡ 0.
Then (3.1) with initial data u0 has a unique solution in class Hγ+1

p,θ (τ). In addition,
for this solution it holds that

||u||Hγ+1
p,θ

(τ) ≤ N
(||f ||Hγ

p,θ
(τ) + ||g||Hγ

p,θ
(τ,l2) + ||u0||Uγ+1

p,θ

)
,(3.3)

where N = N(γ, θ, p,K, δ). Finally, the uniqueness holds even if we replace condition
(a) with: p ≥ 2 and θ ∈ (0, p).

Remark 3.3. In a subsequent paper on equations in Rd+ we will show that con-
dition (a) can be relaxed to be p ≥ 2 and 1 ≤ θ < p. This could be done here too if
one uses interpolation with respect to θ and the result of [7], where the case θ = 1 is
treated. However, there is a small gap in the arguments proving (2.9) of [7], so that
strictly speaking we cannot use the result of [7].

Remark 3.4. Notice that when conditions (b) or (c) are satisfied, θ may be any
number in (0, p).

It is also worth noting that if θ ≥ p or θ ≤ 0, then the statement of Theorem 3.2
is false even in the case of the heat equation. This can be shown by simple examples.

The proof of this theorem is based on two lemmas, the first of which we prove in
section 4.

Lemma 3.5. Theorem 3.2 holds if γ = 1.
Lemma 3.6. Let assumption (i) of Theorem 3.2 be satisfied and let µ ≤ γ. Assume

that either p ≥ 2 or σ ≡ g ≡ 0. Let θ1 ∈ R and let u ∈ Hµ+1
p,θ1

(τ) be a solution of (3.1)

with initial condition u0. Assume that M−1u ∈ Hµ+1
p,θ (τ). Then u ∈ Hγ+1

p,θ (τ) and

||u||Hγ+1
p,θ

(τ) ≤ N
(||f ||Hγ

p,θ
(τ) + ||g||Hγ

p,θ
(τ,l2) + ||ux||Hµ

p,θ
(τ) + ||u0||Uγ+1

p,θ

)
,

where N = N(γ, µ, θ, p).
Proof. For simplicity of notation we will only consider the case τ ≡ ∞. The

reader can easily make the necessary changes for general τ .
By virtue of (3.2) we have (2.2) with x(auxx + fx) instead of f and σkux + gk

instead of gk. Upon taking into account the assumptions on f and g and remembering
Remark 1.5, we conclude that we only need to prove that

||ux||pHγ
p,θ

≤ N(||f ||pHγ
p,θ

+ ||g||pHγ
p,θ

(l2)
+ ||ux||pHµ

p,θ

+ ||u0||pUγ+1
p,θ

).(3.4)
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Since ||ux||Hν
p,θ
≤ ||ux||Hµ

p,θ
for ν ≤ µ, it suffices to prove (3.4) with some ν ≤ µ

in place of µ. This shows that we may assume that γ − µ is an integer. Also we can
go from µ up to γ in several steps each time getting an increase by one. Therefore,
without loss of generality we may and will assume that γ = µ + 1, so that (3.4)
becomes

||ux||pHγ
p,θ

≤ N(||f ||pHγ
p,θ

+ ||g||pHγ
p,θ

(l2)
+ ||ux||pHγ−1

p,θ

+ ||u0||pUγ+1
p,θ

).(3.5)

Take a function ζ ∈ C∞0 (R+) with Mζ satisfying condition (1.4). One can easily
check that the functions un(t, x) := u(e2nt, enx) satisfy the equation

dun = (anunxx + fn) dt+ (σknunx + gkn) dwkt (n),(3.6)

where

an(t) = a(e2nt), σkn(t) = σk(e2nt), wkt (n) = e−nwe2nt,

fn(t, x) = e2n(fx)(e2nt, enx), gkn(t, x) = engk(e2nt, enx).

Observe that for any n, the processes wkt (n) are independent Wiener processes. From
(3.6) we get

d(ζun) = (an(ζun)xx + f̄n) dt+ (σkn(ζun)x + ḡkn) dwkt (n),(3.7)

where

f̄n = ζfn − 2anζxunx − anζxxun, ḡkn = ζgkn − σknζxun.

Since M−1u ∈ Hγp,θ, it is easy to see that for any η ∈ C∞0 (R+) we have ηun ∈ Hγp
and ηunx ∈ Hγ−1

p , so that f̄n ∈ Hγ−1
p and ḡn ∈ Hγp(l2). By Theorem 2.1 of [5] or

Theorem 4.10 of [8] for p ≥ 2 (with uniqueness in Hγp(τ) and existence in Hγ+1
p (τ),

here we use ζun ∈ Hγp(τ)), (3.7) implies that

||(ζun)xx||pHγ−1
p
≤ N(||f̄n||pHγ−1

p
+ ||ḡn||pHγp(l2)

+ E||ζu0(en ·)||p
H
γ+1−2/p
p

),(3.8)

where u0n(x) = u0(enx). Actually, Theorem 2.1 of [5] or Theorem 4.10 of [8] treats
the case u0 = 0. One deals with arbitrary u0 as in the beginning of the proof of
Theorem 5.1 of [8] by just subtracting the solution of the heat equation ∂v/∂t = vxx
with initial condition u0. Owing to the fact that supports of all functions ζun coincide
with that of ζ, from (3.8) by Remark 1.6, we get

||ζun||pHγ+1
p
≤ N(||f̄n||pHγ−1

p
+ ||ḡn||pHγp(l2)

+ E||ζu0(en ·)||p
H
γ+1−2/p
p

).(3.9)

The same conclusions are true if 1 < p < 2 and σ ≡ g ≡ 0, which can be seen from
section 9, Chapter IV of [9] or from the proof of Theorem 2.1 of [5] or Theorem 4.10
of [8], where one can take any p ∈ (1,∞) if σ ≡ g ≡ 0. In particular, in all cases
ζun ∈ Hγ+1

p and (3.9) holds.
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Now we multiply (3.9) through by e(2−p+θ)n and sum up over all n. We also use

∞∑
n=−∞

e(2−p+θ)n||ζfn||pHγ−1
p

=
∞∑

n=−∞
e(2−p+θ)n||e2n(fx)(e2n ·, en ·)ζ||pHγ−1

p

=
∞∑

n=−∞
eθn||en(fx)(·, en ·)ζ||pHγ−1

p
=

∞∑
n=−∞

eθn||(Mfx)(·, en ·)M−1ζ||pHγ−1
p

≤ N ||Mfx||pHγ−1
p,θ

≤ N ||f ||pHγ
p,θ

,

∞∑
n=−∞

e(2−p+θ)n||ζgn||pHγp(l2)
=

∞∑
n=−∞

eθn||g(·, en ·)ζ||pHγp(l2)
≤ N ||g||pHγ

p,θ
(l2)

,

∞∑
n=−∞

e(2−p+θ)n||ζxunx||pHγ−1
p

=
∞∑

n=−∞
e(2−p+θ)n||en(ux)(e2n ·, en ·)ζx||pHγ−1

p

=
∞∑

n=−∞
eθn||(ux)(·, en ·)ζx||pHγ−1

p
≤ N ||ux||pHγ−1

p,θ

,

∞∑
n=−∞

e(2−p+θ)n||ζxxun||pHγ−1
p

=

∞∑
n=−∞

eθn||(M−1u)(·, en ·)Mζxx||pHγ−1
p

≤ N ||M−1u||pHγ−1
p,θ

≤ N ||ux||pHγ−1
p,θ

.

Similarly, we estimate ζxun, we notice that∑
n

e(2−p+θ)nE||ζu0(en ·)||p
H
γ+1−2/p
p

=
∑
n

eθnE||(M2/p−1u0)(en ·)M1−2/pζ||p
H
γ+1−2/p
p

≤ NE||M2/p−1u0||p
H
γ+1−2/p

p,θ

= N ||u0||pUγ+1
p,θ

,

and we get

∞∑
n=−∞

e(2−p+θ)n||ζun||pHγ+1
p
≤ I,

where I is the right-hand side of (3.5). Here the left-hand side equals

∞∑
n=−∞

eθn||(M−1u)(·, en·)Mζ||pHγ+1
p
≥ N−1||M−1u||pHγ+1

p,θ

≥ N−1||ux||pHγ
p,θ

and the lemma is proved.
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Proof of Theorem 3.2. For simplicity of notation we only consider the case τ ≡ ∞.
Actually, as it is easy to see, the statement of existence for τ ≡ ∞ implies the
statement of existence for other τ , and the proof of uniqueness for general τ can be
done in the same way as in the case τ ≡ ∞.

Case γ ≥ 1. The uniqueness follows from Lemma 3.5 and the fact that H2
p,θ,0 ⊃

Hγ+1
p,θ,0, which implies that the difference of two solutions belongs to H2

p,θ,0. The exis-
tence and estimate (3.3) follow from Lemmas 3.5 and 3.6 (applied with µ = 1) and
the observation that by Lemma 3.5

||ux||pH1
p,θ

≤ N(||f ||pH1
p,θ

+ ||g||pH1
p,θ

(l2)
+ ||u0||pU2

p,θ

)

≤ N(||f ||pHγ
p,θ

+ ||g||pHγ
p,θ

(l2)
+ ||u0||pUγ+1

p,θ

).

Case γ < 1. Denote by R the operator which maps (f, g, u0) with f ∈ Hγp,θ,
g ∈ Hγp,θ(l2), and u0 ∈ Uγ+1

p,θ into the solution u ∈ Hγ+1
p,θ of (3.1) with initial data u0.

So far we know that R is well defined in spaces Hγp,θ ×Hγp,θ(l2)× Uγ+1
p,θ for γ ≥ 1. If

γ < 1, as a candidate for the solution of (3.1) we try

ũ = Λnp,θR(Λ−np,θf,Λ
−n
p,θg,M

1−2/pΛ−np,θM
2/p−1u0),

where n+ γ ≥ 1 and (see Remark 1.3)

(Λ−np,θf,Λ
−n
p,θg,M

1−2/pΛ−np,θM
2/p−1u0) ∈ Hn+γ

p,θ ×Hn+γ
p,θ (l2)× Un+γ+1

p,θ .

If the operators Λp,θ, M
2/p−1, and D were commuting, then our candidate would

be an exact solution of (3.1). Since this is not the case, we need an additional argument
based on Lemma 1.14.

Take n = 2 and first let 1 > γ ≥ 0. Then by what we know in the case γ ≥ 1, we
have

v := R(Λ−2
p,θf,Λ

−2
p,θg,M

1−2/pΛ−2
p,θM

2/p−1u0) ∈ Hγ+3
p,θ ,

dv = (avxx + (Λ−2
p,θf)x) dt+ (σkvx + Λ−2

p,θg
k) dwkt .

We apply Λ2
p,θ to both parts of this equality, or in other words we substitute (Λ2

p,θ)
∗φ,

where (Λ2
p,θ)
∗ is the formal adjoint to Λ2

p,θ, in place of φ in (3.2). Now our candidate
becomes

ũ = Λ2
p,θv.

We claim that ũ belongs to Hγ+1
p,θ and there exists

(f̄ , ḡ, ū0) ∈ Hγ+1
p,θ ×Hγ+1

p,θ (l2)× Uγ+2
p,θ(3.10)

such that

dũ = (aũxx + fx + f̄x) dt+ (σkũx + gk + ḡk) dwkt ,(3.11)

ũ(0, ·) = u0 + ū0.
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Indeed, by Remarks 2.4 and 2.8 and Lemma 1.14 we easily get that

ũ ∈ Hγ+1
p,θ , M−1v ∈ Hγ+3

p,θ , M−1ũ = Λ2
p,θM

−1v + P1M
−1v ∈ Hγ+1

p,θ ,

Dũ = Λ2
p,θDv + P1Dv ∈ Hγp,θ

and that ũ satisfies (3.11) with

f̄ = 4P2M
−1v + ((2b− 1)I + 2MD)Λ−2

p,θf, ḡk = σkP1Dv.

Obviously, f̄ and ḡ are as in (3.10). Also by Lemma 1.14 at t = 0,

M2/p−1ũ = M2/p−1Λ2
p,θM

1−2/p(M2/p−1v)

= Λ2
p,θM

2/p−1v + c1M
2/p−1v + c2MDM2/p−1v =: M2/p−1u0 +M2/p−1ū0,

where

M2/p−1ū0 ∈ Lp(Ω,F0, H
γ+2−2/p
p,θ ).

This finishes the proofs of (3.10) and our claim.
Since γ + 1 ≥ 1, it follows from (3.10) that the function ū := R(f̄ , ḡ, ū0) is well

defined, belongs to Hγ+2
p,θ , and the function u = ũ − ū is of class Hγ+1

p,θ and solves
(3.1). For thus constructed u estimate (3.3) follows from the explicit representation
and known estimates for R, Pi, MD.

By repeating the above argument, we consider the case 0 > γ ≥ −1, this time
using the fact that γ+ 1 ≥ 0 and relying upon the result for γ ≥ 0. One can continue
in the same way, and it only remains to prove the uniqueness of solutions in Hγ+1

p,θ .
It suffices to consider the case f = 0, g = 0, u0 = 0 (and γ < 1). In this case any

solution u ∈ Hγ+1
p,θ,0 also belongs to H2

p,θ,0 by Lemma 3.6 and its uniqueness follows
from Lemma 3.5.

The theorem is thus proved.
Remark 3.7. In the above argument one can use (MD)2 instead of Λ2

p,θ, which

would make the argument shorter. We prefer Λ2
p,θ bearing in mind a generalization

to a multidimensional case.
Remark 3.8. From the above derivation of Theorem 3.2 from Lemma 3.5 it is

seen that, if the assertions of Theorem 3.2 hold for some particular γ, p, θ, a, and σ
satisfying the conditions of Theorem 3.2, then they hold for any γ ∈ R with the same
p, θ, a, σ.

4. Proof of Lemma 3.5. First notice that by Theorem 2.13 for almost every ω
the function ū := Πu0 is well defined, ū ∈ H2

p,θ, ū|t=0 = u0, ∂ū/∂t = f̄x with f̄ ∈ H1
p,θ,

and an appropriate estimate of ||ūx||H1
p,θ

and ||f̄ ||H1
p,θ

through ||u0||U2
p,θ

holds. This

implies that in the equation

du = (auxx + (aūx + f − f̄)x) dt+ (σkux + (σkūx + gk)) dwkt

we have aūx + f − f̄ ∈ H1
p,θ and σūx + g ∈ H1

p,θ(l2). Also, obviously if we can solve

the above equation in H2
p,θ,0, then by adding to the solution the function ū we get a

solution of (3.1) with initial data u0. Therefore, in the proof of Lemma 3.5 without
loss of generality, we may and will confine ourselves only to the case u0 ≡ 0.
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Furthermore, we may assume that a ≡ 1. Indeed, to get the result for the general
case one only needs to use a random time change. Namely, let us define

ψ(t) =

∫ t

0

a(s)ds, τ(t) = inf{s ≥ 0 : ψ(s) ≥ t},

w̃k(t) =

∫ τ(t)

0

√
a(s)dwk(s), f̃(t, x) = f(τ(t), x)/a(τ(t)),

σ̃(t) = σ(τ(t))/
√
a(τ(t)), g̃(t, x) = g(τ(t), x)/

√
a(τ(t)),

ũ(t, x) = u(τ(t), x).

Direct computations (see, for instance, Lemma IV.2.2 and Theorem IV.2.3 in [3])
show that w̃k(t) are independent Wiener processes and also that u is a solution of
(3.1) if and only if ũ is a solution of

dũ = (ũxx + f̃) dt+ (σ̃kũx + g̃k) dw̃k(t).

Therefore, we easily get the desired result for general a from the result for a ≡ 1.
Finally, obviously we may assume that τ ≤ T where the constant T < ∞. Thus, we
may and will assume that u0 = 0, a ≡ 1, and unless stated explicitly otherwise τ ≤ T .

We divide the proof of the lemma in this case into the following subcases:
1. p ≥ 2 and θ ∈ [p− 1, p), existence;
2. p ≥ 2 and θ ∈ (0, p), uniqueness;
3. p ≥ 2 and σ ≡ 0;
4. σ ≡ 0 and g ≡ 0.

4.1. Case p ≥ 2 and θ ∈ [p− 1, p). Existence. We use the following simple
lemma.

Lemma 4.1. Let functions f, h be defined on R+, be locally absolutely continuous,
and satisfy ∫ ∞

0

|f(x)g(x)| dx <∞.(4.1)

Then ∫ ∞
0

xf(x)g′(x) dx = −
∫ ∞

0

xf ′(x)g(x) dx−
∫ ∞

0

f(x)g(x) dx

if at least one of the sides of this equality makes sense.
This fact easily follows if one integrates by parts between a, b with 0 < a < b <∞

and then lets a ↓ 0 and b→∞ after noticing that (4.1) implies that

lim inf
a↓0

|af(a)g(a)| = lim inf
b→∞

|bf(b)g(b)| = 0.

Denote by E the collection of functions of the form

f(t, x) =

m∑
i=1

I |(τi−1,τi]]
(t)fi(x),
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where fi ∈ C∞0 (R+) and τi are stopping times, τi ≤ τi+1 ≤ τ . The set E is dense
in H1

p,θ(τ), which follows from a similar fact for spaces Hγp (see [5] or [8]) and the

definition of Hγp,θ(τ). Also, the collection of sequences g = (gk), such that each gk
belongs to E and only finitely many of gk are different from 0, is dense in H1

p,θ(τ, l2).
It follows that in the proof of existence and estimate (3.3) we may assume that f and
g are of this type.

Next, we use an argument from [7]. We continue f(t, x) to be an even function
and g(t, x) to be an odd function of x ∈ R. Also take an infinitely differentiable odd
function α(x) such that α(x) = 1 for large x, α(x) = 0 for |x| ≤ 2 and on R consider
the equation

du = (uxx + fx) dt+ (ασkux + gk) dwkt .(4.2)

The following lemma is proved in the end of this subsection.
Lemma 4.2. In H0

p(τ) there exists a unique solution u of (4.2) with zero initial
condition. Moreover, u ∈ H0

p,θ(τ) and

||u||H0
p,θ

(τ) ≤ N ||f ||H1
p,θ

(τ) +N ||g||Lp,θ(τ,l2),(4.3)

where N is independent of τ , f , and g.
Now notice that the equation

du = (uxx + fx) dt+ (αnσ
kux + gk) dwkt ,(4.4)

where αn(x) = α(enx), also has a solution u ∈ H0
p,θ(τ) for which (4.3) holds with

the same N . To prove this, it suffices to use scaling properties of the norms in
Hγ
p,θ (see Remark 1.4) and to observe that if u is a solution of (4.2), then the function

un(t, x) = u(e2nt, enx) satisfies (3.6) with the same fn, gn, and wt(n) and with an = 1
and σn(t) = α(enx)σ(e2nt).

Denote un the solution of (4.4). Then un satisfies (4.3) and, in particular, M−1un
form a bounded sequence in Lp,θ(τ). Denote u a weak limit of a subsequence of un.
As in the proof of Theorem 3.11 of [8] we get that u ∈ H0

p,θ(τ). Then passing to the
limit in (4.4) and observing that α(enx) → 1 for x > 0, we get that u satisfies (3.1)
and estimate (4.3). It follows from Lemma 3.6 that u ∈ H2

p,θ(τ) and (3.3) holds with
γ = 1 and u0 = 0. This finishes the proof of existence.

Proof of Lemma 4.2. The existence and uniqueness of solution u ∈ H1
p(τ) of (4.2)

is asserted in Theorem 3.2 of [5] or Theorem 5.1 of [8]. Therefore, we only need to
prove that u ∈ H0

p,θ(τ) and that (4.3) holds.

By the definition of the norm in Hγp,θ(τ) and by Remarks 2.4 and 2.7, it is sufficient

to show that M−1u ∈ Lp,θ(τ) and

||M−1u||pLp,θ(τ) ≤ N ||f ||pH1
p,θ

(τ)
+N ||g||pLp,θ(τ,l2).(4.5)

Owing to our choice of f and g, from [5] or [8] we know that u ∈ Hγp(τ) for any
γ and, in particular, for almost any ω, the function u(t, x) is infinitely differentiable
with respect to x and all its derivatives are continuous in t. This implies that (4.2)
holds pointwise (a.s.). In addition, by uniqueness the function u(t, x) is odd with
respect to x, so that, in particular, u(t, 0) = 0.

Again by choice of f and g, the function u satisfies the heat equation ut = uxx for
0 < x < 2 with zero initial and zero boundary value for x = 0. If we set u(t, x) = 0
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for t < 0, then it satisfies the heat equation for all t ≤ T and 0 < x < 2. For such
functions it is well known (see, for instance, the maximum principle and Theorem
8.4.4 in [4]) that for any integer n ≥ 0,

sup
0<x<1,t≤T

|Dnu(t, x)| ≤ N(n) sup
t≤T
|u(t, 2)|.

Therefore, for θ > 0,

E

∫ τ

0

∫ 1

0

|u/x|pxθ−1 dxdt ≤ NE sup
0<x<1,t≤T

|ux|p ≤ NE sup
t≤τ
|u(t, 2)|p.

In addition, as has been mentioned above, we have u ∈ Hγp(τ) for any γ. By embedding
theorems (see [5] or [8])

E sup
[0,τ ]×R+

|u|p <∞,

which proves that, for any θ > 0, we have M−1uη ∈ Lp,θ(τ) if η = η(x) is smooth
and vanishes for x ≥ 1. In the same way it is proved that for any integer n ≥ 0 and
θ > 0,

E

∫ τ

0

∫ 1

0

|Dnu|pxθ−1 dxdt <∞.(4.6)

On the other hand, |M−1u|pxθ−1 ≤ |u|p if x ≥ 1 and θ ≤ p+ 1. Hence, M−1u ∈
Lp,θ(τ) not only for θ ∈ [p− 1, p) but for all θ ∈ (0, p+ 1].

Next, we claim that, actually, for any θ ∈ (0, p+ 1] and γ ≥ 0, we have

u ∈ Hγp,θ(τ).(4.7)

To prove this claim, let ζ ∈ C∞(R) be such that ζ(x) = 1 for x ≤ 1/2 and
ζ(x) = 0 for x ≥ 1. We want to apply Theorem 1.10 to prove that ζu ∈ Hγp,θ(τ).

Notice that we already know that M−1ζu ∈ Lp,θ(τ). Also from (4.6) it follows that
MnDn(ζu)x ∈ Lp,θ for any integer n. Hence the inclusion ζu ∈ Hγp,θ(τ) follows indeed
from Theorem 1.10.

To prove the claim it only remains to prove that v := (1−ζ)u ∈ Hγp,θ(τ). Observe
that u ∈ Hγp(τ) and v ∈ Hγp(τ) for any γ. Also, v satisfies

dv = (vxx + f̄) dt+ (ασkvx + ḡk) dwkt ,(4.8)

where

f̄ = (1− ζ)fx + 2ζxux + ζxxu, ḡk = (1− ζ)gk + ασkζxu.

Now, consider the following equation on R:

dũ = (ũxx − 2ũx tanhx+ (2 tanh2 x− 1)ũ+ f̄ coshx) dt

+(ασkũx − ασkũ tanhx+ ḡk coshx) dwkt ,

with zero initial condition. Because of compactness of supports of f̄ and ḡ, by already
cited results from [5] or [8] there is a unique solution ũ in class Hγp(τ) for any γ. Of
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course, ũ/ coshx ∈ Hγp(τ) for any γ. In addition, one can easily check that ũ/ coshx
satisfies (4.8). By the uniqueness of solutions of (4.8) in class Hγp(τ), we conclude
that v = ũ/ coshx and, in particular, v coshx ∈ Hγp(τ) for any γ. Now the fact that
v ∈ Hγp,θ(τ) for any γ follows easily from the observation that v = 0 if x ≤ 1 and
xn/ coshx is bounded.

Next we remember that (4.2) holds pointwise and we apply Itô’s formula to
|u(t, x)|pxc, where c = θ + 1− p. We get that, for any x ∈ R+ and t ≤ τ , a.s.∫ t

0

I(s, x) ds+
∑
k

∫ t

0

pxc|u|p−2u(ασkux − gk) dwks = |u(t, x)|pxc ≥ 0,(4.9)

where

I := pxθ−1G(v)(xuxx) + pxθ−1G(v)(xfx) + bxθ−1
∑
k

|v|p−2(ασkux − gk)2,

b := p(p− 1)/2, v := u/x, G(r) := |r|p−2r.

It follows that for any x ∈ R+ there is a sequence of stopping times τ(n) ↑ τ localizing
the stochastic integral in (4.9) so that

E

∫ τ(n)

0

I(s, x) ds ≥ 0.(4.10)

It turns out that for almost any x ∈ R+, here one can replace τ(n) with τ and integrate
with respect to x over R+. To prove this it suffices to prove that

E

∫ τ

0

∫
R+

|I(s, x)| dxds <∞.(4.11)

Observe that (4.7) for γ = 2 means that

M−1u, ux, Muxx ∈ Lp,θ(τ),(4.12)

which implies (4.11) since by Hölder’s inequality

E

∫ τ

0

∫ ∞
0

|G(v)| |xuxx|xθ−1 dxdt

= E

∫ τ

0

∫ ∞
0

|u(t, x)/x|p−1|xuxx(t, x)|xθ−1 dxdt

≤ ||M−1u||p−1
Lp,θ(τ)||Muxx||Lp,θ(τ),

E

∫ τ

0

∫ ∞
0

|G(v)| |xfx|xθ−1 dxdt ≤ ||M−1u||p−1
Lp,θ(τ)||Mfx||Lp,θ(τ),

E

∫ τ

0

∫ ∞
0

|v|p−2|ux|2xθ−1 dxdt ≤ ||M−1u||p−2
Lp,θ(T )||ux||2Lp,θ(τ),

E

∫ τ

0

∫ ∞
0

|v|p−2|g|2l2xθ−1 dxdt ≤ ||M−1u||p−2
Lp,θ(τ)||g||2Lp,θ(τ,l2).
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Having thus proved (4.11), from (4.10) we conclude

E

∫ τ

0

∫
R+

I(s, x) dxds ≥ 0.(4.13)

While estimating the integral with respect to x in (4.13) we integrate by parts after
noticing that (4.12) also implies that

E

∫ τ

0

∫ ∞
0

|G(u)||ux|xθ−1 dxdt <∞.

By Lemma 4.1 for almost all (ω, t) ∈ |(0, τ ]] we get

p

∫ ∞
0

xθ−1G(v)(xuxx) dx = p

∫ ∞
0

xcG(u)uxx dx

= −p(p− 1)

∫ ∞
0

|u|p−2|ux|2xc dx− c
∫ ∞

0

xc−1(|u|p)x dx

= −p(p− 1)

∫ ∞
0

|u|p−2|ux|2xc dx+ c(c− 1)

∫ ∞
0

|M−1u|pxθ−1 dx.

Furthermore, ∣∣∣∣∫ ∞
0

xθ−1G(v)(xfx) dx

∣∣∣∣ ≤ ||v||p−1
Lp,θ
||Mfx||Lp,θ

≤ ε||M−1u||pLp,θ +N(ε, p)||f ||p
H1
p,θ

,

where ε > 0 is arbitrary. Finally, while estimating the terms in (4.13) which came
from stochastic integrals we also use

(ασkux − gk)2 ≤ (1 + ε)|σk|2|ux|2 + (1 + ε−1)|gk|2.

Then from (4.13) we conclude that for any ε > 0,

p(p− 1)E

∫ τ

0

∫ ∞
0

[(1 + ε)|σ|2l2/2− 1]|u|p−2|ux|2xc dxdt

+[(θ + 1− p)(θ − p) + ε]E

∫ τ

0

∫ ∞
0

|M−1u|pxθ−1 dxdt

+N(ε, p)(||f ||pH1
p,θ

(τ)
+ ||g||pLp,θ(τ,l2)) dxdt ≥ 0.(4.14)

Now comes the only place where we need θ ∈ [p − 1, p). This condition implies
that (θ + 1− p)(θ − p) ≤ 0. Also |σ|2l2 ≤ 2− δ. By using (2.13) we conclude that the
first term in (4.14) is strong enough if ε is small and (4.14) implies (4.5). This brings
the proof of Lemma 4.2 to an end.
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4.2. Case p ≥ 2 and θ ∈ (0, p). Uniqueness. Suppose that u ∈ Hγp,θ(τ) is a
solution of

du = uxx dt+ σkux dw
k
t(4.15)

with zero initial condition. By Lemma 3.6 it follows that u ∈ Hγp,θ(τ) for all γ and
also uζ ∈ Hγp(τ) for all ζ ∈ C∞0 (R+). Hence we again have (4.12) and the equation
is satisfied pointwise. For θ ∈ [p − 1, p), this makes it possible to estimate the norm
||u||H0

p,θ
(τ) using the same computations as in Lemma 4.2. Since now f = gk = 0, the

result is ||u||H1
p,θ

(τ) = 0.

Next notice that, for any θ ∈ (0, p), there exists θ1 ∈ (p − 1, p) such that θ <
θ1 < θ+ p. Also as above, for any γ any solution of (4.15) in Hγp,θ(τ) with zero initial

condition also belongs to H1
p,θ(τ). Hence, the following result implies the uniqueness

for general θ ∈ (0, p).
Lemma 4.3. Let γ, θ1, and p be such that the first two assertions of Theorem 3.2

hold for u0 ≡ 0, any stopping time τ , and these γ, θ1, and p (for instance, γ = 1,
θ1 ∈ [p− 1, p), and p ≥ 2). Let q ≥ p, θ 6= 0, and θ 6= q satisfy θ/q < θ1/p ≤ θ/q + 1.
Let τ be a stopping time and u ∈ H1

q,θ,0(τ) satisfy (3.1) with some f ∈ Lp,θ1(τ) and

g ∈ Lp,θ1(τ, l2). Then u ∈ H1
p,θ1,0

(τ).
Proof. By Remark 3.8 we may assume that γ = 0. Let v be the unique solution

of (3.1) in H1
p,θ,0(τ) with given f and g. To prove the lemma we prove that u = v.

Let κ be an infinitely differentiable function such that κ(x) = 1 for |x| ≤ 1 and
κ(x) = 0 for |x| ≥ 2. Define κn = κ(x/n).

First we prove that for any n,

uκn ∈ H1
p,θ1,0(τ).(4.16)

To this end observe that

E

∫ τ

0

∫ ∞
0

|(uκn)x|pxθ1−1 dxdt ≤ 2p−1E

∫ τ

0

∫ ∞
0

|uxκn|pxθ1−1 dxdt

+2p−1E

∫ τ

0

∫ ∞
0

|uκnx|pxθ1−1 dxdt,(4.17)

where by Hölder’s inequality the first term on the right is less than a constant times

E

∫ τ

0

∫ 2n

0

|uxx(θ−1)/q|pxθ1−1−(θ−1)p/q dxdt

≤
(
E

∫ τ

0

∫ 2n

0

|ux|qxθ−1 dxdt

)p/q
T 1−p/q

(∫ 2n

0

xc dx

)1−p/q
,

with

c = [θ1 − 1− (θ − 1)p/q]q/(q − p) =
qp

(q − p)
(
θ1

p
− θ

q

)
− 1.

Since c > −1, the first term on the right in (4.17) is finite. One can similarly treat
the second term after noticing that |uκnx| ≤ N |u/x| and u/x ∈ Lq,θ(τ). The same
argument yields uκn/x ∈ Lp,θ1(τ) and this proves (4.16).
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Now, let ū = u−v. By what we have just proved, ūκn belongs to H1
p,θ1,0

(τ). Also
ūκn satisfies the following equation similar to (3.7)

d(ūκn) = (a(ūκn)xx + f̄nx) dt+ (σk(ūκn)x + ḡkn) dwkt ,

where

f̄n(t, x) = a(t)

∫ ∞
x

[2κnx(y)ūx(t, y) + κnxx(y)ū(t, y)] dy

= −2aκnxū+ (MD)−1(Maκnxxū), ḡk = −σkκnxū.
Hence, by our assumptions and Remark 1.5

||ūκn||H1
p,θ1

(τ) ≤ N ||κnxū||Lp,θ1 (τ) +N ||Mκnxxū||Lp,θ1 (τ).(4.18)

Here, for instance, (κnx ≤ N/n)

||κnxū||pLp,θ1 (τ) ≤ Nn−pE
∫ τ

0

∫ 2n

n

|ū|pxθ1−1 dxdt

≤ NE
∫ τ

0

∫ 2n

n

|v/x|pxθ1−1 dxdt+Nnθ1−p−1E

∫ τ

0

∫ 2n

n

|u|p dxdt.

The first term on the right tends to zero as n → ∞ since v/x ∈ H0
p,θ1

(τ). To prove
the same for the second term use Hölder’s inequality to get that it is less than

NT 1−p/qnθ1−p−p/q
(
E

∫ τ

0

∫ 2n

n

|u|q dxdt
)p/q

≤ Nnc
(
E

∫ τ

0

∫ 2n

n

|u|qxθ−1 dxdt

)p/q
,(4.19)

where c = θ1 − p − p/q − (θ − 1)p/q ≤ 0 by virtue of θ1/p ≤ 1 + θ/q. Theorem 2.11
implies that the right-hand side of (4.19) tends to zero as n→∞.

In the same way using the fact that |Mκnxx| ≤ N/n we get that the second term
on the right in (4.18) tends to zero as well. Thus (use Theorem 2.11)

E sup
t≤τ

∫ ∞
0

|ū(t, x)|pxθ1−1 dxdt ≤ lim inf
n→∞ E sup

t≤τ
||ū(t, ·)κn||pH0

p,θ1

≤ N lim inf
n→∞ ||ūκn||

p
H1
p,θ1

(τ)
= 0.

The lemma is proved.

4.3. Case σ ≡ 0 and p ≥ 2. Uniqueness follows directly from section 4.2. To
prove existence notice that as has been emphasized in section 4.1 the only place where
we used θ ∈ [p − 1, p) is right after (4.14). But in our present situation σ ≡ 0 and
from (4.14) and (2.13) we conclude that

[p−1(p− 1)(p− θ)2 + (θ + 1− p)(p− θ) + ε]||M−1u||pLp,θ(τ)

≤ N(ε, p)(||f ||pH1
p,θ

+ ||g||pLp,θ(τ,l2)).(4.20)

Observe that the condition 0 < θ < p is equivalent to p−1(p − 1)(p − θ)2 + (θ + 1 −
p)(p − θ) > 0. Therefore, for ε small enough we again get (4.5). This takes care of
the existence.
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4.4. Case σ ≡ 0 and g ≡ 0. Actually, this is the case of the heat equation
without any stochastic terms. In this case Lemma 3.6 is available for any p > 1 and
as in section 4.1, to prove existence, it suffices to prove (4.5) for f as in section 4.1.
This time we get (4.20) with ε = 0 even for 1 < p < 2, which is proved by the same
approximating argument as in the proof of Theorem 2.13 right after (2.15). Hence,
we have existence.

The uniqueness is proved as in the beginning of section 4.2 observing that this
time we do not need condition θ ∈ [p− 1, p) to be satisfied and yet have (4.20).

This finishes the proof of Lemma 3.5.
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STABLE DETERMINATION OF A CRACK IN A PLANAR
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Abstract. We prove a stability estimate for the inverse problem of cracks under essentially
minimal regularity assumptions on the crack and on the background conductivity.
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1. Introduction. We consider the problem of determining a crack in an elec-
trically conducting body from current and voltage measurements at the boundary.
The mathematical theory for this inverse problem was initiated by A. Friedman and
M. Vogelius [F-V], who proved uniqueness theorems for a crack in a planar conductor.
Stability estimates were obtained in [A2], [A3], [DV] for the case of a single crack in
a homogeneous isotropic planar conductor. For an extended account on the results
for this problem and for further references the reader is referred to [A-DB], where a
three-dimensional theory for this problem is developed.

In this paper we prove a stability estimate for the determination of a crack in an
inhomogeneous planar conductor under essentially minimal regularity assumptions on
the (unknown) crack and on the (known) background conductivity.

We shall consider the conductor Ω as a simply connected bounded domain in the
plane with Lipschitz boundary. The conductivity within Ω is given by a bounded and
measurable tensor A which satisfies a uniform ellipticity condition. A crack σ in Ω
will be a simple open curve within Ω which we shall a priori assume to be Lipschitz.
Given a zero average function ψ on ∂Ω, representing the prescribed current density,
the electrostatic potential u in Ω will be, in the presence of the crack σ, the weak
solution of the following (direct) Neumann boundary value problem: div(A∇u) = 0 in Ω\σ,

A∇u · ν = 0 on either side of σ,
A∇u · ν = ψ on ∂Ω,

(1.1)

where ν denotes the unit normal with outward orientation when on ∂Ω.
The inverse problem consists of determining the crack σ from the voltage mea-

surements u|Σ, Σ being a portion of ∂Ω, corresponding to one or more prescribed
current densities ψ.

Notice that this model corresponds to the so-called case of a perfectly insulating
crack; let us stress here that our present method would enable us also to treat, with
analogous results, the so-called case of perfectly conducting cracks. For the sake of
brevity, we shall not discuss this case any further.
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As is well known since the work of A. Friedman and M. Vogelius, in order to
uniquely determine σ it is necessary to perform measurements for at least two different
choices ψ1, ψ2 of the current density ψ. We shall use here current densities ψ1, ψ2

analogous to those used in previous works on uniqueness [Br-V], [A-DV], [K-Se],
which can be viewed as general models of a two-electrode configuration in which one
electrode is kept fixed and the other is placed in two different locations. See the
following section 2 for details.

Our main result (Theorem 2.1) is that the crack σ depends continuously on the
boundary measurements at a rate which is of log–log type.

That is, we obtain a result which is comparable with those previously obtained for
the case of a homogeneous conductor. See the concluding remarks for further details.

The present approach, however, is different from the one in [A2], [A3], [DV], which
took advantage of the uniform conductivity by the use of special conformal transfor-
mations. Rather, it is closer to the approach used in [A-DV] to prove uniqueness of
multiple cracks in an inhomogeneous conductor, the main novelty here being the need
of stability estimates for a Cauchy problem for the elliptic equation in (1.1). In fact
we shall show that the Cauchy problem for such elliptic equations has a stability char-
acter analogous to the one for the Laplace equation regardless of the smoothness of
the coefficients. We shall prove this by a generalization of the classical method of har-
monic measure, Theorem 4.5. We believe that this result can have some independent
interest.

In section 2 we start by listing all the needed a priori assumptions and we state
our main Theorem 2.1.

In section 3 we collect results based on the connections between elliptic equations
in two variables, first-order Beltrami-type equations, and quasi-conformal mappings.
The principal result of this section is contained in Proposition 3.7 stating Hölder
continuity properties of the mappings f , f−1, where f is given by f = u + iv, u is a
solution to (1.1), and v is the associated stream function (i.e., a generalized harmonic
conjugate).

Section 4 contains a treatment of a Cauchy problem and its stability properties,
the main result for the rest of the paper being Proposition 4.1. Theorem 4.5 is instead
a result of general type possibly useful in other contexts.

Section 5 consists of the completion of the proof of Theorem 2.1 and some con-
cluding remarks.

2. The main theorem.

Prior information. For every z = x + iy ∈ C and for every r > 0 we denote
with Br(z) the disk with center z and radius r. As usual, we shall identify complex
numbers z = x+ iy ∈ C with points (x, y) ∈ R2.

If γ is a simple curve (which could be closed) and z0, z1 are two points of γ, we
define lengthγ(z0, z1) the length of the smallest arc in γ connecting z0 to z1.

If γ is a simple curve, r is a positive number, and z belongs to γ, we say that
γ ∩ Br(z) is a Lipschitz graph with norm M if there exists a system of Cartesian
coordinates (x, y) with origin in z, with respect to which one has

γ ∩Br(z) = {(x, y)|y = φ(x), x2 + y2 < r2},

where φ is a Lipschitz function on [−r, r] and ‖φ′‖L∞(−r,r) ≤M .
If γ is a simple open curve, r is a positive number and z is an endpoint of

γ, we say that γ ∩ Br(z) is a half Lipschitz graph with norm M if there exists a
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system of Cartesian coordinates (x, y) with origin in z such that with respect to these
coordinates one has

γ ∩Br(z) = {(x, y)|y = φ(x), 0 ≤ x ≤ r, x2 + y2 < r2},
where φ is a Lipschitz function on [0, r] and ‖φ′‖L∞(0,r) ≤M .

Let Ω be a bounded domain and d > 0; we denote

Ωd = {z ∈ Ω : dist(z, ∂Ω) > d}.(2.1)

Prior information on the domain. Let Ω be a bounded, simply connected
domain in R2 and let its boundary ∂Ω be a simple, closed curve satisfying, for given
positive constants L, δ, and M ,

(2.2)(a) perimeter of Ω ≤ L,
(2.2)(b) for every z ∈ ∂Ω; then ∂Ω ∩Bδ(z) is a Lipschitz graph with norm M .

Prior information on the crack. A crack σ in Ω will be a simple, open curve
in Ω such that

(2.3)(a) the length of σ is less than L;
(2.3)(b) the distance of σ from ∂Ω is ≥ δ;
(2.3)(c) if V1, V2 are the endpoints of σ, then for every i = 1, 2 σ ∩ Bδ(Vi) is a
half Lipschitz graph with norm M ; furthermore, for any z ∈ σ\(Bδ/2(V1)∪Bδ/2(V2)),
σ ∩Bδ/2(z) is a Lipschitz graph with norm M .

Prior information on the boundary data. Let γ0, γ1, γ2 be three fixed simple
arcs in ∂Ω, pairwise internally disjoint.

Given Γ > 0, let us fix three functions η0, η1, η2 ∈ L2(∂Ω) such that for every
j = 0, 1, 2,

(2.4)(a) ηj ≥ 0 on ∂Ω; supp(ηj) ⊂ γj ;
(2.4)(b)

∫
∂Ω
ηj = 1;

(2.4)(c) ‖ηj‖L2(∂Ω) ≤ Γ.

Then we prescribe the current densities on the boundary ψ1, ψ2 to be given by

ψ1 = η0 − η1, ψ2 = η0 − η2.(2.5)

We have

(2.6)(a)
∫
∂Ω
ψj = 0 for every j = 1, 2;

(2.6)(b) ‖ψj‖L2(∂Ω) ≤ 2Γ for every j = 1, 2.

Moreover let us consider the following antiderivatives along ∂Ω of ψ1, ψ2:

Ψj(s) =

∫
ψj(s)ds, j = 1, 2,(2.7)

where the indefinite integral is taken with respect to arclength on ∂Ω in the counter-
clockwise direction. The functions Ψ1, Ψ2 are defined up to an additive constant.

We remark that from the prior information on Ω, (2.2), we can find a constant M1

depending on L, δ, and M only such that for all z0, z1 belonging to ∂Ω the following
inequality holds:

length∂Ω(z0, z1) ≤M1|z0 − z1|.(2.8)

Hence Ψj verify the following property

|Ψj(z0)−Ψj(z1)| ≤ 2Γ(length∂Ω(z0, z1))1/2 ≤ Γ1|z0 − z1|1/2,(2.9)

for any z0, z1 belonging to the boundary of Ω, where Γ1 = 2ΓM
1/2
1 .
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Prior information on the conductivity. Given λ, Λ > 0, let A = A(z), z ∈ Ω,
be a 2× 2 matrix with bounded measurable entries such that

(2.10)(a) A(z)ξ · ξ ≥ λ|ξ|2 for every ξ ∈ R2 and for a.e. z ∈ Ω;
(2.10)(b) ‖A‖L∞(Ω) ≤ Λ.

For any i = 1, 2, let ui ∈ W 1,2(Ω\σ) be the weak solution of the following
Neumann-type boundary value problem: div(A∇ui) = 0 in Ω\σ,

A∇ui · ν = 0 on either side of σ,
A∇ui · ν = ψi on ∂Ω,

(2.11)

where ν denotes the unit normal, with the outward orientation when on ∂Ω.
That is, we understand that ui satisfies

(2.11′)
∫

Ω\σ
A∇ui · ∇ϕ =

∫
∂Ω

ψiϕ for everyϕ ∈W 1,2(Ω\σ).

If σ′ is another crack, that is, another curve satisfying conditions (2.3), we denote
by u′i the solutions to (2.11) when σ is replaced with σ′.

We denote by Σ a simple arc in ∂Ω whose length is at least δ.
The set of constants L, M , δ, Γ, λ, and Λ will be referred to as the a priori data.
We are now in position to state the main theorem.
Theorem 2.1. Under the previously stated assumptions, let ε > 0 be such that

max
i=1,2

‖ui − u′i‖L∞(Σ) ≤ ε;(2.12)

then the two cracks σ, σ′ satisfy

dH(σ, σ′) ≤ ω(ε),(2.13)

where ω(ε) is a positive function on (0,+∞) that verifies

ω(ε) ≤ K(log | log ε|)−α for every ε, 0 < ε < 1/e.(2.14)

Here K and α are positive constants depending on the a priori data only.
Here dH denotes the Hausdorff distance. We recall that the Hausdorff distance

between bounded closed sets σ and σ′ is given by

dH(σ, σ′) = max

{
sup
x∈σ′

dist(x, σ), sup
x∈σ

dist(x, σ′)
}
.

3. Stream functions and quasi-conformal mappings. We begin by review-
ing some properties of quasi-conformal mappings which will be used in the sequel.

We shall make repeated use of the following notation for complex derivatives:

fz = 1
2 (fx + ify), fz = 1

2 (fx − ify).

We denote by J = [ 0
1
−1
0 ] the counterclockwise rotation of 90◦ and by (·)T trans-

pose.
Proposition 3.1. Let D be a bounded simply connected domain in R2. Let A

satisfy (2.10). Let u ∈W 1,2(D) be a weak solution to the equation

div(A∇u) = 0 inD.(3.1)
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There exists a function v ∈W 1,2(D) which satisfies

∇v = JA∇u almost everywhere inD.(3.2)

Moreover, letting f = u+ iv, we have

fz = µfz + νfz almost everywhere inD,(3.3)

where µ and ν are bounded measurable, complex valued coefficients, satisfying

|µ|+ |ν| ≤ k < 1 almost everywhere inD,(3.4)

where k is a constant depending on λ, Λ only.
On the other hand, if f = u+iv, f ∈W 1,2(D,C), verifies (3.3) with coefficients µ

and ν satisfying (3.4), then there exists a 2×2 matrix A such that u is a weak solution
of div(A∇u) = 0 in D and A verifies (2.10) with constants λ, Λ > 0 depending upon
k only.

The function v appearing above is usually called the stream function associated
with u. Notice that v is uniquely determined up to an additive constant and also that
v is a weak solution to

div(B∇v) = 0 inD,(3.5)

where B = (detA)−1AT .
Proof. For the existence of the stream function v see [A-M, Theorem 2.1]. Then

by (3.2), (3.3) follows with µ, ν given by

µ = a22−a11−i(a12+a21)
a11a22−a12a21+a11+a22+1 ,

ν = a12a21−a11a22+1+i(a12−a21)
a11a22−a12a21+a11+a22+1 .

(3.6)

From these expressions and (2.10), one obtains, through elementary although
lengthy computations, (3.4).

Conversely, given the coefficients µ, ν in (3.3) satisfying (3.4) one obtains (3.1)
and (3.2) with A given by

A =

[ |1−µ|2−|ν|2
|1+ν|2−|µ|2

2=(ν−µ)
|1+ν|2−|µ|2

−2=(µ+ν)
|1+ν|2−|µ|2

|1+µ|2−|ν|2
|1+ν|2−|µ|2

]
(3.7)

and the thesis follows.
We recall that a quasi-conformal map f in an open setD is an univalentW 1,2(D,C)

solution of an equation of the type (3.3), (3.4).
Now we state the following representation theorem, due to L. Bers and L. Niren-

berg [B-N].
Theorem 3.2. Let D ⊂ B1(0), and let f ∈ W 1,2(D,C) verify (3.3) where µ, ν

satisfy (3.4).
There exists a quasi-conformal map χ from B1(0) into itself and a holomorphic

function F on χ(D) such that

f = F ◦ χ.(3.8)

Moreover the function χ and its inverse χ−1 satisfy the following conditions:

|χ(x)− χ(y)| ≤ C|x− y|α ∀x, y ∈ B1,
|χ−1(x)− χ−1(y)| ≤ C|x− y|α ∀x, y ∈ B1,

(3.9)
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where C and α, 0 < α < 1, depend upon k only.

Proof. See [B-N, page 116].

Let us define, as in [A-M], geometric critical points of solutions of elliptic equations
like (3.1). That is, given u as in Proposition 3.1, let v be its stream function and let
χ and F , respectively, be the quasi-conformal map and the holomorphic function
appearing in the representation (3.8) for f = u+ iv.

A point z ∈ Ω is called a geometric critical point of u if χ(z) is a critical point
(in the standard sense) for <F . This definition does not depend on the choice of the
representation.

According to [A-M], we define the geometric index of u at z ∈ Ω as the winding
number of F ′ at χ(z0).

Remark 3.3. We wish to stress that the representation theorem, 3.2, gives us
that, up to the change of coordinates χ, v can be viewed as the harmonic conjugate
to u. In particular we have that, with respect to the metric in χ(D), the level lines
of v are lines of steepest descent of u and vice versa. Consequently we have that,
away from the discrete set of geometric critical points, u is strictly monotone on each
connected component of the level lines of v, and vice versa.

The following theorem shows that, although the domain Ω\σ is doubly connected,
for the particular case of solutions to (1.1) a single valued global stream function v
exists.

Theorem 3.4. Let u be a weak solution to (1.1) with ψ ∈ L2(∂Ω),
∫
∂Ω
ψ = 0.

There exists, and it is unique up to an additive constant, a global stream function
v ∈W 1,2(Ω\σ) related to u.

Moreover v is a weak solution of the following Dirichlet-type boundary value prob-
lem: 

div(B∇v) = 0 in Ω\σ,
v = const on σ,
v = Ψ on ∂Ω,∫
∂Ω
B∇v · ν = 0,

(3.10)

where Ψ =
∫
ψds on ∂Ω.

Here, as above, B = (det(A)−1)AT . Observe that the constant value of v on σ is
part of the unknowns of the problem (3.10) and that its weak formulation is to find
v ∈ W 1,2(Ω) such that v = constant on σ, v = Ψ on ∂Ω in the sense of traces and
satisfies

(3.10′)
∫

Ω

B∇v · ∇ϕ = 0 for everyϕ ∈W 1,2(Ω) such thatϕ = constant onσ.

Proof. The reader is referred to [A-DV, Proposition 2.1].

We note that the above theorem applies in particular to u1, u2 given by (2.11)
and to any linear combination of such solutions. Let a, b be any two real numbers
such that a2 + b2 = 1 and let us define

u = au1 + bu2, v = av1 + bv2,(3.11)

ψ = aψ1 + bψ2, Ψ = aΨ1 + bΨ2.(3.12)

Clearly, u is the weak solution to (1.1) and v is its stream function, solving (3.10).
When σ is replaced with σ′, we define u′, v′ in the same fashion.
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Remark 3.5. Observe that, by (2.9) we have

|Ψ(z)−Ψ(w)| ≤ 2Γ1|z − w|1/2 for every z, w ∈ ∂Ω.(3.13)

Moreover, by (2.4), (2.5) one easily obtains that there exist points P̃ , Q̃ ∈ ∂Ω
such that Ψ is monotone on the two simple curves forming ∂Ω\{P̃ , Q̃}. Finally note
that

osc∂ΩΨ = |Ψ(P̃ )−Ψ(Q̃)| ≥ 1/
√

2.(3.14)

In order to distinguish the one-sided limits as z → σ, z ∈ Ω\σ, it is convenient to
figure out σ as a degenerate closed curve. More precisely we present Definition 3.6.

Definition 3.6. Let σ̃ be the abstract simple closed curve obtained from two
copies of σ and gluing two by two the corresponding endpoints. We denote by Ω̃
the compact manifold obtained by the appropriate gluing of Ω\σ with σ̃ and by d̃ the
geodesic distance on Ω̃.

For any d, p > 0, we denote

Ωd,p = {z ∈ Ω|dist(z, ∂Ω) > d, dist(z, σ) > p}.

Proposition 3.7. Let f = u+ iv, where u, v are given by (3.11). We have the
following conditions:

(i) v satisfies the Hölder estimate

|v(z1)− v(z2)| ≤ C1|z1 − z2|α1 for every z1, z2 ∈ Ω.(3.15)

(ii) u satisfies the estimate

|u(z1)− u(z2)| ≤ C2(d̃(z1, z2))α1 for every z1, z2 ∈ Ω̃.(3.16)

(iii) f is a quasi-conformal mapping on Ω\σ.

(iv) f satisfies the lower bound

|f(z1)− f(z2)| ≥ C3(d)p4/α1 |z1 − z2|1/α1 for every z1, z2 ∈ Ωd,p.(3.17)

Here C1, C2, α1 > 0 depend on the a priori data only, whereas C3(d) > 0 depends
on the a priori data and on d only.

Remark 3.8. It is useful to stress the difference between the estimates (3.15),
(3.16). In fact, since v attains to a constant Dirichlet data on σ, it is expected that v
is continuous across σ. This is not the case for u, which may have different one-sided
limits on σ. This is the main motivation for the introduction of the metric d̃.

The proof of Proposition 3.7 will be given through several steps. At several stages
we shall use the change of coordinates described below.

Lemma 3.9. Let Ω be a simply connected bounded open set which verifies (2.2)
and let σ be a curve in Ω which satisfies (2.3). Then there exists a sense-preserving
bi-Lipschitz map χ from Ω\σ onto B2\B1, such that the W 1,∞ norm of χ and its
inverse are dominated by constants depending on the a priori data only.

Here and in the following we say that χ is bi-Lipschitz if it is a homeomorphism
such that χ and its inverse belong to W 1,∞.

Proof (sketch). First, by locally deforming ∂Ω and σ one can construct a bi-
Lipschitz mapping χ1 from Ω onto a simply connected domain Ω1 with C∞ boundary
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such that σ1 = χ1(σ) is a C∞ simple curve. Second, one can find a C∞ diffeomor-
phism χ2 from Ω1 onto the disk B2(0) such that σ2 = χ2(σ1) is the segment {y =
0, |x| ≤ 1/2}. Next, one constructs a bi-Lipschitz mapping χ3 from the upper half disk

B+
2 (0) = {|z| ≤ 2, y ≥ 0} onto the half annulus B+

2 (0)\B+
1 (0) = {1 ≤ |z| ≤ 2, y ≥ 0}

in such a way that χ3(σ2) is the inner half circle {|z| = 1, y ≥ 0} and χ3 is the identity
mapping on the rest of the boundary. Finally one can extend χ3 as a mapping from
B2\σ2 onto B2\B1 by symmetry. One can make sure that for each χi, i = 1, 2, 3,
the Jacobian and its inverse are uniformly bounded by constants depending on the a
priori data only. In conclusion we pick χ = χ3 ◦ χ2 ◦ χ1.

Proof of Proposition 3.7(i). Let χ be the bi-Lipschitz map constructed in Lemma
3.9 and let us call

f̃(z) = f ◦ χ−1, z ∈ B2\B1.(3.18)

By the W 1,∞ bounds on χ and its inverse obtained in Lemma 3.9, χ is also
quasi-conformal; hence we can find µ̃ ∈ L∞(B2\B1) such that

f̃z = µ̃f̃z almost everywhere inB2\B1,(3.19)

where

µ̃ ≤ k̃ < 1(3.20)

and k̃ depends on the a priori data only.
Let ṽ = v ◦ χ−1 = =f̃ ; then ṽ is a weak solution to

div(B̃∇ṽ) = 0 in B2\B1,
ṽ = const on ∂B1,
ṽ = Ψ ◦ χ−1 on ∂B2,∫
∂B2

B̃∇ṽ · ν = 0,

(3.21)

where B̃ satisfies uniform ellipticity bounds of the type (2.10), with constants depend-
ing on the a priori data only.

Since the Dirichlet data in (3.21) are given as Hölder continuous traces of a
W 1,2(B2\B1) function, by standard results of regularity up to the boundary, we obtain
that ṽ satisfies a uniform Hölder estimate in B2\B1, with constants depending on the
a priori data only.

Hence by recalling v = ṽ ◦ χ, ṽ|∂B1 = v|σ = constant, and by the estimate

|χ(z1)− χ(z2)| ≤ C4d̃(z1, z2) for every z1, z2 ∈ Ω\σ,(3.22)

following from Lemma 3.9, (3.15) follows.
Proof of Proposition 3.7(ii). Let us apply the representation Theorem 3.2 to f̃ ,

which gives us that, up to a quasi-conformal change of coordinates, ũ = u◦χ−1 is the
conjugate function to −ṽ.

Hence by a local use of Privaloff’s Theorem (see, e.g., [B-J-S, Part II, Chapter 6,
Theorem 5, page 279]) we obtain that also ũ satisfies a uniform Hölder estimate in
B2\B1, with constants only depending on the a priori data. Hence (3.16) follows from
(3.22).

In order to proceed with the proof of (iii) of Proposition 3.7 we shall need the
following two lemmas.
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Let us extend f̃ , µ̃ to B2\B1/2 by the reflection rules{
f̃(z) = f̃(1/z) + 2ci,

µ̃(z) = µ̃(1/z),
z ∈ B2\B1/2,(3.23)

where c = ṽ|∂B1
.

We obtain that f̃ ∈W 1,2(B2\B1/2,C) and satisfies (3.19) on all of B2\B1/2 where

|µ̃| ≤ k̃ < 1 obviously holds throughout. Note that (3.23) imply that ũ, ṽ satisfy the
reflection rules {

ũ(z) = ũ(1/z),
ṽ(z) = 2c− ṽ(1/z),

z ∈ B2\B1/2,(3.24)

and according to Proposition 3.1 are solutions to uniformly elliptic equations in all of
B2\B1/2.

Lemma 3.10. ũ has exactly two geometric critical points P̃1, P̃2 of index one in
B2\B1/2. P̃1, P̃2 belong to ∂B1 and they are distinct.

Remark. It may be useful to stress that P̃1, P̃2 are also the unique geometric
critical points of ṽ in B2\B1/2.

Proof. This statement is proven in [A-DV, Proposition 3.2] except from the
fact that P̃1, P̃2 are distinct. This can be obtained by the following contradiction
argument, if we had P̃1 = P̃2 then, on ∂B1\{P̃1}, ṽ ≡ constant and hence ũ should
be strictly monotone along such a simple curve, thus contradicting its continuity at
P̃1.

Let us denote m = min∂Ω Ψ, M = max∂Ω Ψ, and c = v|σ. Observe that by the
use of the maximum principle in (3.10′) one obtains m < c < M .

Lemma 3.11. For any t ∈ (m,M), t 6= c, the level line {z ∈ Ω\σ| v(z) = t} is
composed by a simple curve γt joining the two connected components of the level set
{z ∈ ∂Ω|Ψ(z) = t}.

The level line {z ∈ Ω\σ| v(z) = c} is composed of two simple curves γ1
c , γ2

c

each joining σ with one of the two connected components of {z ∈ ∂Ω|Ψ(z) = c},
respectively. Moreover the limit points of γ1

c , γ2
c on σ are given by two single points

P1, P2 which are distinct as elements of σ̃.
Proof. By the continuity (3.15) of v we have that for every t ∈ (m,M) the limit

points of {z ∈ Ω\σ| v(z) = t} on ∂Ω ∪ σ̃ all belong to {z ∈ ∂Ω|Ψ(z) = t} if t 6= c and
to {z ∈ ∂Ω|Ψ(z) = c} ∪ σ̃ if t = c.

Let t 6= c and let z0 ∈ Ω\σ be such that v(z0) = t. By Lemma 3.10 we have
that v = ṽ ◦ χ has no geometric critical points in Ω\σ. Therefore, by the maximum
principle, the connected component γt of {v = t} containing z0 is a simple curve having
endpoints on ∂Ω. Again, by the maximum principle, we obtain that v 6= t outside
of γt and hence {v = t} = γt. By the same reasoning, we may find two distinct
arcs γ1

c , γ2
c in Ω\σ on which v = c, each joining σ to the two distinct components

of {z ∈ ∂Ω|Ψ(z) = c}. Such curves disconnect Ω\σ, and hence, by the maximum
principle, they exhaust the level set {v = c}. Concerning the limit points of {v = c}
on σ, these coincide with the preimages through χ of the geometric critical points P̃1,
P̃2 of ṽ, and the thesis follows.

Proof of Proposition 3.7(iii). It suffices to prove that f is univalent. We use the
notation introduced in Lemma 3.11. Let σ̃1, σ̃2 the abstract simple curves forming
σ̃\{P1, P2}. Using the representation u = ũ ◦ χ and the absence of geometric critical
points for ũ in B2\(B1/2 ∪ {P̃1, P̃2}) we have that u is strictly increasing on each of
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the curves γ1
c ∪ γ2

c ∪ σ̃i, i = 1, 2. Analogously, when t ∈ (m,M), t 6= c, u is strictly
increasing on γt. Therefore for any ζ = s+ it ∈ f(Ω\σ) there exists a unique z ∈ Ω\σ
such that v(z) = t, u(z) = s.

Proof of Proposition 3.7(iv). With the aid of Theorem 3.2 and of a suitable
conformal mapping, we obtain that there exist R > 1 depending on the a priori data
only and a quasiconformal mapping χ1 from B2\B1/2 onto BR\B1 and a holomorphic

function F on BR\B1 such that

f̃ = F ◦ χ1;

moreover, χ1, χ−1
1 satisfy uniform Hölder estimates with constants depending on the

a priori data only.
Let U , V be the real and imaginary part of F , respectively.
We remark that, in view of Lemma 3.10, F has exactly two critical points, which

are distinct and have multiplicity one, in BR\B1. We denote such points ζ1 = χ1(P̃1),
ζ2 = χ1(P̃2). Let us denote D = BR\B1 and Dd = BR−d\B1+d, d > 0. We claim the
following lower bound on |F ′|, whose proof is deferred to the end of this section.

Claim. There exists a positive constant C5 depending on the a priori data and
on d only such that the following estimate holds

|F ′(z)| ≥ C5|z − ζ1||z − ζ2| for any z ∈ Dd.(3.25)

Let us now recall that F = f ◦χ−1 ◦χ−1
1 and let us fix d, p > 0. Denote by γ the

image through χ1 of ∂B1, that is, γ = (χ1 ◦ χ)(σ̃). Let α2 > 0 be a uniform Hölder
exponent for χ1 ◦ χ and its inverse. We recall that α2 depends on the a priori data
only.

For any z ∈ Ωd,p we have

dist(χ1 ◦ χ(z), ∂BR) ≥ C6d
1/α2 ,

dist(χ1 ◦ χ(z), γ) ≥ C6p
1/α2 ,

where C6 depends on the a priori data only.
We remark that F (γ) = f(σ) is a horizontal segment l.
So using (3.25) we can show that the image through f of Ωd,p is contained in a

doubly connected open set D1 ⊂ f(Ω\σ) whose boundary is constituted by two curves
γ1 and γ2. The outer one, γ1, is a Jordan curve such that for any z0, z1 ∈ γ1 the
following estimate holds

lengthγ1
(z0, z1) ≤ C7|z0 − z1|.

On the other hand, γ2 is the set of points whose distance from the segment l is
equal to C8p

3/α2 .
Furthermore on D1 we can find the following estimate:

|(F−1)′|(z) ≤ C9p
−3/α2 for any z ∈ D1.

Then, evaluating the geodetic distance on D1, we have that for any z, w ∈ D1 it
holds that

|F−1(z)− F−1(w)| ≤ C10p
−4/α2 |z − w|;(3.26)

hence for any z, w ∈ Ωd,p we have

|f(z)− f(w)| ≥ C11p
4/α2 |z − w|1/α2 .(3.27)
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The constants C7–C11 depend on d and on the a priori data only. So (3.17)
follows.

Proof of the Claim. We adapt arguments used in [A1, Theorem 1.3]. First, we
notice that F is Hölder continuous in D. Hence |F | can be bounded on D by a
constant C12, C12 depending on the a priori data only, and in view of (3.14) there
exists d1 small enough such that for any 0 < d ≤ d1 the oscillation of V on ∂Dd is
greater than 1/2

√
2.

Without loss of generality we can restrict our attention to the case 0 < d ≤ d1;
then, by using estimates on Cauchy’s integrals, we have

|F ′| ≤ 2C12/d ∀z ∈ Dd/2,(3.28)

|F ′′| ≤ 8C12/d
2 ∀z ∈ Dd/2.(3.29)

We denote φ = log |F ′|
|z−ζ1||z−ζ2| ; this is a harmonic function in D. Let M =

supDd/2 φ; then we apply the Harnack inequality to M − φ and obtain

sup
Dd

(M − φ) ≤ c inf
Dd

(M − φ),

where c depends on d and on R only. This, in turn, implies that

inf
Dd

φ ≥M − c(M − sup
Dd

φ).(3.30)

Notice that we have

1/2
√

2 ≤ osc∂DdV ≤ C13 max
Dd
|F ′| ≤ C14 max

Dd
expφ,

and hence M ≥ C15 > 0. Using (3.29), possibly choosing a smaller value for the
constant d1, we can find an upper bound on M − supDd φ. Hence we can find a
constant C16, depending on the a priori data and on d only, such that infDd φ ≥ C16

and the claim follows.

4. Stability for a Cauchy problem. Let u be given by (3.11) and let u′ be
given accordingly when σ is replaced with σ′. Let v and v′ be the stream functions
of u and u′, respectively; we choose to normalize v, v′ in such a way that they have
the same Dirichlet data Ψ on ∂Ω.

Let us denote Φ = W + iZ = u− u′ + i(v − v′) : Ω\(σ ∪ σ′) 7→ C.
We have that Z is identically zero on ∂Ω and |W | ≤ √2ε on Σ. We remember

that, by Proposition 3.7(i), (ii), there exists a constant K1 depending on the a priori
data only such that

|Φ(z)| ≤ K1 for any z ∈ Ω\(σ ∪ σ′).(4.1)

Furthermore by (3.15) the function Z is Hölder continuous on Ω with constants
depending on the a priori data only.

Φ satisfies the Cauchy problem
Φz = µΦz + νΦz in Ω\(σ ∪ σ′),
|Φ| ≤ √2ε on Σ,
=Φ = 0 on ∂Ω,

(4.2)

where |µ|+ |ν| ≤ k < 1.
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We want to estimate |Z| on Ω in terms of ε.
Proposition 4.1. Under the previous assumptions we have

|Z(z)| ≤ η(ε) for any z ∈ Ω,(4.3)

where η is a positive function defined on (0,+∞) that verifies

η(ε) ≤ K2(log | log ε|)−β1 for every ε, 0 < ε < 1/e.(4.4)

Here K2 and β1 are positive constants depending on the a priori data only.
Let us recall some notions from potential theory; see for instance the book by

J. Heinonen, T. Kilpeläinen, and O. Martio, [H-K-Ma].
Let D be a bounded open set. Let A ∈ L∞(D) be a 2× 2 matrix which satisfies

(2.10).
We denote by LA the differential operator

LAu = −div(A∇u).(4.5)

Definition 4.2. A function u : D 7→ R ∪ {+∞} is called LA-superharmonic in
D if

(i) u is lower semicontinuous;
(ii) u 6≡ +∞ in any connected component of D;
(iii) for any open set D1 ⊂⊂ D and any h ∈ C(D1), such that LAh = 0 in the

weak sense in D1, if u ≥ h on ∂D1 then u ≥ h in D1.
A function u is LA-subharmonic in D if −u is LA-superharmonic in D.
Definition 4.3. Let E be a subset of ∂D and let χE be its characteristic function.

We define the LA-harmonic measure of E with respect to D as the upper Perron
solution with respect to χE; that is,

ω(z) = ω(E,D,LA; z) = inf{u(z)|u ∈ UE} for any z ∈ D,
where UE is the class of the LA-superharmonic functions u in D such that u ≥ 0 and
lim infx→y u(x) ≥ χE(y) for any y ∈ ∂D.

Lemma 4.4. Let D be a bounded domain. Let f ∈ W 1,2(D,C) satisfy (3.3),
(3.4). There exists a 2× 2 matrix A1 ∈ L∞(D) satisfying (2.10) with constants λ, Λ
depending on k only such that φ = log |f | is LA1-subharmonic.

Proof. Let z be a point in D such that f(z) 6= 0. Locally, on a neighborhood of
z, we can define the function φ1 = log f where log is any possible determination of
the logarithm in the complex plane.

In this neighborhood φ1 verifies the equation

(φ1)z = µ(φ1)z + ν1(φ1)z,(4.6)

where ν1 = νf/f and hence |µ|+ |ν1| ≤ k < 1.
Then we consider the matrix A1 corresponding to µ and ν1, as in (3.7). By

Proposition 3.1 the function φ = log |f | = < log f locally verifies

div(A1∇φ) = 0(4.7)

in the weak sense.
We remark that we can define φ = log |f | globally as a W 1,2

loc (D1) function, where
D1 = {z ∈ D| f(z) 6= 0}; hence using a partition of unity it is easy to show that (4.7)
holds weakly in D1.
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Clearly the set {z ∈ D| f(z) = 0} consists of isolated points and φ goes uniformly
to −∞ as z converges to an element of such a set.

Using this remark and the maximum principle, we can prove in an elementary
way that φ = log |f | is LA1-subharmonic.

By the use of suitable LA1-harmonic measure we obtain a Hölder stability estimate
in the interior for Cauchy problems like (4.2), as follows.

Theorem 4.5. Let D be bounded domain and E a subset of ∂D. Let f satisfy
(3.3), (3.4).

If C = sup |f | on D and we have that, given ε > 0,

lim sup
x→y

|f(x)| ≤ ε(4.8)

for any y ∈ E, then for any z ∈ D the following estimate holds

|f(z)| ≤ C1−ω(z)εω(z),(4.9)

where ω = ω(E,D,LA1
) is the LA1

-harmonic measure of E with respect to D and the
matrix A1 is defined as in the thesis of the Lemma 4.4.

Proof. We can assume, without loss of generality, that 0 < ε < C. Consider
the function φ = log |f |, by the fact that Lemma 4.4 φ is LA1-subharmonic. Let
ω = ω(E,D,LA1) be the LA1-harmonic measure of E with respect to D.

Let us denote φ2 = φ−log(C)
log(ε)−log(C) . It is easy to see that φ2 belongs to the upper

class UE . Hence for any z ∈ D we have ω(z) ≤ φ2(z) and so

φ(z) ≤ log(ε)(ω(z)) + log(C)(1− ω(z)).(4.10)

And this clearly implies the thesis.
Remark. Observe that in view of Proposition 3.1 the above Theorem 4.5 could

be restated in terms of a Cauchy problem for an elliptic equation like (3.1).
Proof of Proposition 4.1 (Sketch). The proof of this proposition can be obtained

along the same lines as in the proof of Theorem 3.1 in [A2], once Theorem 4.5 is
available.

First consider curves γ, with the first endpoint on Σ, whose h-neighborhoods γh
are contained in Ω\(σ ∪ σ′).

Then we apply Theorem 4.5 inside such domains γh, and we consider a point
z ∈ γh and ω = ω(Σ ∩ ∂γh, γh;LA1

) as in Theorem 4.5. We obtain, recalling (4.1),
(4.2),

|Φ(z)| ≤ K1−ω(z)
1 εω(z).

We find a positive lower bound on ω(z) by a repeated use of the Harnack inequal-
ity; then through Hölder continuity of Z in Ω we can evaluate an upper bound for |Z|
on γh. Finally we use the maximum principle together with the fact that v and v′ are
constant on σ, σ′, respectively, to obtain the desired bound for |Z| on Ω.

5. Proof of the main Theorem 2.1. The proof of Theorem 2.1 will be com-
pleted by combining Proposition 4.1 with the following result.

Proposition 5.1. Let all the assumptions of Theorem 2.1 be satisfied with the
exception of (2.12). Let vi be the stream functions related to ui and let v′i be those
related to u′i. If we have

max
i=1,2

‖vi − v′i‖L∞(Ω) ≤ η,(5.1)



STABLE DETERMINATION OF CRACKS 339

then the two cracks σ, σ′ satisfy

dH(σ, σ′) ≤ K3η
β2 ,(5.2)

where K3, β2, K3 > 0, 0 < β2 < 1, only depend on the a priori data.
Proof. Up to reversing the role of σ and σ′ we may fix z0 ∈ σ′\σ in such a way

that p = dist(z0, σ) = dH(σ, σ′) > 0.
There exists a positive constant K4 > 1 only depending on the a priori data such

that

(5.3)(a) Bp/K4
(z0) ⊂ Ωδ/2\σ;

(5.3)(b) there exists a point z1 ∈ σ′ such that |z1 − z0| = p/2K4.
Hence we can determine two real numbers a, b such that a2 + b2 = 1 and

au1(zo) + bu2(z0) = au1(z1) + bu2(z1)(5.4)

holds true.
So we define u and v as in (3.11) and it turns out that

u(zo) = u(z1).(5.5)

Recall that u solves (1.1) and v is its stream function. Let, as usual, f = u+ iv.
Then by (iv) of Proposition 3.7 there exists a constant K5, depending on the a

priori data only, such that

p5/α1 ≤ K5|f(z0)− f(z1)|.(5.6)

Note that, by (5.5), |f(z0) − f(z1)| = |v(z0) − v(z1)|. We have that z0 and z1

belong to σ′; hence v′(z0) = v′(z1).
So we have

|f(z0)− f(z1)| ≤ 2η.(5.7)

Consequently

p ≤ K6η
α1/5,(5.8)

where K6 and α1 only depend on the a priori data.

Concluding remarks. Let us recall that, for the case of uniform background
conductivity, a log-log–type stability like the present one was proven in [A2]. Sub-
sequently, in [A3], it was shown that the stability could be improved to a log-type
estimate. A C2,α a priori bound on σ was assumed. It can be verified that the ap-
proach in [A3] could be used with minor adaptations also in the present case, at the
cost of assuming a somewhat stronger a priori assumption on the crack. For instance,
an analysis of this sort has been developed in [R] where it was assumed a C1,α bound
on σ and a Lipschitz bound on A. Let us stress here that in view of Theorem 4.5 in
this paper any regularity assumption on A can be dropped.

Let us recall here also the examples in [A4] for the so-called inverse problem of
corrosion detection, which is different, but strictly allied, to the crack problem. Such
examples show that logarithmic stability is best possible for that problem and they
strongly suggest that this is the case also for the crack problem.

From another point of view, we notice that the Lipschitz regularity assumptions
on σ and on ∂Ω could be further relaxed. In fact we could cast our analysis within
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the theory of quasicircles (see [P, Chapter 5] and [L]) and prescribe that σ and ∂Ω
satisfy the so-called arc condition. This ensures that quasi-conformal mappings in
Ω\σ̃ are Hölder continuous up to the boundary, thus permitting us to derive state-
ments analogous to Proposition 3.7 and, consequently, to Theorem 2.1. However, we
have preferred to confine ourselves within the Lipschitz class which, we believe, is
sufficiently wide and manageable from the applications point of view.
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Abstract. We study the behavior of a superconducting material subjected to a constant applied
magnetic field, Ha = he with |e| = 1, using the Ginzburg–Landau theory. We analytically show the

existence of a critical field h, for which when h > h, the normal states are the only solutions to the
Ginzburg–Landau equations. We estimate h. As κ ↓ 0 we derive h = O(1), while as κ→∞ we obtain

h = O(κ).

Key words. superconductivity, Ginzburg–Landau equations, upper critical fields, normal state
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1. Introduction. If a superconducting body is subjected to a sufficiently strong
applied magnetic field, its ability to act as a superconductor breaks down and only
the normally conducting (resistive) state is observed. In this paper we consider su-
perconductivity as modeled by the Ginzburg–Landau theory and establish this type
of phenomena. Here, superconductivity is characterized in terms of a complex valued
order parameter, ψ (where |ψ|2 represents the density of superconducting electron
pairs), and a vector field A—the magnetic potential.

Consider a superconducting body given by a bounded domain DDD ⊂ Rn, where
n = 2 or 3 and ∂DDD is of class C2,α for some 0 < α < 1. Assume the body has
constant permeability normalized equal to one and that the exterior consists of a
second material with constant permeability µe > 0. Define the permeability density
as follows:

µ(x) = 1 for x ∈ DDD
= µe for x ∈ Rn \DDD.

A magnetic field is applied to all space in the form Ha = he, where h is a
positive constant and e ∈ R3 is a fixed unit vector. The presence of DDD produces an
induced magnetic field, 1

µ curl A in R3, and a supercurrent density j := −i
2κ (ψ∗∇ψ −

ψ∇ψ∗)−A|ψ|2 in DDD. Here κ > 0 is the Ginzburg–Landau constant determined from
the superconducting material and the superscript ∗ denotes complex conjugation.
According to this theory, the pair (ψ,A) is an equilibrium state for the Gibbs free
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energy

G(ψ,A) :=

∫
DDD

(∣∣∣∣ iκ∇ψ + Aψ

∣∣∣∣2 +
1

2
(1− |ψ|2)2

)
dx

+

∫
Rn
µ

∣∣∣∣ 1µ curl A− he

∣∣∣∣2 dx +
γ

κ

∫
∂DDD
|ψ|2ds

(1.1)

(see [5], [14]). The constant γ ≥ 0 reflects the retarding effect of the material in the
exterior domain on the density |ψ|2 at ∂DDD; γ is taken to be zero if Rn \DDD is a vacuum
and large if the exterior is a magnetic material. Thus, we consider pairs (ψ,A) such
that

ψ ∈ H1(DDD;C) ≡ H1(DDD), A ∈ H1
loc(Rn;Rn),

which are weak solutions to

(
i

κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0 in DDD,

curl

(
1

µ
curl A

)
+

(
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + A|ψ|2

)
χDDD = 0 in Rn,

n ·
(
i

κ
∇+ A

)
ψ = −iγψ on ∂DDD,(

1

µ
curl A− he

)
∈ L2(Rn;R3).

(1.2)

Here n is the outward normal to DDD at ∂DDD and χDDD is the characteristic function for DDD.
A principal feature of the energy (1.1) and the solutions to (1.2) is that they are

invariant under the gauge transformation

(ψ,A)→ (ψ′,A′),

where

ψ′ = ψeiκη, A′ = A +∇η
for an arbitrary real valued function η ∈ H2

loc(Rn). Moreover, the intrinsic quanti-
ties for a solution are preserved under this transformation: its density |ψ′|2 = |ψ|2,
magnetic field 1

µ curl A′ = 1
µ curl A, current j′ = j, and the modulus of the derivative

|( iκ∇+ A′)ψ′| = |( iκ∇+ A)ψ|.
A solution is in the normal phase if ψ ≡ 0 in DDD. This is written as (ψ,A) =

(0, haN ), where aN satisfies

curl

(
1

µ
curl aN

)
= 0 in Rn,(

1

µ
curl aN − e

)
∈ L2(Rn;R3).

(1.3)

Such a solution is called a normal state. It is uniquely determined by µ and DDD up to
a gauge transformation; that is, (1.3) uniquely determines curl aN .

Let κ be fixed. We denote h as the upper critical field for the body

h := inf{h′ : normal states are the only solutions to (1.2) for all h > h′}.
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For the case that the body is a bounded domain DDD ⊂ R3, we prove the following
statement:

Let DDD ⊂ R3. Given κ, µe, and γ we have h = h(κ, µe, γ,DDD) < ∞ (see Theorem
3.12).

We show the normal induction is continuous on DDD. In the case that it does not
vanish on DDD, we can estimate h.

If curl aN 6= 0 in DDD ⊂ R3, then there are constants m, φ ≥ 0, depending on µe
and DDD so that

h(κ, µe, γ,DDD) ≤ max
(m
κ
, φκ

)
(1.4)

(see Theorem 3.9).
In the classic case where µe = 1, it follows that curl aN ≡ e and as such (1.4)

applies.
If µ ≡ 1, then there are constants m and φ such that h ≤ max(mκ , φκ) (see

Corollary 3.10).
We also consider the case of a cylindrical domain of the form DDD × R where the

cross section, DDD, is a bounded domain in R2 with a C2,α boundary and the applied
field Ha = he = he3 is perpendicular to the cross section. From symmetry the
problem reduces to one in two dimensions. We consider ψ(x, y) for (x, y) ∈ DDD and
A = (A1(x, y), A2(x, y)) for (x, y) ∈ R2. The functional (1.1) then represents the
Gibbs free energy per unit length for the cylinder. We prove the following theorem.

Let DDD×R be a cylindrical body in a parallel applied field he3. Given κ, µe, and γ
there is a finite upper critical field h, so that if h > h then the only solution to (1.2)
with n = 2 is normal. Moreover, there is a constant φ(µe,DDD) so that h(κ, µe, γ,DDD) ≤
max( 1

κ , φκ) (see Theorem 2.9).
Finally, we consider the case of small κ. We prove the following result.
Let n = 2 with µe > 0 or n = 3 with µe = 1. Then h = O(1) as κ ↓ 0 (see

Theorem 4.1).
It is of interest to compare these results with conjectures made by physicists. For

κ fixed, de Gennes and St. James have studied the local problem of determining the
smallest value of h for which all normal states are stable for h′ ≥ h. The infimum,
denoted as hc3 , is the value for which it is possible to have a family of superconducting
solutions bifurcate away from the normal state. In [13] they discussed the case of an
infinite slab −d < x < d, −∞ < y, z < ∞ in R3. The symmetry of the domain
reduced the linear analysis to a one-dimensional problem. They gave an ansatz for
determining hc3 and predicted lim

κ→∞hc3/κ = c0 for some constant 1 < c0 < 2. This

can be compared with our estimates for h from Theorems 2.9 and 3.9. We have
hc3 ≤ h = O(κ) as κ → ∞. For small κ, physicists have predicted that h = O(1) as

κ→ 0 for a slab of finite thickness −d < x < d, −∞ < y, z <∞ and that h = O(κ−
1
2 )

as κ → 0 for the infinitely thick slab −∞ < x < 0, −∞ < y, z < ∞ (see [4], [8],
and [12]). Our estimate from Theorem 4.1 gives the result h = O(1) as κ→ 0 for our
domain DDD.

To conclude, we comment on past analytic work. In [2] and [3], Bolley and Bolley
and Helffer made the ansatz for the slab rigorous and proved asymptotic estimates for
hc3 . In [4] they obtained partial results for estimating an upper critical field for the
slab. They considered a particular family of one-dimensional functions. For each fixed
κ, they showed there is a finite upper critical field when considering only solutions in
this family. In [1] Bauman, Phillips, and Tang estimated hc3 for the case of a circular
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cylinder, Br×R. This estimate is relevant here as it plays a central role in our analysis
of h for general domains.

In section 2 we consider cylindrical domains and establish Theorem 2.9. In sec-
tion 3 we extend these ideas so as to treat bounded domains in R3. In section 4 we
estimate h for small κ.

2. Superconductivity within an infinitely long cylinder in a parallel
field. Let (ψ,A) be a weak solution to (1.2) with n = 2 andDDD ⊂ R2. Recall that Ha =
he3 is perpendicular to the cross section. We first examine the magnetic induction,
curl A, in DDDc.

Lemma 2.1. Let (ψ,A) satisfy (1.2). Then curl A is constant in each component

of DDDc. Moreover, curl A = µehe3 in the unbounded component.
Proof. From (1.2) we see that curl(curl A) = 0 in each component of DDDc. Since

curl(curl A) = (Dy(DxA2 −DyA1),−Dx(DxA2 −DyA1), 0),

we have that curl A = (DxA2 − DyA1)e3 is constant in each of these components.
The last assertion follows from the fourth equation in (1.2).

We now determine curl aN .
Lemma 2.2. A normal state exists. Moreover, any normal state (0, haN ) satisfies

curl aN = µe3.
Proof. Consider w = Γ2 ∗ (µ − µe), where Γ2(x) = 1

2π ln(|x|), x = (x, y). The
function µ−µe has bounded support. As a result w is well defined with w ∈ H2

loc(R2)
and ∆w = (µ−µe) in R2. Set bN = (−wy, wx) + µe

2 (−y, x). Then curl bN = µe3 and
we see bN is a weak solution to (1.3), that is,∫

R2

1

µ
curl bN curlϕdx = 0, for all ϕ ∈ H1(R2;R2)

such that ϕ has bounded support. Thus, a normal state exists.
Suppose aN is another weak solution. Taking the difference of the equations for

bN and aN we get ∫
R2

1

µ
curl(bN − aN ) · curlϕdx = 0.(2.1)

Let EEE be the unbounded component ofDDDc. From Lemma 2.1 we have curl bN = curl aN
outside of the bounded set EEEc. As a result we can take ϕ such that ϕ = bN − aN in
a neighborhood of EEEc in (2.1). Whence, curl bN ≡ curl aN .

We can now show a weak solution has a gauge equivalent representative that
satisfies a Sobolev estimate.

Lemma 2.3. Let (ζ,B) and (0, haN ) be weak solutions to (1.2). Then there is a
weak solution (ψ,A) that is gauge equivalent to (ζ,B) such that∫

DDD
|A− haN |2dx ≤ C0

∫
R2

| curl(A− haN )|2dx(2.2)

where C0 depends only on DDD.
Proof. Set curl(B − haN ) = fe3. From Lemmas 2.1 and 2.2, we have that the

support of f is contained in the bounded set EEEc and f ∈ L2(R2). Set w = Γ2 ∗ f ; then
standard estimates on the Newtonian potential give w ∈ H2

loc(R2), ∇w = ∇Γ2 ∗ f ,

‖∇w‖L2(EEEc) ≤ C0(DDD)‖f‖L2(EEEc), and ∆w = f (see [9]). Thus, setting Ã = (−wy, wx)
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we have Ã ∈ H1
loc(R2;R2) and curl Ã = ∆we3 = curl(B− haN ). Let A = Ã + haN .

Then curl(B−A) = 0. Hence, A = B +∇η for some η ∈ H2
loc(R2) and∫

DDD
|A− haN |2dx ≤

∫
EEEc
|∇w|2dx ≤ C0

∫
EEEc
|f |2dx = C0

∫
R2

| curl(A− haN )|2dx.

We need the following property for weak solutions.
Proposition 2.4. (see [7]). Let (ψ,A) be a weak solution to (1.2); then |ψ| ≤ 1

almost everywhere in DDD.
Next we write the weak formulation of (1.2):∫

DDD

(
i

κ
∇ψ + Aψ

)
·
(
i

κ
∇ϕ+ Aϕ

)∗
dx +

∫
DDD

(|ψ|2 − 1)ψϕ∗dx

= −γ
κ

∫
∂DDD

ψϕ∗ds for any ϕ ∈ H1(DDD),∫
R2

1

µ
curl A · curl B dx +

∫
DDD

[
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + A|ψ|2

]
·B dx = 0

(2.3)

for any B ∈ H1(R2;R2) with bounded support. Considering i
κ∇ψ + Aψ for (ψ,A) ∈

H1(DDD)×H1
loc(R2;R2), we have

<e
[(

i

κ
∇ψ + Aψ

)
ψ∗
]

=
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + A|ψ|2,

=m
[(

i

κ
∇ψ + Aψ

)
ψ∗
]

=
1

2κ
∇|ψ|2.

Thus,

i

κ
∇ψ + Aψ =

{[
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + A|ψ|2

]
|ψ|−1 + i

[
1

κ
∇|ψ|

]}
ψ

|ψ|(2.4)

for almost every x such that ψ 6= 0. Moreover, since ∇ψ = 0 almost everywhere on
the set {ψ = 0}, it is consistent to define the term in braces equal to zero on this set.
We conclude that (2.4) holds almost everywhere.

Lemma 2.5. Let (ψ,A) and (0, haN ) be weak solutions satisfying (2.2). Then
there is a constant C1 = C1(DDD, µe) such that∫

DDD
|(i∇+ κhaN )ψ|2dx ≤ C1κ

2

∫
DDD
|ψ|2dx.(2.5)

Proof. Let ϕ = ψ in (2.3.1). Using (2.4), Proposition 2.4, and γ ≥ 0, we obtain∫
DDD

(∣∣∣∣ 1κ∇|ψ|
∣∣∣∣2 +

∣∣∣∣[ i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + A|ψ|2

]
|ψ|−1

∣∣∣∣2
)
dx

=

∫
DDD

∣∣∣∣( iκ∇+ A

)
ψ

∣∣∣∣2 dx ≤ ∫DDD(1− |ψ|2)|ψ|2dx ≤
∫
DDD
|ψ|2dx.

(2.6)

This inequality is also valid for n = 3. Consider the second equation in (1.2) for the
solutions (ψ,A) and (0, haN ). Taking the difference of their respective weak equations
we have∫
R2

1

µ
curl(A−haN ) ·curl B dx = −

∫
DDD

[
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + A|ψ|2

]
|ψ|−1 · |ψ|B dx.
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Using (2.6) and the Cauchy–Schwarz inequality, we see∫
R2

1

µ
curl(A− haN ) · curl B dx ≤ ε−1

∫
DDD
|ψ|2dx + ε

∫
DDD
|ψ|2|B|2dx

for any ε > 0. Let B be such that B = A − haN in EEEc where EEE is the unbounded
component of DDDc. Then since curl(A− haN ) = 0 in EEE and |ψ| ≤ 1 we derive∫

R2

1

µ
| curl(A− haN )|2dx ≤ ε−1

∫
DDD
|ψ|2dx + ε

∫
DDD
|A− haN |2dx.

Combining this inequality with (2.2), we see we can take ε sufficiently small so to
have ∫

DDD
|A− haN |2dx ≤M

∫
DDD
|ψ|2dx(2.7)

for some constant M = M(diamDDD, µe).
Next we write(

i

κ
∇+ A

)
ψ =

(
i

κ
∇+ haN

)
ψ + (A− haN )ψ.(2.8)

We will use the elementary inequality

1

2
|c|2 − |b|2 ≤ |c + b|2 for c,b ∈ C.(2.9)

Let ( iκ∇+ A)ψ = b and −( iκ∇+ haN )ψ = c. Then using (2.6) and (2.8) we derive

1

2

∫
DDD

∣∣∣∣( iκ∇+ haN

)
ψ

∣∣∣∣2 dx ≤ ∫DDD |ψ|2dx +

∫
DDD
|A− haN |2|ψ|2dx.

Since |ψ| ≤ 1, we can apply (2.7) to obtain∫
DDD
|(i∇+ κhaN )ψ|2dx ≤ 2(1 +M)κ2

∫
DDD
|ψ|2dx.

We set C1 = 2(1 +M) and the lemma is proved.
We see that if a superconducting state (i.e., a solution with ψ 6≡ 0) exists; then

(2.5) implies that the principal eigenvalue for (i∇+κhaN )2 onDDD is bounded by C1κ
2.

We will show that there exists a constant φ such that if h > max( 1
κ , φκ), then the

principal eigenvalue is greater than C1κ
2. It then follows for such κ and h that there

are only normal solutions to (1.2).
The corresponding eigenfunctions are expected to take the form of a boundary

layer. The following lemma gives a way of measuring to what extent functions can
concentrate near the boundary.

For a set OOO we define the τ -neighborhood in OOO of ∂OOO by

OOOτ = {x ∈ OOO : dist(x, ∂OOO) < τ} .
Lemma 2.6. Let OOO be a bounded domain in Rn with a C1 boundary. Given λ0 > 0

there is a constant d(λ0,OOO) > 0 such that whenever∫
OOO
|∇f |2dx ≤ λ2

∫
OOO
|f |2dx(2.10)
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for some f ∈ H1(OOO) with λ ≥ λ0, then

1

2

∫
OOO
|f |2dx ≤

∫
OOO\OOO d

λ

|f |2dx.(2.11)

Proof. Let ∪Nk=0Fk be an open cover for OOO such that F 0 ⊂ OOO and such that for
each k, 1 ≤ k ≤ N , we have

Fk ∩OOO = {(x′, xn) : gk(x′) < xn < gk(x′) + δ1, |x′| < δ2} ,

where δ1 and δ2 are positive constants, (x′, xn) are suitably rotated and translated
coordinates, and gk(x′) = xn characterizes ∂OOO ∩ Fk. We can further assume without
loss of generality that gk(·) is defined for |x′| ≤ 2δ2, |∇gk| < 1, and

{(x′, xn) : gk(x′) < xn < gk(x′) + 4δ1, |x′| < 2δ2} ⊂ OOO,
{(x′, xn) : gk(x′)− 4δ1 < xn < gk(x′), |x′| < 2δ2} ⊂ Rn \OOO.

(2.12)

Let f ∈ H1(OOO), 0 ≤ t, v ≤ δ1, and fix k ≥ 1. We have∫
{xn−gk(x′)=v}∩Fk

|f |2ds−
∫
{xn−gk(x′)=t}∩Fk

|f |2ds

≤
∫
{|x′|≤δ2}

|f2(x′, gk(x′) + v)− f2(x′, gk(x′) + t)|
√

1 + |∇gk|2 dx′

≤
∫
OOO∩Fk

∣∣∣∣∂(f2)

∂xn

∣∣∣∣ dx.
Integrating in t from 0 to δ1 and then dividing by δ1 gives∫

{xn−gk(x′)=v}∩Fk
|f |2ds ≤ 1

δ1

(∫
OOO
|f |2dx + 2δ1

∫
OOO
|f | |∇f |dx

)
.

Next integrate v from 0 to 2d
λ , where 0 < d < λ0δ1/2 is to be determined. We derive∫

{0<xn−gk(x′)≤ 2d
λ }∩Fk

|f |2dx ≤ 2d

λδ1

(∫
OOO
|f |2dx + 2δ1

∫
O
|f | |∇f |dx

)
.(2.13)

From the assumptions on gk, for 1 ≤ k ≤ N we have

Fk ∩OOO d
λ
⊂ Fk ∩

{
0 < xn − gk(x′) ≤ 2d

λ

}
(2.14)

if d
λ is small enough. Indeed, if this is false for some k we can find x = (x′, xn) such

that |x′| ≤ δ2, xn > gk(x′) + 2d
λ , and y = (y′, yn) ∈ ∂OOO such that |x − y| < d

λ . If
d
λ < min(δ1, δ2), we have |x′−y′| < d

λ < δ2 implying |y′| < 2δ2 and |yn−xn| < d
λ < δ1.

We claim that yn = gk(y′). In fact,

|yn − gk(y′)| ≤ |yn − xn|+ |xn − gk(x′)|+ |gk(x′)− gk(y′)|,

and each term on the right is bounded by δ1. We have shown this for the first one.
This is true for the second since x ∈ Fk ∩OOO. For the last term we use |∇gk| < 1 and
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|x′ − y′| < d
λ < δ1. Thus, |yn − gk(y′)| < 3δ1. From (2.12) we see the only possibility

for such a y ∈ ∂OOO is yn = gk(y′). As a result,

|gk(x′)− gk(y′)| ≥ |gk(x′)− xn| − |gk(y′)− xn| > 2d

λ
− d

λ
=
d

λ
.

On the other hand, since |∇gk| < 1 we have |gk(x′)− gk(y′)| < |x′ − y′| < d
λ and this

is a contradiction.
Using (2.13) and (2.14) and summing on k for 1 ≤ k ≤ N , we obtain∫

OOO d
λ

|f |2dx ≤M1
d

λ

(∫
OOO
|f |2dx + λ

∫
OOO
|f |2dx + λ−1

∫
OOO
|∇f |2dx

)
,

where M1 = M1(δ1, N).
Using (2.10) we have ∫

OOO d
λ

|f |2dx ≤M2d

∫
OOO
|f |2dx

where M2 = M2(δ1, N, λ0). Setting d = min( 1
2M2

, λ0δ1
2 , λ0δ2

2 ), we conclude∫
OOO d
λ

|f |2dx ≤ 1

2

∫
OOO
|f |2dx.

The assertion (2.11) follows from this inequality.
We will use the following result from [1] for Br(0) ⊂ R2.
Proposition 2.7. There is a continuous function σ(·) : t ∈ [0,∞) → R with

σ(t) > 0 for t > 0 for which lim
t→∞σ(t) exists with 0 < lim

t→∞σ(t) < 1, and such that

∫
Br(0)

∣∣∣∣(i∇+
ω2

2
(−y, x)

)
ζ

∣∣∣∣2 dx ≥ ω2σ(ωr)

∫
Br(0)

|ζ|2dx(2.15)

for all ζ ∈ H1(Br(0)) and ω ≥ 0.
Indeed in [1, section 2], it is shown that

inf
‖ζ‖L2=1

ζ∈W 1,2(Br;C)

∫
Br

∣∣∣∣(i∇+
ω2

2
(−y, x)

)
ζ

∣∣∣∣2 dx ≡ ω2σ

where σ = σ(ωr). Furthermore, σ is characterized by σ(t) = infn∈z σ(t, n) where for
each n, σ(t, n) is analytic and positive on 0 < t <∞. Moreover, lim

t→0
σ(t, 0) = 0. In [1,

section 6], it is also shown that

σ(t) = min
0≤n≤n0−1

σ(t, n) for 0 ≤ t ≤ n0.

As a result, it follows that σ(t) is positive and continuous. The lim
t→∞σ(t) is analyzed

in [1, section 6], as well.
Remark. If b is another vector field such that b ∈ H1(Br(0);R2) with curl b = e3,

then (2.15) is also valid with 1
2 (−y, x) replaced by b. Indeed, we can define a function
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q ∈ H2(Br(0)) such that ∇q = b − 1
2 (−y, x). With this we can define a local gauge

transformation

ζ ′ = ζeiω
2q, b =

1

2
(−y, x) +∇q,

for which ζ ′ ∈ H1(Br(0)) provided ζ ∈ H1(Br(0)). Moreover,

|(i∇+ ω2b)ζ ′| =
∣∣∣∣(i∇+

ω2

2
(−y, x)

)
ζ

∣∣∣∣ and |ζ ′| = |ζ|

so that ∫
Br(0)

|(i∇+ ω2b)ζ ′|2dx ≥ ω2σ(ωr)

∫
Br(0)

|ζ ′|2dx(2.16)

for all ζ ′ ∈ H1(Br(0)), b ∈ H1(Br(0);R2) such that curl b = e3.
We now derive an estimate similar to (2.16) for DDD provided ω is bounded away

from zero.
Lemma 2.8. Given m > 0 there is a constant C2 = C2(m,DDD), 0 < C2 ≤ 1, such

that if ω2 ≥ m, then

C2ω
2

∫
DDD
|ζ|2dx ≤

∫
DDD
|(i∇+ ω2b)ζ|2dx(2.17)

for all ζ ∈ H1(DDD) and b ∈ H1(DDD;R2) for which curl b = e3.
Proof. Let ζ ∈ H1(DDD) such that

∫
DDD |ζ|2dx > 0 and∫

DDD
|(i∇+ ω2b)ζ|2dx ≤ ω2

∫
DDD
|ζ|2dx

for some ω, ω2 ≥ m. If no such ζ exists, then (2.17) is valid with C2 = 1 and we are
done. From (2.4) we see |∇|ζ| | ≤ |(i∇+ ω2b)ζ|. Thus,∫

DDD
|∇|ζ| |2dx ≤ ω2

∫
DDD
|ζ|2dx.

As a result, we can apply Lemma 2.6 to conclude

1

2

∫
DDD
|ζ|2dx ≤

∫
DDD\DDD d

ω

|ζ|2dx.(2.18)

Next we choose a cover forDDD\DDD d
ω

consisting of a finite collection of disks {B d
ω

(xk),

k = 1, . . . , N(ω)}, each contained inDDD in such a way that
∑N(ω)
k=1 χB d

ω
(xk) ≤ K1 where

K1 is independent of ω.
We see ∫

DDD
|(i∇+ ω2b)ζ|2dx ≥

∫
∪N
k=1

B d
ω

(xk)

|(i∇+ ω2b)ζ|2dx

≥ K−1
1

N∑
k=1

∫
B d
ω

(xk)

|(i∇+ ω2b)ζ|2dx.
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Using Proposition 2.7, the last term bounds

K−1
1 ω2σ(d)

N∑
k=1

∫
B d
ω

(xk)

|ζ|2dx ≥ K2(d)ω2

∫
DDD\DDD d

ω

|ζ|2dx ≥ K2

2
ω2

∫
DDD
|ζ|2dx

where the final inequality follows from (2.18). Set C2 = K2/2. This chain of inequali-
ties establishes the lemma.

We now establish the principal result in this section. Here we prove the existence
of an upper critical field h and obtain a bound for it as κ→∞ and κ→ 0.

Theorem 2.9. There is a constant φ = φ(µe,DDD) so that if h > max( 1
κ , φκ), then

any weak solution for (1.2) with n = 2 is normal.
Proof. Let (0,aN ) be a normal state for (1.3) and (ψ,A) be a weak solution for

(1.2). A state is normal iff its entire gauge equivalence class is normal. Therefore,
we can assume without loss of generality that (ψ,A) and (0, haN ) satisfy (2.2). Set
ω2 = hκ. Then ω2 ≥ 1 by hypothesis. We apply (2.17) with m = 1 to derive

C2hκ

∫
DDD
|ψ|2dx ≤

∫
DDD
|(i∇+ hκaN )ψ|2dx,(2.19)

and by Lemma 2.5, the right-hand side of (2.19) is bounded by C1κ
2
∫
DDD |ψ|2dx. Let

φ = C1/C2. We have

h

∫
DDD
|ψ|2dx ≤ φκ

∫
DDD
|ψ|2dx.

By assumption h > φκ. Hence it must hold that
∫
DDD |ψ|2dx = 0.

3. Three-dimensional bodies. In this section, we consider a superconducting
body given by a bounded domain DDD ⊂ R3 subjected to a uniform applied field Ha =
he. We will assume without loss of generality that e = e3 throughout this section.

Denote by Ȟ1(R3) the completion of C∞0 (R3;R3) with respect to the norm

‖B‖Ȟ1(R3) =

(∫
R3

|∇B|2dx
) 1

2

.

One can show elements B ∈ Ȟ1(R3) satisfy the following relationships:

‖B‖L6(R3;R3) ≤ θ‖B‖Ȟ1(R3)(3.1)

where θ is independent of B and

‖B‖2
Ȟ1(R3)

=

∫
R3

(|div B|2 + | curl B|2)dx(3.2)

(see [10]).
In order to represent magnetic fields we need the following lemma.
Lemma 3.1. Let g ∈ L2(R3;R3) such that div g = 0 in D′(R3). Then there is a

unique u ∈ Ȟ1(R3) such that curl u = g and div u = 0.
Proof. Consider DkΓ∗g, where Γ(x) = Γ3(x) = −1

3ω3|x| is the Newtonian potential

for R3 and 1 ≤ k ≤ 3. We claim that DkΓ∗g ∈ Ȟ1(R3). To see this, let us first assume
that g has bounded support. Then, DkΓ ∗ g exists as a weakly singular integral and

|DkΓ ∗ g| = O(|x|−2)
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and

|∇(DkΓ ∗ g)| = O(|x|−3) as |x| → ∞.

Let ϕR(x) be a standard C∞ cutoff function such that ϕR = 1 for |x| ≤ R and
ϕR = 0 for |x| ≥ R+1. It follows directly that {ϕR(n)(DkΓ∗g)} is a Cauchy sequence

in Ȟ1(R3) that converges to DkΓ ∗ g pointwise for any sequence R(n) → ∞. Thus,
DkΓ∗g ∈ Ȟ1(R3) assuming g has bounded support. Finally, by standard L2-singular
integral theory,

‖DkΓ ∗ g‖Ȟ1(R3) ≤ ‖g‖L2(R3;R3),(3.3)

and as a consequence, DkΓ ∗ g ∈ Ȟ1(R3) for all g ∈ L2(R3;R3).
Define u : g ∈ L2(R3;R3)→ Ȟ1(R3) by

u(g) = −(D2Γ ∗ g3 −D3Γ ∗ g2, D3Γ ∗ g1 −D1Γ ∗ g3, D1Γ ∗ g2 −D2Γ ∗ g1).

Let gε be a mollification of g; then gε → g in L2 as ε → 0, and div gε = 0 for each
ε > 0. We define gε,R = ϕRgε. Note div(gε,R) = ∇ϕR · gε. If we choose sequences
ε(n)→ 0 and R(n)→∞ as n→∞, then gn = ϕR(n)gε(n) ∈ C∞0 (R3;R3), gn → g in
L2, and div gn → 0 in L2 as n→∞.

Set wn = Γ ∗ gn. These are well defined since gn have bounded support. Using
(3.3), we see

curl wn = −u(gn)→ −u(g) in Ȟ1 as n→∞.

Consider

curl u(gn) = − curl curl wn = ∆wn −∇(div wn) = gn −∇(div wn).(3.4)

We know ∇(div wn) = ∇Γ ∗ (div gn) → 0 in Ȟ1(R3) as n → ∞ since div gn → 0 in
L2. Thus, using (3.1) we conclude ∇(div wn) → 0 in L6, as n → ∞. Furthermore,
we have curl u(gn) → curl u(g) and gn → g in L2 as n → ∞. As a consequence
curl u(g) = g in R3.

Since u(gn) = − curl wn we have div u(gn) = 0, which implies div u(g) = 0.
Finally, using (3.2) we see that u is unique in Ȟ1(R3).

We can apply the preceding lemma to characterize weak solutions.
Lemma 3.2. Let (ζ,B) be a weak solution to (1.2). Then there is a gauge equivalent

solution (ψ,A) such that div A = 0 and (A− µeh
2 (−y, x, 0)) ∈ Ȟ1(R3). Moreover, if

(ψ̃, Ã) is another such solution, then ψ̃ = aψ for some a ∈ C, |a| = 1, and Ã = A.
Proof. Set g = (curl B− µehe3) ∈ L2(R3;R3). From the previous lemma there is

a unique element u ∈ Ȟ1(R3) such that curl u = g and div u = 0. Therefore, we find
A = u + µeh

2 (−y, x, 0).
We now characterize the normal state in three dimensions.
Lemma 3.3. There is a unique normal state satisfying (1.3) such that (aN −

µe
2 (−y, x, 0)) ∈ Ȟ1(R3) and div aN = 0.

Proof. Consider the strictly convex functional

E(b) = G(0,b) +

∫
R3

(div b)2dx =

∫
DDD

1

2
dx +

∫
R3

(
µ

∣∣∣∣ 1µ curl b− e3

∣∣∣∣2 + (div b)2

)
dx
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for the class SSS = {b : (b − µe
2 (−y, x, 0)) ∈ Ȟ1(R3)}. A unique equilibrium exists

which also minimizes E(·). Let b̃ be this equilibrium. If div b̃ 6= 0 then by Lemma 3.2

we can find another vector field
≈
b ∈ SSS such that curl

≈
b = curl b̃ and div

≈
b = 0. This

would imply E(
≈
b) < E(b̃) which is impossible. Thus, div b̃ = 0. It follows that b̃

satisfies (1.3) and as a result a normal state (0,aN ) exists. Conversely, a normal state
satisfying the hypothesis is an equilibrium for E(·), and so aN is unique.

Recall that the induction curl aN , not aN , is the physically relevant quantity.
Below we show it is uniquely determined.

Lemma 3.4. Let (0,aN ) be a normal state. Then curl aN is uniquely determined,
curl aN is harmonic in R3\∂DDD and

curl aN ∈ C1,α(DDD) ∩ C1,α(DDDc).

Moreover, if div aN = 0, then

aN ∈ C1,α(DDD) ∩ C1,α(DDDc).

Proof. Using Lemma 3.2 we see any normal state is gauge equivalent to the normal
state described in Lemma 3.3. Since a gauge transformation leaves the curl of a vector
field invariant, we conclude that curl aN is uniquely determined for solutions to (1.3).

We can use the first equation in (1.3) to prove that there exists a function p ∈
H1

loc(R3) such that curl aN = µ∇p. Since

div(µ∇p) = 0 in R3,(3.5)

and µ is constant on the components of R3 \ ∂DDD, the function p (and thus curl aN )
is harmonic in each component. We apply the results from [11, Chapter 5, Section 4]
to the solution p for (3.5), to derive that p ∈ C2,α(DDD) ∩ C2,α(DDDc) and as a conse-
quence, curl aN ∈ C1,α(DDD) ∩ C1,α(DDDc).

Assume div aN = 0. Let UUU be an open neighborhood of DDD and consider w ∈
H2(UUU ;R3) such that ∆w = curl aN in UUU . From [11, Chapter 5], we have w ∈
C2,α(DDD) ∩ C2,α(UUU \DDD). The identity curl(curl w) + ∆w = ∇(div w) in UUU yields

curl(curl w + aN ) = ∇(div w),

from which we obtain

curl curl(curl w + aN ) = 0 in D′(UUU).

By hypothesis div(curl w + aN ) = 0. Whence, from the identity above

−∆(curl w + aN ) = curl curl(curl w + aN ) = 0 in D′(UUU).

This implies (curl w + aN ) ∈ C∞(UUU), and we conclude

aN ∈ C1,α(DDD) ∩ C1,α(DDDc).

Consider the case µ ≡ 1. Given e, we can find a linear function a(x) such that
curl a ≡ e. Clearly a satisfies (1.3). It follows from the previous lemma then that
curl aN ≡ e when µ ≡ 1.

We now derive a Sobolev estimate analogous to Lemma 2.3.
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Lemma 3.5. Let (ζ,B) be a weak solution to (1.2). Let (ψ,A) be the gauge
equivalent solution found in Lemma 3.2 and (0, haN ) be the normal state found in
Lemma 3.3. Then there is a constant C0 depending only on DDD such that∫

DDD
|A− haN |2dx ≤ C0

∫
R3

| curl(A− haN )|2dx.

Proof. Using (3.1) and (3.2) we see

‖A− haN‖L6(R3;R3) ≤ θ‖∇(A− haN )‖L2(R3;R3) = θ‖ curl(A− haN )‖L2(R3;R3).

Since DDD is bounded we have

‖A− haN‖L2(DDD;R3) ≤M(DDD)‖A− haN‖L6(DDD;R3)

and the lemma follows.
We proceed in deriving the three-dimensional counterpart to Lemma 2.5.
Lemma 3.6. Let (ψ,A) and (0, haN ) be as in Lemma 3.5. Then there is a constant

C1 = C1(DDD, µe) so that∫
DDD
|(i∇+ hκaN )ψ|2dx ≤ C1κ

2

∫
DDD
|ψ|2dx.

Proof. We proceed just as in Lemma 2.5 to obtain∫
R3

1

µ
[curl(A− haN ) · curl B]dx ≤ ε−1

∫
DDD
|ψ|2dx + ε

∫
DDD
|ψ|2|B|2dx

for any ε > 0 and B ∈ H1(R3;R3) with bounded support. However, since A− haN ∈
Ȟ1(R3), we can take B = Bj → A− haN in Ȟ1(R3) as j →∞. As a result, we have∫

R3

1

µ
| curl(A− haN )|2dx ≤ ε−1

∫
DDD
|ψ|2dx + ε

∫
DDD
|ψ|2|A− haN |2dx.

The remainder of the proof is just as before.
We next give a three-dimensional analogue for the eigenvalue estimate from [1].
Let v ∈ R3 \ {0} such that |v| = 1 and x0 ∈ R3. Let T (x0, r,v) be a cylinder

with central axis parallel to v, height 2r, and middle cross section the disk of radius
r with center x0.

Lemma 3.7. Let b ∈ H1(T (x0, r,v);R3) such that curl b = v. Then∫
T

|(i∇+ ω2b)ζ|2dx ≥ ω2σ(ωr)

∫
T

|ζ|2dx(3.6)

for all ζ ∈ H1(T ) where σ(·) is as in Proposition 2.7.
Proof. We first transfer the problem to

T (0, r, e3) = Br(0)× (−r, r).

Let Q ∈ SO(3) such that e3 = Qv, and set y(x) = Q(x− x0). Then

y : x ∈ T (x0, r,v)→ T (0, r, e3).
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Given ζ ∈ H1(T (x0, r,v)) we define ξ(y) = ζ(x(y)). Then

(i∇y + ω2bQt)ξ(y) = (i∇x + ω2b)ζ(x)Qt.

By changing variables we see that (3.6) is equivalent to showing the following inequal-
ity: ∫

T (0,r,e3)

|(i∇+ ω2bQt)ξ|2dy ≥ ω2σ(ωr)

∫
T (0,r,e3)

|ξ|2dy.

For any w ∈ R3, we have

Qw · curly(bQt) = det

wtQt

∇y

bQt

 = det

wtQt

∇xQ
t

bQt

 = det

wt

∇x

b

 = w · curlx b.

Therefore, curly(bQt) = Q(curlx b) = Qv = e3.
By changing the gauge if necessary, we can assume bQt = 1

2 (−y, x, 0). Then∫
T (0,r,e3)

|(i∇+ ω2bQt)ξ|2dy ≥
∫
T (0,r,e3)

|(i(Dx, Dy, 0) + ω2bQt)ξ|2dy

=

∫ r

−r

∫
Br

∣∣∣∣(i(Dx, Dy, 0) +
ω2

2
(−y, x, 0)

)
ξ(x, y, z)

∣∣∣∣2 dx dy dz
≥
∫ r

−r
ω2σ(ωr)

∫
Br

|ξ(x, y, z)|2dx dy dz

= ω2σ(ωr)

∫
T (0,r,e3)

|ξ|2dy,

where we have applied Proposition 2.7 for each −r ≤ z ≤ r.
We go on to prove the three-dimensional counterpart to the eigenvalue estimate

in Lemma 2.8.
Lemma 3.8. Let (0,aN ) be the normal state from Lemma 3.3. Assume curl aN 6= 0

in DDD. Then there exist constants m ≥ 1 and 0 < C2 ≤ 1 so that if ω2 ≥ m, it holds
that

C2ω
2

∫
DDD
|ζ|2dx ≤

∫
DDD
|(i∇+ ω2aN )ζ|2dx(3.7)

for all ζ ∈ H1(DDD).
Proof. We argue as in Lemma 2.8. There exists a constant d > 0 so that given

ξ ∈ H1(DDD) and ω ≥ 1 either (3.7) is true with C2 = 1 and ξ = ζ or

1

2

∫
DDD
|ξ|2dx ≤

∫
DDD\DDD d

ω

|ξ|2dx.(3.8)

Assume the latter. In this case we cover DDD \DDD d
ω

by a family of cylinders {Tk : k =

1, . . . , N(ω)} such that Tk = T (xk,
d

2ω , curl aN (xk)/| curl aN (xk)|) with Tk ⊂ DDD for

each k and
∑N
k=1 χTk ≤ K where K is independent of ω for ω ≥ 1. As a consequence,∫
DDD
|(i∇+ ω2aN )ξ|2dx ≥ K−1

N∑
k=1

∫
Tk

|(i∇+ ω2aN )ξ|2dx.(3.9)
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In each Tk we write aN (x) = `k(x) + qk(x) where `k(x) = aN (xk) +∇aN (xk) ·
(x− xk). Note curl `k(x) = curl aN (xk). Using (2.9) for each k we obtain∫

Tk

|(i∇+ ω2aN )ξ|2dx ≥ 1

2

∫
Tk

|(i∇+ ω2`k)ξ|2dx− ω4

∫
Tk

|qk|2|ξ|2dx.

From Lemma 3.7 we have∫
Tk

|(i∇+ ω2`k)ξ|2dx ≥ ω2| curl aN (xk)|σ
(
| curl aN (xk)| 12 d

2

)∫
Tk

|ξ|2dx

≥ ω2M0

∫
Tk

|ξ|2dx,

where M0 > 0 depends on infDDD | curl aN | > 0 and the structure of σ(·) (see Proposi-
tion 2.7).

Since aN ∈ C1,α(DDD) we have

|qk| ≤M1(diamTk)1+α ≤M2ω
−1−α where M2 is independent of k.

As a result, we see for each k that

∫
Tk

|(i∇+ ω2aN )ξ|2dx ≥
(
M0

2
ω2 −M2

2ω
2−2α

)∫
Tk

|ξ|2dx ≥ M0

4
ω2

∫
Tk

|ξ|2dx,
(3.10)

provided ω2 ≥ m = m(DDD, µe) sufficiently large.
From (3.9) and (3.10) then∫

DDD
|(i∇+ ω2aN )ξ|2dx ≥M3ω

2

∫
∪N
k=1

Tk

|ξ|2dx,

for some M3 > 0 independent of the cover. Using DDD \ DDD d
ω
⊂ ∪Nk=1Tk and (3.8) we

derive ∫
∪N
k=1

Tk

|ξ|2dx ≥
∫
DDD\DDD d

ω

|ξ|2dx ≥ 1

2

∫
DDD
|ξ|2dx.

Setting C2 = M3

2 we have our lemma.
The following theorem is proved in the same manner as Theorem 2.9. We establish

the existence of h and derive an upper bound for it provided curl aN does not vanish
on DDD.

Theorem 3.9. Assume that curl aN 6= 0 in DDD. There are constants m and φ,
depending on DDD and µe, so that if h > max(mκ , φκ ) then any weak solution to (1.2)
with n = 3 is normal.

For the case µ ≡ 1, we have | curl aN | ≡ 1 and we can recover the following result.
Corollary 3.10. If µe = 1 then there exist constants m and φ depending on DDD

so that if h > max(mκ , φκ); then any weak solution to (1.2) with n = 3 is normal.

In general, one does not know if curl aN vanishes somewhere in DDD or not. Never-
theless, since curl aN is harmonic in DDD it can vanish only on a small set.

Lemma 3.11. Let (0,aN ) be a normal state. Then L3({x ∈ DDD : curl aN (x) =
0}) = 0.
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Proof. Since curl aN is harmonic in DDD either L3({x ∈ DDD : curl aN (x) = 0}) = 0
or curl aN ≡ 0 in DDD. From Lemma 3.4, we know there is a function p ∈ C2,α(DDD) ∩
C2,α(DDDc) ∩ C(R3) such that

curl aN = µ∇p in R3.

Hence, p satisfies {
div(µ∇p) = 0 in R3,

(∇p− e3) ∈ L2(R3).
(3.11)

Assume that curl aN ≡ 0 in DDD. Then p = constant = p0 in DDD. It follows from the first
equation in (3.11) that p solves

∆p = 0 in DDDc,
p = p0,

∂p

∂n
= 0 on ∂DDDc,

where n is the exterior normal to ∂DDD. The Cauchy problem has the unique solution
p = p0. This would contradict the second equation in (3.11).

To conclude, we show there is a finite upper critical field for each κ.

Theorem 3.12. Let κ, µe, and γ be fixed. There is a constant h = h(κ, µe, γ,DDD)
so that if h > h then any weak solution to (1.2) with n = 3 is normal.

Proof. Let (0,aN ) be as in Lemma 3.3. Assume there exists a sequence {(ψj ,Aj)}
where for each j the pair is as in Lemma 3.5 solving (1.2) with h = hj for which
limj→∞ hj =∞ and

∫
DDD |ψj |2dx > 0.

Set ϕj(x) = |ψj(x)|/‖ψj‖L2(DDD). From (2.6) we have∫
DDD
|∇ϕj |2dx ≤ κ2,

and we can find a subsequence ϕj → ϕ0 in L2(DDD) as j →∞ with ‖ϕ0‖L2(DDD) = 1.

From Lemma 3.11 the set Q = {x ∈ DDD : curl aN (x) = 0} is a closed set of measure
zero. It follows that there exists a ball B2r ⊂ DDD \Q such that

∫
Br
|ϕ0|2dx ≡ 2δ > 0

and infB2r
| curl aN | > 0. Note for j sufficiently large we have∫

Br

|ψj |2dx ≥ δ
∫
DDD
|ψj |2dx.

For each j we cover Br by a finite family of cylinders,

{T (xk, ω
−1
j , curl aN (xk)/| curl aN (xk)|)} = {Tkj , 1 ≤ k ≤ N(j)}

such that ω2
j = hjκ, xk ∈ Br and such that the family has overlap of at most K

uniformly in x ∈ DDD independent of j. For j sufficiently large, each Tkj ⊂ B2r and as
in Lemma 3.8 we derive,∫

Tkj

|(i∇+ ω2
jaN )ψj |2dx ≥ ω2

jM0

∫
Tkj

|ψj |2dx,
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where M0 > 0 depends on infB2r
| curl aN | and ‖aN‖C1,α(DDD)

but not on j. Whence,
we can write∫

DDD
|(i∇+ hjκaN )ψj |2dx ≥ K−1

N(j)∑
k=1

∫
Tkj

|(i∇+ hjκaN )ψj |2dx

≥M1hjκ

∫
∪N(j)

k=1
Tkj

|ψj |2dx ≥M1hjκ

∫
Br

|ψj |2dx ≥M2hjκ

∫
DDD
|ψj |2dx,

where M1 and M2 are positive and depend on infB2r
| curl aN |, aN and δ. From

Lemma 3.6 we know∫
DDD
|(i∇+ hjκaN )ψj |2dx ≤ C1κ

2

∫
DDD
|ψj |2dx,

which leads to

M2hjκ

∫
DDD
|ψj |2dx ≤ C1κ

2

∫
DDD
|ψj |2dx

for all j sufficiently large. Since hj →∞ as j →∞, we must have
∫
DDD |ψj |2dx = 0 for

j large and this is a contradiction.

4. Estimates for small κ. In this section we consider h for small κ in cases
where curl aN ≡ e in DDD.

Theorem 4.1. Let n = 2 with µe > 0 or n = 3 with µe = 1. Then h = O(1) as
κ ↓ 0.

Proof. We consider the case n = 3. The argument for n = 2 is identical.
Let κ ≤ 1 and assume (ψ,A) solves (1.2) with ψ 6≡ 0. From (2.6) we have∫

DDD
|∇|ψ| |2dx ≤ κ2

∫
DDD
|ψ|2dx ≤

∫
DDD
|ψ|2dx.

If we apply Lemma 2.6 with λ = λ0 = 1, we find there is a constant d > 0 so that

1

2

∫
DDD
|ψ|2dx ≤

∫
DDD\DDDd

|ψ|2dx.

We take r, 0 < r < d, to be determined and cover DDD \ DDDd by a family of cylinders
{T (xk, r, e)} such that the cylinders have finite overlap independent of r and each is
contained in DDD. Then arguing just as in Lemma 2.8 there exists a constant C2 > 0 for
which

C2hκ σ((hκ)
1
2 r)

∫
DDD
|ψ|2dx ≤

∫
DDD
|(i∇+ hκaN )ψ|2dx.

Applying Lemma 3.6 to the right-hand side, and recalling that
∫
DDD |ψ|2dx > 0 the

following inequality holds:

C2hκ σ((hκ)
1
2 r) ≤ C1κ

2.(4.1)

From Corollary 3.10 we have hκ ≤ M2
1 for some M1 < ∞ for all κ ≤ 1. We now

choose r so that M1r ≤ 2
1
2 . The reason for this choice is that if 0 < t ≤ 2

1
2 , then σ(t)

is the principal eigenvalue for the Sturm–Liouville problem:

g′′(s) +
g′(s)
s
− s2g(s)

4
= −σ(t)g(s) for 0 < s < t,

g′(t) = 0 and g is bounded
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(see [1, Section 6]). As such, from [6, Proposition 3.4], we have σ(t) = t2

8 + o(t2) as
t→ 0. It follows that there is a constant M2 > 0 so that

M2t
2 ≤ σ(t) for 0 ≤ t ≤ 2

1
2 .

Combining this estimate with (4.1), we derive

h2 ≤ C1

C2M2r2
for 0 < κ ≤ 1.

Since this holds for all superconducting solutions we conclude

h
2 ≤ C1

C2M2r2
for 0 < κ ≤ 1.

The length scale for variations in superconducting solutions is 1
κ . Because of this,

it is of interest to consider domains with dimensions comparable to 1
κ . To this end,

let DDD ⊆ Rn and define the dilated domain

DDD(κ) = {x ∈ Rn : κx ∈ DDD}.
Then diam(DDD(κ)) = 1

κ diam(DDD). Let µ ≡ 1 so that curl aN ≡ e in DDD(κ). Consider
(ψ,A) satisfying (1.2) on DDD(κ). Let

ψ̃(x) = ψ(κ−1x) for x ∈ DDD

and

Ã(x) = A(κ−1x) for x ∈ R3.

Then (ψ̃, Ã) satisfies
(i∇+ Ã)2ψ̃ − ψ̃ + |ψ̃|2ψ̃ = 0 in DDD,
curl2 Ã = −κ−2

(
i
2 (ψ̃∗∇ψ̃ − ψ̃∇ψ̃∗) + Ã|ψ|2

)
χDDD in R3,

n · (i∇+ Ã)ψ̃ = −iγψ̃ on ∂DDD,
(curl Ã− hκ−1e) ∈ L2(R3;R3).

(4.2)

Assume that 0 < κ ≤ 1. Arguing as in Lemma 2.5, taking into account the multiple
κ−2 of the right-hand side of the second equation in (4.2), we obtain the analogue of
(2.7), ∫

DDD
|Ã− hκ−1aN |2dx ≤ κ−4M

∫
DDD
|ψ̃|2dx,

where M = M(diamDDD). Using κ ≤ 1 we then obtain the analogue of (2.5),∫
DDD
|(i∇+ hκ−1aN )ψ̃|2dx ≤ C1κ

−4

∫
DDD
|ψ̃|2dx.

It follows as in Theorem 2.9 then that there is a constant φ so that if hκ−1 ≥ φκ−4

then ψ̃ ≡ 0. Returning to (ψ,A) we conclude that

h(κ, 1, γ,DDD(κ)) = O(κ−3) as κ ↓ 0.

As we alluded to in the introduction, there are superconducting solutions for the case
of the slab −∞ < x < 0, −∞ < y, z < ∞ for which h diverges as κ ↓ 0 (see [4]).

However, this occurs at the slower rate h = O(κ−
1
2 ).
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Abstract. In this paper, the convergence of solutions of type K monotone systems is studied.
The basic assumption is that the Jacobian matrix is stable for every point in Rn+. The main results
are the following. If the system has a positive steady state, then it is globally asymptotically stable
in IntRn+. A sufficient and necessary condition for a nonnegative steady state of the system to be
globally asymptotically stable is presented. Moreover, we provide sufficient conditions for type K
monotone systems to be permanent and for existence and uniqueness of a positive steady state.

Key words. type K monotone system, steady state, global stability, permanence
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1. Introduction. Beginning with the ground-breaking work of M. W. Hirsch [1],
[2], [3] for cooperative systems and monotone semiflows, this direction has recently
received considerable attention. H. L. Smith [4] has given a wonderful overview of the
current state of the theory of monotone semiflows and has nicely illustrated the theory
with applications to systems of ordinary and delay differential equations and reaction-
diffusion equations. Hirsch [1], [2], [3] not only proved a series of important results on
the long-run behavior of trajectories for monotone semiflows but also presented many
powerful key ideas to deal with the asymptotic behavior of solutions of many sorts of
differential equations preserving some type of order relation on initial data, boundary
data, and inhomogeneous terms. As soon as one proves that a system preserves a
suitable order relation on the state space, he can either apply the abstract results for
monotone semiflows to such a system or directly study it by using the ideas presented
by Hirsch.

In the paper [5], Smith studied general Kolmogorov-type models of competition
between subcommunities which are described by the following ordinary differential
equations:

(S) ẋi = xifi(x1, x2, . . . , xn), 1 ≤ i ≤ n, xi ≥ 0.

More precisely, he considered systems (S) for which, after suitable permutations of
species indices, the community consists of two disjoint complementary subcommuni-
ties I = {1, 2, . . . , k} and J = {k + 1, . . . , n}, 0 ≤ k ≤ n. The interactions between
every pair of species in subcommunity I are mutualistic and similarly for group J .
On the other hand, the interaction between species i ∈ I and species j ∈ J is a
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competitive one. Mathematically speaking, the above situation can be expressed as

(KM)


∂fi
∂xj
≥ 0 whenever i 6= j belongs to the same subcommunity,

∂fi
∂xj
≤ 0 whenever i, j belong to different subcommunities.

Smith called such a system (S) a type monotone system.
Earlier Takeuchi and Adachi [6], Takeuchi, Adachi, and Tokumaru [7], and Travis

and Post [8] had investigated some particular sorts of such systems, most of which
are Lotka–Volterra systems

(S∗) ẋ = diag(x)(r +Mx), x ∈ Rn+, r ∈ Rn,

in which x = (x1, x2) ∈ Rk+ ×Rn−k+ , r = (r1, r2), and

M =

(
A −B
−C D

)
,(1.1)

where A is a k×k matrix with nonnegative off-diagonal elements, D is an (n−k)×(n−
k) matrix with the same property, and B ≥ 0, C ≥ 0. Remarkable results for systems
(S∗) had been obtained by them in [6], [7], [8] without using the monotonicity prop-
erties of the semiflows. Some of these results rely on Lyapunov function arguments
due to Goh [9].

Smith [5] first discovered that these systems preserve the partial ordering gener-
ated by the cone K = Rk+× (−Rn−k+ ) and exploited the monotonicity of the semiflows
to study such more general Kolmogorov models. In that paper, he extended Hirsch’s
ideas for cooperative systems to type K monotone systems (S) and found sufficient
conditions for persistence of all species. In his analysis, two subsystems of (S) play a
major role. These subsystems model the two mutualistic subcommunities I and J in
isolation:

(SI) ẋi = xifi(x1, . . . , xk, 0, . . . , 0), xi ≥ 0, i ∈ I,
and

(SJ) ẋj = xjfj(0, . . . , 0, xk+1, . . . , xn), xj ≥ 0, j ∈ J.
He accomplished his persistent results in the case that (SI) and (SJ) possess positive
steady states and that each of these positive steady states can be successfully invaded
by each of the competing species. These results are valid only for nonobligate species
(that is, f(0) > 0). We generalized them to obligate cases in [10].

Takeuchi and Adachi [6] made use of results from mathematical programming and
Lyapunov function arguments to type K Lotka–Volterra systems (S∗) and obtained
more sharp results. They proved that if M is stable, then (S∗) has a unique nonneg-
ative steady state x∗ with the property that x∗ attracts all solutions with positive
initial conditions. Indeed, if L = {i : x∗i > 0}, then the domain of attraction of x∗

is {x ∈ Rn+ : xi > 0 for all i ∈ L}. They also proved that if M is stable and x∗

is a nonnegative steady state with x∗i > 0 for i ∈ L and x∗i = 0 for i ∈ N/L where
N = {1, 2, . . . , n}, then x∗ is globally asymptotically stable relative to

{x ∈ Rn+ : xi > 0 for all i ∈ L}
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if and only if

rp +
n∑
j=1

mpjx
∗
j ≤ 0 for all p ∈ N/L,(1.2)

which is equivalent to

r +Mx∗ ≤ 0.(1.3)

As a simple application of these results, one can easily obtain the following two
propositions.

(P1). If (S∗I ) and (S∗J) have positive steady states x0
1 and x0

2, which are glob-
ally asymptotically stable in IntRk+ and IntRn−k+ , respectively, and each is stable to
invasion by every competing species,

r2 − Cx0
1 ≤ 0

and

r1 −Bx0
2 ≤ 0,

then (S∗) cannot have a stable positive steady state.
(P2). If M is stable and x0

2 is a positive steady state of (S∗J) which cannot be
invaded by species i ∈ I,

r1 −Bx0
2 ≤ 0,

then (0, x0
2) is globally asymptotically stable with respect to {x ∈ Rn+ : xj > 0, j ∈

J}.
The proposition (P1) shows that if the two positive steady states of (S∗I ) and

(S∗J) representing stable persistence of each subcommunity I and J in the absence
of competition are such that each is stable to invasion by every competing species,
then there cannot be a stable positive steady state representing coexistence of the two
subgroups. The proposition (P2) shows that if a positive steady state of (S∗J) is stable
to invasion by each species i ∈ I, then all solutions approach that steady state; the
species i ∈ I die out.

Based on the above conclusions for Lotka–Volterra systems, Smith [5, p. 870]
pointed out the following two questions:

“Are there sufficient conditions, symmetrical with respect to the two subgroups I
and J , for the conclusion (P1) to hold for the more general type K monotone systems
(S)?” and

“Are there sufficient conditions, which need not be symmetrical with respect to I
and J , for which the proposition (P2) generalizes to type K monotone systems (S)?”

The main goal of this paper is to introduce suitable conditions to answer the
above two questions. The first condition we shall introduce is

(C1) Df(x) ≤K M for every x ∈ Rn+,
where the constant matrix M is of type K and stable. Under this condition, we shall
completely generalize those results of Takeuchi and Adachi [6] to more general type
K monotone systems (S). More precisely, we shall prove that if type K monotone
systems (S) satisfy (C1), then (S) has a unique steady state c ∈ Rn+ whose attraction
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domain is Ω = {x ∈ Rn+ : xi > 0 for i ∈ L = {i : ci > 0}}, and that a steady state
c is globally asymptotically stable relative to Ω if and only if f(c) ≤ 0. These results
obviously give an answer to each of the above two questions.

The second condition we shall present is the concave one:

(C2) Df(y) ≤K Df(x) whenever 0 ≤ x ≤K y.

We shall verify that if type K monotone systems (S) satisfy (C2), then the same
conclusion as (P1) holds. This result gives another answer to the first question.
Moreover, we shall provide sufficient conditions for systems (S) to be permanent and
for existence and uniqueness of a positive steady state.

2. Preliminary. In this section, we will introduce some notation, establish some
conventions, and describe some results which are essential tools in the later sections.

Let Rn+ = {x ∈ Rn : xi ≥ 0 for 1 ≤ i ≤ n} denote the nonnegative orthant
and IntRn+ = {x ∈ Rn+ : xi > 0 for 1 ≤ i ≤ n} denote its interior.

The idea of a cone in Rn and the associated partial ordering which the cone
generates will be of fundamental importance in this paper. Recall that a cone K in
Rn is a closed convex set of Rn with the property K∩(−K) = {0}. It is easy to see that
Rn+ and K = {x ∈ Rn : xi ≥ 0 for 1 ≤ i ≤ k and xj ≤ 0 for k + 1 ≤ j ≤ n}
are two cones in Rn. We write x ≤K y (x ≤ y) whenever y − x ∈ K (y − x ∈ Rn+)
and x <K y (x < y) whenever y − x ∈ IntK (y − x ∈ IntRn+). If x, y ∈ Rn and K is
a cone in Rn, we let [x, y]K = {z ∈ Rn : x ≤K z ≤K y}.

If A is an n ×m matrix, we write A ≥ 0 if aij ≥ 0 for all i and j. If M is an
n× n matrix and M(Rk+× (−Rn−k+ )) ⊂ Rk+× (−Rn−k+ ), then it is easy to see that M
has structure (1.1) where A,B,C,D ≥ 0. If this is the case, we write M ≥K 0 where
K = Rk+ × (−Rn−k+ ). A matrix having structure (1.1) is called a type K matrix. For
two n × n type K matrices M1 and M2, M1 ≥K M2 if and only if M1 −M2 ≥K 0;
that is, A1 ≥ A2, B1 ≥ B2, C1 ≥ C2, D1 ≥ D2.

We will reserve the letter n for the dimension of space Rn and N = {1, 2, . . . , n}.
Let L be a nonempty subset of N and L̄ = N/L be its complementary set in N .
Then the set H+

L = {x ∈ Rn+ : xp = 0 for p ∈ L̄} is an invariant set for (S). The
H+
L , L ⊂ N , make up the boundary of Rn+. If L ⊂ N , L = {i1 < · · · < ir1 < j1 < · · · <

jr2} for ih ∈ I, 1 ≤ h ≤ r1 and jm ∈ J, 1 ≤ m ≤ r2, then for x ∈ Rn+ we write xL =
{xi1 , . . . , xir1 , xj1 , . . . , xjr2} ∈ Rl+, where r1 +r2 = l = #L. For any x ∈ H+

L , we write
x = (xL, 0) and fL(xL, 0) = (fi1(xL, 0), . . . , fir1 (xL, 0), fj1(xL, 0), . . . , fjr2 (xL, 0)).

Then the subsystem of (S) obtained by setting xp = 0 for p ∈ L̄ will be denoted by

(SL) ẋL = diag(xL)fL(xL, 0), xL ∈ Rl+,
and the dynamics on H+

L is determined by (SL). For systems (S) and (SL), we make
corresponding Lotka–Volterra systems (S∗) and (S∗L) which will play an important
role in our analysis:

(S∗) ẋ = diag(x)(r +Mx), x ∈ Rn+, r ∈ Rn,
and

(S∗L) ẋL = diag(xL)(rL +MLxL), xL ∈ Rl+, rL ∈ Rl,
where M is a stable type K matrix such that the condition (C1) is satisfied. The
meaning of the inequality Df(xL, 0) ≤K M implies that DfL(xL, 0) ≤KL ML, where
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DfL(xL, 0) is an l× l submatrix of Df(xL, 0) obtained by deleting rows and columns
of Df(xL, 0) indexed by p ∈ L̄, ML is an l × l submatrix of M obtained in the same
way, and KL = Rr1+ × (−Rr2+ ). Later DfL(xL, 0) and ML will have the same meaning.

We let s(M) = max Re λ, where λ runs through the eigenvalues of M . M is
stable if s(M) < 0. From the Perron–Frobenius theory, s(M) is an eigenvalue of M
if M is of type K.

We write φt(x), ψt(x) for the unique solutions x(t) of (S) and x̃(t) of (S∗), re-
spectively, satisfying x(0) = x, x̃(0) = x. Similarly, φLt (xL), ψLt (xL) are the unique
solutions xL(t) of (SL) and x̃L(t) of (S∗L), respectively, satisfying xL(0) = xL and
x̃L(0) = xL. {φt(x)}i for i ∈ N represents the ith component of φt(x). The compo-
nents {ψt(x)}i, {φLt (xL)}i, {ψLt (xL)}i for i ∈ N are defined similarly.

One of the fundamental tools used in this paper is the generalized Kamke theo-
rem. This theorem is extended in a natural way from cooperative systems to type K
monotone systems (see [5, Theorem 2.4]).

Theorem 2.1 (Kamke theorem). Assume that the system (S) is of type K
monotone, and x(t), y(t) are the solutions of (S) defined on a ≤ t ≤ b with x(a) ≤K
y(a). Then x(t) ≤K y(t) for all t ∈ [a, b].

In the paper [5, p. 862], Smith developed a criterion for the monotonicity of every
component of a solution for a cooperative system given by Selgrade [11] to the type
K monotone system. Now we quote it here.

Theorem 2.2. Let the system (S) be a type K monotone system and let f(x) ≥K
0 for some x ∈ Rn+. Then {φt(x)}i is nondecreasing if i ∈ I and {φt(x)}j is nonin-
creasing if j ∈ J for all t ≥ 0 for which the solution exists. A similar result holds if
f(x) ≤K 0.

The following result is from Perron–Frobenius theory (see [5, pp. 861 and 873]).
Theorem 2.3. Let M , N be of type K, where K = Rk+ × (−Rn−k+ ).
(i) If N ≥K M , then s(N) ≥ s(M).
(ii) If s(M) < 0, then s(ML) < 0 for any L ⊂ N .
(iii) If s(M) < 0, then (−M)−1 ≥K 0.

3. The global stability for a positive steady state. The object of this
section is to prove the following theorem.

Theorem 3.1. Let the conditions (KM) and (C1) hold. If (S) has a positive
steady state x̄, then x̄ is globally asymptotically stable in IntRn+.

Proof. Let x̄ be a positive steady state of (S), that is, f(x̄) = 0. Then for any x
in Rn+, we have

f(x)− f(x̄) =

[∫ 1

0

Df(sx+ (1− s)x̄)ds

]
(x− x̄).

The condition (C1) shows that∫ 1

0

Df(sx+ (1− s)x̄)ds ≤K M.(3.1)

Then the meaning of (3.1) implies that

f(x) ≤K M(x− x̄) for x ≥K x̄(3.2)

and

f(x) ≥K M(x− x̄) for x ≤K x̄.(3.3)
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From (3.2) and (3.3), we obtain that

diag(x)f(x) ≤K diag(x)(r +Mx) for x ≥K x̄

and

diag(x)f(x) ≥K diag(x)(r +Mx) for x ≤K x̄,

where r = −Mx̄.
Consider the systems (S) and (S∗). It follows from standard differential inequality

arguments and Theorem 2.1 that

x̄ ≤K φt(x) ≤K ψt(x) for x ≥K x̄, t ≥ 0,(3.4)

and

x̄ ≥K φt(x) ≥K ψt(x) for x ≤K x̄, t ≥ 0.(3.5)

Since Mx̄ + r = 0, x̄ is a positive steady state of (S∗). Because s(M) < 0, it
follows that

lim
t→+∞ψt(x) = x̄ for any x ∈ IntRn+

from the results of Takeuchi and Adachi [6] mentioned in the introduction. Then it
deduces that

lim
t→+∞φt(x) = x̄ for x ∈ IntRn+ with x ≥K x̄ or x ≤K x̄

from (3.4) and (3.5).
For any x ∈ IntRn+, there exist y ∈ (x̄+K) ∩ IntRn+ and z ∈ (x̄−K) ∩ IntRn+

such that z ≤K x ≤K y. In fact, we choose y and z as follows:{
yi = max(xi, x̄i) for i ∈ I,
yj = min(xj , x̄j) for j ∈ J,(3.6)

and {
zi = min(xi, x̄i) for i ∈ I,
zj = max(xj , x̄j) for j ∈ J.(3.7)

Applying Theorem 2.1, we have

φt(z) ≤K φt(x) ≤K φt(y) for t ≥ 0.

Because

lim
t→+∞φt(z) = lim

t→+∞φt(y) = x̄,

we have established that

lim
t→+∞φt(x) = x̄ for all x ∈ IntRn+.

This completes the proof.
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4. The global stability for a saturated steady state. For convenience, we
denote the set of steady states for (S) by E. A steady state c ∈ E satisfying that
diag(c)f(c) = 0 and f(c) ≤ 0 is called a saturated steady state.

Theorem 4.1. Let the assumption (KM) and the condition (C1) hold. If there
exists a steady state c ∈ ∂Rn+ with cP > 0, cP̄ = 0 where we agree on c = 0 if P = φ,
then c attracts all solutions with initial conditions in {x ∈ Rn+ : xP > 0} if and only
if f(c) ≤ 0.

Before proving Theorem 4.1, we again stress some conventions which will be
employed throughout the later work.

If x ∈ Rn+, let xL = {xi1 , . . . , xir1 , xj1 , . . . , xjr2} ∈ Rl+, where r1 + r2 = l = #L,

ih ∈ I, 1 ≤ h ≤ r1 and jm ∈ J, 1 ≤ m ≤ r2. If x ∈ H+
L , we write x = (xL, 0) and

fL(xL, 0) = (fi1(xL, 0), . . . , fir1 (xL, 0), fj1(xL, 0), . . . , fjr2 (xL, 0)).
In the proof of Theorem 4.1, we will use the following proposition, which can be

found in [5, p. 864].
Proposition 4.2. Let x = (xI , xJ) ∈ Rn+; then φt(x) ≤ (φIt (xI), φ

J
t (xJ)) for

t ≥ 0.
Proof of Theorem 4.1 (sufficiency). Assume that P = φ; that is, c = 0 where φ is

an empty set. In this case, f(0) ≤ 0. Considering the subsystems (SI) and cooperative
system (S∗I )

ẋI = diag(xI)[fI(0) +MIxI ],

we have

fI(xI , 0)− fI(0) =

[∫ 1

0

DfI(sxI , 0)ds

]
xI ≤MIxI .

Then

diag(xI)fI(xI , 0) ≤ diag(xI)[fI(0) +MIxI ],

and

0 ≤ φIt (xI) ≤ ψIt (xI) for t ≥ 0.

Since s(MI) < s(M) < 0 and fI(0) ≤ 0, by a result of Jiang (see [12, Theorem 3.4]),
limt→+∞ ψIt (xI) = 0I holds. So limt→+∞ φIt (xI) = 0I . Similarly, we obtain that
limt→+∞ φJt (xJ) = 0J . Hence, limt→+∞ φt(x) = 0 by Proposition 4.2.

If P 6= φ, it is assumed that there exists a steady state c ∈ ∂Rn+ with cP > 0,
cP̄ = 0 for P ⊂ N , and f(c) ≤ 0. Then we divide the proof into three cases.

(i)P ⊂ I, (ii)P ⊂ J, (iii)P ∩ I 6= φ, P ∩ J 6= φ.

Case (i). Without loss of generality, we may assume that P = {1, 2, . . . , p},
p = #P , 1 ≤ p ≤ k. Then c = (c1, . . . , cp, 0, . . . , 0) = (cP , 0).

Define a set

Ω1 = {x ∈ Rn+ : xi ≥ ci for i = 1, . . . , k, xj = 0 for j = k + 1, . . . , n}.

Consider the subsystem (SI)

ẋI = diag(xI)fI(xI , 0), xI ∈ Rk+.
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For any xI ∈ Rk+, we have

fI(xI , 0)− fI(cI , 0) =

[∫ 1

0

DfI(sxI + (1− s)cI , 0)ds

]
(xI − cI).

The condition (C1) implies that∫ 1

0

DfI(sxI + (1− s)cI , 0)ds ≤MI .

Then

fI(xI , 0) ≤ fI(cI , 0)−MIcI +MIxI for xI ≥ cI .
It is easy to obtain that

diag(xI)fI(xI , 0) ≤ diag(xI)(fI(cI , 0)−MIcI +MIxI) for xI ≥ cI .(4.1)

Make a corresponding cooperative system (S∗I )

ẋI = diag(xI)(fI(cI , 0)−MIcI +MIxI)

and write ψIt (xI) for the unique solution x̃I(t) of (S∗I ) satisfying x̃I(0) = xI .
Obviously, xI = cI is a steady state of (S∗I ) and

[fI(cI , 0)−MIcI +MIxI ]xI=cI = fI(cI , 0) ≤ 0.

Thus, Theorem 3.4 in [12] implies that

lim
t→+∞ψ

I
t (xI) = cI for any xI ∈ Rk+ with xP > 0.

From (4.1), by standard differential inequality arguments, we have

cI ≤ φIt (xI) ≤ ψIt (xI) for xI ≥ cI and t ≥ 0.

Thus

lim
t→+∞φ

I
t (xI) = cI

for any xI ∈ Rk+ with xI ≥ cI .
Observe that if x ∈ Ω1, then x ≥K c with xP > 0. Because {φt(xI , 0)}j = 0 for

j ∈ J , we write φt(x) = (φIt (xI), 0). Thus

lim
t→+∞φt(x) = lim

t→+∞(φIt (x), 0) = (cI , 0) = c

for x ∈ Ω1.
Define another set

Ω2 = {x ∈ Rn+ : 0 < xi ≤ ci for i = 1, . . . , p, xi = 0

for i = p+ 1, . . . , k, xj ≥ 0 for j = k + 1, . . . , n}.
Let L = {1, . . . , p, k + 1, . . . , n}, #L = n− k + p. We consider the subsystem (SL)

ẋL = diag(xL)fL(xL, 0), xL ∈ Rn−k+p
+ .
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For any xL ∈ Rn−k+p
+ , we have

fL(xL, 0)− fL(cL, 0) =

[∫ 1

0

DfL(sxL + (1− s)cL, 0)ds

]
(xL − cL).(4.2)

If x ∈ Ω2, then xL ≤K1
cL with xP > 0 where K1 = Rp+ × (−Rn−k+ ). Since∫ 1

0

DfL(sxL + (1− s)cL, 0)ds ≤K1
ML,

(4.2) shows that

fL(xL, 0) ≥K1
fL(cL, 0) +ML(xL − cL) = rL +MLxL,

where rL = fL(cL, 0)−MLcL. It follows that

diag(xL)fL(xL, 0) ≥K1
diag(xL)(rL +MLxL) for xL ≤K1

cL.(4.3)

Constructing a corresponding Lotka–Volterra system (S∗L), we have that

ẋL = diag(xL)(rL +MLxL), xL ∈ Rn−k+p
+ , rL ∈ Rn−k+p,

where rL = fL(cL, 0)−MLcL. Evidently,

diag(cL)(rL +MLcL) = diag(cL)fL(cL, 0) = 0.

This means that cL is a steady state of (S∗L) and

rL +MLcL = fL(cL, 0).

By assumption, fL(cL, 0) ≤ 0 is true. Then according to the results of Takeuchi and
Adachi [6], we deduce that

lim
t→+∞ψ

L
t (xL) = cL

for any xL ∈ {u ∈ Rn−k+p
+ : uj > 0 for j ∈ P}. From (4.3), by standard differential

inequality arguments, we have

cL ≥K1 φ
L
t (xL) ≥K1 ψ

L
t (xL) for t ≥ 0.

Then

lim
t→+∞φ

L
t (xL) = cL

for any xL ∈ {u ∈ Rn−k+p
+ : uj > 0 for j ∈ P}.

If x ∈ Ω2 which implies that x ≤K c with xi > 0 for i ∈ P , then

φt(x) = ({φt(x)}1, . . . , {φt(x)}p, 0, . . . , 0, {φt(x)}k+1, . . . , {φt(x)}n) = (φLt (xL), 0).

We have established that

lim
t→+∞φt(x) = lim

t→+∞(φLt (xL), 0) = (cL, 0) = c for any x ∈ Ω2.
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Hence, c attracts all points in Ω1 and Ω2.
For any x ∈ Rn+ with xi > 0 for i ∈ P , there exist y ∈ Ω1 and z ∈ Ω2 such that

z ≤K x ≤K y.

Indeed, we can choose y and z in a similar way as (3.6) and (3.7) if x̄ is replaced by
c. Theorem 2.1 shows that

φt(z) ≤K φt(x) ≤K φt(y) for t ≥ 0.

Since

lim
t→+∞φt(z) = lim

t→+∞φt(y) = c,

we conclude that

lim
t→+∞φt(x) = c.

Case (ii). If Case (ii) is true, then pick a transformation by (x1, . . . , xn) such
that it is changed into Case (i). Actually, we only choose a suitable permutations of
species indices for this purpose.

Case (iii). Without loss of generality, let

c = (c1, . . . , cr1 , 0, . . . , 0, ck+1, . . . , ck+r2 , 0, . . . , 0).

Then P = {1, . . . , r1, k + 1, . . . , k + r2}, 1 ≤ r1 ≤ k, 1 ≤ r2 ≤ n− k, r1 + r2 = p < n.
Define a set

Ω3 = {x ∈ Rn+ : xi ≥ ci for i = 1, . . . , k, 0 < xj ≤ cj for j = k + 1, . . . , k + r2,

xj = 0 for j = k + r2 + 1, . . . , n}
= (c+K) ∩Rn+ ∩ {x ∈ Rn+ : xP > 0}.

Consider the systems (SL) and (S∗L) with L = {1, . . . , k, k + 1, . . . , k + r2}.
If x ∈ Ω3, then xL ≥K2

cL where K2 = Rk+ × (−Rr2+ ). Letting rL = fL(cL, 0) −
MLcL, similar to Case (i) we can obtain that

diag(xL)fL(xL, 0) ≤K2
diag(xL)(rL +MLxL), xL ∈ Rk+r2

+ with xL ≥K2
cL,

and

cL ≤K2
φLt (xL) ≤K2

ψLt (xL) for xL ≥K2
cL and t ≥ 0.

We may argue as in Case (i) with the help of the results of Takeuchi and Adachi
[6]. It deduces that

lim
t→+∞φ

L
t (xL) = lim

t→+∞ψ
L
t (xL) = cL

for any xL ≥K2
cL with xi > 0 for i ∈ P . Therefore, if x ∈ Ω3, then

lim
t→+∞φt(x) = lim

t→+∞(φLt (xL), 0) = (cL, 0) = c.
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Define another set

Ω4 = {x ∈ Rn+ : 0 < xi ≤ ci for i = 1, . . . , r1, xi = 0 for i = r1 + 1, . . . , k,

xj ≥ cj for j = k + 1, . . . , n}
= (c−K) ∩Rn+ ∩ {x ∈ Rn+ : xP > 0}.

We also consider the subsystems (SL) and (S∗L) where L = {1, . . . , r1, k + 1, . . . , n}.
By using the same process as in Case (i), we have that

diag(xL)fL(xL, 0) ≥K3
diag(xL)(rL+MLxL) for xL ∈ Rn−k+r1

+ with xL ≤K3
cL,

and

cL ≥K3
φLt (xL) ≥K3

ψLt (xL) for xL ≤K3
cL and t ≥ 0,

where rL = fL(cL, 0)−MLcL and K3 = Rr1+ × (−Rn−k+ ).
In a similar way, one easily deduces that

lim
t→+∞φ

L
t (xL) = lim

t→+∞ψ
L
t (xL) = cL

for any xL ≤K3
cL with xi > 0 for i ∈ P .

If x ∈ Ω4 which implies that xL ≤K3
cL with xi > 0 for i ∈ P , then

lim
t→+∞φt(x) = lim

t→+∞(φLt (xL), 0) = (cL, 0) = c.

Therefore, c attracts all points in Ω3 and Ω4 with xP > 0. For any x ∈ Rn+ with
xP > 0, just as in Case (i), we can choose y ∈ Ω3 and z ∈ Ω4 such that

z ≤K x ≤K y

by using the same method as in (3.6) and (3.7) if x̄ is replaced by c. Then

φt(z) ≤K φt(x) ≤K φt(y) for t ≥ 0.

Since

lim
t→+∞φt(z) = lim

t→+∞φt(y) = c,

we conclude that

lim
t→+∞φt(x) = c

for all x in {x ∈ Rn+ : xP > 0}. The proof of sufficiency is completed.
Necessity. Assume that c ∈ ∂Rn+ attracts all points in {x ∈ Rn+ : xi > 0, i ∈ P}

with P = {i : ci > 0}. Then a linearized stability analysis of the steady state c begins
with the coefficient matrix of the variational equation given below

DF (c) = diag(f(c)) + diag(c)Df(c).(4.4)

It is easy to see that the necessary condition for c to be stable is s(DF (c)) ≤ 0, which
implies that f(c) ≤ 0 by further analyzing equation (4.4). The proof of necessity is
completed.
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Theorem 4.3. Suppose that the assumption (KM) and the condition (C1) are
satisfied. Then there exists a steady state c ∈ Rn+ with cP > 0, cP̄ = 0 such that it
attracts all solutions with initial conditions in {x ∈ Rn+ : xP > 0}.

Before proceeding to the proof of Theorem 4.3, we present a proposition and some
lemmas.

Proposition 4.4. Suppose the assumptions (KM) and (C1) hold. Then every
solution of (S) is bounded.

Proof. In order to prove that φt(x) is bounded, we only have to prove that φIt (xI)
and φJt (xJ) are bounded by Proposition 4.2. Since φIt (xI) and φJt (xJ) are solutions
of cooperative systems (SI) and (SJ), their boundedness can be proved as the proof of
Proposition 3.2 in [12] where Df(0) is replaced by MI and MJ , respectively.

Lemma 4.5. Suppose that (S) has no positive steady state. If it has a steady state
c ∈ ∂Rn+ with #c = n− 1, then Theorem 4.3 holds.

Proof. We may assume c = (0, c2, . . . , cn). If f1(c) ≤ 0, then the conclusion of
Theorem 4.3 is true by Theorem 4.1.

Suppose the contrary; in other words, f1(0, c2, . . . , cn) > 0. Then there exists a
sufficiently small x1 > 0 such that f1(x1, c2, . . . , cn) > 0 by the continuity of f1. If
i ∈ I/{1}, then fi(x1, c2, . . . , cn) ≥ 0 because ∂fi

∂x1
≥ 0 for i ∈ I/{1}. If j ∈ J , then

fj(x1, c2, . . . , cn) ≤ 0 because
∂fj
∂x1
≤ 0 for j ∈ J . Thus, f(x1, c2, . . . , cn) ≥K 0.

Let p = (x1, c2, . . . , cn) and φt(p) be a solution of (S) passing through p. Theo-
rem 2.2 may be applied to conclude that {φt(p)}i is nondecreasing for i ∈ I, t ≥ 0
and {φt(p)}j is nonincreasing for j ∈ J and t ≥ 0. Proposition 4.4 shows that φt(p)
is bounded. Then we deduce that limt→+∞ φt(p) = q. Clearly, q is a steady state of
(S). From the type K monotonicity of φt(p) and differential equations (S), we obtain
that

fi(φt(p)) ≥ 0 for i ∈ I, t ≥ 0,

and

fj(φt(p)) ≤ 0 for j ∈ J, t ≥ 0.

As t→ +∞, it follows that

fi(q) ≥ 0 for i ∈ I,
and

fj(q) ≤ 0 for j ∈ J.
It is easy to see that q1 > x1, qi ≥ ci > 0 for i = 2, 3, . . . , k. Hence

fi(q) = 0 for i ∈ I,
which implies that f(q) ≤ 0. Applying Theorem 4.1, we conclude that q attracts all
points in {x ∈ Rn+ : xQ > 0}, where Q = {i : qi > 0}. Therefore, Theorem 4.3 is
true.

Lemma 4.6. If n = 2, then the conclusion of Theorem 4.3 holds.
Proof. If (S) has a positive steady state or c = 0 is a unique steady state, then by

Theorem 3.1 and Theorem C in [13], Theorem 4.3 is true. If there is a steady state
which is different from c = 0 on the “x1-axis” or “x2-axis,” then Lemma 4.5 shows
that Theorem 4.3 holds.
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Proof of Theorem 4.3. If a positive steady state exists, then the conclusion follows
from Theorem 3.1. If c = 0 is a unique steady state of (S), then 0I , 0J are unique
steady states of subsystems (SI) and (SJ), respectively. By Proposition 4.4, φIt (xI) and
φJt (xJ) are bounded. Hence limt→+∞ φIt (xI) = 0I for xI ∈ Rk+ and limt→+∞ φJt (xJ) =

0J for xJ ∈ Rn−k+ by Theorem C in [13]. Then we obtain that limt→+∞ φt(x) = 0 for
x ∈ Rn+ by Proposition 4.2.

If E ∩ IntRn+ = φ and E 6= {0}, we shall prove this theorem by induction on the
dimension n of type K monotone systems.

The statement is clear if n = 2 by Lemma 4.6. So assume for induction that the
theorem is true for all type K systems with dimension less than n. Now, we consider
an n-dimensional type K monotone system (S) satisfying (KM) and (C1). Then we
only have to consider the case that there is at least a steady state c 6= 0. We may
assume that c ∈ {(x1, x2, . . . , xn−1, 0) ∈ Rn+ : xi ≥ 0 for i = 1, 2, . . . , n − 1}. Let
L = {1, 2, . . . , n− 1}, #L = n− 1. We consider the subsystem (SL)

ẋL = diag(xL)fL(xL, 0), xL ∈ Rn−1
+ .

The condition (C1) implies that DfL(xL, 0) ≤K4
ML with s(ML) < 0, where K4 =

Rk+ × (−Rn−k−1
+ ). The induction assumption applies to the (n− 1)-dimensional type

K system (SL). Then (SL) has a steady state p = (p1, p2, . . . , pn−1) which attracts
all points in {xL ∈ Rn−1

+ : xQ > 0} where Q = {i ∈ L, pi > 0}. Then it follows that

limt→+∞ φLt (xL) = p for xL ∈ {x ∈ Rn−1
+ : xQ > 0}.

By the necessity of Theorem 4.1, we have

fi(p1, . . . , pn−1, 0) ≤ 0 for i = 1, 2, . . . , n− 1.

If fn(p1, . . . , pn−1, 0) ≤ 0, then f(p1, . . . , pn−1, 0) ≤ 0 and Theorem 4.3 is true by
the sufficiency of Theorem 4.1. Otherwise, fn(p1, . . . , pn−1, 0) > 0 holds. Define
J1 = {j ∈ J : pj > 0} ∪ {n}. Then

fj(p1, . . . , pn−1, 0) ≤ 0 for j ∈ J/J1,

and

fj(p1, . . . , pn−1, 0) = 0 for j ∈ J1/{n}.

Let L1 = I ∪ J1 and consider the subsystem (SL1
)

ẋL1 = diag(xL1)fL1(xL1 , 0), xL1 ∈ R#L1

+ ,

where xL1 = (xI , xJ1), 0 = 0J/J1
. By the continuity of fn, there exists a suffi-

ciently small xn > 0 such that fn(p1, . . . , pn−1, xn) > 0. If j ∈ J1/{n}, then

fj(p1, . . . , pn−1, 0) = 0 and
∂fj
∂xn

≥ 0, which implies that fj(p1, . . . , pn−1, xn) ≥ 0.

If i ∈ I, fi(p1, . . . , pn−1, 0) ≤ 0 and ∂fi
∂xn
≤ 0 which implies that fi(p1, . . . , pn−1, xn) ≤

0. Let v = (p1, . . . , pn−1, xn). Then v = (pI , pJ1/{n}, 0J/J1
, xn) = (u, 0), where

u = (pI , pJ1/{n}, xn) ∈ R#L1

+ . Thus fL1(u, 0) ≤K5 0 where K5 = Rk+ × (−R#J1

+ ).

Theorem 2.2 may be applied to conclude that {φL1
t (u)}i is nonincreasing if i ∈ I and

{φL1
t (u)}j is nondecreasing if j ∈ J1 for t ≥ 0. Also, φL1

t (u) is bounded by Proposi-

tion 4.4. Thus we obtain that limt→+∞ φL1
t (u) = qL1 . Clearly, qL1 is a steady state

of (SL1
).
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On the other hand, the type K monotonicity of φL1
t (u) implies that for any t ≥ 0,

fi(φ
L1
t (u), 0) ≤ 0 if i ∈ I,

and

fj(φ
L1
t (u), 0) ≥ 0 if j ∈ J1.

As t→ +∞, we have

fi(qL1 , 0) ≤ 0 for i ∈ I,

and

fj(qL1
, 0) ≥ 0 for j ∈ J1.

Since qn > xn, qj ≥ pi > 0 for j ∈ J1/{n}, it follows that

fj(qL1
, 0) = 0 for j ∈ J1.

If fj(qL1
, 0) ≤ 0 for j ∈ J/J1, then the theorem holds by Theorem 4.1. Assume

it is false. We define J2 = {j ∈ J : fj(qL1
, 0) > 0}. Let L2 = I ∪ J1 ∪ J2 and consider

the subsystem (SL2
)

ẋL2
= diag(xL2

)fL2
(xL2

, 0), xL2
∈ R#L2

+ ,

where xL2
= (xI , xJ1

, xJ2
), 0 = 0J/(J1∪J2).

Since

fJ2
(qL1

, 0J2
, 0J/(J1∪J2)) > 0,

fJ1
(qL1

, 0J2
, 0J/(J1∪J2)) = 0,

and

fI(qL1 , 0J2 , 0J/(J1∪J2)) ≤ 0

hold, there exists xJ2
> 0 small enough such that fJ2

(qL1
, xJ2

, 0J/(J1∪J2)) > 0 by

the continuity of fJ2 . Meanwhile,
∂fJ1

∂xJ2
≥ 0 implies that fJ1(qL1 , xJ2 , 0J/(J1∪J2)) ≥

0, and ∂fI
∂xJ2

≤ 0 implies that fI(qL1
, xJ2

, 0J/(J1∪J2)) ≤ 0 for such xJ2
. Hence,

fL2
(qL1

, xJ2
, 0J/(J1∪J2)) ≤K6

0, where K6 = Rk+ × (−R#(J1∪J2)
+ ). Let v = (qL1

, xJ2
).

Then {φL2
t (v)}i is nonincreasing for i ∈ I and {φL2

t (v)}j is nondecreasing for j ∈
J1 ∪ J2 on [0,+∞) by Theorem 2.2. Because φL2

t (v) is bounded, it deduces that
limt→+∞ φL2

t (v) = rL2
. Obviously, rL2

is a steady state of (SL2
). The type K mono-

tonicity of φL2
t (v) shows that for t ≥ 0,

fi(φ
L2
t (v), 0J/J1∪J2

) ≤ 0 if i ∈ I,

and

fj(φ
L2
t (v), 0J/J1∪J2

) ≥ 0 if j ∈ J1 ∪ J2.
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Hence, as t→ +∞, we have

fi(rL2 , 0) ≤ 0 for i ∈ I,
and

fj(rL2
, 0) ≥ 0 for j ∈ J1 ∪ J2.

Evidently, rJ2
> xJ2

, rJ1
≥ qJ1

> 0. Then

fj(rL2 , 0) = 0 for j ∈ J1 ∪ J2.

If j ∈ J/(J1 ∪ J2), fj(rL2 , 0) ≤ 0 which is equivalent to f(rL2 , 0) ≤ 0, then the
theorem is true. If not, we define J3 = {j ∈ J : fj(rL2 , 0) > 0}. Let L3 = I∪J1∪J2∪J3

and discuss the subsystem (SL3) in a similar way. This process must be stopped at
most at the (n− k)th step.

Hence, in this way, we can find a steady state c satisfying f(c) ≤ 0. Then by
Theorem 4.1, c attracts all points in {x ∈ Rn+ : xQ > 0} where Q = {i ∈ N, ci > 0}.
Therefore we have proved that the conclusion of Theorem 4.3 holds for n-dimensional
type K monotone systems. This completes the proof.

In order to give the first question in the introduction another answer, we present
a different condition. Suppose that (SI) and (SJ) have positive steady states x0

1 and
x0

2. Let p = (x0
1, 0) and q = (0, x0

2). The system (S) is called to satisfy the condition
(C′2) if either

Df(x) ≤K Df(y) whenever q ≤K y ≤K x ≤K p(4.5)

or

Df(x) ≤K Df(y) whenever q ≤K x ≤K y ≤K p.(4.6)

Theorem 4.7. Let the hypotheses (KM) and (C′2) hold. If (SI) and (SJ) have
steady states x0

1 and x0
2 which are globally asymptotically stable in IntRk+ and IntRn−k+ ,

respectively, and each is stable to invasion by every competing species

fJ(x0
1, 0) ≤ 0

and

fI(0, x
0
2) ≤ 0,

then (S) cannot have a stable positive steady state.
Proof. We only have to prove the case that the system (S) satisfies (4.5). Another

case can be proved in the same method. In fact, suppose it is false. Then there exists
at least a stable positive steady state x̄ and x̄ ≤K (x0

1, 0) = p by Proposition 3.3 in
[5, p. 864]. The calculation shows that

f(x̄)− f(p) =

[∫ 1

0

Df(sx̄+ (1− s)p)ds
]

(x̄− p).

We denote the matrix in brackets by U . The condition (4.5) implies that U ≤K Df(x̄).
Because x̄ is stable, s(Df(x̄)) < 0. It follows that s(U) < 0 from (i) of Theorem 2.3
and (−U)−1 ≥K 0 from (iii) of Theorem 2.3. So (−U)−1f(p) ≥K 0. But x̄ ≤K p
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implies that (−U)−1f(p) = (x̄ − p) ≤K 0 which implies that x̄ − p = 0 from the
just-proved fact. However, x̄ 6= p. This is a contradiction. Therefore, (S) cannot have
a stable positive steady state.

Before finishing this section, we remark that Theorems 4.1 and 4.3 together with
Theorem 3.1 completely generalize the results of Takeuchi and Adachi [6] to more
general Kolmogorov systems with the conditions (KM) and (C1). Theorem 4.1 implies
that every saturated steady state is globally asymptotically stable and that it is not
possible for both systems (SI) and (SJ) to have positive steady states each of which
cannot be invaded by the competing subcommunity as long as (KM) and (C1) are
satisfied. Therefore, these results provide an answer to each of the questions posed
by Smith [5] which have been mentioned in the introduction. Theorem 4.7 gives the
first question another answer.

5. The permanence for system (S). Consider the system

(S) ẋi = xifi(x1, x2, . . . , xn), 1 ≤ i ≤ n, xi ≥ 0,

which satisfies the assumption (KM).
In the paper [5], Smith exhibited sufficient conditions for the permanence of (S).

His essential condition is

(H)


(SI) possesses a positive steady state x0

1 which is unstable to Rn−k+

(that is, fJ(x0
1, 0) > 0),

(SJ) possesses a positive steady state x0
2 which is unstable to Rk+

(that is, fI(0, x
0
2) > 0).

His additional assumption is

(AH)

{
x0

1 +Rk+ lies in the domain of attraction of x0
1 for (SI),

x0
2 +Rn−k+ lies in the domain of attraction of x0

2 for (SJ).

Under the hypothesis (H), Smith concluded that there exist positive steady states x1

and x2 of (S) satisfying that 0 < x1, x2 ≤ (x0
1, x

0
2), and x1 ≤K x2 (see [5, Theorem

3.6]). Meanwhile, combining the hypothesis (H) with (AH), he deduced that ω(x) ⊂
[x1, x2]K for all x > 0.

Recall that the system (S) is permanent if there exist constant numbers δ, D > 0
such that for every solution x(t) of (S) with x(0) > 0, δ ≤ lim inft→+∞ xi(t) ≤
lim supt→+∞ xi(t) ≤ D for all i ∈ N . Then the system (S) is permanent under the
hypotheses (H) and (AH).

Clearly, the species satisfying (H) is nonobligate (that is, f(0) > 0). In obligate
cases, the authors gave the sufficient conditions to guarantee that the system (S) is
permanent (see [10, Theorem 2.1]). In those situations, two subsystems (SL) and
(SP) play an important role, where L ⊂ N,L ⊃ I and P ⊂ N,P ⊃ J . Our essential
condition is

(H1)

{
x0
L is a positive steady state of (SL), fL̄(x0

L, 0) > 0,
x0
P is a positive steady state of (SP), fP̄ (0, x0

P ) > 0.

Our additional assumption is

(AH1)

{
x0
L +K1 lies in the domain of attraction of x0

L for (SL),
x0
P −K2 lies in the domain of attraction of x0

P for (SP),
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where K1 = Rk+ × (−Rl−k+ ), K2 = Rp+k−n+ × (−Rn−k+ ). We have the following result.
Theorem 5.1. Let the assumption (H1) hold and (0, x0

P ) ≤K (x0
L, 0). Then there

exist positive steady states x̄ and x̃ for (S) satisfying 0 < x̄, x̃ ≤ ((x0
L)I , (x

0
P )J) and

x̄ ≤K x̃. In addition, if the assumption (AH1) holds, then ω(x) ⊂ [x̄, x̃]K for all
x > 0. And ω(x) = {x̄} for all x > 0 with x ≤K x̄ and ω(x) = {x̃} for all x > 0 with
x ≥K x̃.

In Theorem 5.1, (x0
L)I , (x0

P )J are components (x0
L)i of x0

L for all i ∈ I and (x0
P )j

of x0
P for all j ∈ J , respectively. These results generalize Smith’s Theorem 3.6 in [5].
In the same paper, Smith also obtained the following result (see [5, Theorem 3.8])

under the assumption

(AH2)

{ ∂fI
∂xI

(xI , 0) ≥ ∂fI
∂xI

(x̄I , 0), 0 ≤ xI ≤ x̄I ,
∂fJ
∂xJ

(0, xJ) ≥ ∂fJ
∂xJ

(0, x̄J), 0 ≤ xJ ≤ x̄J .

Theorem 5.2. Let the assumptions (H) and (AH2) hold. Then x0
1 is globally

asymptotically stable for (SI) with respect to IntRk+ and x0
2 is globally asymptotically

stable for (SJ) with respect to IntRn−k+ and there are positive steady states x1 ≤K x2.
If x > 0, then ω(x) ⊂ [x1, x2]K . x1 attracts points x > 0 with x ≤K x1 and x2 attracts
points x > 0 with x ≥K x2.

Then the system (S) is permanent in the case when (H) and (AH2) hold. However,
as Smith pointed out, “there may be several stable steady states representing persis-
tence. It is easy to see that one cannot prove uniqueness of a positive stable steady
state under the hypotheses of our Theorems 3.6 and 3.8 by simply considering two-
dimensional competitive systems.” “An interesting open problem is to give sufficient
conditions for the uniqueness of a positive steady state in the context of Theorem 3.6
or 3.8” (see [5, p. 869]). One of the authors in [14] provided a sufficient condition
such that a positive steady state is unique in the context of Smith’s Theorem 3.6. His
additional conditions are

s

(
∂fJ
∂xJ

(0, x0
2)

)
< 0

and

Df(y) ≤K Df(x) whenever x, y ∈ [0, (x0
1, x

0
2)] with x ≤K y.

Together with Theorems 5.2 and 3.1, we know that (S) has a globally asymp-
totically stable steady state if the assumptions (H), (AH2), and (C1) hold. In this
paper, as another application of Theorem 3.1, we give a sufficient condition for the
uniqueness of a positive steady state.

Theorem 5.3. Let the hypotheses (C1) and (H1) hold. Then (S) has a globally
asymptotically stable positive steady state.

Proof. We only have to show that Theorem 5.3 satisfies that (0, x0
P ) ≤K (x0

L, 0).
Since x0

L is a positive steady state of (SL) and x0
P is a positive steady state of (SP),

it follows that

lim
t→+∞φ

L
t (xL) = x0

L for xL ∈ IntR#L
+

and

lim
t→+∞φ

P
t (xP ) = x0

P for xP ∈ IntR#P
+
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from Theorem 3.1. It is easy to choose xL ∈ IntR#L
+ and xP ∈ IntR#P

+ such that
(0, xP ) ≤K (xL, 0). Theorem 2.1 shows that

φt(0, xP ) ≤K φt(xL, 0) for t ≥ 0;

that is,

(0, φPt (xP )) ≤K (φLt (xL), 0) for t ≥ 0.

Then

(0, x0
P ) ≤K (x0

L, 0).

Applying Theorem 5.1, we conclude that (S) has a positive steady state and Theo-
rem 3.1 implies that the positive steady state is globally asymptotically stable with
respect to IntRn+.

Finally, we shall present the permanence result for system (S). Let us introduce
the assumption

(AH3)

{
DfL(xL, 0) ≤K1

ML and s(ML) < 0 for xL ∈ Rl+,
DfP (0, xP ) ≤K2 MP and s(MP ) < 0 for xP ∈ Rp+,

where N ⊃ L ⊃ I, N ⊃ P ⊃ J , l = #L, p = #P , K1 = Rk+ × (−Rl−k+ ), and

K2 = Rp+k−n+ ×(−Rn−k+ ). Under the hypothesis (AH3), if (SL) and (SP) have positive
steady states x0

L and x0
P , respectively, then x0

L is globally stable for (SL) with respect
to IntRl+ and x0

P is globally stable for (SP) with respect to IntRp+ by Theorem 3.1.
Hence, combining Theorems 5.1 and 3.1, we obtain the following permanence result.

Theorem 5.4. Let the hypotheses (H1) and (AH3) hold. Then x0
L is globally

stable for (SL) with respect to IntRl+ and x0
P is globally stable for (SP) with respect

to IntRp+, and there are positive steady states x̄ ≤K x̃ such that ω(x) ⊂ [x̄, x̃]K for
x > 0. x̄ attracts points x > 0 with x ≤K x̄ and x̃ attracts points x > 0 with x ≥K x̃.
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Abstract. A singularly perturbed equation of elliptic-elliptic type in two dimensions is consid-
ered. We assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve,
the boundary data are analytic, and the right-hand side is analytic. We give asymptotic expansions
of the solution and new error bounds that are uniform in the perturbation parameter as well as in
the expansion order. Additionally, we provide growth estimates for higher derivatives of the solution
where the dependence on the perturbation parameter appears explicitly. These error bounds and
growth estimates are used in [J. M. Melenk and C. Schwab, SIAM J. Numer. Anal., 35 (1998),
pp. 1520–1557] to construct hp versions of the finite element method which feature robust exponen-
tial convergence, i.e., the rate of convergence is exponential and independent of the perturbation
parameter ε.

Key words. boundary layer, singularly perturbed problem, asymptotic expansions, error
bounds, Gevrey regularity

AMS subject classifications. 35B25, 35C20, 35B65, 65N30
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1. Introduction. Numerous partial differential equation models contain large
or small parameters. Of interest in solid mechanics are, for example, the plate and
shell equations at small thickness and nearly incompressible solids. The presence of
small parameters often implies that the problem is singularly perturbed, and much
attention has been devoted in the past decades to the asymptotic analysis of the so-
lution; we mention here only [2, 3]. Typically, the solutions admit decompositions
into a smooth part and so-called boundary layers. While the asymptotic structure of
the solution is usually known (see, e.g., [4, 5, 6, 7]), the asymptotic expansions are
often too complex for practical computations, and one has to resort to finite element
solutions of the boundary value problem (BVP) of interest. Here the singular pertur-
bation character of the problem and the boundary layer components of the solution
cause approximability problems which often manifest themselves as loss of robustness,
i.e., the performance of the numerical method depends strongly on the perturbation
parameter. Given stability of a numerical method for a BVP, the key to its con-
vergence is the regularity of the solution, particularly bounds on higher derivatives.
In spectral and hp finite element methods (hp FEMs) that aim at exponential rates
of convergence, analytic regularity results, i.e., results concerning the growth of the
derivatives of the solution, are crucial. It is the purpose of the present paper to provide
such analytic regularity results for the following, singularly perturbed elliptic-elliptic
model problem:

Lεuε ≡ −ε2∆uε + uε = f in Ω ⊂ R2,
uε = g on ∂Ω,

(1.1)

where ∂Ω is a closed, nonselfintersecting, analytic curve, f is analytic on a neighbor-
hood of Ω, g is analytic on ∂Ω, and ε ∈ (0, 1] is a small parameter.

∗Received by the editors February 28, 1997; accepted for publication (in revised form) April 29,
1998; published electronically January 5, 1999.

http://www.siam.org/journals/sima/30-2/31754.html
†Seminar für Angewandte Mathematik, ETH Zürich, CH–8092 Zürich, Switzerland
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As usual, we denote by L2(Ω) the square integrable functions on Ω and by H1(Ω)
those functions of L2(Ω) whose (distributional) derivative is also in L2(Ω). The trace
operator maps H1(Ω) onto the space H1/2(∂Ω) by restricting the elements of H1(Ω)
to the boundary ∂Ω. H1

0 (Ω) denotes the kernel of the trace operator; that is, it is
given by those functions in H1(Ω) whose trace on ∂Ω is zero.

The weak formulation of (1.1) is to find uε ∈ H1(Ω) such that uε|∂Ω = g and

Bε(uε, v) := ε2

∫
Ω

∇uε · ∇v dxdy +

∫
Ω

uεv dxdy = F (v) :=

∫
Ω

fv dxdy(1.2)

holds for all v ∈ H1
0 (Ω). Associated with this problem is the notion of an energy

‖u‖2ε,Ω := Bε(u, u) = ε2‖∇u‖2L2(Ω) + ‖u‖2L2(Ω)

and an energy norm, being the square root of the energy. We have the a priori estimate

‖uε‖ε,Ω ≤ ‖f‖L2(Ω) + C‖g‖H1/2(∂Ω)(1.3)

for some C > 0 independent of ε.
As the input data f , g, and ∂Ω of (1.1) are analytic, standard elliptic regularity

theory [8, 9] implies that the exact solution uε is analytic on a neighborhood of Ω,
i.e., it satisfies estimates of the form

‖Dαuε‖L∞(Ω) ≤ |α|!CεK |α|ε ∀α = (α1, α2) ∈ N2
0,

where N, N0 denote the set of positive and nonnegative integers, respectively. How-
ever, the constants Cε and Kε depend on ε in an unspecified way and our aim here
is to control explicitly the dependence of the derivatives of uε on the perturbation
parameter ε. By carefully tracking the ε-dependence of the constants in the standard
results, we obtain in section 3 (Theorem 3.1) the following estimate:

‖Dαuε‖L2(Ω) ≤ CK |α|max (|α|, ε−1)|α| ∀α ∈ N2
0(1.4)

with C, K > 0 independent of ε. Note that for |α| ≥ ε−1 this yields an estimate
independent of ε. This estimate is also sufficient to prove that polynomials of degree
p can approximate the solution uε at a robust exponential rate provided that the
polynomial degree p is at least O(ε−1).

For derivatives of order |α| < ε−1, the estimates (1.4) are too pessimistic in
that they do not capture accurately the boundary layer behavior of the solution.
Typically, the solutions of (1.1) exhibit boundary layers for small ε; that is, the
behavior of the solution normal to the boundary differs substantially from the behavior
in the tangential direction. Classically, this anisotropic behavior of boundary layers
can be described with asymptotic expansions. In section 2, we therefore provide
analytic regularity results for the terms of the asymptotic expansion and estimates
on the remainder (Theorem 2.2). The new feature of our results over the classical
assertions for asymptotic expansions is that in all our estimates, the dependence on ε
and the expansion order M is made explicit. This precise control over the asymptotic
expansions is an essential ingredient in the design and convergence analysis of an hp
FEM for (1.1) that converges at a robust exponential rate [1].

Remark 1.1. One of the difficulties in the analysis of singularly perturbed prob-
lems is the variety of phenomena that can arise already in the linear case: boundary
layers, internal layers, corner layers, multiple length scales, etc. We analyze the model
problem (1.1) with strong assumptions on the data f , g, ∂Ω in order to be able to
concentrate on one of these phenomena, namely boundary layers.
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2. Analysis of the asymptotic expansion. In this section we analyze the
classical asymptotic expansions for the solution of (1.1). The asymptotic expansions
(defined more precisely in section 2.2) allow us to decompose the solution uε as

uε = wM + χuBLM + rM ,(2.1)

where M ∈ N0 indicates the expansion order, wM is the truncated outer expansion,
uBLM is the truncated inner expansion, χ is a cutoff function supported by a neigh-
borhood of ∂Ω, and rM is a remainder. Our results concerning wM , uBLM , and rM
are collected in section 2.3, Theorem 2.2: We give analytic regularity results for wM
and uBLM that are uniform in ε and M , and we show that uBLM (together with all
its derivatives) decays exponentially normal to ∂Ω. Furthermore, we give new error
bounds for the remainder rM which are explicit in ε and the expansion order M .

2.1. Notation. We introduce boundary fitted coordinates to define the asymp-
totic expansions of the exact solution. Let (X(θ), Y (θ)), θ ∈ [0, L), be an analytic,
L-periodic parametrization of the boundary ∂Ω by arc length such that the normal
vector (−Y ′(θ), X ′(θ)) always points into the domain Ω. Introduce the notation κ(θ)
for the curvature of the boundary curve and denote by TL the one-dimensional torus
of length L, i.e., R/LZ, endowed with the usual topology. The functions X, Y, and
hence also κ are analytic on TL by the analyticity of ∂Ω. For the remainder of this
section, let ρ0 > 0 be fixed such that

0 < ρ0 <
1

‖κ‖L∞(TL)
.(2.2)

Then the mapping

ψ : [0, ρ0]× TL → Ω,
(ρ, θ) 7→ (X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ))

(2.3)

is real analytic on (a neighborhood of) [0, ρ0] × TL. The function ψ maps the rect-
angle (0, ρ0) × TL onto a half-tubular neighborhood Ω0 of ∂Ω. Furthermore, by the
choice of ρ0, the inverse ψ−1 : Ω0 → [0, ρ0]× TL exists and is also real analytic on (a
neighborhood of) the closed set Ω0. For technical reasons we will be able to define the
boundary layer expansion (the inner expansion) only in a neighborhood of the bound-
ary ∂Ω. Therefore, we introduce a cutoff function χ supported by a neighborhood
of ∂Ω. For ease of notation, let us define χ in the neighborhood of ∂Ω in boundary
fitted coordinates (ρ, θ). Fix

0 < ρ1 < ρ0,(2.4)

and let χ be a smooth cutoff function, defined on [0,∞)× TL, satisfying

χ =

{
1 for 0 ≤ ρ ≤ ρ1,
0 for ρ ≥ (ρ1 + ρ0)/2.

(2.5)

Finally, as the right-hand side f of (1.1) is assumed to be analytic on (a neigh-
borhood of) Ω, there is a complex neighborhood Ω̃ ⊂ C× C of Ω and a holomorphic
extension of f (for convenience again denoted by f) to Ω̃. From Cauchy’s integral
theorem for derivatives, we therefore have, after passing to a compact subset of Ω̃
which is again denoted Ω̃, the existence of constants Cf , γ ≥ 0 such that

‖∆(i)f‖L∞(Ω̃) ≤ Cf (2i)!γ2i ∀i ∈ N0,(2.6)

where ∆(i) denotes the iterated Laplace operator, i.e., ∆(0) = Id, ∆(1) = ∆, ∆(2) =
∆∆, etc.
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2.2. Inner and outer expansion. For every M ∈ N0 the outer expansion of
order 2M is defined by

wM :=
M∑
i=0

ε2i∆(i)f.(2.7)

The function uε − wM then satisfies

Lε(uε − wM ) = f − LεwM = ε2M+2∆(M+1)f.(2.8)

So, asymptotically as ε tends to zero, the functions wM satisfy the differential equation
in Ω. However, the functions wM do not satisfy the given boundary conditions g. We
therefore introduce a boundary layer correction uBL of wM , which will lead to the
inner expansion. The correction uBL is defined as the solution of

Lεu
BL = 0 in Ω,

uBL = g −
M∑
i=0

ε2i
[
∆(i)f

]
∂Ω

on ∂Ω.
(2.9)

The inner expansion is an asymptotic expansion for this correction function uBL. In
order to define this expansion, we need to rewrite the differential operator Lε in the
boundary fitted coordinates (ρ, θ). With the curvature κ(θ) of ∂Ω and the function

σ(ρ, θ) =
1

1− κ(θ)ρ
,(2.10)

we have (see, for example, [4])

∆u(ρ, θ) = ∂2
ρ u− κ(θ)σ(ρ, θ)∂ρ u+ σ2(ρ, θ)∂2

θ u+ ρκ′(θ)σ3(ρ, θ)∂θ u.

Introducing now the stretched variable notation ρ̂ = ρ/ε, we have

Lε = −∂2

ρ̂
+ Id + εκ(θ)σ(ερ̂, θ)∂

ρ̂
− ε2σ2(ερ̂, θ)∂2

θ − ε3ρ̂κ′(θ)σ3(ερ̂, θ)∂θ .

Expanding in power series in ε, we can write the operator Lε formally as

Lε =
∞∑
i=0

εiLi,(2.11)

where the operators Li have the form

L0 = −∂2

ρ̂
+ Id, Li = −ρ̂i−1ai−1

1 ∂
ρ̂
− ρ̂i−2ai−2

2 ∂2
θ − ρ̂i−2ai−3

3 ∂θ , i ≥ 1,(2.12)

and the coefficients aij are given by

ai1 = −[κ(θ)]i+1, ai2 = (i+ 1)[κ(θ)]i, ai3 =
(i+ 1)(i+ 2)

2
[κ(θ)]iκ′(θ), i ∈ N0,(2.13)

ai1 = ai2 = ai3 = 0 for i < 0.(2.14)

We note that (2.11) in fact converges for |ερ̂κ(θ)| < 1; this observation will be essential
in our error estimates for the remainder in section 2.4.4.
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Now, in order to define the inner expansion, we make the formal ansatz uBL =∑∞
i=0 ε

iÛi(ρ̂, θ), where the functions Ûi are to be determined. Setting Lεu
BL = 0 in

(2.11) yields

∞∑
i=0

εi
i∑

j=0

LjÛi−j = 0.

Hence, upon setting the coefficients of this formal power series in ε to zero, we obtain
a recurrence relation for the sought functions Ûi:

−∂2
ρ̂ Ûi + Ûi = F̂i = F̂ 1

i + F̂ 2
i + F̂ 3

i , i = 0, 1, . . . ,(2.15)

F̂ 1
i =

i−1∑
j=0

ρ̂jaj1∂ρ̂ Ûi−1−j , F̂ 2
i =

i−2∑
j=0

ρ̂jaj2∂
2
θ Ûi−2−j , F̂ 3

i =
i−3∑
j=0

ρ̂j+1aj3∂θ Ûi−3−j ,(2.16)

where we used the tacit convention that empty sums take the value zero. As we
expect the boundary layer function uBL to decay away from the boundary ∂Ω and
as we want to satisfy the boundary conditions, we supplement these ODEs for the Ûi
with the boundary conditions

Ûi → 0 as ρ̂→∞,(2.17)

[Ûi]∂Ω = Gi :

=
g − [f ]∂Ω if i = 0,
−[∆(i/2)f ]∂Ω if i ∈ N is even,
0 if i ∈ N is odd.

(2.18)

The inner expansion of order 2M + 1 is defined as the function

uBLM (ρ, θ) :=
2M+1∑
i=0

εiÛi(ρ̂, θ) =
2M+1∑
i=0

εiÛi(ρ/ε, θ),(2.19)

and it satisfies the desired boundary conditions

[uBLM ]∂Ω = g −
M∑
i=0

ε2i[∆(i)f ]∂Ω.

Remark 2.1. We defined uBLM as the inner expansion of order 2M + 1 so that the

first neglected term of the formal asymptotic expansion
∑∞
i=0 ε

iÛi is of order ε2M+2.
This is precisely the same power of ε as the first neglected term of the outer expansion∑∞
i=0 ε

2i∆(i)f truncated after the ε2M term.
Finally, the remainder rM is defined such that (2.1) holds. We should note,

however, that the boundary layer function uBLM and the cutoff function χ are defined
in boundary fitted coordinates, whereas wM is defined in the usual x, y coordinates so
that, strictly speaking, the term χuBLM has to be understood as (χuBLM )◦ψ on the half-
tubular neighborhood Ω0 where ψ is the boundary fitted coordinate transformation
defined in (2.3) and χuBLM is understood to vanish outside Ω0.

2.3. Analytic regularity results for the asymptotic expansion. For every
M ∈ N0 and cutoff function χ as in section 2.1 we can decompose the solution uε of
(1.1) as in (2.1) where the outer expansion wM , the inner expansion uBLM , and the
remainder rM are defined in the preceding section. The following theorem contains
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bounds for wM , uBLM , and rM which are explicit in ε and M ; the proof of this theorem
is relegated to section 2.4.

Theorem 2.2. Let f , g, ∂Ω be analytic and let ρ0, χ satisfy (2.2), (2.5). Let
wM , uBLM , rM be defined by (2.7), (2.19), (2.1). Then there are constants C, K1, and
K2 > 0 depending only on f , g, ∂Ω, and ρ0, χ such that

(i) For every M ∈ N0 the outer expansion wM is analytic on Ω and there holds

‖DαwM‖L∞(Ω) ≤ CK |α|1 |α|!(1 + (ε 2M K2)2M ) ∀α ∈ N2
0.

(ii) For every M ∈ N0 the inner expansion uBLM is analytic on (0, ρ0)× TL. For
every α ∈ [0, 1) and all p, m ∈ N0, (ρ, θ) ∈ (0, ρ0)× TL there holds

∣∣∂pρ ∂mθ uBLM (ρ, θ)
∣∣ ≤ C (1 +

(
ε(2M + 1)K2

1− α
)2M+1

)
m!Km+p

1 ε−pe−αρ/ε.

(iii) For every M ∈ N0 the remainder satisfies rM = 0 on ∂Ω and

‖rM‖ε,Ω ≤ C (εK2(2M + 2))
2M+2

.

Remark 2.3. We notice that the crucial quantity in all three theorems is the
product ε(2M + 2): If ε(2M + 2) ≤ q < K−1

2 then the remainder rM is indeed small
and we obtain bounds on the growth of the derivatives of wM and uBLM which are
independent of ε and M . In the complementary case, i.e., when ε(2M + 2) is not
small, the asymptotic expansions lose their meaning.

We conclude this section with a few remarks concerning estimates on rM .
Remark 2.4. Inspection of the proof of Theorem 2.2 (iii) below shows that in

fact the following, slightly stronger results can be obtained:
1. There are C, K > 0 independent of ε and M such that

‖rM‖ε,Ω ≤ C
{
ε2M+2‖∆(M+1)f‖L∞(Ω) + ε1/2 (Kε(2M + 2))

2M+2
}
.

Hence, if the right-hand side f satisfies ∆(M+1)f = 0, e.g., if f is a polynomial
of degree 2M + 1, then the ε-dependence of the estimate is actually improved
by a factor ε1/2.

2. In the proof of Theorem 2.2 (iii), with the exception of ∆(M+1)f , all the
terms could be bounded in exponentially weighted spaces. This means that
if ∆(M+1)f = 0, then we have estimates of the form

‖eβd(x)/εLεrM‖L2(Ω) ≤ C(Ω, β)ε1/2 (Kε(2M + 2))
2M+2

,

where d(x) = dist(x, ∂Ω) and β > 0 appropriately. From this, one could infer
estimates on rM in exponentially weighted energy norms.

3. As ‖LεrM‖L∞(Ω) ≤ C (Kε(2M + 2))
2M+2

and rM = 0 on ∂Ω, the classical
maximum principle gives us the pointwise bound

‖rM‖L∞(Ω) ≤ C (Kε(2M + 2))
2M+2

.

As the boundary ∂Ω is smooth, we can actually use the shift theorem for −∆ in
order to control higher derivatives of rM .

Corollary 2.5. Assume the same hypotheses as in Theorem 2.2. Then for each
k ∈ N0 there are constants Ck, K > 0 depending only on k, f , g, ∂Ω, χ such that

‖rM‖Hk(Ω) ≤ Ckε−k (εK(2M + 2))
2M+2

, k ∈ N0.



ANALYTIC REGULARITY FOR A SINGULARLY PERTURBED PROBLEM 385

Proof. The proof is an application of the classical shift theorem and an induction
argument on k. We note that the corollary holds true for k = 0 and k = 1 by
Theorem 2.2 (iii). Furthermore, rM solves

−∆rM = ε−2LεrM − ε−2rM in Ω, rM = 0 on ∂Ω.(2.20)

If we proceed as in the proof of Theorem 2.2 (iii) below but use the bounds on higher
derivatives in Lemma 2.13 we can estimate

‖LεuBLM ‖Hk−2(Ω) ≤ Ckε2−k (εK(2M + 2))
2M+2

, k ≥ 2.

Hence the shift theorem allows us to conclude

‖rM‖Hk(Ω) ≤ Ck
(
ε−k (εK(2M + 2))

2M+2
+ ε−2‖rM‖Hk−2(Ω)

)
for k ≥ 2. The obvious induction argument concludes the proof.

2.4. Proof of Theorem 2.2.

2.4.1. Preliminaries. For z ∈ C and δ > 0 we will denote by Bδ(z) the (open)
disc in the complex plane of radius δ around z; ∂Bδ(z) denotes the positively oriented
circle of radius δ with center z.

As the functions κ, Gi, and ail are analytic on TL these functions have holomorphic
extensions to some complex neighborhood S(Θ) of the real line where

S(Θ) := {θ ∈ C||Imθ| < Θ}, Θ > 0.(2.21)

For future reference, let us note the following.
Lemma 2.6. Let f , g, ∂Ω be analytic. Then there are Θ > 0 and CG, CA, γG,

A > 0 with Aρ0 < 1 such that ∀θ ∈ S(Θ) and ∀i ∈ N0

|Gi(θ)| ≤ CGiiγiG, |κ(θ)| ≤ A, |ai1(θ)|+ |ai2(θ)|+ |ai3(θ)| ≤ CAAi.

Proof. By (2.2) we may choose an A such that ‖κ‖L∞(TL) < A < 1/ρ0. The
bounds on Gi follow immediately from (2.6) and (2.18) for Θ sufficiently small. As
ρ0‖κ‖L∞(TL) < 1 the bound on κ follows from a continuity argument if Θ is sufficiently
small. From this bound on κ, the bounds on the coefficients ail can be obtained in
view of (2.13) if Θ is taken sufficiently small and A is slightly enlarged.

The following two lemmas can be proven by elementary considerations.
Lemma 2.7. ∀ q ≥ 0 and ∀ M ∈ N0 there holds

M∑
i=0

qi ≤ 2(1 + (4q)M ).

Lemma 2.8. Let α ∈ [0, 1), a ≥ 0, M ≥ 0. Then

sup
r≥0

∣∣∣(M + a+ r)Me−(1−α)r
∣∣∣ ≤MM (1− α)

−M
e(1−α)a.
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2.4.2. Proof of Theorem 2.2 (i). In view of (2.6) the function wM can be
extended to a holomorphic function on a neighborhood Ω̃ ⊂ C × C of Ω which is
independent of ε and M . Cauchy’s theorem for derivatives allows us to infer the
existence of C, K > 0 such that for each (x, y) ∈ Ω and all α ∈ N2

0 there holds

|DαwM (x, y)| ≤ CK |α||α|!
M∑
i=0

ε2i‖∆(i)f‖L∞(Ω̃) ≤ CK |α||α|!
M∑
i=0

γ2i(2iε)2i.

Estimating γ(2iε) ≤ γ(2Mε) we can easily obtain the desired result with the aid of
Lemma 2.7.

2.4.3. Proof of Theorem 2.2 (ii). The proof of Theorem 2.2 (ii) is based on

getting sharp bounds on the functions Ûi defined in (2.15)–(2.18). As the functions

Ûi are solutions of ODEs whose right-hand sides depend on derivatives of the Ûj ,
0 ≤ j < i, the following two lemmas will be necessary.

Lemma 2.9. Let f be an entire function satisfying for some Cf > 0, j ∈ N0

|f(z)| ≤ Cfe−Rez(2 + j + |z|)j ∀z ∈ C.
Let g ∈ C and let u : (0,∞)→ C be the solution of

−u′′ + u = f on (0,∞), u(0) = g, lim
x→∞u(x) = 0.

Then u can be extended to an entire function (again denoted u) which satisfies

|u(z)| ≤ [Cf (2 + j + |z|)j+1(j + 1)−1 + |g|] e−Rez ∀z ∈ C.

Proof. For z ∈ (0,∞), the use of a Green’s function gives the following represen-
tation of the solution u(z):

u(z) =
1

2

(
e−z

∫ z

0

eyf(y) dy + ez
∫ ∞
z

e−yf(y) dy − e−z
∫ ∞

0

e−yf(y) dy

)
+ ge−z.

Analytic continuation then removes the restriction to (0,∞). In order to get the
desired bound, we estimate each of these four terms separately. For the first integral,
we use as the path of integration the straight line connecting 0 and z to get∣∣∣∣e−z ∫ z

0

eyf(y) dy

∣∣∣∣ ≤ e−Rez

∫ 1

0

Cf (2 + j + t|z|)j |z| e−RetzeRetz dt

≤ Cfe−Rez 1

j + 1

(
(2 + j + |z|)j+1 − (2 + j)j+1

)
.

For the second term, we calculate∣∣∣∣ez ∫ ∞
z

e−yf(y) dy

∣∣∣∣ =

∣∣∣∣∫ ∞
0

e−yf(z + y) dy

∣∣∣∣ ≤ e−RezCf

∫ ∞
0

e−2y(2 + j + |z|+ y)j dy

= Cfe
−Rez2−(j+1)e2(2+j+|z|)Γ(j + 1, 2(2 + j + |z|)),

where Γ(·, ·) denotes the incomplete Gamma function and we used Eq. 8.353.5 of [10]
in the last step. Employing the estimate

|Γ(α, ξ)| ≤
∣∣e−ξξα∣∣
|ξ| − α0

, α0 = max {α− 1, 0}, Reξ ≥ 0, |ξ| > α0
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(see, e.g., Chap. 4, Sec. 10 of [11]) we finally arrive at∣∣∣∣ez ∫ ∞
z

e−yf(y) dy

∣∣∣∣ ≤ Cfe−Rez (2 + j + |z|)j+1

4 + j + 2|z| ≤ Cfe−Rez (2 + j + |z|)j+1

1 + j
.

For the third term, we observe that the integral
∫∞

0
f(y)e−y dy is precisely the second

term with z = 0. We conclude therefore that for the third term∣∣∣∣e−z ∫ ∞
0

f(y)e−y dy
∣∣∣∣ ≤ Cfe−Rez (2 + j)j+1

1 + j
.

Combining these three estimates with the obvious one for the fourth term, we arrive
at the desired bound.

Lemma 2.10. Let U be holomorphic on C × S(Θ) for some Θ > 0 and assume
that there are CU > 0, i ∈ N0 such that for all δ ∈ (0,Θ)

∀(z, θ) ∈ C× S(Θ− δ) |U(z, θ)| ≤ CU (1 + i+ |z|)ie−Rezδ−i.

Then ∀ δ ∈ (0,Θ) and ∀ (z, θ) ∈ C× S(Θ− δ)
|∂z U(z, θ)| ≤ eCU (2 + i+ |z|)ie−Re zδ−i,
|∂θ U(z, θ)| ≤ e(i+ 1)CU (1 + i+ |z|)ie−Re zδ−(i+1),∣∣∂2
θ U(z, θ)

∣∣ ≤ 2e(i+ 1)(i+ 2)CU (1 + i+ |z|)ie−Re zδ−(i+2).

Proof. For the first estimate, we use Cauchy’s integral theorem for derivatives:

|∂z U(z, θ)| =
∣∣∣∣∣ 1

2πi

∫
|t|=1

U(z + t, θ)

t2
dt

∣∣∣∣∣ ≤ CU (1 + i+ |z|+ 1)ie−Rez+1δ−i.

For the second and third estimate, we again use Cauchy’s integral theorem for deriva-
tives but with the path of integration chosen as ∂Bκδ(θ) where κ ∈ (0, 1) is to be
chosen below. For the second estimate, we arrive at

|∂θ U(z, θ)| =
∣∣∣∣∣ 1

2πi

∫
|t|=κδ

U(z, θ + t)

t2
dt

∣∣∣∣∣ ≤ CU 1

(κδ)((1− κ)δ)i
(1 + i+ |z|)ie−Rez

≤ CU 1

κ(1− κ)i
δ−(i+1)(1 + i+ |z|)ie−Rez.

Choosing κ = 1/(i+ 2) and observing that with this choice e−1(i+ 1)−1 ≤ κ(1− κ)i

holds for all i ∈ N0 we obtain the desired second bound. Finally, the third estimate
is proved completely analogously.

These two lemmas put us in a position to obtain results about the functions

Ûi defined by (2.15)–(2.18). As F̂0 = 0 we have Û0(ρ̂, θ) = G0(θ)e−ρ̂. Therefore,

F̂1(ρ̂, θ) = −a0
1(θ)G0(θ)e−ρ̂ and we get Û1(ρ̂, θ) = −1/2ρ̂a0

1(θ)e−ρ̂ + G1(θ)e−ρ̂. It is

easy to see that in general the functions Ûi are of the form e−ρ̂ times a polynomial of
degree i in ρ̂ whose coefficients involve the functions ajl and Gj and their derivatives.
Furthermore, the lowest-order term of the polynomial of degree i is Gi(θ) which by
Lemma 2.6 can be estimated by CGi

iγiG for θ in a neighborhood of the real line. This

suggests that bounds on Ûi of the form |Ûi(ρ̂, θ)| ≤ CKie−Reρ̂(1 + i + |ρ̂|)i can be
obtained.
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Lemma 2.11. Let f , g, ∂Ω be analytic. Then there are CU , K, Θ > 0 depending
only on f , g, ∂Ω such that the functions Ûi defined by (2.15)–(2.18) are holomorphic
on C× S(Θ) and satisfy ∀ i ∈ N0∣∣∣Ûi(ρ̂, θ)∣∣∣ ≤ CUKi(1 + i+ |ρ̂|)ie−Re ρ̂ ∀(ρ̂, θ) ∈ C× S(Θ).

Proof. We prove the following result: There are CU , K, Θ such that for all i ∈ N0

(2.22)

∀ δ ∈ (0,Θ) ∀(ρ̂, θ) ∈ C× S(Θ− δ) |Ûi(ρ̂, θ)| ≤ CUKiδ−i(1 + i+ |ρ̂|)ie−Re ρ̂.

The claim of the lemma then follows by slightly decreasing Θ and adjusting the
constant K. Let us assume that Θ, CA, CG, γG, A are chosen as in Lemma 2.6. From
our preliminary discussion it is clear that we can (after possibly decreasing Θ slightly)
choose CU , K such that (2.22) is satisfied for i = 0, 1, 2. Let us furthermore assume
that CU and K are chosen so large such that K > max {AΘ, γGΘ} and that ∀ i ∈ N0[

K−1 eCAΘ

1−AΘ/K
+K−2 2eCA

1−AΘ/K
+K−3 eCAΘ2

1−AΘ/K
+
CG
CU

(
γGΘ

K

)i]
≤ 1.(2.23)

In order to proceed by induction on i, let i ≥ 3 and assume that (2.22) holds for all

0 ≤ j ≤ i − 1. To get the desired bounds on Ûi by means of Lemma 2.9 we need to
control F̂ 1

i , F̂ 2
i , F̂ 3

i . Combining Lemma 2.10 and the induction hypothesis (2.22), we
get for (ρ̂, θ) ∈ C× S(Θ− δ)

|F̂ 1
i (ρ̂, θ)| ≤

i−1∑
j=0

|ρ̂|j |aj1(θ)||∂
ρ̂
Ûi−1−j(ρ̂, θ)|

≤ CUKiδ−ie−Re ρ̂CAK
−1δe

i−1∑
j=0

|ρ̂|jAjK−jδj(i− j + 1 + |ρ̂|)i−1−j

≤ CUKiδ−iK−1 eCAδ

1−Aδ/K (i+ 1 + |ρ̂|)i−1e−Re ρ̂.

Similarly, we obtain for |F̂ 2
i | and |F̂ 3

i | on C× S(Θ− δ)

|F̂ 2
i (ρ̂, θ)| ≤ CUKiδ−iK−2 2eCA

1−Aδ/K (i+ |ρ̂|)i−2(i− 1)ie−Re ρ̂,

|F̂ 3
i (ρ̂, θ)| ≤ CUKiδ−iK−3 eCAδ

2

1−Aδ/K (i+ |ρ̂|)i−2(i− 2)e−Re ρ̂.

Hence, applying Lemma 2.9 with F̂ 1
i , F̂ 2

i , F̂ 3
i as right-hand sides f (and initial con-

dition g = 0) and finally with homogeneous right-hand side and initial condition
g = Gi(θ), we obtain

|Ûi(ρ̂, θ)| ≤ CUKiδ−ie−Reρ̂

[
K−1 eCAδ

1−Aδ/K
(i+ 1 + |ρ̂|)i

i

+K−2 2eCA
1−Aδ/K (i+ |ρ̂|)i−1 (i− 1)i

i− 1
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+K−3 eCAδ
2

1−Aδ/K (i+ |ρ̂|)i−1 (i− 2)

i− 1
+
CG
CU

(
δγG
K

)i]
≤ CUKiδ−ie−Reρ̂(i+ 1 + |ρ̂|)i ×

×
[
K−1 eCAδ

1−Aδ/K +K−2 2eCA
1−Aδ/K +K−3 eCAδ

2

1−Aδ/K +
CG
CU

(
δγG
K

)i]
≤ CUKiδ−ie−Reρ̂(i+ 1 + |ρ̂|)i

as the bracketed expression is bounded by 1 by the choice of K in (2.23). This
concludes the induction argument.

The proof of Theorem 2.2 (ii) is now straightforward.
Proof of Theorem 2.2 (ii). Let α ∈ [0, 1) be given. By Lemma 2.11 the functions

Ûi are holomorphic on C × S(Θ) for some Θ > 0. We obtain with Cauchy’s integral
formula for derivatives for p, m ∈ N0 and ρ ≥ 0, θ ∈ TL

∂pρ ∂
m
θ Ûi(ρ/ε, θ) = −ε−p p!m!

4π2

∫
|z|=R

∫
|t|=Θ/2

Ûi(ρ/ε+ z, θ + t)

zp+1tm+1
dzdt.

Now choosing R = p+ 1 and using Lemma 2.11 (note that we may choose δ = Θ/2),
we get the existence of constants C, K > 0 such that∣∣∣∂pρ ∂mθ Ûi(ρ/ε, θ)

∣∣∣ = Cε−p
p!m!

(p+ 1)p
(2/Θ)mKi(1 + i+ ρ/ε+ p+ 1)ie−ρ/ε+(p+1).

Upon writing e−ρ/ε = e−(1−α)ρ/εe−αρ/ε and appealing to Lemma 2.8 (with a = 2+p),
we get, together with the estimate p! ≤ Cppe−p√2π(p+ 1) from Stirling’s formula,∣∣∣∂pρ ∂mθ Ûi(ρ/ε, θ)

∣∣∣ = Cε−pe(1−α)p(p+ 1)1/2m!(2/Θ)mKiii(1− α)−ie−αρ/ε.(2.24)

As uBLM (ρ, θ) =
∑2M+1
i=0 εiÛi(ρ/ε, θ) estimating ii ≤ (2M + 1)i in (2.24) and summing

gives the desired result after appealing to Lemma 2.7.

2.4.4. Proof of Theorem 2.2 (iii). We start with a lemma concerning Lεu
BL
M .

Lemma 2.12. Let uBLM be defined in (2.19). Then there are Θ, C, K > 0
depending only on f , g, ∂Ω such that Lεu

BL
M is holomorphic on Bρ0(0)×S(Θ) ⊂ C×C

and satisfies

|LεuBLM (ρ, θ)| ≤ CK2M+2(ε(2M + 2) + |ρ|)2M+2e−Reρ/ε ∀(ρ, θ) ∈ Bρ0(0)× S(Θ).

Proof. As we observed above, the power series expansion (2.11) of Lε converges
absolutely for |ερ̂κ(θ)| < 1. In order to exploit this fact, let us choose with the aid
of Lemma 2.6 Θ > 0, CA, A > 0 with ρ0A =: q < 1 such that |ρκ(θ)| ≤ q < 1 ∀
(ρ, θ) ∈ Bρ0(0)× S(Θ). Furthermore, we may assume without loss of generality that
Θ is so small that Lemma 2.11 holds.

By the construction of the functions Ûi, we calculate directly (we write ρ̂ = ρ/ε
whenever notationally convenient)

Lεu
BL
M (ρ, θ) =

∞∑
i=2M+2

εi
2M+1∑
j=0

Li−jÛj(ρ/ε, θ)
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= −
2M+1∑
j=0

∞∑
i=2M+2

εiρ̂i−1−jai−1−j
1 ∂

ρ̂
Ûj −

2M+1∑
j=0

∞∑
i=2M+3

εiρ̂i−2−jai−2−j
2 ∂2

θ Ûj

−
2M+1∑
j=0

∞∑
i=2M+4

εiρ̂i−2−jai−3−j
3 ∂θ Ûj .

Each of these three terms can be estimated with the aid of Lemmas 2.11 and 2.10.
For the first term, we have for (ρ, θ) ∈ Bρ0

(0)× S(Θ) (which implies |ρ|A ≤ q < 1)∣∣∣∣∣∣
2M+1∑
j=0

∞∑
i=2M+2

εiρ̂i−1−jai−1−j
1 (θ)∂

ρ̂
Ûj(ρ̂, θ)

∣∣∣∣∣∣
≤ eCUCA

2M+1∑
j=0

∞∑
i=2M+2

εi|ρ̂|i−1−jAi−1−jKj(2 + j + |ρ̂|)je−Re ρ̂

≤ eCACUε2M+2
2M+1∑
j=0

(∞∑
i=0

εi|ρ̂|iAi
)
A2M+1−jKj

{
|ρ̂|2M+1−j(2M + 3 + |ρ̂|)j

}
e−Reρ̂

≤ eCACUε2M+2 1

1− q
2M+1∑
j=0

A2M+1−jKj(2M + 3 + |ρ̂|)2M+1e−Re ρ̂

≤ 2eCACU
1

1− qA
2M+1(1 + (4K/A)2M+1)(ε(2M + 3) + |ρ|)2M+2e−Re ρ̂,

where we exploited the assumption that |ρ|A ≤ q < 1 and appealed to Lemma 2.7.
The factor (2M + 3) can easily be replaced by 2M + 2 at the expense of a larger
constant. Hence, the first sum leads to an estimate of the desired form; the remaining
two sums are estimated similarly.

A procedure similar to that of Theorem 2.2 (ii) gives bounds on higher derivatives.
Lemma 2.13. Let ρ′ < ρ0, α ∈ [0, 1). Then there are constants C, K1, K2 > 0

independent of ε, M such that for all p, m ∈ N0 and all (ρ, θ) ∈ [0, ρ′)× TL
∣∣∂pρ ∂mθ Lεu

BL
M (ρ, θ)

∣∣ ≤ Cε−pp!m!Kp+m
1

(
ε(2M + 2)K2

1− α
)2M+2

e−αρ/ε.

Proof. As ρ′ < ρ0 there is δ > 0 such that Bδε(ρ) ⊂ Bρ0
(0) for all ε ∈ (0, 1]

and ρ ∈ [0, ρ′). We apply Cauchy’s integral theorem for derivatives to calculate
∂pρ ∂

m
θ Lεu

BL
M ; the path of integration is chosen as ∂Bδε(ρ) for the first variable and

as ∂BΘ/2(θ) for the second variable. Together with Lemma 2.12 we get the existence
of C, K1, K2 > 0 such that for ρ ∈ [0, ρ′), θ ∈ TL∣∣∂pρ ∂mθ Lεu

BL
M (ρ, θ)

∣∣ ≤ Cε−pp!m!Kp+m
1 K2M+2

2 (ε(2M + 2) + ρ+ εδ)
2M+2

e−ρ/ε

≤ Cε−pp!m!Kp+m
1 K2M+2

2 ε2M+2
[
((2M + 2) + ρ/ε+ δ)

2M+2
e−(1−α)ρ/ε

]
e−αρ/ε.

Appealing to Lemma 2.8 to bound the expression in brackets allows us to conclude
the argument.

We are now in a position to estimate the accuracy of the asymptotic expansion,
i.e., bound rM .
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Proof of Theorem 2.2 (iii). For any M ∈ N0 the remainder rM is defined as
rM = uε − wM − χuBLM , where wM is defined by (2.7), uBLM is defined by (2.19), and
χ is the cutoff function of (2.5). Hence, by construction of uBLM , rM = 0 on ∂Ω.
Furthermore, the remainder rM solves the following elliptic equation:

LεrM = Lε
(
uε − wM − χuBLM

)
= ε2M+2∆(M+1)f − Lε(χuBLM )

= ε2M+2∆(M+1)f + ε2(∆χ)uBLM + 2ε2∇χ · ∇uBLM − χLεuBLM .

From (1.3) we infer

‖rM‖ε,Ω ≤ ‖LεrM‖L2(Ω).(2.25)

We are therefore left with estimating the L2 norm of the four terms that add up to
LεrM . By the assumptions on f , cf. (2.6), we have

‖ε2M+2∆(M+1)f‖L∞(Ω) ≤ Cf (εγ(2M + 2))
2M+2

.(2.26)

Let us fix α ∈ (0, 1) for the remainder of this proof. As χ ≡ 1 for 0 < ρ < ρ1 and
χ ≡ 0 for ρ > (ρ1 + ρ0)/2, we obtain with the aid of Theorem 2.2 (ii)

ε2‖(∆χ)uBLM ‖L2(Ω) ≤ Cε2SMe
−αρ1/ε,

ε2‖∇χ · ∇uBLM ‖L2(Ω) ≤ CεSMe−αρ1/ε,

where SM = 1 + (ε(2M + 1)K)2M+1 for some appropriate C, K > 0. We calculate
further

SM = 1 + (ε(2M + 1)K)2M+1 ≤ (1 + ε(2M + 2)K)2M+2

≤ ε2M+2K2M+2(2M + 2 +K−1/ε)2M+2.

Without loss of generality, K−1 ≤ ρ1 and therefore we obtain by appealing to
Lemma 2.8

εSMe
−αρ1/ε ≤ εε2M+2K2M+2(2M+2+ρ1/ε)

2M+2e−αρ1/ε ≤ ε(ε(2M+2)Kα−1)2M+2.

Finally, exploiting the exponential decay normal to ∂Ω, it is easy to deduce from
Lemma 2.13 that

‖χLεuBLM ‖L2(Ω) ≤ Cε1/2 (K ′ε(2M + 2))
2M+2

for some K ′ > 0 independent of ε and M . Inserting all these estimates into (2.25),
we obtain for some C > 0 that

‖rM‖ε,Ω ≤ C
(

(ε(2M + 2)γ)2M+2

+ ε(ε(2M + 2)Kα−1)2M+2 + ε1/2(ε(2M + 2)K ′)2M+2
)
.

As α ∈ (0, 1) is fixed, the desired bound follows.

3. Growth estimates for the derivatives. The main result of this section is
the following bound on the growth of the derivatives of the solutions uε of (1.1).

Theorem 3.1. Let f , g, ∂Ω be analytic and let uε be the solution of (1.1). Then
there are C and K > 0 depending only on f , g, and the geometry of Ω (in particular,
C, K are independent of ε) such that

‖Dαuε‖L2(Ω) ≤ CK |α|max (|α|, ε−1)|α| (1 + ‖uε‖ε,Ω) ∀α ∈ N2
0.(3.1)
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Remark 3.2. The proof of Theorem 3.1 below shows that (3.1) holds true for
solutions uε of (1.1) with ε ∈ C (ε−1 has to be replaced with |ε−1| in (3.1)) and hence
the case of Helmholtz’s equation is also covered. Furthermore, (3.1) still holds true if
the right-hand side f is allowed to have “boundary layer character” in the sense that
there exist C, K > 0 such that

‖Dαf‖L2(Ω) ≤ CK |α|max (|α|, |ε−1|)|α| ∀α ∈ N2
0.

The remainder of this paper is devoted to the proof of Theorem 3.1. To that
end, we will state and prove some local analytic regularity results for the solution uε
in sections 3.1 and 3.2. The proof of Theorem 3.1 in section 3.3 then concludes the
paper.

3.1. Local analytic regularity results. The proof of Theorem 3.1 rests on
two local analytic regularity results: an interior result on discs (Proposition 3.3) and
a boundary result on half-discs (Proposition 3.4). Due to their technical nature, the
proofs of these results of this section are deferred to section 3.2.

Our local results are very similar to those of section 5.7 of [8] and we therefore
use the same notation: For r > 0 we define discs Br and half-discs Gr by

Br := Br(0) ⊂ R2, Gr := {(x, y) ∈ Br | y > 0}.
Furthermore, for smooth functions u and R > 0 we introduce

|∇pu(x)|2 :=
∑
|α|=p

|α|!
α!
|Dαu(x)|2 =

2∑
β1,...,βp=1

|Dβ1···βpu(x)|2 ∀p ∈ N0,(3.2)

[p] := max (1, p) ∀p ∈ Z,(3.3)

NR,p(u) :=
1

[p]!
sup

R/2≤r<R
(R− r)2+p‖∇p+2u‖L2(Br), p ∈ N0 ∪ {−2,−1},(3.4)

N ′R,p,q(u) :=
1

[p+ q]!
sup

R/2≤r<R
(R− r)p+q+2‖∂q+2

y ∂px u‖L2(Gr), p ≥ 0, q ≥ −2.(3.5)

Then we have the following local results.
Proposition 3.3. Let R ∈ (0, 1] and let u be a solution of

−ε2∆u+ bu = f on BR,(3.6)

where b and f are analytic on BR and satisfy for some CB, B, Cf , γ > 0

‖∇pb‖L∞(BR) ≤ CBBpp! ∀p ∈ N0,(3.7)

‖∇pf‖L2(BR) ≤ Cfγp[ppR−p + max (p, ε−1)p] ∀p ∈ N0.(3.8)

Then there is K > 0 independent of ε and R such that for all p ≥ −2

NR,p(u) ≤ CuKp+2 max ([p], R/ε)p+2

[p]!
,(3.9)

Cu = min(1, R/ε)ε‖∇u‖L2(BR) + ‖u‖L2(BR) + Cf min (1, (R/ε)2).(3.10)

Proposition 3.4. Let R ∈ (0, 1] and let u be a solution of

−ε2∆u+ bu = f on GR, u = 0 on ∂GR ∩ {(x, y) | y = 0},(3.11)
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where b and f are analytic on BR and satisfy for some CB, B, Cf , γ > 0

‖∇pb‖L∞(GR) ≤ CBBpp! ∀p ∈ N0,(3.12)

‖∇pf‖L2(GR) ≤ Cfγp[ppR−p + max (p, ε−1)p] ∀p ∈ N0.(3.13)

Then there are K1, K2 > 0 independent of ε and R such that ∀p ≥ 0, q ≥ −2

N ′R,p,q(u) ≤ CuKp+2
1 Kq+2

2

max ([p+ q], R/ε)p+q+2

[p+ q]!
,(3.14)

Cu = min (1, R/ε)ε‖∇u‖L2(GR) + ‖u‖L2(GR) + Cf min (1, (R/ε)2).(3.15)

Remark 3.5. The local results in Propositions 3.3 and 3.4 make much weaker
assumptions on the right-hand side f than Theorem 3.1. The term max (p, ε−1)p

appearing in (3.8) and (3.13) indicates that right-hand sides with boundary layer
character are admissible as right-hand sides. Furthermore, in Propositions 3.3 and 3.4
the dependence on the radius of the discs R is given explicitly; this explicit dependence
could be used to obtain results similar to Theorem 3.1 for domains Ω with piecewise
analytic boundary ∂Ω.

Finally, we need the following.
Lemma 3.6. Let G, G1 ⊂ R2 be bounded open sets. Assume that g = (g1, g2) :

G1 → R2 is analytic and injective on G1, det g′ 6= 0 on G1, and satisfies g(G1) ⊂ G.
Let f : G→ C be analytic on G and assume that it satisfies for some ε, Cf , γ > 0

‖∇pf‖L2(G) ≤ Cfγp max (p, ε−1)p ∀p ∈ N0.

Then there are C, K > 0 depending only on Cf , γ, and the map g such that

‖∇p (f ◦ g) ‖L2(G1) ≤ CKp max (p, ε−1)p ∀p ∈ N0.

3.2. Proof of local regularity results.

3.2.1. Interior estimates (proof of Proposition 3.3). In order to prove
Proposition 3.3, it is convenient to introduce for smooth functions u the quantity

MR,p(u) :=
1

p!
sup

R/2≤r<R
(R− r)2+p‖∇pu‖L2(Br), p ∈ N0.

From standard elliptic regularity theory one can infer the following.
Lemma 3.7. Let u solve ∆u = f on BR. Then there is C1 > 0 independent of u,

R, f such that

NR,p(u) ≤ C1 [MR,p(f) +NR,p−1(u) +NR,p−2(u)] ∀p ∈ N0.

Proof. The proof can be found in [8, Lem. 5.7.3].
Lemma 3.8. Let b, u be analytic and assume that b satisfies (3.7). Then

Mr,p(bu) ≤ Cb
p∑
q=0

(
B
R

2

)p−q (
R

2

)2
[q − 2]!

q!
NR,q−2(u).
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Proof. From Leibniz’s formula, we have (cf. Lemma 5.7.4 of [8])

|∇p(bu)| ≤
p∑
q=0

(
p

q

)
|∇p−qb| |∇qu|.

This allows us to get

MR,p(bu) ≤ 1

p!
sup

R/2≤r<R
(R− r)p+2‖∇p(bu)‖L2(Br)

≤ 1

p!
sup

R/2≤r<R
(R− r)p+2

p∑
q=0

(
p
q

)
‖∇p−qb‖L∞(BR)‖∇qu‖L2(Br)

≤ Cb
p∑
q=0

(
BR

2

)p−q (
R

2

)2
[q − 2]!

q!
NR,q−2(u),

which concludes the proof.
Proof of Proposition 3.3. Let C1 be the generic constant of Lemma 3.7 and

choose 2K > max (2, γ, BR) such that

C1
1

2
K−2

(
γR

2K

)p
+C1

(
Cb/4

1−BR/(2K)
K−2 +K−1 +K−2

)
≤ 1 ∀p ∈ N0.(3.16)

We will proceed by induction on p. As K ≥ 1, the claim (3.9) holds for p = −2
and p = −1. Let us therefore assume that (3.9) holds ∀ −2 ≤ p′ < p. As −∆u =
ε−2(f − bu), we get for p ∈ N0 using Lemmas 3.7 and 3.8

NR,p(u) ≤ C1

{
ε−2MR,p(f − bu) +NR,p−1(u) +NR,p−2(u)

}
≤ C1

{
ε−2MR,p(f) + ε−2Cb

p∑
q=0

(
BR

2

)p−q (
R

2

)2
[q − 2]!

q!
NR,q−2(u)

+NR,p−1(u) +NR,p−2(u)
}
.

From the induction hypothesis (3.9) we obtain

NR,p(u) ≤ C1ε
−2MR,p(f) + C1Cu

{
Cb

p∑
q=0

(
BR

2

)p−q (
R

2

)2

ε−2Kqmax ([q − 2], R/ε)q

q!

+Kp+1 max ([p− 1], R/ε)p+1

[p− 1]!
+Kpmax ([p− 2], R/ε)p

[p− 2]!

}
.

As we have the estimates

R2ε−2 1

p!

p!

q!
max ([q − 2], R/ε)q ≤ 1

p!
max ([p], R/ε)p+2,

1

p!

p!

[p− 1]!
max ([p− 1], R/ε)p+1 ≤ 1

p!
max ([p], R/ε)p+2,

1

p!

p!

[p− 2]!
max ([p− 2], R/ε)p ≤ 1

p!
max ([p], R/ε)p+2,
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we obtain

NR,p(u) ≤ C1ε
−2MR,p(f) +

max ([p], R/ε)p+2

p!
Kp+2Cu

× C1

{Cb
4

p∑
q=0

(
BR

2

)p−q
Kq−p−2 +K−1 +K−2

}
≤ C1ε

−2MR,p(f) +
max ([p], R/ε)p+2

p!
Kp+2Cu

× C1

{Cb
4

1

1−BR/(2K)
K−2 +K−1 +K−2

}
.

Finally, we have the bound

MR,p(f) ≤ 1

p!
Cfγ

p

(
R

2

)2+p [
ppR−p + max (p, ε−1)p

]
≤
(γ

2

)p 1

p!
R2Cf

1

4
[pp + max (Rp,R/ε)p] .

As R ≤ 1, we get pp+ max (Rp,R/ε)p ≤ 2 max (p,R/ε)p and, together with (R/ε)2 ≤
min (1, (R/ε)2) max ([p], (R/ε)2), we can conclude

C1ε
−2MR,p(f) ≤ C1

1

2

(γ
2

)p
Cf min (1, (R/ε)2)

max ([p], R/ε)p+2

p!
,(3.17)

NR,p(u) ≤ Kp+2 max ([p], R/ε)p+2

p!
Cu

×
[
C1

1

2

( γ

2K

)p
K−2 + C1

{ Cb/4

1−BR/(2K)
K−2 +K−1 +K−2

}]
.

The fact that the bracketed expression is bounded by one by the choice of K in (3.16)
concludes the induction argument.

3.2.2. Estimates at the boundary (proof of Proposition 3.4). The strat-
egy for proving Proposition 3.4 is first to get control over the tangential derivatives
of the solution u of (3.11), i.e., the x-derivatives of u. This will be accomplished
in Lemma 3.10. In the second step, the remaining normal derivatives, i.e., the y-
derivatives, will be controlled.

In order to carry out this two-step approach, we introduce the following notation
for smooth functions u:

M ′R,p(u) =
1

p!
sup

R/2≤r<R
(R− r)p+2‖∂px u‖L2(Gr),

N ′R,p(u) =


1

p!
sup

R/2≤r<R
(R− r)p+2‖∇2∂px u‖L2(Gr) if p ≥ 0,

sup
R/2≤r<R

(R− r)p+2‖∇2+pu‖L2(Gr) if p = −2,−1,

M̃R,p(u) =
1

p!
sup

R/2≤r<R
(R− r)p+2‖∇pu‖L2(Gr).

Note that we have N ′R,p,0 ≤ N ′R,p. Lemma 3.9 is the analogue of Lemma 3.7.
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Lemma 3.9. Let u ∈ H1(GR) solve ∆u = f on GR and assume that u = 0 on
∂GR ∩ {(x, y) | y = 0}. Then there is a generic constant C2 > 0 such that

N ′R,p(u) ≤ C2

{
M ′R,p(f) +N ′R,p−1(u) +N ′R,p−2(u)

}
.

Proof. The proof can be found in [8, Lem. 5.7.3′].
We start with a bound on the tangential derivatives.
Lemma 3.10. Assume the hypotheses of Proposition 3.4. Then there is K1 > 0

independent of ε and R such that with Cu of (3.15)

N ′R,p(u) ≤ CuKp+2
1

max ([p], R/ε)p+2

[p]!
, p ≥ −2.

Proof. The proof is almost verbatim the same as the proof of Proposition 3.3.
Instead of using Lemma 3.7 we make use of Lemma 3.9. In particular, the constant
K1 will be chosen such that K1 > max (1, γ/2, BR/2).

Proof of Proposition 3.4. Let K1 be the constant of Lemma 3.10 and choose
K2 > max (1, BR/2, γ/2) such that ∀ p ≥ 0, q ≥ 0[1

2

(
γ

2K1

)p(
γ

2K2

)q
K−2

1 K−2
2(3.18)

+ K2
1K
−2
2 +

Cb/4

(1−BR/(2K1))(1−BR/(2K2))
K−2

2

]
≤ 1.

We will proceed by induction on q. By Lemma 3.10 and our earlier observation that
N ′R,p,0 ≤ N ′R,p, the claim (3.14) is true for q = 0 and all p ≥ 0, and it is easy to see
that the claim is also true for q = −2, q = −1: We have for q = −2 and q = −1 and
p ≥ 0 by a straightforward calculation that

N ′R,p,−2(u) =
1

[p− 2]!
sup

R/2≤r<R
(R− r)p‖∂px u‖L2(Gr) ≤ N ′R,p−2(u),

N ′R,p,−1(u) =
1

[p− 1]!
sup

R/2≤r<R
(R− r)p+1‖∂y ∂px u‖L2(Gr) ≤ N ′R,p−1(u).

Let us now proceed with the induction argument on q and assume that the induction
hypothesis is proven for −2 ≤ q′ < q. We have

−∂2
y u = ∂2

x u+ ε−2 (f − bu) ,

|∂px ∂q+2
y u| ≤ |∂p+2

x ∂qy u|+ ε−2|∂px ∂qy f |+ ε−2|∂px ∂qy (bu)|.

Leibniz’s formula and the assumptions on b yield

|∂px ∂qy (bu)| ≤
q∑

m=0

p∑
n=0

( p
n

)( q
m

)
|∂p−nx ∂q−my b| |∂nx ∂my u|

≤ Cb

q∑
m=0

p∑
n=0

( p
n

)( q
m

)
Bp+q−m−n(p− n)!(q −m)!|∂nx ∂my u|

≤ Cb

q∑
m=0

p∑
n=0

Bp+q−n−m(p+ q)p+q−n−m|∂nx ∂my u|,
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where, in the last step, we used the bound( p
n

)( q
m

)
(p− n)!(q −m)! =

p!

n!

q!

m!
≤ pp−nqq−m ≤ (p+ q)p+q−n−m.

Hence, we obtain for N ′R,p,q(u)

N ′R,p,q(u) =
1

[p+ q]!
sup

R/2≤r<R
(R− r)p+q+2‖∂px ∂q+2

y u‖L2(Gr)

≤ N ′R,p+2,q−2(u) + ε−2M̃R,p+q(f)

+ Cbε
−2

q∑
m=0

p∑
n=0

(
BR

2

)p+q−m−n(
R

2

)2
(p+ q)p+q−n−m![m− 2 + n]!

[p+ q]!
N ′R,n,m−2(u).

By the induction hypothesis we have with Cu of (3.15)

[m− 2 + n]!NR,n,m−2(u) ≤ CuKn+2
1 Km

2 max ([m− 2 + n], R/ε)m+n

≤ CuKn+2
1 Km

2 max ([p+ q], R/ε)m+n

and with the bound (R/ε)2 ≤ max ([p+ q], R/ε)2 we obtain

N ′R,p,q(u) ≤ Kp+4
1 Kq

2

max ([p+ q], R/ε)p+q+2

[p+ q]!
Cu + ε−2M̃R,p+q(f)

+
Cb
4
Cu

q∑
m=0

p∑
n=0

(
BR

2

)p+q−m−n
Kn+2

1 Km
2

max ([p+ q], R/ε)p+q+2

(p+ q)!

≤ Kp+4
1 Kq

2

max ([p+ q], R/ε)p+q+2

[p+ q]!
Cu + ε−2M̃R,p+q(f)

+CuK
p+2
1 Kq

2

max ([p+ q], R/ε)p+q+2

[p+ q]!

Cb
4

q∑
m=0

p∑
n=0

(
BR

2

)p+q−m−n
Kn−p

1 Km−q
2

≤ ε−2M̃R,p+q(f) +Kp+2
1 Kq+2

1

max ([p+ q], R/ε)p+q+2

[p+ q]!
Cu

×
[
K2

1K
−2
2 +

Cb
4

1

(1−BR/(2K1))(1−BR/(2K2))
K−2

2

]
.

Reasoning as in (3.17) we get

ε−2M̃R,p+q(f) ≤ 1

2

(γ
2

)p+q
Cf min (1, (R/ε)2)

max ([p+ q], R/ε)p+q+2

[p+ q]!

and may therefore conclude that

N ′R,p,q(u) ≤ Kp+2
1 Kq+2

2

max ([p+ q], R/ε)p+q+2

[p+ q]!
Cu

×
[

1

2

(
γ

2K1

)p(
γ

2K2

)q
K−2

1 K−2
2 +K2

1K
−2
2 +

Cb/4K
−2
2

(1−BR/(2K1))(1−BR/(2K2))

]
.

As the bracketed expression is bounded by one by the choice of K2 in (3.18), the
induction argument is completed.
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3.2.3. Proof of Lemma 3.6. The growth conditions on the derivatives of f
imply that f can be extended to a holomorophic function (also denoted f) on G̃ ⊂
C×C with G ⊂ G̃ and G̃ independent of ε > 0. First, we claim that there are δ0, γ′,
C > 0 depending only on γ and Cf such that

‖f(·+ z1(·), ·+ z2(·))‖L2(G) ≤ Ceγ
′δ/ε(3.19)

for all continuous functions z1, z2 : G → C with ‖zi‖L∞(G) ≤ δ ≤ δ0, i = 1, 2.

As f is holomorphic on G̃, there is δ0 > 0 such that ∀ (x, y) ∈ G the power series
expansion of f about (x, y) converges on a ball of radius 2δ0. For functions z1, z2

with ‖zi‖L∞(G) ≤ δ ≤ δ0 we obtain

|f(x+ z1(x, y), y + z2(x, y))| =
∣∣∣∣∣∣
∑
α∈N2

0

1

α!
Dαf(x, y)(z1, z2)α

∣∣∣∣∣∣ ≤
∑
α∈N2

0

1

α!
|Dαf(x, y)| δ|α|.

Therefore we get

‖f(·+ z1(·), ·+ z2(·))‖L2(G) ≤
∑
α∈N2

0

1

α!
‖Dαf‖L2(G)δ

|α|

≤
∞∑
p=0

∑
|α|=p

(
(p!)1/2(α!)−1/2‖Dαf‖L2(G)

)(
(α!)−1/2p!−1/2δp

)

≤
∞∑
p=0

‖∇pf‖L2(G)

∑
|α|=p

1

α!p!
δ2p

1/2

=

∞∑
p=0

‖∇pf‖L2(G)
1

p!
2p/2δp

≤ Cf
∑

0≤p≤ε−1

1

p!

(√
2γε−1δ

)p
+ Cf

∑
p>ε−1

pp

p!
γp2p/2δp

≤ Cfe
√

2γδ/ε + C
∑
p>ε−1

(
e
√

2γδ
)p
≤ Cfe

√
2γδ/ε +

1

1−√2γδ0
≤ Ce

√
2γδ/ε,

where we used Stirling’s formula in the form p! ≥ Cppe−p and made the tacit assump-
tion that δ0 is so small that e

√
2γδ0 < 1 so that the second sum is finite. This proves

(3.19).
As g is analytic on G1 there is a holomorphic extension (also denoted g) to

G̃1 ⊂ C× C. Thus, there are η, δ′0 > 0 such that ∀(x, y) ∈ G1

(3.20)

|gi(x+ z1, y + z2)− gi(x, y)| ≤ ηδ, i = 1, 2, z1, z2 ∈ C with |z1|, |z2| ≤ δ ≤ δ′0.

For any 0 < δ ≤ min (δ′0, δ0/η) we obtain by Cauchy’s integral theorem for derivatives
for every (x, y) ∈ G1 and every α = (α1, α2) ∈ N2

0

Dα (f ◦ g) (x, y) = − α!

4π2

∫
|z1|=δ

∫
|z2|=δ

(f ◦ g)(x+ z1, y + z2)

zα1+1
1 zα2+1

2

dz1dz2,

|Dα (f ◦ g) (x, y)|2 ≤ α!2

4π2δ2|α|+2

∫
|z1|=δ

∫
|z2|=δ

|(f ◦ g)(x+ z1, y + z2)|2 |dz1| |dz2|.
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By (3.20), we can write

g1(x+ z1, y + z2) = g1(x, y) + ζ1, g2(x+ z1, y + z2) = g2(x, y) + ζ2,

where ζ1, ζ2 are smooth functions of x, y, z1, z2, and |ζi| ≤ ηδ, i = 1, 2. Integrating
over G1, we obtain after the smooth change of variables g(x, y) = (x′, y′) (note that
0 < c1 ≤ |det g′| ≤ c2 <∞) and denoting ζ ′1, ζ ′2 the functions corresponding to ζ1, ζ2
after the change of variables

|Dα(f ◦ g)(x, y)|2L2(G1)

≤ c2 (α!)2

4π2δ2|α|+2

∫
|z1|=δ

∫
|z2|=δ

∫
G

|f(x′ + ζ ′1, y
′ + ζ ′2)|2 dx′dy′|dz1| |dz2|.

As |ζ ′1|, |ζ ′2| ≤ ηδ uniformly in (x′, y′) ∈ G, |z1|, |z2| ≤ δ, estimate (3.19) yields

‖Dα(f ◦ g)‖L2(G1) ≤ C α!

δ|α|
eγ
′ηδ/ε ∀0 < δ ≤ min (δ′0, δ0/η).

In order to extract from this estimate the claim of the lemma, we distinguish the cases
|α|ε large and |α|ε small. If |α|ε/(ηγ′) < min (δ′0, δ0/η), choose δ := |α|ε/(ηγ′) to get
with Stirling’s formula

‖Dα(f ◦ g)‖L2(G1) ≤ C(ηγ′)|α|
√

1 + |α| ε−|α|.
If |α|ε/(ηγ′) ≥ min (δ′0, δ0/η), choose δ := min (δ′0, δ0/η) and observe that this implies
δηγ′ε−1 ≤ |α| to arrive at

‖Dα(f ◦ g)‖L2(G1) ≤ Cα! δ−|α|e|α|,

which completes the proof of Lemma 3.6.

3.3. Proof of Theorem 3.1. Let BR(x0) ⊂ Ω be a ball of radius R ≤ 1.
Proposition 3.3 yields the existence of C, K > 0 independent of ε, p such that for all
p ∈ N0

‖∇puε‖L2(BR/2(x0)) ≤ CKp max (p, ε−1)p
(
1 + ‖uε‖L2(BR(x0)) + ε‖∇uε‖L2(BR(x0))

)
.

Let us now consider estimates at the boundary. First, we see that we may consider
the case of homogeneous Dirichlet data: As the boundary data g is analytic, it can
be extended analytically into Ω, e.g., by taking as the extension function the function
G defined by

−∆G = 0 on Ω, G = g on ∂Ω.

As ∂Ω and g are assumed to be analytic, standard elliptic theory [8, 9] gives that G
is analytic on a neighborhood of Ω. Note that G is independent of ε. The auxiliary
function ũ = u−G solves

−ε2∆ũ+ ũ = f̃ := f + ε2∆G−G = f −G on Ω,

ũ = 0 on ∂Ω

and by the triangle inequality

‖∇pu‖L2(B∩Ω) ≤ ‖∇pũ‖L2(B∩Ω) + ‖∇pG‖L2(B∩Ω) ∀p ∈ N0



400 J. M. MELENK AND C. SCHWAB

for balls B. It suffices therefore to get the desired bounds for ũ.
In order to apply Proposition 3.4, we introduce a mapping to flatten the boundary

locally: For R > 0 and a point x0 ∈ ∂Ω, we introduce the conformal map ζ which
maps Q := Ω∩B2R(x0) conformally onto G2R. The transformed functions û = ũ◦ζ−1,

f̂ = f̃ ◦ ζ−1 then solve

−ε2∆û+ |(ζ−1)′|2û = f̂ |(ζ−1)′|2 on G2R,

û = 0 on ∂G2R ∩ {(x, y) | y = 0}.

Furthermore, by the analyticity of ∂Ω, the function |(ζ−1)′|2 is (real) analytic on

G2R and hence Proposition 3.4 is applicable (note that f̃ and hence f̂ |(ζ−1)′|2 are
independent of ε), and we get the desired estimate for û, i.e.,

‖∇pû‖L2(GR/2) ≤ CKp max (p, ε−1)p
(
1 + ‖û‖L2(GR) + ε‖∇û‖L2(GR)

) ∀p ∈ N0.

Applying Lemma 3.6 allows us to infer a similar estimate for ũ:

‖∇pũ‖L2(B∩Ω) ≤ CK ′p max (p, ε−1)p
(
1 + ‖uε‖L2(Q) + ε‖∇uε‖L2(Q)

) ∀p ∈ N0,

where B is a ball or radius R′ > 0 with center x0 such that BR′∩Ω ⊂ ζ−1(GR/2). The
constants C, K ′ > 0 depend again on R, f , g, and the point x0 but are independent
of ε.

A compactness argument allows us to conclude the proof of the theorem.
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Abstract. We consider the Cauchy problem for systems of PDEs of the general form

ut = P0u+ ε1P1u+ ε2Q(u) +
∑
j

DjFj(x, t), u = u(x, t).

Here P0 has constant coefficients. The terms ε1P1u and ε2Q(u) describe linear and nonlinear per-
turbations, respectively, and

∑
j
DjFj(x, t) is a forcing term, which decays to zero for t→∞. The

perturbation terms are assumed to have conservation form. We call the system nonlinearly stable
if the solution u(x, t) with u(x, 0) = 0 remains smooth for all t ≥ 0 and the maximum norm of u
tends to zero for t → ∞, provided that ε21 + ε22 is sufficiently small. In the paper we give sufficient
conditions for nonlinear stability.

If the unperturbed system ut = P0u is parabolic, then the Laplace transform technique is sat-
isfactory to derive conditions for nonlinear stability. However, if ut = P0u is hyperbolic or coupled
parabolic-hyperbolic, then the Laplace transform technique fails if the perturbation terms are first-
order differential operators. In this case, we combine Laplace transformation for small wave vectors
with an energy technique to control the large-wave–number projection of the solution.

Key words. nonlinear stability, conservation laws, symmetrizer, Laplace transform
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PII. S0036141097322479

1. Introduction. We consider systems of partial differential equations of the
form

ut = P0u+ ε1P1u+ ε2

d∑
j=1

Djgj(x, t, u) +
d∑
j=1

DjFj(x, t), x ∈ Rd, t ≥ 0,(1.1)

with initial condition

u(x, 0) = 0, x ∈ Rd.(1.2)

Here u = u(x, t) takes values in Rn. The operator P0 has constant coefficients,

P0 =
∑
|α|≤m

AαD
α, Aα ∈ Rn×n,

Dα = Dα
1 . . . D

α
d , Dj = ∂/∂xj , |α| = α1 + · · ·+ αd.

The operator P1 has conservation form,

P1u =
d∑
j=1

Dj

(
Bj(x, t)u

)
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with variable coefficients

Bj(x, t) ∈ Rn×n.
The nonlinear functions gj(x, t, u) vanish quadratically at u = 0. More specific as-
sumptions on P0, P1, gj(x, t, u), and Fj(x, t) will be given below. Note that all terms
in (1.1) have conservation form, except for a zero-order term in P0, which is allowed.

We call (1.1), (1.2) nonlinearly stable if the solution u(x, t) remains smooth for
all t ≥ 0 and the maximum norm |u(·, t)|∞ tends to zero for t → ∞, provided that
ε2

1 + ε2
2 is sufficiently small. The aim of the paper is to give sufficient conditions on

P0, P1, gj , Fj , which imply nonlinear stability.
Our results can easily be translated into nonlinear stability results for problems

with more general initial data than (1.2); see section 4.1.
We now outline the results of our paper. In section 2 we will first assume that the

constant coefficient operator P0 has the form

P0 = ∆ +
d∑
j=1

AjDj , Aj ∈ Rn×n,

where ∆ = D2
1 + · · ·+D2

d is the Laplacian and where the corresponding system

ut =
∑
j

AjDju

is strongly hyperbolic. The linear problem

ut = P0u+
∑
j

DjFj(x, t), u = 0 at t = 0,(1.3)

can be discussed by Fourier–Laplace transformation. If

ũ(ω, s) = (2π)−d/2
∫ ∞

0

∫
Rd
e−ste−iω·xu(x, t)dx dt

denotes the Fourier–Laplace transform, then (1.3) becomes

sũ = P̂0(ω)ũ+ i
∑
j

ωjF̃ .(1.4)

Throughout the paper, the derivation of solution estimates for small |ω| (long wave-
lengths) and large |ω| (short wavelengths) will proceed quite differently. We therefore
decompose

ũ = ũI + ũII

with

ũI(ω, s) =

{
ũ(ω, s) if |ω| ≤ 1,
0 if |ω| > 1,

(1.5)

and obtain a corresponding decomposition of u,

u(x, t) = uI(x, t) + uII(x, t),
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by inverting the Fourier–Laplace transform. (Note that the time dependence is ir-
relevant in determining the decomposition u = uI + uII . The decomposition is well
defined for any L2-function u = u(x).) For operators

P0 = ∆ +
∑
j

AjDj ,(1.6)

solution estimates for the linear problem (1.3) can then be derived from the trans-
formed equation (1.4). The estimate is stated in Theorem 2.1. To discuss the nonlinear
problem (1.1), it suffices to apply the linear estimate with Fj replaced by

Fj + ε1Bju+ ε2gj(x, t, u).

Then, using nothing more than Sobolev inequalities, we obtain nonlinear stability.
The details are given in Theorem 2.2. At the end of section 2 we briefly discuss how
to extend the results to more general parabolic systems (1.1).

In section 3 we drop the assumption that ut = P0u is parabolic and consider
a general constant coefficient operator P0 =

∑
|α|≤mAαD

α. We then formulate our
assumptions on P0 in terms of its symbol,

P̂0(ω) =
∑
|α|≤m

Aα(iω1)α1 · · · (iωd)αd , ω ∈ Rd.

A main assumption will be the following eigenvalue condition.
Assumption 1. There is a constant c0 > 0 such that

Reλ ≤
{ −c0|ω|2 if |ω| ≤ 1,
−c0 if |ω| ≥ 1

for all eigenvalues λ of P̂0(ω).
For the other assumptions, see section 3. Clearly, for the operator P0 = ∆ +∑

j AjDj discussed in section 2, one has

Reλ = −|ω|2 for all λ ∈ σ
(
P̂0(ω)

)
without restricting |ω|. In Assumption 1 such a behavior of Reλ is required for small
|ω| but not for large |ω|. Therefore, the assumptions on P0 in section 3 allow for
systems ut = P0u, which are coupled parabolic-hyperbolic or strongly hyperbolic
with suitable zero-order terms. (In the appendix we give sufficient conditions which
imply all the requirements on P0 of section 3.)

Since the upper bound

Reλ ≤ −c0 < 0 for all λ ∈ σ
(
P̂0(ω)

)
, |ω| ≥ 1,

on Re λ in Assumption 1 does not tend to −∞ for |ω| → ∞, the perturbation terms

ε1

∑
j

Dj(Bju) + ε2

∑
j

Djgj(x, t, u)(1.7)

cannot be treated as forcing terms anymore for large |ω|, because they are unbounded
operators in L2. Instead, to derive estimates for the large-|ω| part uII of the solution,
we will employ an energy estimate and consider

d

dt
‖uII(·, t)‖2H .
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Here the H-norm will be determined by an inner product

(u, v)H =

∫
Rd
û∗(ω)H(ω)v̂(ω)dω,

where

û(ω) = (2π)−d/2
∫
Rd
e−iω·xu(x)dx

is the Fourier transform and where H(ω) is a symmetrizer for P̂0(ω). The main idea,
then, of section 3 is to combine the Laplace transform technique for |ω| ≤ 1 with
energy estimates for |ω| > 1.

Remark. One can try, of course, to use an energy technique for the small–|ω| part
of the solution as well. However, since generally Reλ ≈ −c0|ω|2 for λ ∈ σ(P̂ (ω)) if
|ω| is small, there is no exponential decay in time which is uniform in |ω|. This is
a well-known difficulty, and there are approaches different from ours to deal with it.
See, for example, [2] and [5].

In section 3, we assume that the symmetrizer H(ω) will only depend on the
symbol P̂0(ω) of the constant coefficient operator P0 and will tend to the identity for
|ω| → ∞,

|H(ω)− I| ≤ const.

|ω| , |ω| ≥ 1.(1.8)

(For such a condition, see [1].) Then, to treat the perturbation terms (1.7), we will
assume that the matrices Bj(x, t) and gju(x, t, u) are symmetric.

Symmetrizers and energy estimates can be used more generally; see, for example,
[4]. Also, the combination of the Laplace transform technique for |ω| ≤ 1 with an
energy technique for |ω| > 1 does not depend on the specific properties of H(ω) in
section 3. Therefore, condition (1.8) as well as the symmetry assumptions for Bj and
gju can be modified. We formulate a corresponding result in section 4 as a conjecture.
Details will be provided in a forthcoming paper.

Notations.
1.

|u|2 =
∑
j

|uj |2 : Euclidean norm;

2.

|A| = max{|Au| : |u| = 1} : corresponding matrix norm;

3.

û(ω) = (2π)−d/2
∫
Rd
e−iω·xu(x)dx : Fourier transform;

4.

u = uI + uII where ûI(ω) =

{
û(ω) if |ω| ≤ 1,
0 if |ω| > 1

:

decomposition of u into a small-wave–vector projection uI and a large-wave–
vector projection uII ;
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5.

ũ(ω, s) = (2π)−d/2
∫ ∞

0

∫
Rd
e−ste−iω·xu(x, t)dx dt : Fourier–Laplace transform;

6.

(u, v) =

∫
Rd
u∗(x)v(x)dx =

∫
Rd
û∗(ω)v̂(ω)dω :

L2-inner product of u, v ∈ L2(Rd,Rn);
7.

(u, v)H =

∫
Rd
û∗(ω)H(ω)v̂(ω)dω :

modified inner product determined by symmetrizer H(ω);
8.

‖u‖2 = (u, u), ‖u‖2H = (u, u)H : corresponding norms;

9.

‖u‖2Hp =
∑
|α|≤p

‖Dαu‖2, ‖u‖2p,H =
∑
|α|≤p

‖Dαu‖2H :

Sobolev and modified Sobolev norm;
10.

M(F, T ) =
∑
j

(∫ T

0

∫
Rd
|Fj(x, t)|dxdt

)2

: square of L1-norm;

11.

‖| B‖| 2
=

∫ ∞
0

∫
Rd
|B(x, t)|2dxdt : L2-norm over space-time;

12.

σ(A) = set of eigenvalues of A;

13.

ReA =
1

2
(A+A∗) : symmetric part of matrix A;

14.

| · |∞ : sup-norm.

2. The parabolic case. In this section we first assume that P0 has the form

P0 = ∆ +
d∑
j=1

AjDj , Aj ∈ Rn×n,

where the system ut =
∑
j AjDju is strongly hyperbolic. That is, we make the fol-

lowing assumption.
Assumption 2. There is a constant C > 0 and, for each ω ∈ Rd with |ω| = 1,

there is a transformation S(ω) ∈ Cn×n such that
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a) |S(ω)|+ |S−1(ω)| ≤ C;
b) S−1(ω)(

∑
j ωjAj)S(ω) is real, diagonal.

At the end of the section, we consider more general operators P0 for which ut =
P0u is parabolic. Next, we list our assumptions on the coefficients

Bj(x, t), gj(x, t, u), Fj(x, t), j = 1, . . . , d.

Assumption 3.
a) Bj(x, t), gj(x, t, u), Fj(x, t) are C∞-functions defined for x ∈ Rd,

t ≥ 0, u ∈ Rn;
b) Fj(x, 0) ≡ 0;
c)
∫∞

0

∫
Rd |Fj(x, t)|dx dt <∞;

d) for all p = 0, 1, . . . , we have that∫ ∞
0

{
‖F (·, t)‖2Hp + ‖Ft(·, t)‖2Hp

}
dt <∞;

e)
∫∞

0
‖Bj(·, t)‖2dt <∞ ;

f) for all α, there is Cα with

|DαBj(x, t)|+ |DαBjt(x, t)| ≤ Cα for x ∈ Rd, t ≥ 0;

g) for all α, β and L > 0, there is C(α, β, L) with

|Dα
xD

β
ug(x, t, u)|+ |Dα

xD
β
ugt(x, t, u)| ≤ C(α, β, L)

for x ∈ Rd, t ≥ 0, |u| ≤ L;

h) for all L > 0, there is CL with

|g(x, t, u)| ≤ CL|u|2 for x ∈ Rd, t ≥ 0, |u| ≤ L;

i) for all α and all L > 0, there is C(α,L) with

|Dα
x gj(x, t, u)|+ |Dα

x gjt(x, t, u)|+ |Dα
x gju(x, t, u)| ≤ C(α,L)|u|

for x ∈ Rd, t ≥ 0, |u| ≤ L.
Remark. These assumptions might seem very restrictive, but they can often be

realized by simple transformations; see the discussion in section 4. The assumption
u(x, 0) = Fj(x, 0) ≡ 0 is convenient since we will use the Laplace transformation.

We first consider the problem (1.1), (1.2) with ε1 = ε2 = 0 and show the following
estimate of u in terms of F.

Theorem 2.1. Consider the equation ut = P0u+
∑
j DjFj(x, t), u = 0 at t = 0,

under Assumptions 2–3. Then, for any p = 1, 2, . . . there is a constant Rp, independent
of T and F , such that

∫ T

0

{
‖u‖2Hp + ‖ut‖2Hp

}
dt ≤ Rp

{
M(F, T ) +

∫ T

0

{
‖F‖2Hp−1 + ‖Ft‖2Hp−1

}
dt

}
.

(2.1)

Here

M(F, T ) =
∑
j

(∫ T

0

∫
Rd
|Fj(x, t)|dx dt

)2

.
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Proof.
1) Fourier–Laplace transformation yields

sũ = P̂0(ω)ũ+ i
∑
j

ωjF̃j , ω ∈ Rd, s = η + iξ.(2.2)

We decompose

ũ = ũI + ũII ,

where ũI(ω, s) = ũ(ω, s) for |ω| ≤ 1 and ũI(ω, s) = 0 for |ω| > 1. Clearly,

P̂0 = −|ω|2I + i
∑
j

ωjAj .

For ω 6= 0, let ω0 = ω/|ω| and use the transformation S = S(ω0) of Assumption 2 to
obtain

S−1(sI − P̂0)S = (s+ |ω|2)I − iΛ.
Here Λ = diag(λk) contains the real eigenvalues of

∑
j ωjAj as diagonal entries. From

(2.2) we find that

|ũ|2 ≤ |(sI − P̂0)−1|2|ω|2|F̃ |2

≤ C1|ω|2|F̃ |2
n∑
k=1

1

(η + |ω|2)2 + (ξ − λk)2
(2.3)

with s = η + iξ, η ≥ 0. Here

|F̃ (ω, s)|2 =
∑
j

|F̃j(ω, s)|2,

F̃j(ω, s) = (2π)−d/2
∫ ∞

0

∫
Rd
e−st−iω·xFj(x, t)dx dt,

and therefore,

|F̃ (ω, s)|2 ≤ C2M(F,∞) for s = η + iξ, η ≥ 0.

For |ω| ≤ 1 we obtain from (2.3), using Parseval’s relation,∫ ∞
0

e−2ηt‖uI‖2dt =
1

2π

∫
|ω|≤1

∫ ∞
−∞
|ũ(ω, η + iξ)|2dξ dω

≤ C3M(F,∞)
n∑
k=1

Ik

with

Ik =

∫
|ω|≤1

∫ ∞
−∞

|ω|2
(η + |ω|2)2 + (ξ − λk)2

dξ dω.
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It is crucial that the integrals Ik are finite for η ≥ 0. In fact, for η = 0,

Ik =

∫
|ω|≤1

∫ ∞
−∞

|ω|2
|ω|4 + ξ2

dξ dω =

∫
|ω|≤1

∫ ∞
−∞

dξ′

1 + (ξ′)2
dω <∞.

This shows that, for η = 0, ∫ ∞
0

‖uI‖2dt ≤ C4M(F,∞).

To estimate space derivatives DαuI , just note that

| ˜(DαuI)(ω, s)| ≤ |ω||α||uI(ω, s)| ≤ |uI(ω, s)|.
Then Parseval’s relation implies, as above,∫ ∞

0

‖uI‖2Hpdt ≤ C5M(F,∞), C5 = C5(p).

Also, using (2.2), we obtain that

|ũIt | = |sũI | ≤ C
{
|ũI |+ |F̃ |

}
, |ω| ≤ 1,

and a similar estimate holds for | ˜(DαuIt )|. Therefore,∫ ∞
0

‖uIt ‖2Hpdt ≤ C6

{
M(F,∞) +

∫ ∞
0

‖F‖2dt
}
, C6 = C6(p).

2) It remains to estimate uII , i.e., to consider (2.2) for |ω| ≥ 1. Clearly, we obtain
from (2.3), for η = 0,

(|ω|2 + 1) |ũII |2 ≤ C7|F̃ |2, |ω| ≥ 1.

Then Parseval’s relation yields∫ ∞
0

‖uII‖2H1dt ≤ C8

∫ ∞
0

‖F‖2dt.

Also, we can apply Dα and Dα∂/∂t to the given differential equation and obtain a
corresponding estimate for DαuII and for DαuIIt . Thus, our estimates show that (2.1)
holds for T = ∞. Since values of F (x, t) for t > T do not affect the solution u(x, t)
for t ≤ T , we can replace T =∞ by for any finite T.

Remark. Global existence for the linear problem considered here is well known, and
the solution can grow at most exponentially. Therefore, the formal process of Laplace
transformation in t is justified for s = η + iξ if η ≥ η0, η0 sufficiently large. Then,
in inverting the Laplace transformation, our estimates show that no singularities are
encountered for η ≥ 0, and, therefore, the contour of integration can be deformed to
η = 0. This justifies the formal use of the Laplace transform in t and the choice η = 0
in deriving solution estimates.

Now consider the nonlinear problem (1.1) with P0 = ∆ +
∑
j AjDj and recall

Assumptions 2 and 3. For any choice of ε1, ε2, there is a local solution u(x, t) =
u(x, t, ε1, ε2), which is C∞-smooth in a maximal interval

0 ≤ t < T̄ = T̄ (ε1, ε2).
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We will show that T̄ (ε1, ε2) =∞ if ε2
1 + ε2

2 is sufficiently small. Furthermore, we will
show that the solution tends to zero as t→∞.

Theorem 2.2. Consider (1.1), (1.2) where P0 = ∆ +
∑
j AjDj, and recall As-

sumptions 2 and 3. There exists ε0 > 0 such that the solution is C∞ for all t ≥ 0
if

ε2
1 + ε2

2 ≤ ε0.

Furthermore,

lim
t→∞ |u(·, t)|∞ = 0.

Proof. Choose a large constant κ. (We will see below that the choice

κ = 1 + 2Rp

{
M(F,∞) +

∫ ∞
0

{‖F‖2Hp−1 + ‖Ft‖2Hp−1

}
dt

}
(2.4)

is sufficient. Here p = d+ 2 and d is the number of space dimensions.)
Fix ε1, ε2 and let u = u(x, t, ε1, ε2) denote the solution of (1.1), (1.2). Assume

first that there is a finite time T = T (κ, ε1, ε2) with∫ T

0

{‖u‖2Hp + ‖ut‖2Hp
}
dt = κ.(2.5)

Set

|Dαu|∞,T = sup
x∈Rd, 0≤t≤T

|Dαu(x, t)|.

By Sobolev’s inequality, there is a constant C, independent of T, such that

|Dαu|2∞,T ≤ Cκ if |α|+ d

2
< p.(2.6)

(Here we have used that

max
0≤t≤T

|v(t)|2 ≤ C
∫ T

0

{|v(t)|2 + |vt(t)|2
}
dt

with C independent of T if v(0) = 0.) Now apply Theorem 2.1 with Fj replaced by

Fj + ε1Bju+ ε2Gj , Gj(x, t) = gj(x, t, u(x, t)).

Then (2.5) and Theorem 2.1 yield

κ ≤ RpM(F + ε1Bu+ ε2G,T )

+ Rp

∫ T

0

{‖F + ε1Bu+ ε2G‖2Hp−1 + ‖(F + ε1Bu+ ε2G)t‖2Hp−1

}
dt

≤ 2Rp

{
M(F, T ) +

∫ T

0

{‖F‖2Hp−1 + ‖Ft‖2Hp−1

}
dt
}

+ 4ε2
1RpM(Bu, T ) + 4ε2

2RpM(G,T )

∫ T

0

{‖Bu‖2Hp−1 + ‖(Bu)t‖2Hp−1

}
dt

+ 4ε2
2Rp

∫ T

0

{‖G‖2Hp−1 + ‖Gt‖2Hp−1

}
dt.
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It remains to show that all terms multiplied by ε2
1 or ε2

2 can be controlled in terms of
κ, if κ and T are related by (2.5). Then, by choosing κ as in (2.4) and making ε2

1 + ε2
2

small, we arrive at a contradiction to (2.4). This contradiction shows that a finite T
with (2.5) cannot exist, and, therefore,∫ T

0

{‖u‖2Hp + ‖ut‖2Hp
}
dt < κ , T ≥ 0.

Then standard arguments show that the solution exists and is C∞ for all t ≥ 0.
We now treat the terms multiplied by ε2

j on the right side of the above estimate
of κ separately. We have{∫ T

0

∫
Rd
|Bj(x, t)| |u(x, t)|dx dt

}2

≤ CB
∫ T

0

∫
Rd
|u(x, t)|2dx dt ≤ CBκ,

using Assumption 3e. Furthermore, by Leibnitz’ rule,

Dα(Bju) =
∑
β≤α

cαβ(Dα−βBj)Dβu,

where

sup
x,t
|Dα−βBj(x, t)| ≤ const.

by Assumption 3f. Therefore, ∫ T

0

‖Bu‖2Hp−1dt ≤ CBκ,

and similarly, ∫ T

0

‖(Bu)t‖2Hp−1dt ≤ CBκ.

We now treat the nonlinear terms and recall

Gj(x, t) = gj(x, t, u(x, t)).

First note that∫ T

0

∫
Rd
|Gj(x, t)|dx dt ≤ C

∫ T

0

∫
Rd
|u(x, t)|2dx dt ≤ Cκ,

where we have used that gj vanishes quadratically at u = 0. This implies M(G,T ) ≤
C1κ

2.
Now consider

∫ T
0
‖G‖2Hp−1dt, and let α be a multi-index with |α| ≤ p − 1. Then

Dαgj(x, t, u(x, t)) is a sum of terms

ϕj(x, t, α, σ)Dσ1u · · ·Dσru,(2.7)

where σ1, . . . , σr are multi-indices with

|σ1|+ · · ·+ |σr| ≤ |α| ≤ p− 1;
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the function ϕj is a partial derivative of gj evaluated at (x, t, u(x, t)). The index r
satisfies 0 ≤ r ≤ p− 1. Since |u|2∞,T ≤ Cκ by (2.6), we have

sup
x,0≤t≤T

|ϕj | ≤ C0(κ).

Consider a term (2.7) and first assume 1 ≤ r ≤ p− 1. By (2.6),

|Dσju|∞,T ≤ C0(κ) if |σj |+ d

2
< p,

and we say that Dσju is estimated in sup-norm in terms of κ. Suppose there are two
factors in (2.7), Dσ1u and Dσ2u, say, which cannot be estimated in sup-norm in terms
of κ. Then we have

|σ1|+ d

2
≥ p and |σ2|+ d

2
≥ p;

thus,

p− 1 + d ≥ |σ1|+ |σ2|+ d ≥ 2p.

But this implies p ≤ d − 1, which contradicts our choice of p = d + 2. We conclude
that each factor in (2.7), except at most one, can be estimated in sup-norm in terms
of κ. Therefore,

‖ϕjDσ1u · · · Dσru‖ ≤ C0(κ)‖u‖Hp−1 .

If r = 0 in (2.7), then

ϕj = Dα
x gj(x, t, u),

and Assumption 3i implies

|ϕj | ≤ C|u|.
These arguments show that ∫ T

0

‖G‖2Hp−1dt ≤ C1(κ).

Now consider ∫ T

0

‖Gt‖2Hp−1dt.

Since Gj(x, t) = gj(x, t, u(x, t)) we have

Gjt = gjt + gjuut

and, therefore,

DαGjt = Dαgjt +Dα(gjuut).

The term Dαgjt is treated in the same way as Dαgj above. Finally, Dα(gjuut) is a
sum of terms

ψj(x, t, α, σ)Dσ1u · · · DσruDβut(2.8)



412 G. KREISS, H.-O. KREISS, AND J. LORENZ

with |σ1|+· · ·+|σr|+|β| ≤ |α| ≤ p−1. The function ψj is a derivative of gju evaluated
at (x, t, u(x, t)). First let

|β|+ 2 +
d

2
< p.(2.9)

Then we use the differential equation (1.1) to express Dβut in terms of space deriva-
tives of u of order ≤ |β|+ 2. Since (2.9) is assumed, all these space derivatives can be
bounded in sup-norm in terms of κ. Therefore,

|Dβut|∞,T ≤ C(κ) if |β|+ 2 +
d

2
< p.

If |β|+ 2 + d
2 ≥ p and |σ1|+ d

2 ≥ p, say, then

p+ 1 + d ≥ |β|+ |σ1|+ 2 + d ≥ 2p.

But this implies p ≤ d+1, which contradicts our choice p = d+2. Thus, if |β|+2+ d
2 ≥

p, then |σj |+ d
2 < p, and, consequently, all terms Dσju in (2.8) are bounded in sup-

norm in terms of κ. Also, if r = 0 in (2.8), then ψj is a space derivative Dγ
xgju(x, t, u),

and we use

|Dγ
xgju(x, t, u)| ≤ C|u|.

These arguments show that

‖ψjDσ1u · · · DσruDβut‖2 ≤ C2(κ)
{‖u‖2Hp + ‖ut‖2Hp

}
,

and therefore, ∫ T

0

‖Gt‖2Hp−1dt ≤ C3(κ).

To summarize, we define κ by (2.4) with p = d + 2. If we assume that there is a
finite T = T (κ, ε1, ε2) with (2.5), then our linear estimate (Theorem 2.1) yields

κ ≤ C(κ)(ε2
1 + ε2

2) + 2Rp

{
M(F, T ) +

∫ T

0

{‖F‖2Hp−1 + ‖Ft‖2Hp−1

}
dt

}
.

Choosing ε2
1 + ε2

2 ≤ ε0 with ε0 = 1/(2C(κ)), we arrive at a contradiction to (2.4).
Therefore, if ε2

1 + ε2
2 ≤ ε0, then∫ ∞

0

{‖u‖2Hp + ‖ut‖2Hp
}
dt <∞.

Consequently,

max
T≤t<∞

|u(·, t)|2∞ ≤ C
∫ ∞
T

{‖u‖2Hp + ‖ut‖2Hp
}
dt→ 0 as T →∞,

and in particular,

lim
t→∞ |u(·, t)|∞ = 0.
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This proves Theorem 2.2.
Remark. Throughout the paper, we do not try to minimize smoothness assump-

tions. In the definition of κ by (2.4) the choice p = d + 2 can be improved if one
uses Hölder’s inequality and a Gagliardo–Nirenberg inequality instead of Sobolev’s
inequality; see, for example, [1].

Generalization. It is not difficult to extend the results of this section to more
general parabolic systems. Consider (1.1), (1.2) where P0 is a constant coefficient
operator

P0 =
∑
|α|≤m

AαD
α, Aα ∈ Rn×n,

and assume that its symbol

P̂0(ω) =
∑
|α|≤m

Aα(iω1)α1 · · · (iωd)αd , ω ∈ Rd,

satisfies the following two conditions.
1. There is a constant C0 such that

|eP̂0(ω)t| ≤ C0

for all ω ∈ Rd and all t ≥ 0.
2. There is a constant c0 > 0 such that

Reλ ≤ −c0|ω|2

for all λ ∈ σ(P̂0(ω)) and all ω ∈ Rd.
If, in addition, the terms Bj , gj , Fj satisfy our general Assumption 3, then the

result formulated in Theorem 2 is valid. To prove this, it suffices to show that the
solution of the linear problem

ut = P0u+
∑
j

DjFj

satisfies the estimate (2.1). By the Kreiss’ matrix theorem [3], there is a transformation
S = S(ω) with

S−1P̂0S =



λ1 r12 · · · · · · r1n

. . .
. . .

...
. . .

. . .
...

. . . rn−1,n

0 λn


|rjl| ≤ C1|Reλj |, 1 ≤ j < l ≤ n, |S|+ |S−1| ≤ C1.

If λj = αj + iβj , αj , βj ∈ R, then, by assumption, αj ≤ −c0|ω|2, and one obtains∣∣((η + iξ)I − P̂0

)−1∣∣2 ≤ C2

∑
j

1

(η + |ω|2)2 + (ξ − βj)2
.

Therefore, we obtain again the estimate (2.3), and (2.1) follows. The remaining argu-
ments are the same as in the proof of Theorem 2.
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3. The symmetric case. In this section, let P0 denote a general constant co-
efficient operator,

P0 =
∑
|α|≤m

AαD
α, Aα ∈ Rn×n,

with symbol

P̂0(ω) =
∑
|α|≤m

Aα(iω1)α1 · · · (iωd)αd , ω ∈ Rd.

We do not assume here that the system ut = P0u is parabolic and, therefore, we do
not require the estimate

Reλ ≤ −c0|ω|2, λ ∈ σ(P̂0(ω))

for large |ω|. In this case, the technique of section 2 cannot be used to treat the
perturbation

ε1

∑
j

Dj(Bju) + ε2

∑
j

Djgj

for large |ω|, because we do not “gain” a derivative in the estimate for the linear
equation ut = P0u+

∑
j DjFj . If one makes the assumptions:

1. There is a constant c0 > 0 such that

P̂0(ω) + P̂ ∗0 (ω) ≤ −2c0I < 0(3.1)

for all ω ∈ Rd;
2. Bj(x, t) = BTj (x, t), gju(x, t, u) = gTju(x, t, u), j = 1, . . . , d;

then one can use standard energy estimates to derive the conclusions of Theorem
2. However, in many applications the strict negativity assumption (3.1) is not ful-
filled. Consider, for example, the (simplified) compressible Navier–Stokes equations,
linearized about a constant state U, V ,uv

p


t

+

U 0 1
0 U 0
1 0 U

uv
p


x

+

V 0 0
0 V 1
0 1 V

uv
p


y

=

∆u
∆v
0

 .(3.2)

A simple calculation shows that

P̂0(ω) + P̂ ∗0 (ω) ≤ 0,(3.3)

and there is a constant c0 > 0 with

Reλ ≤ −c0 |ω|2
1 + |ω|2 , λ ∈ P̂0(ω),(3.4)

for all ω. If one assumes the above two conditions (3.3), (3.4) for P̂0, then one can

estimate uI as in section 2, since (3.3) implies |eP̂0(ω)t| ≤ 1 for all t ≥ 0. To estimate
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uII , one can apply an energy estimate in a modified L2-norm if additional conditions
are satisfied.

This motivates the following requirement on P0.
Assumption 4.
a) There is C0 > 0 such that

|eP̂0(ω)t| ≤ C0 for t ≥ 0, |ω| ≤ 1;

b) there is c0 > 0 such that

Reλ ≤ −c0|ω|2 for all λ ∈ σ(P̂0(ω)) if |ω| ≤ 1;

c) there are c1 > 0 and C1 > 0, and there is a smooth Hermitian matrix function
H(ω) defined for |ω| ≥ 1 which satisfies the following three conditions:

1. 1
C1
I ≤ H(ω) ≤ C1I;

2. Re(H(ω)P̂0(ω)) ≤ −c1H(ω);
3. |H(ω)− I| ≤ C1/|ω|.

Under Assumptions 4a and 4b, a symmetrizer H(ω) satisfying the above As-
sumptions 4c1 and 4c2 can always be constructed by the Kreiss’ matrix theorem
[3]. Assumption 4c3 adds an additional restriction, which is fulfilled, however, for a
large class of operators P0, for which ut = P0u is hyperbolic with suitable zero-order
term or parabolic or coupled parabolic-hyperbolic. We show this in the appendix. For
generalizations, where Assumption 4c3 is dropped, see section 4.2.

For the coefficients Bj(x, t), gj(x, t, u), Fj(x, t) of (1.1) we make Assumption 3
and a symmetry assumption.

Assumption 5. The coefficients Bj , gj , Fj satisfy Assumption 3 and

Bj(x, t) = BTj (x, t), gju(x, t, u) = gTju(x, t, u)

for all x ∈ Rd, t ≥ 0, u ∈ Rn.

First consider (1.1) with ε2 = 0; i.e., consider the linear equation

ut = P0u+ ε1

∑
j

Dj(Bju) +
∑
j

DjFj .(3.5)

If u is a solution, we set

Gj(x, t) = ε1Bj(x, t)u(x, t) + Fj(x, t)

and obtain

ut = P0u+
∑
j

DjGj .(3.6)

Then Fourier–Laplace transformation yields

(sI − P̂0)ũ = i
∑
j

ωjG̃j , s = η + iξ, η ≥ 0.(3.7)

For |ω| ≤ 1, our estimates are based on the following bound of (sI − P̂0(ω))−1.
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Lemma 3.1. Consider a symbol P̂0(ω) satisfying Assumptions 4a,b. There is C >
0 so that

|ω|2
∫ ∞
−∞

∣∣∣((η + iξ)I − P̂0

)−1∣∣∣2dξ ≤ C for all |ω| ≤ 1, η ≥ 0.

Proof. By the Kreiss’ matrix theorem (see [3]), there is a transformation S = S(ω)
with

S−1P̂0S =


λ1 r12 · · · r1n

. . .
. . .

...
. . . rn−1,n

0 λn

 ,
|rjl| ≤ C1|Re λj |, 1 ≤ j < l ≤ n, |S|+ |S−1| ≤ C1.

If λj = αj + iβj , αj , βj ∈ R, then we have αj ≤ −c0|ω|2 by Assumption 4b, and one
obtains ∣∣∣∣((η + iξ)I − P̂0

)−1
∣∣∣∣2 ≤ C2

∑
j

1

(η − αj)2 + (ξ − βj)2
.

Using the bound

η − αj ≥ c0|ω|2,
one finds that ∫ ∞

−∞

dξ

(η − αj)2 + (ξ − βj)2
≤ C3|ω|−2.

This proves the lemma.
Recall (3.6) and recall the decomposition u = uI + uII determined by (1.5). We

obtain the following estimate of uI in terms of G.
Lemma 3.2. Let u solve (3.6) and let u = 0 at t = 0; let P̂0 satisfy Assumptions

4a,b. Then, for all p = 0, 1, . . . there is Rp, independent of T and G, with∫ T

0

‖uI‖2Hpdt ≤ Rp
{
M(G,T ) +

∫ T

0

‖G‖2dt
}
.(3.8)

Proof. From (3.7) we obtain

|ũ|2 ≤ |ω|2|(sI − P̂0)−1|2|G̃|2(3.9)

with

|G̃|2 =
∑
j

|G̃j |2 ≤M(G,∞).

By Parseval’s relation,

∫ ∞
0

e−2ηt‖uI‖2dt =
1

2π

∫
|ω|≤1

∫ ∞
−∞
|ũ(ω, η + iξ)|2dξ dω.
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Using estimate (3.9) and the previous lemma, we obtain∫ ∞
0

‖uI‖2dt ≤ C M(G,∞).

Estimates for DαuI are then obtained in the same way as in the proof of Theorem
2.1. Since values G(x, t) for t > T do not change the solution u(x, t) for t ≤ T, we
may replace T =∞ by any finite T. This proves the lemma.

Now recall our assumption that u solves the linear equation (3.5), and we have
defined

Gj = ε1Bju+ Fj , j = 1, . . . , d

to derive (3.6). Let us denote

‖| B‖| 2
=

∫ ∞
0

‖B(·, t)‖2dt

and

|B|∞ = sup
{|B(x, t)| : x ∈ Rd, t ≥ 0

}
.

We want to replace G on the right side of (3.8) by G = ε1Bu+ F. First note(∫ ∞
0

∫
Rd
|Gj |dx dt

)2

≤ 2ε2
1

(∫ ∞
0

∫
Rd
|Bj | |u|dx dt

)2

+ 2
(∫ ∞

0

∫
Rd
|Fj |dx dt

)2

≤ 2ε2
1‖| B‖| 2

∫ ∞
0

‖u‖2dt+ 2M(F,∞).

Furthermore, ∫ ∞
0

‖G‖2dt ≤ 2ε2
1|B|2∞

∫ ∞
0

‖u‖2dt+ 2

∫ ∞
0

‖F‖2dt.

Substituting these estimates into (3.8), one obtains the following result.
Lemma 3.3. Let u solve (3.5), u = 0 at t = 0. For all p = 0, 1, . . . there is Rp,

depending only on p and P0, such that∫ T

0

‖uI‖2Hpdt ≤ Rp
{
M(F, T ) +

∫ T

0

‖F‖2dt
}

+ ε2
1RpCB

∫ T

0

‖uII‖2dt.

Here CB = ‖| B‖|2 + |B|2∞, and it is assumed that

ε2
1RpCB ≤

1

4
.

Now we estimate the uII -part of the solution u of (3.5). Recall the properties of
the symmetrizer H(ω) for |ω| ≥ 1, formulated in Assumption 4c. We set

H(ω) = I for |ω| < 1
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and introduce a new inner product on L2 = L2(Rd;Rn) by

(u, v)H =

∫
Rd
û∗(ω)H(ω)v̂(ω)dω.

The corresponding norm is

‖u‖H = (u, u)
1/2
H .

The following result is an immediate consequence of the properties of H(ω) and Par-
seval’s relation.

Lemma 3.4.
a) 1

C1
‖u‖2 ≤ ‖u‖2H ≤ C1‖u‖2 for all u ∈ L2;

b) Re (uII , P0u
II)H ≤ −c1‖uII‖2H for all u ∈ Hm;

c) |(u,Djv)−(u,Djv)H| ≤ const.‖u‖ ‖v‖ for all u ∈ L2, v ∈ H1, j = 1, . . . , d.
Our basic energy estimate for uII is the following.
Lemma 3.5. Let u solve (3.5) and recall Assumptions 4c, 5. Then we have

d

dt
‖uII‖2H ≤ −

3

2
c1‖uII‖2H + C0‖F‖2H1 + ε2

1CB‖uI‖2

for |ε1| ≤ ε0(B). The constant c1 > 0 is the same as the constant c1 in Lemma 4b;
the constant C0 depends only on P0; the constants ε0(B) > 0 and CB depend on
|B|∞ + |DB|∞, where

|B|∞ = sup
{|B(x, t)| : x ∈ Rd, t ≥ 0

}
,

|DB|∞ = max
j

sup
{
|DjBj(x, t)| : x ∈ Rd, t ≥ 0

}
.

Proof. We have

1

2

d

dt
‖uII‖2H = Re (uII , uIIt )H

= Re (uII , ut)H
= Re (uII , P0u

II)H

+
∑
j

Re (uII , DjFj)H.

Here

Re (uII , P0u
II)H ≤ −c1‖uII‖2H,

by Lemma 3.4b. The remaining terms on the right side of the above equality are
estimated as follows.

First note

|(uII , DjFj)H| ≤ const. ‖uII‖ ‖F‖H1

≤ µ‖uII‖2 +
C

µ
‖F‖2H1
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for any µ > 0. The term

Re (uII , Dj(Bju))H, u = uI + uII ,

is estimated in two parts. Since ‖Dju
I‖ ≤ ‖uI‖, we have that∣∣∣(uII , Dj(Bju

I)
)
H

∣∣∣ ≤ C‖uII‖{|B|∞ + |DB|∞
}
‖uI‖

≤ µ‖uII‖2 +
CB
µ
‖uI‖2 for any µ > 0.

Furthermore, to estimate

Tj := Re (uII , Dj(Bju
II))H

we apply Lemma 3.4c to obtain

Tj = Re (uII , Dj(Bju
II)) + T ′j ,

|T ′j | ≤ C|B|∞‖uII‖2.

Using integration by parts and the symmetry of Bj we also have∣∣∣Re
(
uII , Dj(Bju

II)
)∣∣∣ ≤ 1

2
|DB|∞‖uII‖2.

To summarize, we have shown that

d

dt
‖uII‖2H ≤ −2c1‖uII‖2H + +µ‖uII‖2 +

1

µ
C‖F‖2H1

+ µ‖uII‖2 +
ε2

1

µ
CB ‖uI‖2 + |ε1|CB ‖uII‖2.

Choosing µ > 0 sufficiently small, the result follows.

The basic energy estimate formulated in the previous lemma will now be used to
derive similar estimates for space derivatives DαuII . Applying Dα to (3.5), we obtain

Dαut = P0D
αu+ ε1

∑
j

Dj(BjD
αu) + ε1

∑
j

DjΦj +
∑
j

DjD
αFj

with1

Φj = Dα(Bju)−Bj(Dαu) =
∑
β<α

cαβ(Dα−βBj)Dβu.(3.10)

Let us define

‖u‖2p,H =
∑
|α|≤p

‖Dαu‖2H.

1We use the notation β < α to mean βj ≤ αj for j = 1, . . . , d with at least one strict inequality.
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We will show the following generalization of the previous lemma.
Lemma 3.6. Let u solve (3.5) and recall Assumptions 4c, 5. For any p = 0, 1, . . .

we have

d

dt
‖uII‖2p,H ≤ −c1‖uII‖2p,H + Cp‖F‖2Hp+1 + ε2

1C(B, p)‖uI‖2

for |ε1| ≤ ε0(B, p). The constant c1 > 0 is the same as the constant c1 in Lemma 4b;
the constant Cp depends only on p and P0; the constants ε0(B, p) > 0 and C(B, p)
are independent of F .

Proof. Let |α| ≤ p. We apply Lemma 3.5 (with F replaced by DαF + ε1Φ) to
obtain

d

dt
‖DαuII‖2H ≤ −

3c1
2
‖DαuII‖2H + C1

{
‖DαF‖2H1 + ε2

1‖Φ‖2H1

}
+ ε2

1CB ‖uI‖2.

(Note that ‖DαuI‖ ≤ ‖uI‖.) The main point is that Φj only contains derivatives of
u of order ≤ p − 1, and the coefficients Dα−βBj in (3.10) are uniformly bounded.
Therefore,

‖Φ‖H1 ≤ C(B, p)‖u‖Hp .
Adding the resulting estimates of (d/dt)‖DαuII‖2H for |α| ≤ p, the lemma follows.

We now combine the estimates derived in Lemma 3.3 for uI and in Lemma 3.6
for uII and prove the following result.

Theorem 3.7. Consider the linear problem (3.5) with u = 0 at t = 0 and recall
Assumptions 4 and 5. For any p = 0, 1, . . . there are positive constants ε0 = ε0(B, p) >
0 and Rp so that ∫ ∞

0

{
‖u‖2Hp+m + ‖ut‖2Hp

}
dt ≤ Rp

{
M(F,∞)dt

}
if |ε1| ≤ ε0(B, p). The constant Rp depends only on p and P0. (In the above estimate,
m is the order of P0, or m = 1 if P0 has order zero.) Consequently,

lim
t→∞ |u(·, t)| = 0.

Proof. Let us abbreviate

y1(t) = ‖uI(·, t)‖2Hp ,
y2(t) = ‖uII(·, t)‖2p,H,

CF = M(F,∞) +

∫ ∞
0

‖F (·, t)‖2dt,

f(t) = ‖F (·, t)‖2Hp+1 .

Then we have shown that there are positive constants C = C(B, p), Rp, and ε0 =
ε0(B, p) so that, for |ε1| ≤ ε0,∫ ∞

0

y1dt ≤ RpCF + ε2
1C

∫ ∞
0

y2dt,(3.11)

d

dt
y2 ≤ −c1y2 +Rpf + ε2

1Cy1.
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Since y2(0) = 0 we obtain that

y2(t) ≤ Rp
∫ t

0

e−c1(t−τ)f(τ)dτ + ε2
1C

∫ t

0

e−c1(t−τ)y1(τ)dτ,

and, therefore,∫ ∞
0

y2(t)dt ≤ Rp
∫ ∞

0

∫ t

0

e−c1(t−τ)f(τ)dτdt+ ε2
1C

∫ ∞
0

∫ t

0

e−c1(t−τ)y1(τ)dτdt.

Clearly, ∫ ∞
0

∫ t

0

e−c1(t−τ)f(τ)dτdt =

∫ ∞
0

∫ ∞
τ

e−c1(t−τ)f(τ)dtdτ

≤ 1

c1

∫ ∞
0

f(τ)dτ,

and in the same way∫ ∞
0

∫ t

0

e−c1(t−τ)y1(τ)dτdt ≤ 1

c1

∫ ∞
0

y1(τ)dτ.

This proves the estimate∫ ∞
0

y2dt ≤ Rp
c1

∫ ∞
0

fdt+ ε2
1

C

c1

∫ ∞
0

y1dt.(3.12)

By adding the inequalities (3.11) and (3.12) and using the equivalence of the norms
‖ · ‖Hp and ‖ · ‖p,H, we have shown∫ ∞

0

‖u‖2Hpdt ≤ R′p
{
M(F,∞) +

∫ ∞
0

‖F‖2Hp+1dt

}
(3.13)

for |ε1| ≤ ε0(B, p). To estimate Dαut, we use the differential equation (3.5) to replace
ut. This gives us

‖ut‖2Hp ≤ C
{
‖u‖2Hp+m + ‖F‖2Hp+1

}
.

Integrating in time and applying (3.13) with p replaced by p+m, we obtain the de-
sired estimate. Convergence of u to zero as t → ∞ follows as before when p > d/2.
This finishes the proof of the theorem.

Now consider the nonlinear problem (1.1), (1.2). By combining the techniques to
prove Theorems 2 and 3, we show nonlinear stability.

Theorem 3.8. Consider the nonlinear problem (1.1) with u = 0 at t = 0 and recall
Assumptions 4 and 5. There exists ε0 > 0 so that the solution is C∞ if ε2

1 + ε2
2 ≤ ε0.

Furthermore,

lim
t→∞ |u(·, t)| = 0.
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Proof. Let κ denote a large constant to be determined below. Fix ε1, ε2 and let u =
u(x, t, ε1, ε2) denote the solution of (1.1), (1.2). Suppose there exists T = T (κ, ε1, ε2)
with ∫ T

0

{
‖u‖2Hp+m + ‖ut‖2Hp

}
dt = κ.(3.14)

Here p = m+ d+ 2; the number m is the order of P0, or m = 1 if P0 has order zero.
In the following, C denotes a constant independent of ε1, ε2, T, κ; also, Cκ denotes a
constant independent of ε1, ε2, and T , which may, however, depend on κ. The values
of C and Cκ may change at different occurrences.

By Sobolev’s inequality, there is C such that

‖Dαu‖2∞,T ≤ Cκ if |α|+ d

2
< p.

We abbreviate

y1(t) = ‖uI(·, t)‖2Hp+m ,

y2(t) = ‖uII(·, t)‖2p+m,H,

CF = M(F,∞) +

∫ ∞
0

‖F (·, t)‖2dt,

f(t) = ‖F (·, t)‖2Hp+m+1 .

To estimate uI , note that u satisfies

ut = P0u+
∑
j

DjYj

with

Yj = Fj + ε1Bju+ ε2Gj , Gj(x, t) = gj(x, t, u(x, t)).

We obtain by Lemma 2,∫ T

0

y1dt ≤ Rp+m
{
M(F + ε1Bu+ ε2G,T ) +

∫ T

0

‖F + ε1Bu+ ε2G‖2dt
}

≤ CCF + (ε2
1 + ε2

2)Cκ.(3.15)

The last estimate follows as in the proof of Theorem 2.
To estimate uII , we use ‖ · ‖H. For 1 ≤ |α| ≤ p+m the function Dαu satisfies

Dαut = P0D
αu+ ε1

∑
j

Dj(BjD
αu)

+ ε2

∑
j

Dj(gjuD
αu) + ε1

∑
j

DjΦj

+ ε2

∑
j

DjΨj +
∑

DjD
αFj .
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Here Φj is given in (3.10) and

Ψj = DαGj − gjuDαu

is a sum of terms

ψj(x, t, α, σ)Dσ1u · · ·Dσru

where

|σ1|+ · · ·+ |σr| ≤ p+m, |σj | < p+m, j = 1, . . . , r.

The function ψj(x, t, α, σ) is a derivative Dβ
xD

γ
ugj evaluated at (x, t, u(x, t)). To esti-

mate DαuII we apply Lemma 5 with ε1Bj replaced by ε1Bj + ε2gju, and F replaced
by DαF + ε1Φ + ε2Ψ. This yields

d

dt
‖DαuII‖2H ≤ −

3

2
c1‖DαuII‖2H + C‖DαF + ε1Φ + ε2Ψ‖2H1 + (ε2

1 + ε2
2)Cκ‖uI‖2.

Here ‖Φ‖H1 ≤ C‖u‖Hp+m and ‖Ψ‖H1 ≤ Cκ‖u‖Hp+m . The estimate of Ψ follows as in
the proof of Theorem 2. (The main point is that all derivatives of u occurring in Ψj

are of order strictly less than p+m. Also, DjΨj is a sum of terms

ρj(x, t, α, σ)Dσ1u · · ·Dσru

with

|σ1|+ · · ·+ |σr| ≤ p+m+ 1.

If there were two factors, Dσ1u and Dσ2u, say, which cannot be estimated in sup-norm
in terms of κ, then

|σ1|+ d

2
≥ p, |σ2|+ d

2
≥ p;

thus

p+m+ 1 + d ≥ |σ1|+ |σ2|+ d ≥ 2p.

This contradicts our choice of p = m+ d+ 2.)
An estimate for

d

dt
‖uII‖2H

(where uII is undifferentiated), can also be obtained from Lemma 5 with ε2gj included
as forcing term. Adding the resulting estimates for |α| ≤ p+m, one obtains

d

dt
y2 ≤ −c1y2 + Cf + (ε2

1 + ε2
2)Cκ‖uI‖2

for ε2
1 + ε2

2 ≤ ε0(κ). As in the proof of Theorem 3 we find∫ T

0

y2dt ≤ C
∫ T

0

fdt+ (ε2
1 + ε2

2)Cκ.(3.16)
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Adding the estimates (3.15) and (3.16), we have shown that∫ T

0

‖u‖2Hp+mdt ≤ C
(
CF +

∫ T

0

fdt

)
+ (ε2

1 + ε2
2)Cκ(3.17)

for ε2
1+ε2

2 ≤ ε0(κ). We now use the differential equation (1.1) to estimate the Hp-norm
of ut. This yields

‖ut‖2Hp ≤ C‖u‖2Hp+m + C‖F‖2Hp+1 + (ε2
1 + ε2

2)Cκ‖u‖2Hp+1 .

Integrating in time and using (3.17) one finds

(3.18)∫ T

0

{‖u‖2Hp+m + ‖ut‖2Hp
}
dt ≤ C

{
M(F,∞) +

∫ ∞
0

‖F‖2Hp+m+1dt

}
+ (ε2

1 + ε2
2)Cκ.

Therefore, we choose

κ = 1 + C

{
M(F,∞) +

∫ ∞
0

‖F‖2Hp+m+1dt

}
and let

(ε2
1 + ε2

2)Cκ ≤ 1

2
.

Then the estimate (3.18) shows that a finite T with (3.14) does not exist. The re-
maining arguments are the same as in the proof of Theorem 2.

Remark. The more direct approach to estimate the time derivative ut, which we
have used in section 2, does not seem possible under the assumptions of section 3.

4. Discussion, conjecture.

4.1. Discussion of Assumption 3. To illustrate our assumption of the spe-
cific form of the Cauchy problem (1.1), (1.2) and our general Assumption 3 for
Bj(x, t), gj(x, t, u), Fj(x, t), we consider a system

ut = P0u+
∑
j

Djfj(u),(4.1)

where P0 has constant coefficients and the fj : Rn → Rn are smooth functions van-
ishing quadratically at u = 0. Thus, u ≡ 0 is a stationary solution. We consider (4.1)
with small initial data,

u(x, 0) = εU0(x), U0 ∈ C∞.
Requirements for U0 will be derived below. For simplicity of presentation, let us as-
sume that fj(u) is quadratic in u, i.e.,

fj(u) = Qj(u, u),

where Qj : Rn×Rn → Rn is bilinear. If we write u(x, t) = εv(x, t), then (4.1) becomes

vt = P0v + ε
∑
j

Djfj(v), v(x, 0) = U0(x).(4.2)
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To enforce homogeneous initial data and Assumption 3b, we set

v̄(x, t) = e−t(U0(x) + tV0(x)),

where V0 will be determined below. Then we define a new variable w(x, t) by v = v̄+w
and obtain from (4.2),

wt = P0w + ε
∑
j

Dj

(
Qj(v̄, w) +Qj(w, v̄)

)
+ ε

∑
j

Djfj(w) + E(x, t)

with the forcing function

E(x, t) = P0v̄ − v̄t + ε
∑
j

Djfj(v̄).

At t = 0 we have

E(x, 0) = P0U0 + U0 − V0 + ε
∑
j

Djfj(U0).

Thus, we can enforce E(x, 0) ≡ 0 by a proper choice of V0. Also, if the initial function
U0(x) has the form

U0(x) =
∑
j

DjU0j(x), U0j ∈ C∞,

and we construct V0 =
∑
j DjV0j correspondingly, then

E =
∑
j

DjFj(x, t) with Fj(x, 0) ≡ 0.

It is not difficult to verify Assumption 3 for the resulting system for w if, for example,

DαU0j ∈ L1 ∩ L∞, j = 1, . . . , d,

for all α.

4.2. Conjecture. We assume here that ut = P0u is a coupled parabolic-hyperbolic
system and write P0 in the form

P0 =
d∑

j,l=1

BjlDjDl +
d∑
j=1

AjDj + L

with Bj,l, Aj , L ∈ Rn×n. The symbol of P0 is

P̂0(ω) = −B(ω) + iA(ω) + L

with

B(ω) =

d∑
j,l=1

Bjlωjωl, A(ω) =
d∑
j=1

Ajωj .

If ut = P0u is not parabolic, then the results of section 2 do not apply, and the
results of section 3 require symmetry of Bj(x, t) and gju(x, t, u). We want to relax the

symmetry requirement and formulate the following conditions on P̂0(ω).
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Assumption 6.
a) There are positive constants C0, c0 such that

|eP̂0(ω)t| ≤ C0 Reλ ≤ −c0 |ω|2
1 + |ω|2 for all λ ∈ σ(P̂0(ω)).

b) There is a constant c1 > 0 and, for every ω with |ω| = 1, there is a nonsingular
transformation T (ω) such that

T−1(ω)B(ω)T (ω) =

(
B1(ω) 0

0 0

)
, B1 +B∗1 ≥ 2c1I.

c) For |ω| = 1, write

T−1(ω)A(ω)T (ω) =

(
A11(ω) A12(ω)
A21(ω) A22(ω)

)
,

where T−1AT has the same block structure as T−1BT . Then the eigenvalues of A22(ω)
are real and distinct. (A22(ω) defines a strictly hyperbolic pseudodifferential opera-
tor.)

We conjecture that the same conclusion as formulated in Theorem 2 is valid for
the nonlinear problem (1.1), (1.2) if we make our general Assumption 3 for Bj , gj , Fj .
Thus, in contrast to our assumptions in section 3, we do not require symmetry of
Bj , gju to obtain nonlinear stability.

We also conjecture that the assumption of strict hyperbolicity can be weakened
as follows. If we set

Ψ(x, t, u, ω, ε1, ε2) = ε1

∑
j

ωjBj(x, t) + ε2

∑
j

ωjgju(x, t, u)

and, similarly as above, define the block Ψ22 by

T−1(ω)ΨT (ω) =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
,

then we require that all eigenvalues of

A22(ω) + Ψ22(x, t, u, ω, ε1, ε2)

are real and have constant multiplicity for ε2
1 + ε2

2 small.

5. Appendix. Consider a constant coefficient operator

P =

d∑
j,l=1

BjlDjDl +
d∑
j=1

AjDj + L(5.1)

with Bjl, Aj , L ∈ Cn×n. The symbol of P is

P̂ = P̂ (ω) = −B(ω) + iA(ω) + L, ω ∈ Rd,
with

B(ω) =

d∑
j,l=1

Bjlωjωl, A(ω) =

d∑
j=1

Ajωj .
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We make the following assumptions.
Assumption 7.
a) Aj = A∗j , j = 1, . . . , d;

b) for all ω0 ∈ Rd with |ω0| = 1 there is a unitary transformation U = U(ω0)
with

U∗B(ω0)U =

[
B1(ω0) 0

0 0

]
, B1 +B∗1 > 0;

c) there is a unitary transformation V with

V ∗LV =

[
L1 0
0 0

]
, L1 + L∗1 < 0;

d) for all ω0 ∈ Rd with |ω0| = 1 and all ϕ ∈ Cn, the following holds. If

B(ω0)ϕ = Lϕ = 0,

then ϕ is not an eigenvector of A(ω0).
Remarks. 1) Assumption 7b allows for B(ω0) = 0; the condition B1 + B∗1 > 0 is

only required if the block B1 is not empty. A similar remark applies to L. In particular,
the conditions allow for B(ω) ≡ 0 (the hyperbolic case) or L = 0 (the case without
zero order term).

2) For L = 0, condition 7d is called interaction condition in [1] since it requires
interaction of the characteristic variables of the symmetric hyperbolic system ut =∑
j AjDju with the parabolic part of the whole system.

3) For real symmetric Bjl and L, the conditions are also used in [6].
Theorem 5.1. If P has the form (5.1) and satisfies Assumption 7, then P satisfies

Assumption 4.
Proof. 1) First fix ω0 ∈ Rd with |ω0| = 1 and abbreviate

A =

d∑
j=1

Ajω
0
j , B =

d∑
j,l=1

Bjlω
0
jω

0
l ,

P̂ = P̂ (ω0) = −B + iA+ L.

Let

P̂ϕ = λϕ, |ϕ| = 1.

Then we have

ϕ∗(P̂ + P̂ ∗)ϕ = 2 Reλ,

and, since

P̂ + P̂ ∗ = −(B +B∗) + L+ L∗ ≤ 0,

it follows that Reλ ≤ 0.
Suppose that Reλ = 0; then

ϕ∗(B +B∗)ϕ = ϕ∗(L+ L∗)ϕ = 0.
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This would imply Bϕ = Lϕ = 0. Since P̂ϕ = λϕ, it would follow that ϕ is an
eigenvector of A, in contradiction to Assumption 7d. Therefore, Reλ < 0 for all
eigenvalues of P̂ (ω0), |ω0| = 1.

2) Using a well-known construction2 (see, e.g., [3]), one obtains that there are
constants c0 > 0, C0 > 0 and, for every ω0 with |ω0| = 1, there is a Hermitian matrix
H0 = H0(ω0) such that

H0P̂ (iω0) + P̂ ∗(iω0)H0 ≤ −c0H0,(5.2)

0 <
1

C0
I ≤ H0 ≤ C0I.

The function H0(ω0) can be constructed as a C∞-function on the unit sphere |ω0| = 1
in Rd.

3) We now construct H(ω) for |ω| ≥ 1 as follows. Let

ω = %ω0, |ω0| = 1, % = |ω|,
P̂ = P̂ (ω) = −%2B + i%A+ L,

P̂0 = P̂ (ω0) = −B + iA+ L.

We set

H(ω) = I +
α

%
H0(ω0),

where α > 0 will be determined below as a sufficiently small constant. Then we have

HP̂ + P̂ ∗H = −%2(B +B∗) + L+ L∗

−α%(H0B +B∗H0) + iα(H0A+A∗H0)

+
α

%
(H0L+ L∗H0)

= α
{
H0P̂0 + P̂ ∗0H0

}
+ T1 + T2(5.3)

≤ −αc0H0 + T1 + T2,

where

T1 = −%2(B +B∗) + (α− α%)(H0B +B∗H0),

T2 = L+ L∗ +

(
α

%
− α

)
(H0L+ L∗H0),

and where (5.2) is used in the final estimate.
Assuming first that

B =

[
B1 0
0 0

]
, B1 +B∗1 > 0,(5.4)

and partitioning

ϕ =

[
ϕI

ϕII

]
, ϕ ∈ Cn,

2Using Schur’s theorem, there is a transformation T = UD,D = diag(1, ε, . . . , εn−1), so that

Re(T−1P̂ (ω0)T )) ≤ −c0I < 0. Then H0 = (T−1)∗T−1 satisfies Re(H0P̂ (ω0)) ≤ −c0H0. A partition
of unity argument shows that one can construct H0(ω0) as C∞-function on the unit sphere |ω0| = 1.
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accordingly, one obtains

ϕ∗T1ϕ ≤ −c1%2|ϕI |2 + C1α%|ϕ| |ϕI |
≤ −c1%2|ϕI |2 + α

{
µ|ϕ|2 + C(µ)%2|ϕI |2} ,

for any µ > 0. By first choosing µ > 0 so small that

µ|ϕ|2 ≤ c0
4
ϕ∗H0ϕ

and then choosing α > 0 so small that

αC(µ) ≤ c1,
one obtains

ϕ∗T1ϕ ≤ αc0
4
ϕ∗H0ϕ.

It is easy to see that Assumption (5.4) can be replaced by Assumption 7b. Estimating
the term T2 similarly, one obtains

HP̂ + P̂ ∗H ≤ −αc0
2
H0 ≤ −c̃0H, c̃0 > 0.(5.5)

This finishes the construction of H(ω) for |ω| ≥ 1 in Assumption 4c.
4) Now consider

P̂ = −%2B + i%A+ L

for 0 < % ≤ 1. We set

H(ω) = H(%ω0) = I + α%H0(ω0)

and obtain

HP̂ + P̂ ∗H = %2

{
− (B +B∗) + %−2(L+ L∗)− α%(H0B +B∗H0)

+ iα(H0A+A∗H0) +
α

%
(H0L+ L∗H0)

}
.

The term in the brackets {. . . } agrees exactly with the right side of (5.3) if L and
(−B) are exchanged and % is replaced by 1/%. Therefore, the estimate (5.5) implies

HP̂ + P̂ ∗H ≤ −c̃0%2H.

Consequently, if λ is an eigenvalue of P̂ , it follows that

2 Reλ ≤ −c̃0%2.

Furthermore, the proven estimates

HP̂ + P̂ ∗H ≤ 0,

together with the uniform bounds

0 <
1

C
I ≤ H ≤ CI,

imply ∣∣eP̂ t∣∣ ≤ K, t ≥ 0.

This finishes the proof of the theorem.
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Abstract. In the first part of this paper, the mathematical analysis is presented in detail for
the single-phase, miscible displacement of one fluid by another in a porous medium. It is shown that
initial boundary value problems with various boundary conditions for this miscible displacement
possess a weak solution under physically reasonable hypotheses on the data. In the second part of
this paper, it is proven how the analysis can be extended to two-phase fluid flow and transport
equations in a porous medium. The flow equations are written in a fractional flow formulation so
that a degenerate elliptic-parabolic partial differential system is produced for a global pressure and
a saturation. This degenerate system is coupled to a parabolic transport equation which models the
concentration of one of the fluids. The analysis here does not utilize any regularized problem; a weak
solution is obtained as a limit of solutions to discrete time problems.

Key words. porous medium, flow and transport, elliptic-parabolic system, degenerate equations,
existence
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1. Introduction. Multiphase flow and transport of fluids in porous media is
of importance socially and economically in a number of applications. For example,
petroleum engineers have been interested in efficient recovery of energy resources, and
hydrologists have been concerned with improvement of groundwater resource utiliza-
tion for many years. Unfortunately, despite the great progress made in development
of physical models of multiphase flow and transport of fluids in porous media, there
has been limited mathematical theory behind these models. The difficulty stems from
the fact that the equations modeling complex physical phenomena involving both flow
and transport of fluids are often coupled systems of nonlinear, time-dependent degen-
erate partial differential equations. Hence, simplified models have been analyzed in
the last 20 years.

The simplest porous media problem corresponds to the flow of a fluid where a
whole porous medium is filled with the single fluid (usually gas or oil in petroleum
engineering or water in groundwater hydrology). The usual equations for the single-
phase flow model are of parabolic type for the fluid density or pressure and are well
understood (see, e.g., [5, 8]).

A more complex case involves the single-phase, miscible displacement of one fluid
by another in a porous medium. Under the assumption that no volume change re-
sults from the mixing of the two fluids, a coupled, nonlinear differential system of two
equations is often utilized for this miscible displacement problem. One of the equa-
tions is of elliptic (respectively, parabolic) type for the fluid pressure if the fluids are
incompressible (respectively, compressible), and the other is of parabolic type for the
concentration of one fluid. This system is complicated by the facts that the pressure
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equation can be degenerate due to the form of the concentration-dependent viscos-
ity and that the transport and diffusion-dispersion coefficients in the concentration
equation can be unbounded due to the potentially unbounded fluid velocity.

The miscible displacement problem was first studied by Sammon [20], where a
one-dimensional model was theoretically analyzed and the viscosity of the fluid was
assumed to be independent of the concentration. The latter assumption decouples
the pressure equation from the concentration equation. Mikelić [18] later analyzed a
three-dimensional stationary displacement problem. While the viscosity was allowed
to be concentration-dependent, it was in fact assumed to be sufficiently close to a
constant. Then the pressure and concentration equations were essentially separated
so that well-posedness for the stationary problem can be established. Recently, Feng
[14] considered a two-dimensional model for the displacement problem. The viscosity
can be concentration-dependent, but the analysis was valid only for a two-dimensional
problem. Furthermore, the analysis, following Kruz̆kov and Sukorjanskĭı [16] for two-
dimensional two-phase immiscible flow, made use of the corresponding regularized
system and required the coefficients of the regularized problem to be bounded uni-
formly with respect to the regularization parameter. The uniform boundedness is
hardly satisfied due to the above mentioned feature for the transport and diffusion-
dispersion coefficients. Finally, all the theoretical results in [20, 18, 14] were obtained
solely for homogeneous Neumann boundary conditions and without gravity effects.
The study of the single-phase, miscible displacement of one incompressible fluid by
another from the numerical point of view using finite element methods has been ex-
tensively carried out (see, e.g., [12]); the case where the components are assumed to
be slightly compressible also has been numerically studied (see, e.g., [13]).

In this paper the miscible displacement of one incompressible fluid by another in
a porous medium is further investigated. A time-dependent, three-dimensional dis-
placement problem with various boundary conditions and gravity effects, including
mixed nonhomogeneous ones, is shown to possess a weak solution. The viscosity can
be concentration-dependent, and the assumptions required on the data in the earlier
papers are weakened; only physically reasonable assumptions are made. The analysis
makes no use of the corresponding regularized problem; a weak solution is obtained
as a limit of solutions to discrete time problems. It follows Alt and Luckhaus [3] for
treating quasilinear elliptic-parabolic differential equations. The technique was later
exploited by Alt and di Benedetto [2] and Arbogast [6] for handling the two-phase
immiscible flow problem. However, we point out that the miscible displacement prob-
lem is different from the two-phase immiscible problem due to the above-mentioned
difficulties. In particular, in the present problem special care must be taken on the
transport and diffusion-dispersion coefficients in the concentration equation. We in-
troduce here a solution-dependent space to handle this difficulty.

The above two cases deal with single-phase flow. Two-phase flow is more complex
and is of greater practical interest. This case corresponds to the so-called secondary
recovery in petroleum reservoirs where two fluid phases (usually water and oil) flow si-
multaneously, or to the fluid movement in an air-water porous media system in ground-
water hydrology. In the last two decades, a considerable amount of effort has been
made solely in the analysis of flow equations of two-phase incompressible, immiscible
type. Transport equations have not been handled for the two-phase system. Existence
of weak solutions for the flow equations has been established under various assump-
tions on physical data (see, e.g., [5, 16, 8, 15, 2, 6]). Numerical analyses of the flow
equations of compressible type using finite elements have been carried out in [9, 10].



MATHEMATICAL ANALYSIS FOR RESERVOIR MODELS 433

The second part of this paper extends the analysis for the single-phase, miscible
displacement of one fluid by another to a two-phase flow and transport system. In
addition to a strong coupling between flow and transport equations, the whole dif-
ferential system combines the above difficulties for the displacement problem with
those for the flow equations. In particular, the flow equations are usually degenerate,
the number of equations is not known a priori at a given place of a porous medium,
and the capillary pressure function is generally unbounded. Here we make an initial
attempt to analyze both the flow and the transport equations for a two-phase system
using the techniques for the single-phase, miscible displacement problem.

In the next section we consider the single-phase displacement problem. We begin
with what is meant by a weak solution. Then we carefully state the assumptions on
the physical data required for the major result obtained in this part. Most of this
section is devoted to the proof of the major result. In section 3, we extend the results
to a two-phase flow system. We shall follow the usual practice [4, 8] to write the flow
equations of this system in a fractional flow formulation, i.e., in terms of a saturation
and a global pressure so that the elliptic part of the system for this global pressure
and the parabolic part for the saturation are separated. The concentration equation
is obtained from the usual conservation law.

We end with a remark that uniqueness of the weak solution remains open. This
is due to the coupling between the partial differential equations under consideration,
which makes it difficult to obtain enough regularity of the solution. When the solution
is assumed to have enough regularity (e.g., in the semiclassical sense), the uniqueness
can be shown in the usual way [17].

2. Miscible displacement of one fluid by another. In section 2.1 the differ-
ential system for the single-phase, miscible displacement of one incompressible fluid
by another in a porous medium Ω ⊂ <d (d ≤ 3) is described. Then in section 2.2 we
state the assumptions on the physical data, define what is meant by a weak solution,
and state the major result shown in this section. The proof of the major result is pre-
sented in section 2.3, and two of the lemmas needed for the major result are proven
in section 2.4.

2.1. The differential system. The usual equations describing two-component,
incompressible, miscible displacement are given by (see, e.g., [7, 19])

−∇ · {k(x)(∇p− ρg)/µ(c)} = qI − qP ,
φ(x)∂tc−∇ ·

(
D(u)∇c) + u · ∇c+ qIc = ĉqI

(2.1)

for (x, t) ∈ ΩT ≡ Ω× J with J = (0, T ] (T > 0), where φ and k are the porosity and
absolute permeability of the porous medium, µ and ρ are the viscosity and density
of the fluid mixture, g denotes the gravitational, downward-pointing, constant vector,
c indicates the concentration of one of the two components, p is the pressure of the
fluid, D is the diffusion-dispersion coefficient, ĉ is the injected concentration, qI and
qP represent the sum of injection well source terms and production well sink terms,
respectively, and u is the Darcy velocity of the fluid defined by

u = −k(x)

µ(c)
(∇p− ρg).(2.2)

For Γ = ∂Ω, let

Γ = Γp1 ∪ Γp2 = Γc1 ∪ Γc2, Γp1 ∩ Γp2 = Γc1 ∩ Γc2 = ∅.



434 ZHANGXIN CHEN AND RICHARD EWING

With this division of Γ, the boundary conditions are specified by

u · ν − a1(c)p = ϕ1(c), (x, t) ∈ Γp1 × J,
p = ϕ2(x, t), (x, t) ∈ Γp2 × J,
−(D∇c) · ν − a2(c)c = ϕ3(c), (x, t) ∈ Γc1 × J,
c = ϕ4(x, t), (x, t) ∈ Γc2 × J,

(2.3)

where the ai and ϕj are given functions (i = 1, 2, 1 ≤ j ≤ 4) and ν is the outward
unit normal to Γ. The initial condition is given by

c(x, 0) = c0(x), x ∈ Ω.(2.4)

The differential system given by (2.1)–(2.4) for the main unknowns p and c will be
studied in this section.

2.2. Assumptions and the major result. The usual Sobolev spaces W l,π(Ω)
with the norm ‖ · ‖W l,π(Ω) [1] will be used, where l is a nonnegative integer and

0 ≤ π ≤ ∞. When π = 2, we simply write H l(Ω) = W l,2(Ω). When l = 0, we
have L2(Ω) = H0(Ω). Below (·, ·)Q denotes the L2(Q) inner product. (Q is omitted if
Q = Ω.) We now make the following assumptions:

(A1) Ω ⊂ <d is a multiply connected domain with Lipschitz boundary Γ, Γ =
Γp1 ∪ Γp2 = Γc1 ∪ Γc2, Γp1 ∩ Γp2 = Γc1 ∩ Γc2 = ∅, each Γpi and Γci is a (d − 1)-dimensional
domain, and Γp2 ⊂ Γc2.

(A2) φ ∈ L∞(Ω), φ(x) ≥ φ∗ > 0, and k(x) is a bounded, symmetric, and
uniformly positive definite matrix, i.e.,

0 < k∗ ≤ |ξ|−2
d∑

i,j=1

kij(x)ξiξj ≤ k∗ <∞, x ∈ Ω, ξ 6= 0 ∈ <d.

(A3) The diffusion-dispersion term is given by

D(u) = φ{dmoI + |u|(dlE(u) + dtE
⊥(u)

)},
where I is the d-by-d identity matrix, dmo > 0 is the molecular diffusion coefficient,
dl and dt are the longitudinal and transverse dispersion coefficients, respectively, the
matrix E(u) is the projection along the direction of flow determined by

E(u) =

(
uiuj
|u|2

)
, |u| =

√
u2

1 + . . .+ u2
d, u = (u1, . . . , ud),

and E⊥(u) = I − E(u).
(A4) The following form is widely used for the viscosity µ:

µ(c) = µ(0)
(
1 + (M1/4 − 1)c

)−4
for c ∈ [0, 1],

where M = µ(0)/µ(1) is the mobility ratio.
(A5) qI , qP ≥ 0, qI ∈ L∞(J ;L2(Ω)), and qP ∈ L∞(J ;H−1(Ω)).
(A6) In the case of Γp2 = ∅ and a1 ≡ 0, ϕ1 is independent of c and satisfies∫

Γp1

ϕ1dσ =

∫
Ω

(qI − qP )dx.
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(A7) There is a subset Γp1,∗ ⊂ Γp1 (with nonzero measure only if Γp2 = ∅ and
a1 6≡ 0) such that a1 ≥ a1,∗ > 0 on Γp1,∗ × J × [0, 1].

(A8) The boundary data satisfy that ϕ1 and ϕ3 are continuous in c and

|||ϕ1|||L∞(J;H−1/2(Γp1)) <∞, |||ϕ3|||L∞(J;H−1/2(Γc1)) <∞,
ϕ2 ∈ L∞(J ;H1(Ω)), ϕ4 ∈ L2(J ;W 1,4(Ω)),

∂tϕ4 ∈ L1(ΩT ), 0 ≤ ϕ4(x, t) ≤ 1 almost everywhere (a.e.) on ΩT ,

ϕ1(0) ≥ 0, ϕ1(1) ≥ 0 on Γc1,

ϕ3(0) ≤ 0, ϕ3(1) ≥ 0 on Γc1,

where

|||v||| = ∥∥ sup
c∈[0,1]

|v(x, c)|∥∥,
for any given norm.

(A9) a1, a2 ≥ 0; they are continuous in c; |||a1|||L∞(ΩT ) and |||a2|||L∞(ΩT ) are
bounded; and

a1(0) = a1(1) = 0 on Γc1.

(A10) ĉ and c0 satisfy 0 ≤ ĉ ≤ 1 a.e. on ΩT and 0 ≤ c0 ≤ 1 a.e. on Ω.
We introduce the spaces

V =

{
v ∈ H1(Ω) : v|Γp2 = 0; if Γp2 = ∅ and a1 ≡ 0, then

∫
Ω

vdx = 0

}
,

W = {v ∈ H1(Ω) : v|Γc2 = 0}.
Below V ∗ and W ∗ indicate the duals of V and W , respectively.

Definition 2.1. A weak solution of the system in (2.1)–(2.4) is a pair of functions
(p, c) with p ∈ L∞(J ;V ) + ϕ2, c ∈ L2(J ;W (u)) + ϕ4 such that

φ∂tc ∈ L2(J ;W ∗(u)),(2.5)

0 ≤ c(x, t) ≤ 1 a.e. on ΩT ,(2.6)

(a(c){∇p− ρg},∇v) + (a1(c)p, v)Γp1

= (qI − qP , v)− (ϕ1(c), v)Γp1
∀v ∈ L∞(J ;V ),

(2.7)

∫
J

〈φ∂tc, v〉 dt+

∫
J

(D(u)∇c,∇v)dt+

∫
J

(u · ∇c, v)dt

+

∫
J

(qIc, v)dt+

∫
J

(a2(c)c, v)Γc1
dt

=

∫
J

(ĉqI , v)dt−
∫
J

(ϕ3(c), v)Γc1
dt ∀v ∈ L2(J ;W (u)),

(2.8)

∫
J

〈φ∂tc, v〉 dt+

∫
J

(φ(c− c0), ∂tv)dt = 0

∀v ∈ L2(J ;W (u)) ∩W 1,1(J ;L1(Ω)), v(x, T ) = 0,

(2.9)
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where a(c) = k(x)/µ(c), u is given as in (2.2), and the space W (u) is defined by

W (u) = {v ∈W : (D(u)∇v,∇v) <∞}.
We now state the major result obtained in this section.
Theorem 2.2. Under assumptions (A1)–(A10), the system in (2.1)–(2.4) has a

weak solution in the sense of Definition 2.1.

2.3. Proof of the major result. In this subsection we shall prove Theorem
2.2. We first state the following trivial lemma.

Lemma 2.3. It holds that

dmo + min(dl, dt)|u| ≤ φ−1|ξ|−2
d∑

i,j=1

Dij(u)ξiξj

≤ dmo + max(dl, dt)|u|, ξ 6= 0 ∈ <d.

For each positive integer M , divide J into m = 2M subintervals of equal length
h = T/m = 2−MT . Set ti = ih and Ji = (ti−1, ti] for an integer i, 1 ≤ i ≤ m. Denote
the time difference operator by

∂ηv(t) =
v(t+ η)− v(t)

η

for any function v(t) and constant η ∈ <. Also, for any Hilbert space H, define

lh(H) = {v ∈ L∞(J ;H) : v is constant in time on each subinterval Ji ⊂ J}.
For vh ∈ lh(H), set vi ≡ (vh)i = vh|Ji for notational convenience, when there is no
ambiguity (i.e., h is omitted). Finally, let

ϕhj (x, t) =
1

h

∫
Ji

ϕj(x, τ)dτ, t ∈ Ji, j = 2, 4;

similar definitions qI,h, qP,h, and ĉh are used for qI , qP , and ĉ, respectively.
Now, the discrete time solution is a pair of functions ph ∈ lh(V ) + ϕh2 , ch ∈

lh(W (uh)) + ϕh4 satisfying

(a(ch){∇ph − ρg},∇v) + (a1(ch)ph, v)Γp1

= (qI,h − qP,h, v)− (ϕ1(ch), v)Γp1
∀v ∈ lh(V ),

(2.10)

and ∫
J

(φ∂−hch, v)dt+

∫
J

(D(uh)∇ch,∇v)dt+

∫
J

(uh · ∇ch, v)dt

+

∫
J

(qI,hch, v)dt+

∫
J

(a2(ch)ch, v)Γc1
dt

=

∫
J

(ĉhqI,h, v)dt−
∫
J

(ϕ3(ch), v)Γc1
dt ∀v ∈ lh(W (uh)),

(2.11)

with

uh = −a(ch)(∇ph − ρg).(2.12)

This approximate scheme is extended such that ch = c0 for t < 0.
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Below, C (with or without a subscript) indicates a generic constant independent
of h, which will probably take on different values in different occurrences.

Lemma 2.4. For h > 0 small enough, the discrete scheme has a solution such
that

0 ≤ ch(x, t) ≤ 1 a.e. on ΩT .(2.13)

The proof of this lemma will be given in the next subsection.
Lemma 2.5. The solution to the discrete scheme also satisfies

‖ph‖L∞(J;H1(Ω)) + ‖ch‖L2(J;H1(Ω)) + ‖D1/2(uh)∇ch‖L2(ΩT ) ≤ C,(2.14)

with constant C independent of h.
Proof. Take v = ph − ϕh2 ∈ lh(V ) in (2.10) to have

‖∇ph‖2L2(Ω) + (a1(ch)ph, ph)Γp1
≤ C{‖ρg‖2L2(Ω) + ‖qI,h − qP,h‖2H−1(Ω)

+|||ϕ1|||2H−1/2(Γp1)
+ ‖ϕh2‖2H1(Ω)}+ ε‖ph‖2L2(Ω), t ∈ J,(2.15)

for any ε > 0 (here and below ε > 0 is an arbitrary constant as small as we please).
Apply a variant of the Poincaré inequality

‖ph‖L2(Ω) ≤ C{‖∇ph‖L2(Ω) + ‖ph‖L2(Γp1,∗) + ‖ϕh2‖H1(Ω)}(2.16)

and the inequality

‖ϕh2‖H1(Ω) ≤ ‖ϕ2‖H1(Ω)

to obtain the bound for ph in (2.14).
Now, choose v = ch − ϕh4 ∈ lh(W (uh)) in (2.11) to see that∫

J

(φ∂−hch, ch − ϕh4 )dt+

∫
J

(D(uh)∇ch,∇(ch − ϕh4 ))dt

+

∫
J

(uh · ∇ch, ch − ϕh4 )dt+

∫
J

(qI,hch, ch − ϕh4 )dt

+

∫
J

(a2(ch)ch, ch − ϕh4 )Γc1
dt =

∫
J

(ĉhqI,h, ch − ϕh4 )dt

−
∫
J

(ϕ3(ch), ch − ϕh4 )Γc1
dt.

(2.17)

We now estimate each term in (2.17). We focus only on the transport and diffusion-
dispersion terms; other terms can be easily estimated. By the definition of uh, Lemma
2.3, the Hölder inequality, and the above bound on ph, note that∣∣(D(uh)∇ch,∇ϕh4 )

∣∣≤ ε(D(uh)∇ch,∇ch)

+C
(
‖∇ϕh4‖2L2(Ω) + ‖uh‖L2(Ω)‖∇ϕh4‖2L4(Ω)

)
≤ ε(D(uh)∇ch,∇ch) + C‖∇ϕh4‖2L4(Ω).

(2.18a)

Using (2.13), the same reasoning also yields that∣∣(uh · ∇ch, ch)
∣∣≤ ε(|uh|∇ch,∇ch) + C(|uh|ch, ch)

≤ ε(D(uh)∇ch,∇ch) + C(Ω)
(2.18b)
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and that ∣∣(uh · ∇ch, ϕh4 )
∣∣≤ ε(|uh|∇ch,∇ch) + C(|uh|ϕh4 , ϕh4 )

≤ ε(D(uh)∇ch,∇ch) + C‖ϕh4‖2L4(Ω).
(2.18c)

Apply these estimates in (2.18a–c) to (2.17) to obtain∫
J

(φ∂−hch, ch − ϕh4 )dt+ C1

∫
J

(D(uh)∇ch,∇ch)dt

≤ C(T,Ω)

{
1 +

∫
J

(||qI,h||2H−1(Ω) + |||ϕ3|||2H−1/2(Γc1)

+ ‖ϕh4‖2H1(Ω) + ‖ϕh4‖4W 1,4(Ω)

)
dt

}
.

(2.19)

Next, it is easy to see that∫
J

(φ∂−hch, ch)dt =
m∑
i=1

(φ(ci − ci−1), ci) ≥ 1

2
{(φcm, cm)− (φc0, c0)}.(2.20)

Also, we find that [3, 6]∫
J

(φ∂−hch, ϕh4 )dt= (φcm, ϕm4 )− (φc0, ϕ1
4)−

∫ T−h

0

(φch, ∂hϕh4 )dt

≤ C
{
‖ϕh4‖L∞(J;L1(Ω)) +

∫ T−h

0

‖∂hϕh4‖L1(Ω)dt

}

≤ C
{
‖ϕh4‖L∞(J;L1(Ω)) +

∫
J

‖∂tϕ4‖L1(Ω)dt

}
.

(2.21)

Finally, combine (2.17)–(2.21) to have the desired result for ch.
Corollary 2.6. For any 2 ≤ r < ∞, for a subsequence ph ⇀ p weakly in

Lr(J ;H1(Ω)) and ch ⇀ c weakly in L2(J ;H1(Ω)). Furthermore, p ∈ L∞(J ;V ) + ϕ2,
c ∈ L2(J ;W ) + ϕ4, and

0 ≤ c(x, t) ≤ 1 a.e. on ΩT .(2.22)

Proof. It follows from Lemma 2.5 that ch − ϕh4 converges weakly in L2(J ;W ).
Since ϕh4 ⇀ ϕ4 weakly in L2(J ;H1(Ω)), ch ⇀ c weakly in L2(J ;H1(Ω)) with c ∈
L2(J ;W ) + ϕ4. The same argument shows that ph ⇀ p weakly in Lr(J ;H1(Ω)) with
p ∈ Lr(J ;V ) + ϕ2 for 2 ≤ r <∞. Since ‖p‖Lr(J;H1(Ω)) ≤ C with C independent of r,
in fact p ∈ L∞(J ;V ) + ϕ2. Finally, (2.22) follows from (2.13).

Lemma 2.7. There is a subsequence such that ch → c strongly in L2(ΩT ).
This lemma also will be shown in section 2.4.
Corollary 2.8. There is a subsequence such that ch → c strongly in L2(J ;H1−π(Ω))

and L2(J ;H1/2−π(∂Ω)) for any 0 < π < 1/2, and ch → c pointwise a.e. on ΩT .
Proof. Apply the interpolation inequality

‖v‖Hσ(Ω) ≤ δ‖v‖H1(Ω) + Cδ‖v‖L2(Ω)(2.23)

for any 0 < σ < 1 and δ > 0, the boundedness of the trace operator, and Lemma 2.7
to prove the desired statement.
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We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2. From Corollaries 2.6 and 2.8, (2.10) implies (2.7) since

∪∞M=1lh(V ) is dense in L∞(J ;V ). Also, it follows from (2.11) that

lim
h→0+

{∫
J

(φ∂−hch, v)dt+

∫
J

(D(uh)∇ch,∇v)dt+

∫
J

(uh · ∇ch, v)dt

+

∫
J

(qI,hch, v)dt+

∫
J

(a2(ch)ch, v)Γc1
dt

}
= lim
h→0+

{∫
J

(ĉhqI,h, v)dt−
∫
J

(ϕ3(ch), v)Γc1
dt

}
∀v ∈ ∪∞M=1lh(W (uh)).

(2.24)

By (2.7) and (2.10), we see that

(a(ch)∇[ph − p],∇[ph − p]) + (a(ch)∇[ph − p],∇p)
−([a(c)− a(ch)](∇p− ρg),∇ph)− (a1(ch)(p− ph), ph)Γp1

−([a1(c)− a1(ch)]p, ph)Γp1
= −([qI − qP ]− [qI,h − qP,h], ph)

+(ϕ1(c)− ϕ1(ch), ph)Γp1
.

Then, by Corollaries 2.6 and 2.8 and Lebesgue’s dominated convergence theorem, we
see that ∇ph → ∇p strongly in (L2(ΩT ))d. Hence, from the definition of uh, uh → u
strongly in (L2(ΩT ))d and by Lemma 2.3, D(uh) → D(u) strongly in (L2(ΩT ))d×d.
Therefore, by the strong convergence of {D(uh)} and weak convergence of {∇ch}, we
have

lim
h→0+

∫
J

(D(uh)∇ch,∇v)dt =

∫
J

(D(u)∇c,∇v)dt ∀v ∈ ∪∞M=1lh(W (uh)).

Similarly, by the strong convergence of uh → u and weak convergence of ∇ch ⇀ ∇c,
we see that

lim
h→0+

∫
J

(uh · ∇ch, v)dt =

∫
J

(u · ∇c, v)dt ∀v ∈ ∪∞M=1lh(W (uh)).

Next, by the definition of qI,h and ĉh, and the continuity of ϕ3 and a2 in c, it
follows from Corollary 2.8 that

lim
h→0+

{∫
J

(qI,hch, v)dt+

∫
J

(a2(ch)ch, v)Γc1
dt

}
=

∫
J

(qIc, v)dt+

∫
J

(a2(c)c, v)Γc1
dt

∀v ∈ ∪∞M=1lh(W (uh)),

and

lim
h→0+

{∫
J

(ĉhqI,h, v)dt−
∫
J

(ϕ3(ch), v)Γc1
dt

}
=

∫
J

(ĉqI , v)dt−
∫
J

(ϕ3(c), v)Γc1
dt

∀v ∈ ∪∞M=1lh(W (uh)).

Also, for any v ∈ L2(J ;W (u)), vh ∈ lh(W (uh)) for h sufficiently small, where
vh(x, t) = h−1

∫
Jk
v(x, τ)dτ . Then, by (2.11), (2.14), and the compact embedding

relation H1(Ω) ↪→ L4(Ω), we observe that∫
J

(φ∂−hch, v)dt =

∫
J

(φ∂−hch, vh)dt ≤ C{‖D1/2(u)∇v‖L2(ΩT ) + ‖v‖L2(ΩT )

}
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for h sufficiently small. Consequently, for a subsequence φ∂−hch converges weakly in
L2(J ;W ∗(u)). If v ∈ C∞0 (ΩT ), with h > 0 small enough we see that∫

J

(φ∂−hch, v)dt = −
∫ T−h

0

(φch, ∂hv)dt→ −
∫
J

(φc, ∂tv)dt =

∫
J

〈φ∂tc, v〉dt

as a distribution. Therefore, φ∂−hch ⇀ φ∂tc weakly in L2(J ;W ∗(u)). Combining all
these results, (2.8) follows from (2.24) since ∪∞M=1lh(W (uh)) is dense in L2(J ;W (u)).
Also, as for (2.19), it can be shown that c ∈ L2(J ;W (u)) from (2.8).

Finally, if v ∈ L2(J ;W (u)) ∩W 1,1(J ;L1(Ω)) with v(x, T ) = 0, we find that∫
J

(φ∂−hch, v)dt+

∫ T−h

0

(φ[ch − c0], ∂hv)dt =
1

h

∫ T

T−h
(φ[ch − c0], v)dt,

which yields (2.9). Thus the proof of Theorem 2.2 is complete.

2.4. Proof of Lemmas 2.4 and 2.7. In this subsection the possibility that c
is outside [0, 1] is allowed. All functions of c are extended constantly outside [0, 1].

Lemma 2.4 is purely an elliptic result and will obviously follow from the next
proposition. For notational convenience the superscript h is omitted below.

Proposition 2.9. In addition to assumptions (A1)–(A10), suppose that 0 < η∗ ≤
η1(x) ∈ L∞(Ω) and 0 ≤ η2(x) ≤ η1(x). Then, for η∗ sufficiently big, the following
problem has a weak solution (p, c) ∈ (V + ϕ2)× (W (u) + ϕ4):

(a(c){∇p− ρg},∇v) + (a1(c)p, v)Γp1

= (qI − qP , v)− (ϕ1(c), v)Γp1
∀v ∈ V,(2.25)

(η1c, v) + (D(u)∇c,∇v) + (u · ∇c, v) + (qIc, v) + (a2(c)c, v)Γc1

= (ĉqI , v)− (ϕ3(c), v)Γc1
+ (η2, v) ∀v ∈W (u),

(2.26)

and

0 ≤ c(x, t) ≤ 1 a.e. on ΩT ,(2.27)

where u is given as in (2.12).
Proof. Let {v1

i }∞i=1 and {v2
i }∞i=1 be bases for V and W , respectively, and set

Vm =span{v1
1 , . . . , v

1
m} and Wm =span{v2

1 , . . . , v
2
m}. With Vm and Wm replacing V

and W in (2.25) and (2.26), respectively, we obtain a Galerkin procedure.
For vj =

∑m
i=1 β

j
i v
j
i , j = 1, 2, we introduce the mapping Φm : <2m → <2m by

Φm

(
β1

β2

)
=

(
β̂1

β̂2

)
,

where

β̂1
i =(a(v2 + ϕ4){∇(v1 + ϕ2)− ρg},∇v1

i ) + (a1(v2 + ϕ4)(v1 + ϕ2), v1
i )Γp1

−(qI − qP , v1
i ) + (ϕ1(v2 + ϕ4), v1

i )Γp1
,

β̂2
i =(η1(v2 + ϕ4), v2

i ) + (D(û)∇(v2 + ϕ4),∇v2
i ) + (û · ∇(v2 + ϕ4), v2

i )

+(qI(v2 + ϕ4), v2
i ) + (a2(v2 + ϕ4)(v2 + ϕ4), v2

i )Γc1

−(ĉqI , v2
i ) + (ϕ3(v2 + ϕ4), v2

i )Γc1
− (η2, v

2
i ),
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with u = −a(v2 + ϕ4){∇(v1 + ϕ2)− ρg} and û = mu/(m+ |u|). Note that to handle
the difficulty associated with the transport and diffusion-dispersion terms, we have
introduced û above. By the assumptions (A1)–(A10), Φm is continuous. Also, it can
be easily seen that

Φm

(
β1

β2

)
·
(
β1

β2

)
≥C1(m)

{‖∇v1‖2L2(Ω) + ‖∇v2‖2L2(Ω)

}− ε‖v1‖2L2(Ω)

+(η1(v2 + ϕ4)− η2, v
2) + (qIϕ4, v

2)

−C
{
|||ϕ1|||2H−1/2(Γp1)

+ |||ϕ3|||2H−1/2(Γc1)
+ ‖ϕ2‖2H1(Ω)

+‖ϕ4‖2H1(Ω) + ‖qI‖2H−1(Ω) + ‖qP ‖2H−1(Ω)

+‖ρg‖2L2(Ω) + ‖v2‖2L2(Ω)

}
for any ε > 0. Note that

(η1(v2 + ϕ4)− η2, v
2) ≥ 1

2
η∗‖v2‖2L2(Ω) − C

{
1 + ‖ϕ4‖2L2(Ω)

}
,(2.28)

and, by the compact embedding relation H1(Ω) ↪→ L4(Ω) again,

(qIϕ4, v
2)≤ ‖qI‖L2(Ω)‖ϕ4‖L4(Ω)‖v2‖L4(Ω)

≤ C‖qI‖L2(Ω)‖ϕ4‖L4(Ω)‖v2‖H1(Ω).

Now, with Poincaré’s inequality and η∗ big enough, combining these results yields
that

Φm

(
β1

β2

)
·
(
β1

β2

)
≥ C1(m)

{‖v1‖2H1(Ω) + ‖v2‖2H1(Ω)

}− C,
which is strictly positive for |β1| + |β2| sufficiently big. As a result, Φm has a zero;
i.e., there is a solution to the Galerkin approximation with û replacing u for each m.

As in the proof of Lemma 2.5, it can be seen that the modified Galerkin solutions
pm and cm are uniformly bounded inH1(Ω) (independently ofm), so for a subsequence
pm ⇀ p and cm ⇀ c weakly in H1(Ω) with p ∈ V +ϕ2 and c ∈W (u) +ϕ4. Moreover,
cm → c strongly in H1−π(Ω) (0 < π < 1/2) and pointwise a.e. both on Ω and ∂Ω.
Therefore, (p, c) is a weak solution to the system in (2.25) and (2.26).

Finally, we apply a standard maximum principle argument to (2.26) to show
(2.27). Take v = c− = min(c, 0) ∈W (u) in (2.26) to have

(η1c− η2, c
−)= −(D(u)∇c,∇c−)− (u · ∇c, c−)− (qIc, c−)

−(a2(c)c, c−)Γc1
+ (ĉqI , c−)− (ϕ3(c), c−)Γc1

.

Note that c− ∈ V by assumption (A1) (if Γp2 = ∅ and a1 ≡ 0, consider c−− ∫
Ω
c−dx).

Then, by (2.25) with v = (c−)2, we see that

(u · ∇c, c−)= 1
2 (u,∇(c−)2)

= 1
2

{
(a1(c)p, (c−)2)Γp1

− (qI − qP , (c−)2) + (ϕ1(c), (c−)2)Γp1

}
.

Use these two equations to see that

(η1c− η2, c
−)= −(D(u)∇c,∇c−)− 1

2

{
(a1(c)p, (c−)2)Γp1

+ (qIc, c−) + (qP c, c−)
}

− 1
2 (ϕ1(c), (c−)2)Γc1

− (a2(c)c, c−)Γc1
+ (ĉqI , c−)− (ϕ3(c), c−)Γc1

≤ 0
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by assumptions (A5), (A8), and (A9), which, as in (2.28), shows that c− = 0 a.e. on
ΩT provided η∗ is sufficiently large. This concludes that c ≥ 0 a.e. on ΩT . Similarly,
with v = (c− 1)+ = max(c− 1, 0) ∈W (u) in (2.26), we can see that c ≤ 1 a.e. on ΩT .
This completes the proof of the proposition.

The next lemma is related to Lemma 3 in [6] and is needed for proving Lemma
2.7. Both Lemma 2.10 and the proof of Lemma 2.7 are based on the ideas presented
in [3].

Lemma 2.10. Let ch satisfy (2.11). Then there exists C such that, for any ζ > 0,

1

ζ

∫ T

ζ

‖φ1/2
(
ch(·, t)− ch(·, t− ζ)

)‖2L2(Ω)dt ≤ C.

Proof. Let k be fixed (1 ≤ k ≤ m); for τ ∈ Ji, we define the interval Q = Q(τ) =
((i − k)h, ih] and the characteristic function χQ. Take v(x, t) = khχQ(t)∂−kh(ch −
ϕh4 )(x, τ) ∈ lh(W ) in (2.11) and apply the relation∫

J

∂−hchχQdt =
i∑

j=i−k+1

(c j − c j−1) = kh∂−khch(·, τ),

(2.13), and (2.14) to obtain

kh
∫ T
kh
‖φ1/2∂−khch(·, τ)‖2L2(Ω)dτ≤ C + kh

∫ T
kh

(φ∂−khch(·, τ), ∂−khϕh4 (·, τ))dτ

≤ C (1 + ‖∂tϕ4‖L1(ΩT )

)
,

which implies the desired result since ch is constant on each interval Ji.
For m1 a positive integer, let δ = T/m1 and Jδk = ((k − 1)δ, kδ]. Introduce the

operator Aδ : L1(J)→ L1(J) by

Aδ(v) =
1

δ

∫
Jδk

v(τ)dτ, t ∈ Jδk .

We are now in a position to prove Lemma 2.7.
Proof of Lemma 2.7. For any ζ, N > 0, define

Q = Q(ch, ζ,N) =
{
t ∈ (ζ, T ] : ‖ch(·, t)‖2H1(Ω) + ‖ch(·, t− ζ)‖2H1(Ω)

+ 1
ζ ‖φ1/2

(
ch(·, t)− ch(·, t− ζ)

)‖2L2(Ω) > N
}
.

Obviously, by (2.13), (2.14), and Lemma 2.10, the measure of Q is less than C/N with
constant C independent of h. If t ∈ (ζ, T ] \Q, then

‖ch(·, t)− ch(·, t− ζ)‖2L2(Ω) ≤
ζN

φ∗
.

Thus we see that∫ T

ζ

‖ch(·, t)− ch(·, t− ζ)‖2L2(Ω)dt ≤
ζNT

φ∗
+

4C|Ω|
N

so that, by the arbitrariness of N ,∫ T

ζ

‖ch(·, t)− ch(·, t− ζ)‖2L2(Ω)dt→ 0 as ζ → 0+
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uniformly in h. Therefore, by the definition of Aδ we see that∫
J

‖ch −Aδ(ch)‖2L2(Ω)dt≤
2

δ

∫ δ

0

∫ T

ζ

‖ch(·, t)− ch(·, t− ζ)‖2L2(Ω)dtdζ

→ 0 as δ → 0+

(2.29)

uniformly in h. Also, ‖Aδ(ch)‖L2(J,H1(Ω)) is uniformly bounded, so for fixed δ > 0,

Aδ(ch) converges strongly in L2(ΩT ) as h→ 0+. Consequently, apply (2.29) and the
inequality

‖ch1 − ch2‖L2(ΩT ) ≤
2∑
j=1

‖chj −Aδ(chj )‖L2(ΩT ) + ‖Aδ(ch1)−Aδ(ch2)‖L2(ΩT )

to complete the proof of Lemma 2.7.

3. Two-phase flow and transport. In this section we consider two-phase flow
and transport equations in a porous medium Ω ⊂ <d (d ≤ 3). These equations will
be reviewed in section 3.1. The differential system we shall study in this section will
be derived in section 3.2. The major result in this section is stated in section 3.3 and
proven in section 3.4 and section 3.5.

3.1. Flow and transport equations. The mass balance equation for each of
the fluid phases is given by [7]

φ
∂(ραsα)

∂t
+∇ · (ραuα) = ραqα, α = w, n,(3.1)

where α = w denotes the wetting phase (e.g., water), α = n indicates the nonwetting
phase (e.g., oil or air), φ is the porosity of the porous medium, and ρα, sα, uα, and qα
are, respectively, the density, (reduced) saturation, volumetric velocity, and external
volumetric flow rate of the α-phase. The volumetric velocity uα is given again by the
Darcy law

uα = −kkrα
µα

(∇pα − ραg), α = w, n,(3.2)

where k is the absolute permeability of the porous medium and pα, µα, and krα are the
pressure, viscosity, and relative permeability of the α-phase, respectively. In addition
to (3.1) and (3.2), the customary property for the saturations is

sw + sn = 1,(3.3)

and the two pressures are related by the capillary pressure function

pc = pn − pw.(3.4)

With the flow of the fluids specified as above, an equation for the transport of
a chemical constituent is needed. The constituent can be transported in each of the
phases, so the equation is written for each phase. Let cα denote the mass concentration
of the constituent in the α phase. Then the mass balance law for the constituent in
each phase reads as follows:

φ
∂(ραsαcα)

∂t
+∇ · (ραuαcα − φραsαDα∇cα) + φrαραsαcα = ĉαραq̂α(3.5)

for α = w, n, where Dα, rα, and ĉα are the diffusion-dispersion coefficient, reaction
rate, and concentration in the external flow for the α phase, respectively.
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3.2. The differential system. The following functional dependence is physi-
cally reasonable:

krα = krα(x, sα), pc = pc(x, sw), Dα = Dα(x, uα).

However, to extend the analysis of the last section to the present problem we assume
that the viscosity µα is independent of cα. The case that µα = µα(cα) needs to be
handled with a different argument and will be treated in a forthcoming paper. The
model derived here is of interest in itself.

In order to separate the pressure and saturation equations, we introduce the phase
mobility functions

λα(x, sα) = krα/µα, α = w, n,

and the total mobility

λ(x, s) = λw + λn,

where s = sw. The fractional flow functions are defined by

fα(x, s) = λα/λ, α = w, n.

Following [4, 8], we define the global pressure

p = pn −
∫ s

0

(
fw
∂pc
∂s

)
(x, ξ)dξ.(3.6)

Also, we shall use the complementary pressure [6]

θ = −
∫ s

0

(
fwfn

∂pc
∂s

)
(x, ξ).(3.7)

Finally, we define the total velocity

u = uw + un.(3.8)

Now, under the assumption that the fluids are incompressible we apply (3.3) and
(3.8) to (3.1) to see that

∇ · u = q ≡ qw + qn,(3.9)

and we apply (3.4), (3.6), and (3.8) to (3.2) to obtain

u = −k(λ∇p+ γ1),(3.10)

where

γ1 = −λw∇xpc + λ

∫ s

0

∇x
(
fw
∂pc
∂s

)
(x, ξ)dξ − (λwρw + λnρn

)
g.

Similarly, apply (3.4), (3.6), and (3.7) to (3.1) and (3.2) with α = w to have

φ
∂s

∂t
−∇ · {k(λ∇θ + λw∇p+ γ2

)}
= qw,(3.11)
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where

γ2 = −λw∇xpc+λw
∫ s

0

∇x
(
fw
∂pc
∂s

)
(x, ξ)dξ+λ

∫ s

0

∇x
(
fwfn

∂pc
∂s

)
(x, ξ)dξ−λwρwg.

Finally, it can be seen that the phase velocities are determined by

uw = −k(λ∇θ + λw∇p+ γ2

)
,

un = k
(
λ∇θ − λn∇p+ γ3

)
,

(3.12)

where

γ3 = −λn
∫ s

0

∇x
(
fw
∂pc
∂s

)
(x, ξ)dξ + λ

∫ s

0

∇x
(
fwfn

∂pc
∂s

)
(x, ξ)dξ + λnρng.

The pressure equation is given by (3.9) and (3.10), while the saturation equation
is described by (3.11). In hydrology, it is common to replace the pressures by the
pressure heads

hα = pα/(ρswg), α = w, n,

where ρsw is the density of water at the standard temperature and pressure. With the
pressure heads hα, similar equations to those in (3.9)–(3.12) can be obtained; in this
paper we shall use the pressures.

To derive the concentration equation, we make use of the usual equilibrium as-
sumption on mass transfer. That is, the constituent instantaneously establishes an
equilibrium distribution between the two phases. Then the concentration in each phase
is proportional to that in the other phase:

cn = Hcw,

where H is called the Henry constant and taken to be one for simplicity. Then under
the incompressibility assumption, apply (3.3) and (3.8) to (3.5) to find that

φ
∂c

∂t
−∇ · (D∇c− uc)+Rc = ĉq̂,(3.13)

where c = cw, D = φ(swDw + snDn), and R = φ(swrw + snrn).
In summary, from (3.9)–(3.11) and (3.13) we have the differential system

−∇ · {k(λ(s, c)∇p+ γ1(s, c))
}

= q(s, c),

φ∂ts−∇ ·
{
k
(
λ(s, c)∇θ + λw(s, c)∇p+ γ2(s, c)

)}
= qw(s, c),

φ∂tc−∇ ·
{
D(s, uw, un)∇c− uc}+R(s)c = ĉq̂(s, c),

(3.14)

where

u = −k(λ(s, c)∇p+ γ1(s, c)),

uw = −k(λ(s, c)∇θ + λw(s, c)∇p+ γ2(s, c)
)
,

un = k
(
λ(s, c)∇θ − λn(s, c)∇p+ γ3(s, c)

)
.

(3.15)

Finally, s is related to θ through (3.7):

s = S(θ),(3.16)
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where S(x, θ) is the inverse of (3.7) for 0 ≤ θ ≤ θ∗(x) with

θ∗(x) = −
∫ 1

0

(
fwfn

∂pc
∂s

)
(x, ξ)dξ.

The differential system in (3.14)–(3.16) determines the main unknowns p, s, θ, and c.
The model is completed by specifying boundary and initial conditions.

The division of Γ is

Γ = Γp1 ∪ Γp2 = Γθ1 ∪ Γθ2 = Γc1 ∪ Γc2,

∅ = Γp1 ∩ Γp2 = Γθ1 ∩ Γθ2 = Γc1 ∩ Γc2.

The boundary conditions are specified by

u · ν − a1(s, c)p = ϕ1(s, c), (x, t) ∈ Γp1 × J,
p = ϕ2(x, t), (x, t) ∈ Γp2 × J,
uw · ν − a2(s, c)θ = ϕ3(s, c), (x, t) ∈ Γθ1 × J,
θ = ϕ4(x, t), (x, t) ∈ Γθ2 × J,
(uc−D∇c) · ν − a3(s, c)c = ϕ5(s, c), (x, t) ∈ Γc1 × J,
c = ϕ6(x, t), (x, t) ∈ Γc2 × J,

(3.17)

where the ai and ϕi are given functions. The initial conditions are given by

θ(x, 0) = θ0(x), x ∈ Ω,

c(x, 0) = c0(x), x ∈ Ω.
(3.18)

The differential system has a clear structure. Note that while λw and λn can be
zero, λ is always positive (see the assumptions below). That is, the pressure equation
is elliptic, and the saturation and concentration equations are parabolic. This model
has been analyzed from the computational point of view using finite elements in [9,
10, 11].

3.3. The major result. The assumptions on the physical data are stated below;
some of the assumptions in the previous section are repeated for completedness.

(B1) Assume that Ω ⊂ <d is a multiply connected domain with Lipschitz bound-
ary Γ, Γ = Γp1 ∪ Γp2 = Γθ1 ∪ Γθ2 = Γc1 ∪ Γc2, Γp1 ∩ Γp2 = Γθ1 ∩ Γθ2 = Γc1 ∩ Γc2 = ∅, each Γpi ,
Γθi , and Γci is a (d− 1)-dimensional domain, and Γp2 ⊂ Γθ2 ∩ Γc2.

(B2) Assume that φ ∈ L∞(Ω), φ(x) ≥ φ∗ > 0, and k(x) is a bounded, symmet-
ric, and uniformly positive definite matrix, i.e.,

0 < k∗ ≤ |ξ|−2
d∑

i,j=1

kij(x)ξiξj ≤ k∗ <∞, x ∈ Ω, ξ 6= 0 ∈ <d.

(B3) The diffusion-dispersion term in (3.5) is assumed to be Fickian in form
with the coefficient given by [7]

Dα(uα) = dmαI + |uα|
(
dlαE(uα) + dtαE

⊥(uα)
)
, α = w, n,

where dmα > 0 is the molecular diffusion coefficient, dlα and dtα are the longitudinal
and transverse dispersion coefficients, respectively, for the α phase, the matrix E(uα)
is the projection along the direction of flow determined by

E(uα) =

(
uα,iuα,j
|uα|2

)
, |uα| =

√
u2
α,1 + · · ·+ u2

α,d, uα = (uα,1, . . . , uα,d),

and E⊥(uα) = I − E(uα).



MATHEMATICAL ANALYSIS FOR RESERVOIR MODELS 447

(B4) λα(x, s, c) is measurable in x ∈ Ω and continuous in s, c ∈ [0, 1] and satisfies
that λw(0, c) = 0, λw(s, c) > 0 for s > 0, λn(1, c) = 0, λn(s, 0) > 0 for s < 1, and
0 < λ∗ ≤ λ(x, s, c) ≤ λ∗ <∞, x ∈ Ω, s, c ∈ [0, 1].

(B5) Assume that 0 < θ∗ ∈ H1(Ω) and that S : {(x, θ) : x ∈ Ω, 0 ≤ θ ≤
θ∗(x)} → [0, 1] is measurable in x, continuous and strictly monotone increasing in θ,
and satisfies that S(x, 0) = 0 and S(x, θ∗(x)) = 1.

(B6) Suppose that γ1, γ2, γ3, q, qw, R, and q̂ are continuous in s and c and the
following norms are bounded:

|||γ1|||L∞(J;L2(Ω)), |||γ2|||L2(ΩT ), |||ϕ1|||L∞(J;H−1/2(Γp1)), |||R|||L2(ΩT ),

|||qw|||L2(J;H−1(Ω)), |||γ3|||L2(ΩT ), |||ϕ3|||L2(J;H−1/2(Γθ1)),

|||ϕ5|||L2(J;H−1/2(Γc1)), |||q̂|||L2(J;H−1(Ω)), |||q|||L∞(J;L2(Ω)),

where for v = v(x, s, c),

|||v||| = ∥∥ sup
s,c∈[0,1]

|v(x, s, c)|∥∥
for any given norm. Also, for s, c ∈ [0, 1], assume that

γ2(0, c) = 0, γ1(1, c)− γ2(1, c) = λ(1, c)∇θ∗ on ΩT ,

ϕ1(1, c) ≤ 0, ϕ3(0, c) ≤ 0, ϕ3(1, c) ≥ 0 on Γθ1,

ϕ1(s, 0) ≤ 0, ϕ1(s, 1) ≤ 0, ϕ5(s, 0) ≤ 0, ϕ5(s, 1) ≥ 0 on Γc1.

(B7) Assume that ∂tϕ4, ∂tϕ6 ∈ L1(ΩT ) and

ϕ2 ∈ L∞(J ;H1(Ω)), ϕ4 ∈ L2(J ;H1(Ω)), ϕ6 ∈ L2(J ;W 1,4(Ω)),

0 ≤ ϕ4(x, t) ≤ θ∗(x), 0 ≤ ϕ6(x, t) ≤ 1 a.e. on ΩT .

(B8) In the case of Γp2 = ∅ and a1 ≡ 0, q and ϕ1 are independent of s and c, and∫
Γp1

ϕ1dσ =

∫
Ω

qdx.

(B9) There is a subset Γp1,∗ ⊂ Γp1 (with nonzero measure only if Γp2 = ∅ and
a1 6≡ 0) such that a1 ≥ a1,∗ > 0 on Γp1,∗ × J .

(B10) ai ≥ 0, ai is continuous in s and c, the norm |||ai|||L∞(ΩT ) is bounded,
i = 1, 2, 3, and

a1(1, c) = 0 on Γθ1, a1(s, 0) = a1(s, 1) = 0 on Γc1.

(B11) Assume that qw(0, c) ≥ 0, qn(1, c) = q(1, c) − qw(1, c) ≥ 0, q(s, 0) ≥ 0,
q(s, 1) ≥ 0, q̂(s, 0) ≥ 0, R(s) ≥ 0, and R(s) − ĉq̂(s, 1) ≥ 0 in ΩT for s, c ∈ [0, 1], and
0 ≤ ĉ ≤ 1 a.e. on ΩT .

(B12) Let θ0, c0 ∈ L2(Ω) satisfy 0 ≤ θ0 ≤ θ∗(x) and 0 ≤ c0 ≤ 1 a.e. on Ω.
Define the spaces

V =

{
v ∈ H1(Ω) : v|Γp2 = 0; if Γp2 = ∅ and a1 ≡ 0, then

∫
Ω

vdx = 0

}
,

W = {v ∈ H1(Ω) : v|Γθ2 = 0},

Λ = {v ∈ H1(Ω) : v|Γc2 = 0}.
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Definition 3.1. A weak solution of the system in (3.14)–(3.18) is a triple of
functions (p, θ, c) with p ∈ L∞(J ;V )+ϕ2, θ ∈ L2(J ;W )+ϕ4, c ∈ L2(J ; Λ(s, uw, un))+
ϕ6 such that

φ∂ts ∈ L2(J ;W ∗), φ∂tc ∈ L2(J ; Λ∗(s, uw, un)),

0 ≤ θ(x, t) ≤ θ∗(x), 0 ≤ c(x, t) ≤ 1 a.e. on ΩT ,

s = S(θ),

(k{λ(s, c)∇p+ γ1(s, c)},∇v) + (a1(s, c)p, v)Γp1

= (q(s, c), v)− (ϕ1(s, c), v)Γp1
∀v ∈ L∞(J ;V ),∫

J

〈φ∂ts, v〉 dt+

∫
J

(k{λ(s, c)∇θ + λw(s, c)∇p+ γ2(s, c)},∇v)dt

+

∫
J

(a2(s, c)θ, v)Γθ1
dt =

∫
J

(qw(s, c), v)dt−
∫
J

(ϕ3(s, c), v)Γθ1
dt ∀v ∈ L2(J ;W ),

∫
J

〈φ∂ts, v〉 dt+

∫
J

(φ(s− s0), ∂tv)dt = 0

∀v ∈ L2(J ;W ) ∩W 1,1(J ;L1(Ω)), v(x, T ) = 0,∫
J

〈φ∂tc, v〉 dt+

∫
J

(D(s, uw, un)∇c− uc,∇v)dt+

∫
J

(R(s)c, v)dt

+

∫
J

(a3(s, c)c, v)Γc1
dt =

∫
J

(ĉq̂(s, c), v)dt−
∫
J

(ϕ5(s, c), v)Γc1
dt

∀v ∈ L2(J ; Λ(s, uw, un)),∫
J

〈φ∂tc, v〉 dt+

∫
J

(φ(c− c0), ∂tv)dt = 0

∀v ∈ L2(J ; Λ(s, uw, un)) ∩W 1,1(J ;L1(Ω)), v(x, T ) = 0,

where s0 = S(θ0); u, uw, and un are given in (3.15); and

Λ(s, uw, un) = {v ∈ Λ : (D(s, uw, un)∇v,∇v) <∞}.

Theorem 3.2. Under assumptions (B1)–(B12), the system in (3.14)–(3.18) has
a weak solution in the sense of Definition 3.1.

3.4. Proof of the major result. With the same notation as in section 2.3,
the discrete counterpart of Definition 3.1 is as follows: Find ph ∈ lh(V ) + ϕh2 , θh ∈
lh(W ) + ϕh4 , and ch ∈ lh(Λ(sh, uhw, u

h
n)) + ϕh6 such that

(k{λ(sh, ch)∇ph + γ1(sh, ch)},∇v) + (a1(sh, ch)ph, v)Γp1

= (q(sh, ch), v)− (ϕ1(sh, ch), v)Γp1
∀v ∈ lh(V ),

(3.19)
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J

(
φ∂−hsh, v

)
dt+

∫
J

(k{λ(sh, ch)∇θh + λw(sh, ch)∇ph},∇v)dt

+

∫
J

(kγ2(sh, ch),∇v)dt+

∫
J

(a2(sh, ch)θh, v)Γθ1
dt

=

∫
J

(qw(sh, ch), v)dt−
∫
J

(ϕ3(sh, ch), v)Γθ1
dt ∀v ∈ lh(W ),

(3.20)

and ∫
J

(
φ∂−hch, v

)
dt+

∫
J

(D(sh, uhw, u
h
n)∇ch − uhch,∇v)dt

+

∫
J

(R(sh)ch, v)dt+

∫
J

(a3(sh, ch)ch, v)Γc1
dt

=

∫
J

(ĉhq̂(sh, ch), v)dt−
∫
J

(ϕ5(sh, ch), v)Γc1
dt ∀v ∈ lh(Λ(sh, uhw, u

h
n)),

(3.21)

with uh, uhw, and uhn being defined as in (3.15) and sh = s0 and ch = c0 for t < 0.
Lemma 3.3. With α = w, n, it holds that

dmα + min(dlα , dtα)|uα| ≤φ−1|ξ|−2
d∑

i,j=1

Dα,ij(uα)ξiξj

≤ dmα + max(dlα , dtα)|uα|, ξ 6= 0 ∈ <d,
and for s ∈ [0, 1]

min(dmw , dmn) + min(dlw , dtw , dln , dtn)(s|uw|+ (1− s)|un|)

≤ φ−1|ξ|−2
d∑

i,j=1

Dij(s, uw, un)ξiξj

≤ max(dmw , dmn) + max(dlw , dtw , dln , dtn)(s|uw|+ (1− s)|un|), ξ 6= 0 ∈ <d.

The first part follows from the definition of Dα(uα), while the second part comes
from the definition of D(s, uw, un).

Lemma 3.4. For h > 0 small enough, the discrete scheme has a solution such
that

0 ≤ θh(x, t) ≤ θ∗(x), 0 ≤ ch(x, t) ≤ 1 a.e. on ΩT .(3.22)

This lemma will be shown in the next subsection.
Lemma 3.5. The solution to the discrete scheme also satisfies

‖ph‖L∞(J;H1(Ω)) + ‖θh‖L2(J;H1(Ω)) + ‖ch‖L2(J;H1(Ω))

+‖D1/2(sh, uhw, u
h
n)∇ch‖L2(ΩT ) ≤ C.

(3.23)

Proof. The bound on ph can be obtained as in Lemma 2.5 using (3.19); the estimate
on θh also can be seen from (3.20) using an argument similar to that for proving ch

in Lemma 2.5 (also see [6]). It suffices to obtain a bound on ch from (3.21). Again,
attention is paid to the transport and diffusion-dispersion terms; other terms can be
estimated similarly to the method in the proof of Lemma 2.5.
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Take v = ch − ϕh6 ∈ lh(Λ(sh, uhw, u
h
n)) in (3.21) to see that∫

J

(
φ∂−hch, ch − ϕh6

)
dt+

∫
J

(D(sh, uhw, u
h
n)∇ch − uhch,∇[ch − ϕh6 ])dt

+

∫
J

(R(sh)ch, ch − ϕh6 )dt+

∫
J

(a3(sh, ch)ch, ch − ϕh6 )Γc1
dt

=

∫
J

(ĉhq̂(sh, ch), ch − ϕh6 )dt−
∫
J

(ϕ5(sh, ch), ch − ϕh6 )Γc1
dt.

The transport and diffusion-dispersion terms can be estimated as follows. By Lemma
3.3, the definition of uhw and uhn, and the above bound on ph and θh, we have

|(D(sh, uhw, u
h
n)∇ch,∇ϕh6 )|

≤ ε(D(sh, uhw, u
h
n)∇ch,∇ch) + C(D(sh, uhw, u

h
n)∇ϕh6 ,∇ϕh6 )

≤ ε(D(sh, uhw, u
h
n)∇ch,∇ch) + C‖∇ϕh6‖2L4(Ω).

Also, it follows from Lemmas 3.3 and 3.4 that

|(uhch,∇ch)| ≤ ‖uh‖L2(Ω)‖∇ch‖L2(Ω) ≤ ε(D(sh, uhw, u
h
n)∇ch,∇ch) + C‖uh‖2L2(Ω)

and

|(uhch,∇ϕh6 )| ≤ C
(
‖uh‖2L2(Ω) + ‖∇ϕh6‖2L2(Ω)

)
.

Apply these estimates and the argument used in the proof of Lemma 2.5 to yield the
desired result.

From this lemma, we have the following counterpart of Corollary 2.6; the proof
is also the same.

Corollary 3.6. For any 2 ≤ r < ∞, for a subsequence ph ⇀ p weakly in
Lr(J ;H1(Ω)) and θh ⇀ θ and ch ⇀ c weakly in L2(J ;H1(Ω)). Furthermore, p ∈
L∞(J ;V ) + ϕ2, θ ∈ L2(J ;W ) + ϕ4, c ∈ L2(J ; Λ) + ϕ6, and

0 ≤ θ(x, t) ≤ θ∗(x), 0 ≤ c(x, t) ≤ 1 a.e. on ΩT .

Lemma 3.7. There is a subsequence such that θh → θ and ch → c strongly in
L2(ΩT ).

This lemma can be shown in the same manner as in Lemma 2.7 (also see [3, 6]).
From it, we have the next corollary, whose proof is the same as in Corollary 2.8. The
pointwise convergence for {sh} follows from the continuity of S(θ) in θ.

Corollary 3.8. There is a subsequence such that θh → θ and ch → c strongly
in L2(J ;H1−π(Ω)) and L2(J ;H1/2−π(∂Ω)) for any 0 < π < 1/2, and sh → s and
ch → c pointwise a.e. on ΩT .

Applying Corollaries 3.6 and 3.8 and the same techniques as in the proof of
Theorem 2.2, Theorem 3.2 can be shown as before. Thus, it remains to prove Lemma
3.4, which will be carried out in the next subsection.

3.5. Proof of Lemma 3.4. Again, Lemma 3.4 is purely an elliptic result and
will follow from the next proposition. For notational convenience the superscript h is
omitted below. All functions of s and c are extended constantly outside [0, 1] except
S, which is extended as follows [6]:

s = extended S(θ) =


θ for θ < 0,

S(x, θ) for 0 ≤ θ ≤ θ∗(x),

θ + 1− θ∗(x) for θ∗(x) < θ.
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Proposition 3.9. In addition to assumptions (B1)–(B12), suppose that 0 <
η∗ ≤ η1(x) ∈ L∞(Ω), 0 ≤ η2(x) ≤ η1(x), 0 < ζ∗ ≤ ζ1(x) ∈ L∞(Ω), and 0 ≤ ζ2(x) ≤
ζ1(x). Then, for η∗ and ζ∗ sufficiently big, the following problem has a weak solution
(p, θ, c) ∈ (V + ϕ2)× (W + ϕ4)× (Λ(s, uw, un) + ϕ6):

(k{λ(s, c)∇p+ γ1(s, c)},∇v) + (a1(s, c)p, v)Γp1

= (q(s, c), v)− (ϕ1(s, c), v)Γp1
∀v ∈ V,(3.24)

(η1s, v) + (k{λ(s, c)∇θ + λw(s, c)∇p},∇v)

+(kγ2(s, c),∇v) + (a2(s, c)θ, v)Γθ1

= (qw(s, c), v)− (ϕ3(s, c), v)Γθ1
+ (η2, v) ∀v ∈W,

(3.25)

(ζ1c, v) + (D(s, uw, un)∇c− uc,∇v)

+(R(s)c, v) + (a3(s, c)c, v)Γc1

= (ĉq̂(s, c), v)− (ϕ5(s, c), v)Γc1
+ (ζ2, v) ∀v ∈ Λ(s, uw, un),

(3.26)

and

0 ≤ θ(x, t) ≤ θ∗(x), 0 ≤ c(x, t) ≤ 1 a.e. on ΩT ,(3.27)

where u, uw, and un are given as in (3.15).
Proof. Let {vji }∞i=1 (j = 1, 2, 3) be bases for V , W , and Λ, respectively, and set

Vm =span{v1
1 , . . . , v

1
m}, Wm =span{v2

1 , . . . , v
2
m}, and Λm =span{v3

1 , . . . , v
3
m}. With

Vm, Wm, and Λm replacing V , W , and Λ in (3.24)–(3.26), respectively, we again obtain
a Galerkin procedure.

For vj =
∑m
i=1 β

j
i v
j
i , j = 1, 2, 3, we introduce the mapping Φm : <3m → <3m by

Φm

 β1

β2

β3

 =

 β̂1

β̂2

β̂3

 ,

where

β̂1
i = (k{λ(σ, v3 + ϕ6)∇(v1 + ϕ2) + γ1(σ, v3 + ϕ6)},∇v1

i )

+(a1(σ, v3 + ϕ6)(v1 + ϕ2), v1
i )Γp1

− (q(σ, v3 + ϕ6), v1
i ) + (ϕ1(σ, v3 + ϕ6), v1

i )Γp1
,

β̂2
i =
(
η1σ, v

2
i

)
+ (k{λ(σ, v3 + ϕ6)∇(v2 + ϕ4) + λw(σ, v3 + ϕ6)∇(v1 + ϕ2)},∇v2

i )

+(kγ2(σ, v3 + ϕ6),∇v2
i ) + (a2(σ, v3 + ϕ6)θ, v2

i )Γθ1

−(qw(σ, v3 + ϕ6), v2
i ) + (ϕ3(σ, v3 + ϕ6), v2

i )Γθ1
− (η2, v

2
i ),

β̂3
i =
(
ζ1(v3 + ϕ6), v3

i

)
+ (D(σ, ûw, ûn)∇(v3 + ϕ6)− û(v3 + ϕ6),∇v3

i )

+(R(σ)(v3 + ϕ6), v3
i ) + (a3(σ, v3 + ϕ6)(v3 + ϕ6), v3

i )Γc1

−(ĉq̂(σ, v3 + ϕ6), v3
i ) + (ϕ5(σ, v3 + ϕ6), v3

i )Γc1
− (ζ2, v

3
i ),

where

σ = S(v2 + ϕ4),

u = −k(λ(σ, v3 + ϕ6)∇(v1 + ϕ2) + γ1(σ, v3 + ϕ6)),

uw = −k(λ(σ, v3 + ϕ6)∇(v2 + ϕ4) + λw(σ, v3 + ϕ6)∇(v1 + ϕ2) + γ2(σ, v3 + ϕ6)
)
,

un = k
(
λ(σ, v3 + ϕ6)∇(v2 + ϕ4)− λn(σ, v3 + ϕ6)∇(v1 + ϕ2) + γ3(σ, (v1 + ϕ2))

)
,

ξ̂ = mξ/(m+ |ξ|), ξ = u, uw, un.
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Again, we remark that to handle the difficulty associated with the transport and
diffusion-dispersion terms, we have introduced û, ûw, and ûn above. By the assump-
tions (B1)–(B12), Φm is continuous, and in the same fashion as in the proof of Propo-
sition 2.9, we obtain

Φm

 β1

β2

β3

 ·
 β1

β2

β3

 ≥ C1(m)
{‖v1‖2H1(Ω) + ‖v2‖2H1(Ω) + ‖v3‖2H1(Ω)

}− C,
which is strictly positive for |β1|+ |β2| sufficiently big. Consequently, Φm has a zero;
i.e., there is a solution to the Galerkin approximation with û (respectively, ûw and
ûn) replacing u (respectively, uw and un) for each m.

The rest of the proof is completed with a standard maximum principle argument
on (3.25) and (3.26). First, take v = θ− = min(θ, 0) ∈W in (3.25) to see that

(η1s− η2, θ
−)= −(kλ(s, c)∇θ,∇θ−)− (kλw(s, c)∇p,∇θ−)− (kγ2(s, c),∇θ−)

−(a2(s, c)θ, θ−)Γθ1
+ (qw(s, c), θ−)− (ϕ3(s, c), θ−)Γθ1

≤ 0

by assumptions (B4), (B6), and (B11). This implies that θ− = 0 a.e. on ΩT by the
definition of S provided η∗ is sufficiently large; i.e., θ ≥ 0 a.e. on ΩT . Now, with
v = (θ− θ∗)+ = max(θ− θ∗, 0) ∈W in (3.25) and use (3.24) ((θ− θ∗)+ ∈ V by (B1);
if Γp2 = ∅ and a1 ≡ 0, consider v − ∫

Ω
vdx) we see that

(η1s− η2, (θ − θ∗)+)= −(k{λ(s, c)∇θ − λn(s, c)∇p− γ1(s, c) + γ2(s, c)},∇(θ − θ∗)+)

+(a1(s, c)p+ ϕ1(s, c)− a2(s, c)θ − ϕ3(s, c), (θ − θ∗)+)Γθ1

−(qn(s, c), (θ − θ∗)+) ≤ 0

by assumptions (B4), (B6), (B10), and (B11), from which we conclude that θ ≤ θ∗.
The second part in (3.27) can be shown as in the proof of Proposition 2.9. Thus, the
proof is complete.
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Abstract. For a given distribution u in S′(R2), a wavelet transform of u with respect to an
admissible function is defined in such a way that the wavelet transform of u yields a function on
phase space whose high-frequency singularities are precisely the elements in the wave front set of u.
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Introduction. The theory of distributions, or generalized functions, is a central
tool in analysis, mathematical physics, and applied mathematics. A key element in
distribution theory is the notion of the wave front set of a distribution. This set is a
subset of phase space whose elements are pairs of locations and associated directions at
which the distribution fails to be smooth. The wave front set plays several major roles
in the theory of distributions, two of which are the following. First, the “pointwise”
product of two distributions can be defined only when their wave front sets have empty
intersection; knowledge of wave front sets proves crucial in discussions of singular
solutions to certain nonlinear differential equations. Second, the wave front set of a
distribution solution to a linear partial differential equation is invariant under flow of
phase space that is associated with the partial differential operator; knowledge of the
wave front set for Cauchy data allows very precise determination of the propagation
of singularities in the corresponding solution.

Despite the utility and power of the concept, the definition of the wave front set
is somewhat indirect. Suppose, for illustration purposes, that we wish to find the
C∞ wave front set for a distribution u that is defined pointwise (i.e., is an ordinary
function) on Rn .

Recall that a C∞ function of compact support is characterized by the fact that its
Fourier transform vanishes faster at large values of its argument k than the reciprocal
of any polynomial in k. To determine whether the pair (x, k), where x is a point in
Rn and k is a direction in the cotangent space to Rn at x, is in the C∞ wave front set
of u, we first localize u by multiplying it by a C∞ function φ with compact support
containing x. We then inspect the Fourier transform of φu in the direction k. If there
is a bounded sequence of such cutoff functions φ whose supports converge to x for
each of which the Fourier transform of φu in the direction k fails to fall off faster than
the reciprocal of every polynomial in |k|, then the pair (x, k) is said to be in the wave
front set for u. In this way, the wave front set specifies the directions k along which
u fails to be smooth, at various points x.
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The projection of the C∞ wave front set onto configuration space Rn is the set of
points x at which u fails to be C∞. But the wave front set itself has not been identified
as the set of singularities of any distribution on phase space. Especially in applications
to partial differential equations, where many concepts are formulated using functions
on phase space, the definition of the wave front subset of phase space without reference
to an explicit function on phase space seems conceptually incomplete.

This paper supplies precisely this missing conceptual ingredient by formulating
an explicit transform that, applied to any distribution in S ′(R2), yields a function on
phase space whose singularities are the wave front set of a distribution.

The definition of the wave front set of a distribution involves the high-frequency
behavior of each member of a sequence of windowed Fourier transforms of the dis-
tribution. Finding singularities of a function through use of the windowed Fourier
transform is known to be difficult; this difficulty is reflected in the wave front set defi-
nition. In contrast, the wavelet transform is well suited to the direction of singularities
and offers an alternative to the windowed Fourier transform [1, 4]. Furthermore, the
wavelet transform of a distribution can be regarded as a function on phase space.
Rephrasing the definition of the wave front set in terms of the windowed Fourier
transform thus leads to the following characterization: The C∞ wave front set of a
distribution is precisely the set of high-frequency singularities of the wavelet transform
of the distribution with respect to a suitably chosen C∞ basic wavelet.

The continuous wavelet transform thus provides a simple explicit constructive
characterization for the wave front set. It also holds promise of far greater utility.
The invariance of the wave front set of a solution to a partial differential equation
under the bicharacteristic flow generated by the symbol of the differential operator is a
very powerful tool. It is likely that the wavelet transform of a solution exhibits simple
behavior under the bicharacteristic flow on phase space, with the high-frequency limit
invariant under that flow. It is conceivable that the wavelet transform will provide
a canonical decomposition of initial data for hyperbolic partial differential equations
into component portions that propagate along bicharacteristic curves.

In this paper we construct a mother wavelet in S(R2) and an irreducible group
action with the property that the associated wavelet transform of a distribution in
S ′(R2) is singular along the wave front set of the distribution.

Singularities in direction (1, 0) are treated only in frequency space, but rotation
can be used to investigate the wave front set in other directions. A mother wavelet
in S(R2) and an irreducible group action are constructed with the property that
the associated wavelet transform of a distribution in S ′(R2) is singular along the
wave front set of the distribution. First, the definition of the wavelet transform of
distributions in S(R2) is given, and then the main result is stated, which relates the
notion of the wave front set and the wavelet transform of distributions in S ′(R2).

Let us begin by defining an irreducible group action on L2(R2).
Notations.

1. For a in R \ {0}, let M(a) = (
a2 0
0 a

).

2. Let Q = {z ∈ C : | z | = 1}. Identify Q with [0, 1) by associating with r ∈ [0, 1)
the complex number ζ = e2πir ∈ Q.

Definition 1. For h in L2(R2), define the following operators:

(Jah)(x) =
1√|det M(a)|h(M(a)−1x), x ∈ R2, a ∈ R \ {0},

(Tbh)(x) = h(x− b), x, b ∈ R2,
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(Ebh)(x) = e2πix·bh(x), x, b ∈ R2,

(Trh)(x) = h(x1, x2 − τ), x = (x1, x2) ∈ R2, τ ∈ R,

(Eτh)(x) = e2πix2τh(x), x = (x1, x2) ∈ R2, τ ∈ R.

Definition 2. Let G = {(a, b, τ, ζ) : a ∈ R \ {0}, b ∈ R2, τ ∈ R, and ζ ∈
Q}. For (a1, b1, τ1, ζ1) and (a2, b2, τ2, ζ2) in G, define

(a1, b1, τ1, ζ1) · (a2, b2, τ2, ζ2) =

(
a1a2, b1 +M(a1)b2, τ1 +

τ2
a1
, ζ1ζ2e

−2πib12
τ2
a1

)
,

where b1 = (b11, b12) and b2 = (b21, b22) are in R2.
Remark 1. G is a nonunimodular, locally compact topological group, with identity

(1, 0, 0, 1) and

(a, b, τ, ζ)−1 = (a−1,−M(a)−1b,−aτ, ζ−1e−2πib2τ ),

where b = (b1, b2) is in R2. Furthermore, d(a, b, τ, ζ) = 1
|det M(a)| da db dτ dr and

d1(a, b, τ, ζ) = 1
|a| da db dτ dr are the left and right Haar measures, respectively, with

ζ = e2πir.
Definition 3. For (a, b, τ, ζ) in G, define the 4-parameter family of operators

U(a, b, τ, ζ) = ζEτTbJa. U(a, b, τ, ζ) acts on the Hilbert space L2(R2) by

(U(a, b, τ, ζ)h)(x) ≡ (ζEτTbJah)(x) = ζe2πix2τ
1√|det M(a)|h(M(a)−1(x− b)).

Definition 4. For (a, b, τ, ζ) in G, h in S(R2), and u in S ′(R2), define the
wavelet transform of u with respect to h as

(Lhu)(a, b, τ, ζ) = u[ζEτTbJah].

The action of G on S(R2) has been chosen to meet several criteria that will be
explained in the proof of Theorem 1.

The most important property of the action of G is that, as a → 0, the func-
tion (U(a, b, τ, ζ)h)(x) concentrates near x = b in coordinate space, while its Fourier

transform (U( ̂a, b, τ, ζ)h)(k) = (ζ TτE−bJ1/aĥ)(k) concentrates in cones around (1, 0)
in Fourier transform space.

The action in G on the Fourier transform ĥ is primarily through the operators
Tτ and J1/a that transform the arguments of ĥ. To discuss this aspect of the action
of G, we introduce the map V : R2 → R2 such that for each (a, τ) in (R \ {0}) ×
R,V(a, τ)(k1, k2) ≡ (k1

a2 ,
k2

a + τ).
It is also convenient to define the set 4ξ of parameters (a, τ) for which the image

of a rectangle Ω covers the point ξ.
Definition 5. Let ξ = (ξ1, ξ2) be in R+ ×R. Let Ω = [c1, c2] × [d1, d2], where

0 < c1 < c2 and d1 < 0 < d2. Define 4ξ = {(a, τ) ∈ (R \ {0})×R : V(a, τ)Ω 3 ξ}.
Lemma 1. Let ξ = (ξ1, ξ2) be in R+ × R. Suppose that Ω = [c1, c2] × [d1, d2],

where 0 < c1 < c2 and d1 < 0 < d2. Then

4ξ =

{
(a, τ) ∈ (R \ {0})×R :

√
c1
ξ1
≤ |a| ≤

√
c2
ξ1

and ξ2 − d2

|a| ≤ τ ≤ ξ2 −
d1

|a|
}
.

See the appendix for the proof.
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Remark 2. It follows by Lemma 1 that if Ω = [c1, c2]× [d1, d2], where 0 < c1 < c2
and d1 < 0 < d2, then for each (a, τ) in 4ξ,

V(a, τ)Ω =

{
(η1, η2) ∈ R+ ×R :

c1

a2 ≤ η1 ≤ c2

a2 and
d1

|a| + τ ≤ η2 ≤ d2

|a| + τ

}
.

Lemma 2. Let Ω = [c1, c2]× [d1, d2], where 0 < c1 < c2 and d1 < 0 < d2. Let Γ1

be an open cone, symmetric with respect to (1, 0) with opening half-angle β, 0 < β < π
2 .

Then there is a nonempty open cone Γ ⊂ Γ1, symmetric with respect to (1, 0) with
opening half-angle α, 0 < α < π

2 , such that for any ξ in Γ with |ξ| sufficiently large,
V(a, τ)Ω ⊂ Γ1 for all (a, τ) in 4ξ.

See the appendix for the proof.

Definition 6. Let Ω = [c1, c2] × [d1, d2], where 0 < c1 < c2 and d1 < 0 < d2,
and let X ⊂ R2. For u in S ′(R2) and h in S(R2), define

(Lhu)|(X,4ξ) = Sup {|(Lhu)(a, b, τ, ζ)| : (a, τ) ∈ 4ξ, b ∈ X, and ζ ∈ Q},

where4ξ = {(a, τ) ∈ (R \ {0})×R : V(a, τ)Ω 3 ξ}, and V(a, τ)(k1, k2) = (k1

a2 ,
k2

a +τ).
The following two definitions of the wave front set for distributions are due to

Hörmander [5].

Definition 7. Let u be in E ′(V ), where V is an open set in R2. Define the cone∑
(u) as the set of all η in R2 \ {0} having no open conic neighborhood Γ in which

(1 + |ξ|)N |û(ξ)| is bounded for all positive integers N and all ξ in Γ.

Definition 8. Let u be in D′(V ), where V is an open set in R2. Then the closed
subset of V × (R2 \ {0}) defined by WF (u) = {(x, ξ) ∈ V × (R2 \ {0}) : ξ ∈∑x(u)}
is called the wave front set of u, where

∑
x(u) =

⋂
φ

∑
(φu), φ ∈ D(V ), and φ(x) 6= 0.

The main result of this paper is now given.

Theorem 1. Let u be in S ′(R2). Let h be a function such that ĥ ∈ D(R2) and

supp ĥ ⊂ Ω, where Ω = [c1, c2]× [d1, d2], 0 < c1 < c2 and d1 < 0 < d2, and h is not
identically zero. Let ξ = (ξ1, ξ2) be in R+ ×R. Let 4ξ be as defined. Let (x0, (1, 0))
be in R2 ×R2.

(1) Suppose that (x0, (1, 0)) /∈ WF (u). Then there is an open neighborhood X of
x0 and an open conic neighborhood Γ of (1, 0) such that (Lhu)|(X,4ξ) → 0 rapidly as
|ξ| → ∞ in Γ.

(2) Conversely, suppose that there is a function ψ ∈ D(R2) with ψ = 1 in a
neighborhood of x0, an open neighborhood X of supp ψ, and an open conic neigh-
borhood Γ of (1, 0) such that (Lhψu)|(X,4ξ) → 0 rapidly as |ξ| → ∞ in Γ. Then
(x0, (1, 0)) /∈ WF (u).

The proof of Theorem 1 makes use of the following lemma.

Lemma 3. Let u be in S ′(R2). Let h be a function such that ĥ ∈ D(R2) and
supp h ⊂ Ω, where Ω = [c1, c2] × [d1, d2], with 0 < c1 < c2 and d1 < 0 < d2. Let φ
be a function in E(R2), each of whose derivatives is polynomially bounded. Let Z be
a compact set in R2 with Z ∩ supp φ = 6 0. Let Γ be an open cone symmetric with
respect to (1, 0) with opening half-angle less than π

2 . Then (Lhφu)|(Z,4ξ) → 0 rapidly
as |ξ| → ∞ in Γ.

See the appendix for the proof.

Proof of Theorem 1. Suppose that (x0, (1, 0)) /∈WF (u). Then ψ̂u decreases
rapidly in some open conic neighborhood Γ1 around (1, 0) for some ψ in D(R2) with
ψ = 1 in a neighborhood of x0.
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Let ξ = (ξ1, ξ2) be in R+×R. Then by Lemma 2, there is a nonempty open cone
Γ ⊂ Γ1 around (1, 0) such that if ξ ∈ Γ with |ξ| sufficiently large,

Oξ ≡
⋃

(a,τ)∈4ξ
V(a, τ)Ω ⊂ Ψξ,

where

Ψξ ≡
[
ξ1
c1
c2
, ξ1

c2
c1

]
×
[
ξ2 − (d2 − d1)

√
ξ1
c1
, ξ2 + (d2 − d1)

√
ξ1
c1

]
,

and Ψξ ⊂ Γ1 for all (a, τ) in 4ξ.
Now, note that

(Lhu)(a, b, τ, ζ) = u[ζEτTbJah]

= ψu[ζEτTbJah] + (1− ψ)u[ζEτTbJah],

and since ψu ∈ E ′(R2), it follows that

(L hψu)(a, b, τ, ζ) = ψu[ζEτTbJah]

=

∫
R2

ψ̂u(η)(ζEτTbJah)̂ (η) dη

=

∫
R2

ψ̂u(η)ζε2πib·(η1,η2−τ)
√
|detM(a)| ĥ(a2η1, a(η2 − τ))dη.

The integrand is nonzero only if (a2η1, a(η2−τ)) ∈ supp ĥ, which means that (η1, η2) ∈
V(a, τ)Ω.

Thus for each b in R2, (a, τ) in 4ξ, and ζ in Q,

|(Lhψu)(a, b, τ, ζ)|
≤
√
|detM(a)| ‖ ĥ‖∞

∫
Oξ

|ψ̂u(η)|dη.

But Oξ ⊂ Γ1 for all ξ in Γ with |ξ| sufficiently large, and since ψ̂u decreases rapidly
in Γ1, for each N = 1, 2, . . . , there is a constant CN such that

|(Lhψu)(a, b, τ, ζ)| ≤ CN
√
|detM(a)| ‖ ĥ‖∞

∫
Oξ

1

(1 + |η|)N dη

≤
∣∣∣∣ξ1 c2c1

∣∣∣∣ 3
2

‖ ĥ‖∞ CN

2(d2 − d1)

√
ξ1
c1

N − 1

1

(1 + |ξ1 c1c2 |)N−1

→ 0 as |ξ| → ∞

for all ξ in Γ, where N may be chosen arbitrarily large.
On the other hand, (1− ψ)u [ζEτTbJah] = (Lh(1− ψ)u)(a, b, τ, ζ).
Let X be an open neighborhood of x0 with X ∩ supp (1−ψ) = 6 0. Since (1−ψ)

has bounded derivatives and since Γ1 is an open cone around (1, 0), it follows by
Lemma 3 that Lh((1− ψ)u)|(X,4ξ) → 0 rapidly as |ξ| → ∞ in Γ1.

Thus (Lhu)|(X,4ξ) → 0 rapidly as |ξ| → ∞ in Γ.
This proves the first part of Theorem 1.
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In order to prove the second part of Theorem 1, we will apply the following
theorem by Grossmann, Morlet, and Paul.

Theorem 2 (see [2]). Let U be strongly continuous square integrable unitary
representation of a locally compact topological group G, acting on the Hilbert space
H. Then there exists in H a unique self-adjoint positive operator C such that the
following hold:

(i) The set of admissible vectors coincides with the domain of C, where the ad-
missibility condition for h means

∫
G
|〈h, U(γ)h〉|2dγ <∞, with γ in G, and where dγ

is the left Haar measure on G.
(ii) For f, g, h in H with h admissible,∫

G

〈f, U(γ)h〉 〈g, U(γ)h〉dγ = Ch〈f, g〉,

where Ch = 〈Ch,Ch〉.
See [2, p. 2475] for the proof.
Remark 3. U is said to be square-integrable if U is irreducible and there is in H

at least one nonzero admissible vector [3].
Now, by considering the 4-parameter family of operators U(a, b, τ, ζ) = ζEτTbJa,

where (a, b, τ, ζ) ∈ G, then U is a strongly continuous unitary irreducible representa-
tion of the group G acting on the Hilbert space L2(R2). Next, suppose that h satisfies

the hypotheses of Theorem 1. Then, in particular, ĥ(0, k2) = 0 for all k2 in R. This
implies that

Ch ≡
∫

R

∫
R

|ĥ(k1, k2)|2 1

2|k1|dk1 dk2 <∞.

But it can be shown that∫
R

∫
R

|ĥ(k1, k2)|2 1

2|k1|dk1 dk2 <∞

if and only if ∫
G

|〈h, U(a, b, τ, ζ)h〉|2d(a, b, τ, ζ) <∞.

Thus h is admissible. Hence, by Theorem 2, for f, g in L2(R2),∫
G

〈f, U(a, b, τ, ζ)h〉 〈g, U(a, b, τ, ζ)h〉d(a, b, τ, ζ) = Ch〈f, g〉.

Let us now give the proof of the second part of Theorem 1.
Suppose that there is a function ψ in D(R2) with ψ = 1 in a neighborhood of x0,

an open neighborhood X of supp ψ, and an open conic neighborhood Γ of (1, 0) such
that (Lhψu)|(X,∆ξ) →0 rapidly as |ξ| → ∞ in Γ. Without loss of generality, it will be
assumed that X is bounded.

Let Y = supp ψ. Let A be a closed ball centered at x0 of radius R > 0 such that
X ⊂ A and set L = dist(∂Y, ∂X). Note that L > 0 by hypothesis. Let v = ψu. Then
v ∈ E ′ (R2) and supp v ⊂ Y .

Then the following two claims are needed.
Claim 1. Let ŵ(ξ) =

∫
G

(Lhv)(a, b, τ, ζ)(U(a, b, τ, ζ)h)̂(ξ)d(a, b, τ, ζ). Then ŵ(ξ)
is well defined for all ξ in the cone Γ, and ŵ is rapidly decreasing in Γ.
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Claim 2. For any function φ with φ̆ ∈ D(Γ),

1

Ch

∫
Γ

ŵ(ξ)φ̆(ξ) dξ = v[φ].

Finally, note that by Claim 2, v̂ |Γ = 1
Ch

ŵ , and by Claim 1, 1
Ch

ŵ decreases

rapidly in Γ. Therefore, (x0, (1, 0)) ∈/ WF (u).
This completes the proof of Theorem 1.
Proof of Claim 1. Let ξ be in Γ. Then

|ŵ (ξ)| ≤
∫ 1

0

∫
R2

∫
R

∫
R

|(Lhv)(a, b, τ, ζ)|| ĥ(a2ξ1, a(ξ2 − τ))| 1√|detM(a)| da dτ db dr.

Note that ĥ(a2ξ1, a(ξ2 − τ)) 6= 0 only if (a, τ) ∈ ∆ξ. Then

|ŵ(ξ)| ≤ ||ĥ||∞ (I1(ξ) + I2(ξ) + I3(ξ)),

where

I1(ξ) =

∫ 1

0

∫
X

∫
∆ξ

|(Lhv)(a, b, τ, ζ)| 1√|detM(a)| da dτ db dr,

I2(ξ) =

∫ 1

0

∫
A\X

∫
∆ξ

|(Lhv)(a, b, τ, ζ)| 1√|detM(a)| da dτ db dr,

and

I3(ξ) =

∫ 1

0

∫
R2\A

∫
∆ξ

|(Lhv)(a, b, τ, ζ)| 1√|detM(a)| da dτ db dr.

Now, by hypothesis, (Lhv)|(X,∆ξ) → 0 rapidly as |ξ| → ∞ for all ξ in Γ. Then for
each N = 1, 2, . . . , there is a constant PN such that for all ξ in Γ,

I1(ξ) ≤ PN
(1 + |ξ|)N m(X)

∫
∆ξ

1

|a| 32 da dτ

≤ PN
(1 + |ξ|)N m(X)(d2 − d1)

(√
ξ1
c1

) 5
2 (√

c2
ξ1
−
√
c1
ξ1

)
→ 0 as |ξ| → ∞ in Γ,

where N may be chosen arbitrarily large.
Consider now

I2(ξ) =

∫ 1

0

∫
A\X

∫
∆ξ

|(Lhv)(a, b, τ, ζ)| 1√|detM(a)| da dτ db dr.

Because A \X is a compact set and (A \X) ∩ supp ψ is empty, and since

(Lhv)(a, b, τ, ζ) = u[ψζ EτTb Ja h],



SINGULARITIES OF DISTRIBUTIONS VIA THE WAVELET TRANSFORM 461

it follows from Lemma 3 that Lh(ψu)|(A \X,∆ξ) → 0 rapidly as |ξ| → ∞ in Γ.
Then for each N = 1, 2, . . . , there is a constant RN such that for all ξ in Γ,

I2(ξ) ≤ RN
(1 + |ξ|)Nm(A \X)(d2 − d1)

(√
ξ1
c1

) 5
2 (√

c2
ξ1
−
√
c1
ξ1

)
.

Thus, I2(ξ)→ 0 rapidly as |ξ| → ∞ in Γ.

Now for

I3(ξ) =

∫ 1

0

∫
R2\A

∫
∆ξ

|(Lhv)(a, b, τ, ζ)| 1√|detM(a)
da dτ db dr

note that, since u ∈ S ′(R2) and supp ψ = Y, it follows that

(Lhv)(a, b, τ, ζ) =

∫
Y

(−1)|α|g(x)Dα
xψζEτTb Ja h(x) dx

for some polynomially bounded continuous function g and some multiindex α.

Because ψ ∈ D(R2), there is a constant M1 > 0 such that |Dδψ(x)| ≤ M1 for
all multiindices δ with |δ| ≤ |α| and all x in R2. Also, because h ∈ S(R2), for each
N = 1, 2, . . . , there is a constant BN > 0 such that |Dγh(x)| ≤ BN

(1+|x|)N for all x

in R2, and since g is a continuous function and Y is compact, it follows that there is
a constant M2 > 0 such that |g(x)| ≤ M2 for all x in Y. Hence,

|(Lhv)(a, b, τ, ζ)|

≤ M1M2BN
∑
β≤α

∑
γ≤β
γ1=β1

(
β

γ

) |2πτ |β2−γ2

|a| 32
∫
Y

1

(1 + |M(a)−1(x − b)|)N dx.

Note that if ξ ∈ Γ and |ξ| is sufficiently large, then |a| < 1 for (a, τ) ∈ ∆ξ.

In this case 1
a2 ≤ 1

a4 , and 1
|a| |x− b| ≤ |M(a)−1(x− b)|. Note also that for x ∈ Y

and b ∈ R2 \A, we have 0 < L + (|x0 − b| − R) ≤ |x − b|. Then

∫
Y

1

(1 + 1
|a| |x − b|)N dx ≤ m(Y )

1

(1 + 1
|a| (L + |x0 − b| − R))N

.

Hence,

I3(ξ) ≤M1M2BN
∑
α≤β

∑
γ≤β
γ1=β1

(
β

γ

)
|2π|β2− γ2m(Y )

·
∫

R2\A

∫
∆ξ

|τ |β2− γ2

|a|3(1 + L+|x0− b| −R
|a| )N

da dτ db.

Note that for (a, τ) in ∆ξ,
√
c1/ξ1 ≤ |a| ≤

√
c2/ξ1 and |τ | ≤ |ξ2|+ (d2 + |d1|)

√
ξ1/c1,

and since L + |x0 − b| − R > 0, it follows that

1

1 + L+|x0−b|−R
|a|

≤ 1

1 + (L + |x0 − b| − R)
√

ξ1
c2

.
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Hence, ∫
∆ξ

|τ |β2−γ2

|a|3
(

1 + L+|x0− b|−R
|a|

)N da dτ
≤ (d2 − d1)

(√
c2
ξ1
−
√
c1
ξ1

)(
ξ1
c1

)2
(
|ξ2| + (d2 + |d1|)

√
ξ1
c1

)β2− γ2

· 1

(1 + (L + |x0 − b| − R)
√

ξ1
c2

)N
.

But ∫
R2\A

1

(1 + (L + |x0 − b| −R)
√

ξ1
c2

)N
db

= 2π

∣∣∣∣c2ξ1
∣∣∣∣ 1

N − 2

1(
1 + L

√
ξ1
c2

)N−2

+ 2π

√
c2
ξ1

(
−
√
c2
ξ1
− L + R

)
1

N − 1

1(
1 + L

√
ξ1
c2

)N − 1

→ 0 as |ξ| → ∞ for N sufficiently large.

Thus, ŵ decreases rapidly in Γ. This completes the proof of Claim 1. The following
lemma is used to prove Claim 2.

Lemma 2. Let v be in E ′(R2). Then for h admissible in S(R2),

(Lhv)(a, b, τ, ζ) =
∑
β≤α

∑
γ≤β
γ1=β1

(
β

γ

)
(−1)|γ|(−2πiτ)β2−γ2Dγ

b (Lhgβ)(a, b, τ, ζ)

for some multiindex α and some compactly supported continuous functions gβ .
See the appendix for the proof.
Proof of Claim 2. Let ξ be in Γ. Then by Claim 1,

ŵ(ξ) =

∫
G

(Lhv)(a, b, τ, ζ)(U(a, b, τ, ζ)h)̂ (ξ)d(a, b, τ, ζ)

is well defined for all ξ in Γ. Since v = ψu ∈ E ′(R2), it follows from Lemma 4 that

ŵ(ξ) =

∫
G

∑
β≤α

∑
γ≤β
γ1=β1

(
β

γ

)
(−1)|γ|(−2πiτ)β2−γ2Dγ

b (Lhgβ)(a, b, τ, ζ)

· (U(a, b, τ, ζ)h) (̂ξ)d(a, b, τ, ζ)

for some multiindex α and some compactly supported continuous functions gβ . In
particular, gβ ∈ L2(R2). Then for any function φ such that φ ∈ D(Γ),∫

Γ

ŵ(ξ)φ̆(ξ) dξ
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=
∑
β≤α

∫
G

∑
γ≤β
γ1=β1

(
β

γ

)
(−1)|γ|(−2πiτ)β2−γ2 Dγ

b 〈gβ , U(a, b, τ, ζ)h〉

·
(∫

Γ

(U(a, b, τ, ζ)h)̂ (ξ)φ̆(ξ)dξ

)
d(a, b, τ, ζ)

=
∑
β≤α

(−1)|β|
∫
G

∑
γ≤β
γ1=β1

(
β

γ

)
(2πiτ)β2−γ2

·
(∫

Γ

Dγ
b 〈gβ , U(a, b, τ, ζ)h〉(U(a, b, τ, ζ)h)(y)db

)
φ(y)d(a, y, τ, ζ)

=
∑
β≤α

(−1)|β|
∫
G

∑
γ≤β
γ1=β1

(
β

γ

)
(2πiτ)β2−γ2

·(−1)|γ|
(∫

R2

〈gβ , U(a, b, τ, ζ)h〉Dγ
bU(a, b, τ, ζ)h(y)db

)
φ(y)d(a, y, τ, ζ)

=
∑
β≤α

(−1)|β|
∫
G

〈gβ , U(a, b, τ, ζ)h〉

·
(∫

R2

∑
γ≤β
γ1=β1

(
β

γ

)
(2πiτ)β2−γ2(−1)|γ|Dγ

bU(a, b, τ, ζ)h(y)φ(y)dy

)
d(a, b, τ, ζ)

=
∑
β≤α

(−1)|β|
∫
G

〈gβ , U(a, b, τ, ζ)h〉

·
(∫

R2

Dβ
yU(a, b, τ, ζ)h(y)φ(y)dy

)
d(a, b, τ, ζ)

=
∑
β≤α

∫
G

〈gβ , U(a, b, τ, ζ)h〉
(∫

R2

U(a, b, τ, ζ)h(y)Dβ
yφ(y)dy

)
d(a, b, τ, ζ)

=
∑
β≤α

∫
G

〈gβ , U(a, b, τ, ζ)h〉〈Dβφ, U(a, b, τ, ζ)h〉d(a, b, τ, ζ)

=
∑
β≤α

Ch〈gβ , Dβφ〉

= Chv[φ].

This completes the proof of Claim 2.
Example. For x = (x1, x2) in R2, let u(x1, x2) = δ(x1). Then u ∈ S ′(R2) and

singsupp u = {(0, x2) : x2 ∈ R}. Note that the action of u on a test function φ in
S(R2) is given by

u[φ] =

∫ ∞
−∞

φ(0, x2)dx2,

and the wave front set of u is

WF (u) = {((0, x2); (ξ1, 0)) : x2 ∈ R and ξ1 ∈ R \ {0}}.
Let h be a function such that h is nonnegative, ĥ ∈ D(R2), ĥ is not identically

zero, and suppĥ ⊂ Ω, where Ω = [c1, c2] × [d1, d2] with 0 < c1 < c2, d1 < 0 < d2.



464 JAIME NAVARRO

Let ξ = (ξ1, ξ2) be in R+ ×R, and let ∆ξ be as defined. For (x0, (1, 0)) in R2 ×R2,
where x0 = (x01, x02), let us consider two cases.

Case 1. Suppose that x01 6= 0. Then ((x01, x02); (1, 0)) /∈ WF (u). So ψ̂u de-
creases rapidly in some cone Γ around (1, 0) for some ψ ∈ D(R2) with ψ = 1 in a
neighborhood X of x0 = (x01, x02). Let us show that (Lhu)|(X,∆ξ) → 0 rapidly as
|ξ| → ∞ in Γ.

Let (a, τ) be in ∆ξ, b = (b1, b2) in X, and ζ in Q. Note that if |ξ| → ∞ in Γ, then
a→ 0. Also, if b ∈ X, then b1 > 0.

Now,

(L hu)(a, b, τ, ζ) = u[ζEτTbJah] =

∫ ∞
−∞

ζEτTbJah(0, x2)dx2

=

∫ ∞
−∞

ζe−2πiτx2
1

|a| 32 h
(
− b1
a2
,
x2 − b2
a

)
dx2.

Then

|(Lhu)(a, b, τ, ζ)| ≤ 1

|a| 32
∫ ∞
−∞

∣∣∣∣h(− b1a2
,
x2 − b2
a

)∣∣∣∣ dx2

=
1

|a| 12
∫ ∞
−∞

∣∣∣∣h(− b1a2
, y

)∣∣∣∣ dy.
Because h ∈ S(R2),∣∣∣∣h(− b1a2

, y

)∣∣∣∣ ≤ CN(√
b21
a4 + y2

)N , N = 1, 2, . . . .

Thus,

|(Lhu)(a, b, τ, ζ)| ≤ CNa
2N |a|− 1

2

∫ ∞
−∞

1

(
√
b21 + a4y2)N

dy

= CNa
2N |a|− 5

2

∫ ∞
−∞

1

(b21 + z2)
N
2

dz

→ 0 as a→ 0,

where N can be chosen arbitrarily large.
Therefore, (Lhu)|(X,∆ξ) → 0 rapidly as |ξ| → ∞ for all ξ in Γ.
Case 2. Suppose that x01 = 0. Then ((0, x02); (1, 0)) ∈ WF (u).
Let Γ be any open cone symmetric with respect to (1, 0). For ξ = (ξ1, 0) in Γ, ∆ξ

is the set of points (a, τ) in (R \ {0}) × R such that
√
c1/ξ1 ≤ |a| ≤

√
c2/ξ1 and

− d2

|a| ≤ τ ≤ − d1

|a| .
Let us show that (Lhu)|(X,∆ξ) does not fall off rapidly as |ξ| = ξ1 → ∞, where

X is any open neighborhood of x0 = (0, x02). Then for b = (0, b2) in X and (a, 0) in
∆(ξ1,0),

(Lhu)(a, b, 0, ζ) = u[ζE0TbJah] =

∫ ∞
−∞

ζE0TbJah(0, x2)dx2

=

∫ ∞
−∞

ζ
1

|a| 32 h
(

0,
x2 − b2
a

)
dx2 = ζ

1√|a|
∫ ∞
−∞

h(0, z2)dz2.
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Let A =
∫∞
−∞ h(0, z2)dz2. Then A is independent of a and 0 < A <∞;

sup
b∈X

(a,τ)∈∆ξ
ζ∈Q

|(Lhu)(a, b, τ, ζ)| ≥ 1√|a|A ≥
(
ξ1
c2

) 1
4

A.

Thus, (Lhu)|(X,∆ξ) does not fall off as |ξ| = ξ1 →∞ in Γ.

Appendix.
Proof of Lemma 1. Let ξ = (ξ1, ξ2) be in R+ ×R. Then by Definition 4,

∆ξ = {(a, τ) ∈ (R \ {0})×R : V(a, τ)Ω 3 ξ}
= {(a, τ) ∈ (R \ {0})×R : V−1(a, τ)ξ ∈ Ω},

where by definition of V(a, τ),V−1(a, τ)ξ = (a2ξ1, a(ξ2 − τ)).

Then V−1(a, τ)ξ ∈ Ω if c1 ≤ a2ξ1 ≤ c2 and d1 ≤ a(ξ2 − τ) ≤ d2; equivalently√
c1/ξ1 ≤ |a| ≤

√
c2/ξ1 and ξ2 − d2

|a| ≤ τ ≤ ξ2 − d1

|a| .

This proves Lemma 1.

Proof of Lemma 2. Take α > 0 such that tan α < c1
c2

tan β. Let ε = tan α.

Consider then Γ = {(η1, η2) ∈ R+ × R : |η2| < εη1}. Note that Γ1 ⊃ {(η1, η2) ∈
R+ ×R : |η2| < c2

c1
εη1} and since 0 < c1 < c2, Γ ⊂ Γ1.

Let ξ = (ξ1, ξ2) be in Γ. Since Γ ⊂ R+ ×R, it follows from Lemma 1 that

∆ξ =

{
(a, τ) ∈ (R \ {0})×R :

√
c1
ξ1
≤ |a| ≤

√
c2
ξ1

and ξ2 − d2

|a| ≤ τ ≤ ξ2 −
d1

|a|
}
.

Now, let (η1, η2) be in V(a, τ)Ω. Then by Remark 1, c1a2 ≤ η1 ≤ c2
a2 and d1

|a| +τ

≤ η2 ≤ d2

|a| + τ . Then for (a, τ) in ∆ξ,
c1
c2
ξ1 ≤ η1 ≤ c2

c1
ξ1 and

ξ2 − (d2 − d1)
√

ξ1
c1
≤ η2 ≤ ξ2 + (d2 − d1)

√
ξ1
c1
.

That is, for (a, τ) in ∆ξ, V(a, τ)Ω is contained in the rectangle

Ψξ =
[
c1
c2
ξ1,

c2
c1
ξ1

]
×
[
ξ2 − (d2 − d1)

√
ξ1
c1
, ξ2 + (d2 − d1)

√
ξ1
c1

]
.

Suppose that ξ2 ≥ 0. Then ξ2 + (d2 − d1)
√
ξ1/c1 > 0. Let Θ be the upper left

corner of the rectangle Ψξ. That is, Θ = ( c1c2 ξ1, ξ2 + (d2− d1)
√
ξ1/c1). Then the slope

mΘ of the line passing through (0, 0) and Θ is

mΘ =
ξ2 + (d2 − d1)

√
ξ1
c1

c1
c2
ξ1

=
c2
c1

ξ2
ξ1

+
(d2 − d1)c2

c1
3
2

1√
ξ1

.

Since ξ ε Γ, and ξ2 > 0, it follows that ξ2
ξ1
< ε. Then

|ξ|2 = ξ2
1 + ξ2

2 < ξ2
1 + ε2ξ2

1 = (1 + ε2)ξ2
1 ;

1

ξ1
<

√
1 + ε2

|ξ| .
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Thus,

mΘ <
c2
c1
ε+

(d2 − d1)c2

c1
3
2

(1 + ε2)
1
4√|ξ| .

Since tan β > c2
c1
ε, it follows that for sufficiently large |ξ|, mΘ < tan β. Thus

Θ ∈ Γ1.
A similar analysis shows that the lower left corner of the rectangle Ψξ is also in

Γ1. It follows that for sufficiently large |ξ|, V(a, τ)Ω ⊂ Γ1 for all (a, τ) in ∆ξ.
This proves Lemma 2.

Proof of Lemma 3. The idea behind the proof is that, as |ξ| → ∞ in Γ, the
condition (a, τ) ∈ ∆ξ forces a→ 0, which concentrates the function ζEτTbJah about
the point b ∈ Z, where φ is zero.

Let b ∈ Z, ξ ∈ Γ, and let (a, τ) ∈ ∆ξ. Since u ∈ S ′(R2) and φζEτTbJah ∈ S(R2),
it follows that

(L hφu)(a, b, τ, ζ) = φu[ζEτTbJah]

= u[φζEτTbJah] =

∫
R2

(−1)|α|g(x)Da
x φζEτTbJah(x)dx

for some polynomially bounded continuous function g and some multiindex α.
Because g is a polynomially bounded continuous function, h ∈ S(R2), each of the

derivatives of φ is polynomially bounded, and b ∈ Z, there are constants K1,K2, and
L > 0 where BL(b)∩ supp φ = Ø, with L independent of b, such that for N = 1, 2, . . .
there is a constant DN > 0 such that

|(Lhφu)(a, b, τ, ζ)|

≤ K1DN

∑
β≤α

(
α

β

) ∑
γ≤β
γ1=β1

(
β

γ

) |2πτ |β2−γ2

|a| 32
∫

R2\BL(b)

(1 + |x|)K2

(1 + |M(a)−1(x− b)|)N dx.

Now note that if ξ ∈ Γ and |ξ| is sufficiently large, then |a| < 1 for (a, τ) ∈ 4ξ.
In this case 1

|a| |x− b| ≤ |M(a)−1(x− b)|. Then∫
R2\BL(b)

(1 + |x|)K2

(1 + |M(a)−1(x− b)|)N dx

≤ 2π|a|
K2∑
ρ=0

(
K2

ρ

)
|b|K2−ρ 1

N − 2− ρ
1(

1 + L
|a|
)N−2−ρ .

Since for (a, τ) in 4ξ, √
c1
ξ1
≤ |a| ≤

√
c2
ξ1

and |τ | ≤ |ξ2|+ (d2 + |d1|)
√
ξ1
c1

;

it follows that

|(Lhφu)(a, b, τ, ζ)|
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≤ K1DN

∑
β≤α

(
α

β

) ∑
γ≤β
γ1=β1

(
β

γ

)
|2π|β2−γ2+1

(
|ξ2|+ (d2 + |d1|)

√
ξ1
c1

)β2−γ2

·
(√

ξ1
c1

) 1
2 K2∑
ρ=0

(
K2

ρ

)
|b|K2−ρ 1

N − 2− ρ
1(

1 + L
√

ξ1
c2

)N−2−ρ

→ 0 as |ξ| → ∞ in Γ.

Because N may be chosen arbitrarily large, the decrease is rapid, and since L is
independent of b ∈ Z, it follows that (Lhφu)|(Z,4ξ) → 0 rapidly as |ξ| → ∞ in Γ.

This proves Lemma 3.

Proof of Lemma 4. Since u ∈ E ′(R2) and h ∈ S(R2), it follows that

u[ζEτTbJah] =
∑
β≤α

∫
R2

gβ(x)Dβ
xζEτTbJah(x)dx

for some multiindex α and compactly supported continuous functions gβ . Then

(L hu)(a, b, τ, ζ) = u[ζEτTbJah]

=
∑
β≤α

∫
R2

gβ(x)Dβ
xζEτTbJah(x)dx

=
∑
β≤α
〈gβ , Dβ

xζEτTbJah〉

=
∑
β≤α

∑
γ≤β
γ1=β1

(
β

γ

)
(−1)|γ|(−2πiτ)β2−γ2Dγ

b 〈gβ , ζEτTbJah〉

=
∑
β≤α

∑
γ≤β
γ1=β1

(
β

γ

)
(−1)|γ|(−2πiτ)β2−γ2Dγ

b (Lhgβ)(a, b, τ, ζ).

This proves Lemma 4.
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Abstract. We construct a Lyapunov function for tridiagonal competitive-cooperative systems.
The same function is a Lyapunov function for Kolmogorov tridiagonal systems, which are defined on
a closed positive orthant in Rn. We show that all bounded orbits converge to the set of equilibria.
Moreover, we show that there can be no heteroclinic cycles on the boundary of the first orthant,
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1. Results. We consider a system of differential equations

ẋ1 = f1(x1, x2),

ẋi = fi(xi−1, xi, xi+1), i = 2, . . . , n− 1,(1)

ẋn = fn(xn−1, xn),

where functions fi are defined on a nonempty open subset A of Rn. We assume that
the fi and their partial derivatives are continuous on A. We also assume that there
are δi ∈ {−1,+1}, such that

δi
∂fi
∂xi+1

> 0, δi
∂fi+1

∂xi
> 0, 1 ≤ i ≤ n− 1.

This assumption implies that the Jacobi matrix ∂f/∂x, corresponding to (1), is tridi-
agonal and sign symmetric in the sense that ∂fi/∂xi+1 and ∂fi+1/∂xi have the same
sign δi. If δi = −1 for all i, then (1) is called competitive. If δi = 1 for all i, then
(1) is called cooperative. We introduce new variables, following Smith [S1]. We let
x̄i = µixi, µi ∈ {±1}, 1 ≤ i ≤ n, with µ1 = 1, µi = δi−1µi−1. Then the system (1)
transforms into a new system of the same type with new

δ̄i = µiµi+1δi = µ2
i δ

2
i = 1.

Therefore we can always assume, without loss of generality, that the competitive-
cooperative system (1) is in fact cooperative and

(H1)
∂fi
∂xi+1

> 0,
∂fi+1

∂xi
> 0, 1 ≤ i ≤ n− 1.
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Our goal in this paper is to construct a Lyapunov function for a class of equations
(1). A Lyapunov function V : Rn → R for (1) is a real valued function which is
nonincreasing along trajectories of (1) and is strictly decreasing along all nonequilib-
rium trajectories. We assume that the system (2) is dissipative. We spell out the
precise form of the assumption below. We remark that this assumption implies that
all trajectories of (2) eventually enter a compact region of phase space. By LaSalle’s
invariance principle (see Hale and Koçak [HK]) the existence of a Lyapunov function
then implies that each trajectory converges to the set of equilibria. Our dissipativeness
condition takes the form

(H2) fi(xi−1, xi, xi+1)xi < 0 for |xi| ≥ C, |xi±1| ≤ |xi|
and some large constant C.

It is easy to see that this assumption forces any trajectory to enter the box
{x ∈ Rn | |xi| ≤ C for all i} at some finite time and then remain there.

Our final assumption on the functions fi is more technical. Observe that assump-
tion (H1) implies that for any fixed xi the set z(fi, xi) of points (xi−1, xi+1) satisfying
fi(xi−1, xi, xi+1) = 0 is a curve in the (xi−1, xi+1)-plane. Furthermore z(fi, xi) is
monotone with respect to both xi−1 and xi+1. The following assumption implies that
for all xi the curve z(fi, xi) is unbounded in both xi−1 and xi+1 directions. Assume

(H3) lim
xk→∞

fi(xi−1, xi, xi+1) > 0, lim
xk→−∞

fi(xi−1, xi, xi+1) < 0

for both k = i− 1 and k = i+ 1 and all xi, xi−1 and xi+1.
We state the main theorem of this paper.
Theorem 1.1. The system (1) with assumptions (H1), (H2), (H3) admits a

Lyapunov function.
The system (1) with assumption (H1) is a monotone dynamical system. There

is an extensive literature on monotone dynamical systems, starting with the work
of Hirsch [Hi1, Hi2, Hi3, Hi4] for monotone semiflows. The results of Hirsch and
later improvements by Matano [M], Smith and Thieme [ST1, ST2], and Poláčik [P]
established that most orbits of a strongly order-preserving semiflow converge to the
set of equilibria. For references on the theory of monotone semiflows see the recent
monograph by Smith [S2].

For the system (1) more is known: Smilie [Sm] has shown that all trajectories
converge to the set of equilibria. He used an integer-valued Lyapunov function (nodal
properties) to prove his result. The main consequence of the existence of real valued
Lyapunov function V for the system (1), namely that all trajectories of (1) converge
to the set of equilibria, is not new and was proved by Smilie [Sm].

The importance of the existence of the Lyapunov function V is that it can be
used in a more general setting. We now consider the class of Kolmogorov systems,
which model an interaction of populations, where every population interacts only with
“neighboring” populations. They have the form

ẋ1 = x1f1(x1, x2),

ẋi = xifi(xi−1, xi, xi+1),(2)

ẋn = xnfn(xn−1, xn)

for i = 2, . . . , n− 1. We assume that the functions fi satisfy (H1), (H2), and (H3).
Since xi’s represent population densities we restrict ourselves to the closed positive
orthant
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O := {x ∈ Rn | xi ≥ 0 for i = 1, . . . , n}.

For specific biological systems modeled by (2), see Freedman and Smith [F-S] and the
references herein.

The results of Smilie do not apply to the system (2) directly. The crucial as-
sumption (H1) for the right-hand side of (2) holds only in the interior of the positive
orthant. We also notice that xj(0) = 0 implies xj(t) = 0 for all t. Therefore every
boundary hyperplane of the first orthant is invariant under (2). Furthermore, if we
restrict the set of equations to such a boundary hyperplane, we obtain a decoupled
system of the same type as (2). Consequently, all faces and subfaces of the boundary
of the positive orthant are invariant under (2); the restriction of the system (2) to such
a set is of the same type as the system (2) itself. The assumption (H1) is satisfied only
in the interior of the positive orthant and by the previous argument in the interior of
every face and subface of the boundary of the positive orthant.

The question arises whether all trajectories still converge to the set of equilibria
in this case. The result is obviously true if the trajectory stays bounded away from
the boundary of the region where it starts, which may be the positive orthant O itself,
or a face or subface of the boundary. But in the context of population dynamics, the
trajectories approaching the boundary of a given region are important, since they
represent a situation whereby a certain population goes extinct.

This problem was studied by Freedman and Smith [F-S]. Under some nondegener-
acy assumptions they were able to show that every bounded orbit converges either to
an equilibrium, or to a cycle of equilibria on the boundary of O. A cycle of equilibria
is a nonempty finite set of equilibria {E1, . . . , En} such that

E1 → E2 → · · · → En → E1.

Here we write E1 → E2 if E1 and E2 are equilibria of (2), not necessarily distinct, such
that there exists a solution x ∈ O with limt→−∞ x(t) = E1 and limt→∞ x(t) = E2.
For illustration of such a boundary cycle of equilibria see Figure 1.

In every boundary component the flow is convergent to the set of equilibria, but
the boundary components are assembled together in such a way that they produce a
cycle of equilibria.

The Lyapunov function V constructed in Theorem 1.1 turns out to be a Lyapunov
function for system (2). Furthermore, V is defined, continuous on the boundary of
O, and restricts to the Lyapunov function on every face and subface of the boundary
of O.

Theorem 1.2. Consider system (2) on the closed positive orthant O. Assume
that the functions fi satisfy the assumptions (H1), (H2), and (H3). Then there is
a Lyapunov function V : O → R, which is strictly decreasing outside the set of
equilibria.

We can now rule out the existence of the cycles of equilibria on the boundary of
O.

Corollary 1.3. Consider system (2) on the closed positive orthant O. As-
sume that the functions fi satisfy the assumptions (H1), (H2), and (H3). Then every
bounded trajectory with initial data in the closed positive orthant O converges to the
set of equilibria. If the set of equilibria is finite, every trajectory converges to a single
equilibrium. Moreover, cycles of equilibria in O do not exist.

The cycles of equilibria do not exist in the large class of Lotka–Voltera systems.
We now briefly describe results of Fiedler and Gedeon [FG].
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Fig. 1. Heteroclinic cycle on the boundary of the positive orthant.

Consider the system

ẋi = xi

ci − n∑
j=1

βijfj(xj)

(3)

on the positive orthant O in Rn. If xi describes the population size of a certain
species, then the constants βij describe the interaction between the species. Let Υ be
the undirected graph with n vertices, where the edge j is connected to the vertex i by
the edge eij if and only if βij 6= 0. We assume βijβji > 0 for every edge eij . Therefore
the definition of Υ makes sense.

Consider the system (3) and assume that
dfj
dxj

> 0 for all j, that the interaction

graph Υ is a tree, and that βijβji > 0 for every edge eij . Then, by the results of
Fiedler and Gedeon [FG], every bounded trajectory of system (3) converges to the set
of equilibria and boundary cycles of equilibria do not exist.

2. Proofs.

Proof of Theorem 1.1. Motivated by a somewhat analogous result of Matano [M]
concerning parabolic partial differential equations with gradient dependence, we seek
a Lyapunov function V : Rn → R of the form V = −∑n−1

i=1 gi(xi, xi+1). By differen-
tiating and collecting terms we get

V̇ = −
n∑
i=1

ẋi(∂igi + ∂igi−1),

where we used the notation ∂i := ∂
∂xi

. We also note that ∂1g0 = 0 and ∂ngn = 0 in

the expression for V̇ . Below, we will construct functions ai such that

(a) aifi = ∂igi + ∂igi−1 and ai > 0 for i = 1, . . . , n,

(b) ∂i−1(aifi) = ∂i(ai−1fi−1) for i = 2, . . . , n.
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It follows from (a) that ai = ai(xi−1, xi, xi+1) are functions of xi−1, xi, xi+1 for i =
2, . . . , n− 1, a1 = a1(x1, x2), and an = an(xn−1, xn). Property (a) also implies that

V̇ = −
∑
i

ẋi(∂igi + ∂igi−1)

= −
∑
i

ẋiaifi

= −
∑
i

ai(ẋi)
2 ≤ 0,

since ai > 0 for all i. Also V̇ (x(t)) = 0 if and only if ẋi(t) = 0 for all i. This implies
that V̇ (x(t)) = 0 if and only if x(t) is an equilibrium. Therefore V is a Lyapunov
function.

We see that we have to construct functions ai, i = 1, . . . , n, which satisfy property
(a).

Condition (b) is a consequence of (a) and the form of the function V . Indeed, (a)
implies that

∂i(ai−1fi−1) = ∂i∂i−1gi−1 + ∂i∂i−1gi−2 = ∂i∂i−1gi−1

since gi−2(xi−2, xi−1) does not depend on xi. A similar computation leads to

∂i−1(aifi) = ∂i∂i−1gi−1.

Therefore, if (a) is satisfied and gi is a function of xi and xi+1 only, then condition (b)
must hold. In the inductive argument below we shall first construct functions ai > 0
which satisfy (b), and then use (b) to construct functions gi with property (a).

We construct the functions ai, i = 1, . . . n, by induction. The first step of the
induction will be to construct functions a1, g0, and g1 such that (a) and (b) are
satisfied. We set g0 ≡ 0 and a1 ≡ 1. To determine g1(x1, x2) we set

∂1g1 := a1f1 = f1(x1, x2),

or more explicitly,

g1(x1, x2) =

∫ x1

0

f1(ζ1, x2)dζ1.

This choice of a1, g0, and g1 satisfies conditions (a) above. Observe that ∂2∂1g1(x1, x2)
exists and is continuous. Condition (b) is vacuous for i = 1.

Having defined a1, the condition (b) with i = 2 poses a restriction on a2. The
function a2 must satisfy

∂1(a2f2) = ∂2(a1f1).

Similarly, once the function ai−1 has been defined, the function ai to be constructed
in the next step of the induction must satisfy

∂i−1(aifi) = ∂i(ai−1fi−1).

With this in mind we define an auxiliary function

γ1(x1, x2) := ∂2(a1f1).
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Observe that ∂2(a1f1) = ∂2f1 > 0, by assumption on function f1, and so γ1 =
γ1(x1, x2) > 0. So far, we have defined functions a1, g0, g1 which satisfy (a), (b) for
i = 1 and γ1.

Now we proceed with the induction step. For technical reasons our induction
hypothesis will not be statements (a) and (b) above but a slightly more complicated
set of assumptions. We assume that we have constructed functions ak, gk, and γk,
where γk = ∂k+1(akfk) for k = 1, . . . , i− 1 with the following properties:

(A1) ak > 0 are continuous; ∂k−1(akfk) and ∂k+1(akfk) exist and are continuous.

(A2) ∂k−1(akfk) = ∂k(ak−1fk−1).

(B) akfk = ∂kgk + ∂kgk−1, gk = gk(xk, xk+1), and ∂k+1∂kgk exists and is contin-
uous.

(C) γk(xk, xk+1) > 0.

Observe that these conditions are satisfied for k = 1 by the above construction.
Observe that (A2) is equivalent to (b), and (A1), (B) are equivalent to (a). Condition
(C) is needed in the induction process.

Before we proceed with the induction step we introduce some notation. We denote
z(fi) := {x | fi(x) = 0} the zero set of the function fi. In R3, spanned by coordinate
axis xi−1, xi, xi+1, the zero set z(fi) is a graph over the (xi−1, xi) plane. Indeed, the
equation fi(xi−1, xi, xi+1) = 0 can be solved for

xi+1 = yi+1(xi−1, xi),

since ∂i+1fi > 0. Similarly, since ∂i−1fi > 0, there is a function ηi−1 with xi−1 =
ηi−1(xi, xi+1) solving

fi(ηi−1(xi, xi+1), xi, xi−1) = 0.

The assumption (H3) implies that both functions ηi−1 and yi+1 are defined on the
whole real line R. We shall need this fact below in the construction of functions ai.
It is easy to see that ∂i−1yi+1(xi, xi−1) < 0 and

∂i+1ηi−1(xi, xi+1) < 0.(4)

We now proceed with the induction step. We construct functions ai, gi and γi
satisfying properties (A1)–(A2), (B) and (C) for k: = i. The construction will be
achieved in three steps. In the first step we will define ai and verify properties (A1)–
(A2). In the second step we will define gi and show that (B) holds. The last step will
be to check that γi = ∂i+1(aifi) satisfies (C).

Step 1. Construction of ai.

The function ai must satisfy condition (A2) where the right-hand side ∂i(ai−1fi−1)
is the function γi−1 already constructed in the previous step of the induction.

We first define ai on the zero set z(fi) of fi. On z(fi), which can be written as
xi+1 = yi+1(xi−1, xi), the condition (A2) takes the form

γi−1 = ∂i−1(aifi) = ai(xi−1, xi, yi+1(xi−1, xi)) · ∂i−1fi(xi−1, xi, yi+1(xi−1,xi)),

because fi = 0. In order to satisfy (A2) we must therefore define the function ai on
the set z(fi) by the identity

ai(xi−1, xi, yi+1(xi−1, xi)) · ∂i−1fi(xi−1, xi, yi+1(xi−1, xi)) = γi−1(xi−1, xi).(5)
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To simplify notation we denote αi(xi−1, xi): = ai(xi−1, xi, yi+1(xi−1, xi)). Ob-
serve that

αi > 0(6)

since ∂i−1fi > 0 by assumption (H1) and γi−1 > 0 by induction hypothesis.
Now we want to define ai outside the zero set z(fi) of fi. We set

(7)

ai(xi−1, xi, xi+1) =
1

fi

∫ xi−1

ηi−1(xi,xi+1)

∂i−1fi(ζi−1, xi, yi+1(ζi−1, xi))αi(ζi−1, xi)dζi−1.

Observe that this definition makes sense only for those (xi−1, xi, xi+1) for which
yi+1(ζi−1, xi) and ηi−1(xi, xi+1) are defined. By assumption (H3), these functions
are defined for all (xi−1, xi, xi+1) ∈ R3. So the definition of ai does make sense, and
ai is defined for all (xi−1, xi, xi+1) ∈ R3.

We now check properties (A1) and (A2) for ai. We show first that ai is contin-
uous and that ∂i−1(aifi) and ∂i+1(aifi) exist and are continuous. These properties
obviously hold at points (xi−1, xi, xi+1) which do not belong to the zero set z(fi) of
the function fi. The calculation for the points in the set z(fi) is straightforward, but
tedious. In order not to disrupt the argument we postpone the proof to the Appendix.

Now we show that ai is positive. By assumption ∂i−1fi > 0 and by (6) also
αi > 0. Furthermore, fi = fi(xi−1, xi, xi+1) is positive for xi−1 > ηi(xi, xi+1), and
negative when xi−1 < ηi−1(xi, xi+1). In the first case the right-hand side of (7) is
positive since all the entries are positive; in the second case fi < 0 but since the order
of integration changes, the right-hand side is still positive. For xi−1 = ηi(xi, xi+1) the
function ai is positive by (6). Therefore ai > 0 for all (xi−1, xi, xi+1) ∈ R3. Thus ai
satisfies (A1).

Now we check condition (A2) at an arbitrary point (xi−1, xi, xi+1). For any point
(xi−1, xi, xi+1) /∈ z(fi) we have

∂i−1(aifi)
(7)
= ∂i−1fi(xi−1, xi, yi+1(xi−1, xi))αi(xi−1, xi)

= ai(xi−1, xi, yi+1(xi−1, xi))∂i−1fi(xi−1, xi, yi+1(xi−1, xi))

(5)
= γi−1(xi−1, xi)

= ∂i(ai−1fi−1),

(8)

where the last equality is the definition of γi−1. Since ∂i−1(aifi) and ∂i+1(aifi) are
continuous, (8) holds for all (xi−1, xi, xi+1). This verifies (A2).

Therefore ai, as defined in (5, 7) indeed satisfies (A1)–(A2).
Step 2. Construction of gi. The goal in this step is to define the function gi such

that (B) holds. Condition (B) requires that ∂igi = aifi − ∂igi−1. The function gi−1

is already constructed, by the induction hypothesis, and aifi has been constructed in
Step 1. Our expression for ∂igi does not depend on xi−1 since

∂i−1(aifi − ∂igi−1) = ∂i(ai−1fi−1)− ∂i−1∂igi−1

= ∂i(∂i−1gi−1 + ∂i−1gi−2)− ∂i−1∂igi−1

= ∂i−1∂igi−2(xi−2, xi−1) = 0.

In the first line, we used that ∂i−1(aifi) = ∂i(ai−1fi−1), which is (A2) for k = i and
was verified in (8). The induction hypothesis (B) for k = i− 1 gives that ai−1fi−1 =
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∂i−1gi−1 + ∂i−1gi−2. Also ∂i−1∂igi−1 = ∂i∂i−1gi−1 follows from the continuity of
∂i∂i−1gi−1, which is guaranteed by induction hypothesis (B) for k = i− 1.

Therefore we define

gi = gi(xi, xi+1) :=

∫ xi

0

((aifi)(xi−1, ζi, xi+1)− ∂igi−1(xi−1, ζi))dζi.

Since ∂i+1∂igi = ∂i+1(aifi) and ∂i+1(aifi) is continuous by step 1, the condition (B)
holds for k = i.

Step 3. γi > 0.
The remaining step in the induction is to show (C) for γi: = ∂i+1(aifi), i.e., that

γi > 0.
We differentiate

γi = ∂i+1(aifi) = ∂i+1

∫ xi−1

ηi−1(xi,xi+1)

∂i−1fi(ζi−1, xi, yi+1(ζi−1, xi))αi(ζi−1, xi)dζi−1

= −∂i+1ηi−1(xi, xi+1) · ∂i−1fi(ηi−1(xi, xi+1), xi, yi+1(ηi−1, xi))αi(ηi−1(xi, xi+1), xi)

= −∂i+1ηi−1(xi, xi+1) · ∂i−1fi(ηi−1(xi, xi+1), xi, xi+1)αi(ηi−1(xi, xi+1), xi)

since xi+1 = yi+1(ηi−1(xi, xi+1), xi). We see that the function γi is a function of xi
and xi+1 only. Furthermore, since −∂i+1ηi−1 > 0 by (4), ∂i−1fi > 0 by assumption
(H1), and αi > 0 by (6), we see that

γi = ∂i+1(aifi) > 0.

This finishes the induction step and thus proves existence of the Lyapunov func-
tion V .

Proof of Theorem 1.2. The Lyapunov function V constructed in Theorem 1.1 is
also a Lyapunov function for the system (2) on the closed positive orthant O. Indeed,

V̇ = −
∑
i

ẋi(∂igi + ∂igi−1)

= −
∑
i

ẋiaifi

= −
∑
i

aixi(fi)
2 ≤ 0

since ai > 0 and xi ≥ 0 in the positive orthant O. The derivative V̇ = 0 if and only if
xi(fi)

2 = 0 for all i. This is equivalent to xifi = 0 for all i. Since ẋi = xifi, we have
V̇ = 0 if and only if ẋi = 0 for all i. This implies that V̇ (x) = 0 if and only if x is an
equilibrium. Therefore V is a Lyapunov function for (2).

Proof of Theorem 1.3. Observe that the Lyapunov function V = −∑ gi(xi, xi+1)
is defined on the closed positive orthant O. Since we assume (H2) for the functions fi
in (2), we see immediately that |xi| > C for the maximal |xi| implies ẋi < 0. It follows
that each trajectory enters the positively invariant box Q := {x ∈ Rn | |xi| ≤ C} in
finite time. Since the positive orthantO is invariant under (2), each trajectory starting
in O enters the set O ∩ Q in finite time. By the LaSalle’s invariance principle each
trajectory in O ∩Q converges to the set where V̇ = 0, which is the set of equilibria.

So there is no chain recurrent set in O, apart from the set of equilibria. In
particular, there are no cycles of equilibria in O.
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Remark 2.1. We assume (H3) in the definition of the function ai; it guarantees
that we can define ai for all points (xi−1, xi, xi+1), since for each such point the values
ηi−i(xi, xi+1) and yi+1(xi−1, xi) are defined. Suppose now that (H3) is violated and
that for some fixed xi = x∗i the zero set z(fi, x

∗
i ) of fi with xi = x∗i fixed is a curve

which satisfies

lim
xi−1→−∞

z(fi, x
∗
i ) = a−i (x∗i ) > −∞, lim

xi−1→∞
z(fi, x

∗
i ) = a+

i (x∗i ) <∞.

Then the function ai can only be defined in points (xi−1, xi, xi+1) for which a−i (x∗i ) <
xi+1 < a+

i (x∗i ). We also observe that the absolute value |ai| grows without bounds as
(xi−1, xi, xi+1) approaches the boundary of this region. Similar restrictions occur if
we assume that

lim
xi+1→−∞

z(fi, x
∗
i ) = a−i (x∗i ) > −∞, lim

xi+1→∞
z(fi, x

∗
i ) = a+

i (x∗i ) <∞.

However, observe that we do not need to define the Lyapunov function on all of
Rn. It follows from the dissipativeness assumption (H2) that each trajectory enters
the box Q: = {x ∈ Rn | |xi| ≤ C} in finite time. We need to define our Lyapunov
function V and thus functions ai only for x ∈ Q. Thus we can still construct the
Lyapunov function V provided that |a+

i (x∗i )| > C and |a−i (x∗i )| > C for all i, with C
given in assumption (H2).

Appendix. We show that the function ai is continuous and the partial derivatives
∂i−1(aifi) and ∂i+1(aifi) exist and are continuous.

For all (xi−1, xi, xi+1) /∈ z(fi) this follows from the definition of ai. We hence
consider (xi−1, xi, xi+1) ∈ z(fi).

We first prove continuity of ai. Write xi−1 = ηi−1(xi, xi+1) + h and expand fi
with respect to h at the point (ηi−1(xi, xi+1), xi, xi+1) ∈ z(fi):

fi(ηi−1(xi, xi+1) + h, xi, xi+1)

= h(∂i−1fi(ηi−1(xi, xi+1), xi, xi+1) + τ(h, xi, xi+1)).(9)

Here the remainder τ(h, xi, xi+1) is a continuous function with τ(0, xi, xi+1) = 0.
The integral in definition (7) of ai becomes∫ ηi−1(xi,xi+1)+h

ηi−1(xi,xi+1)

∂i−1fi−1(ζi−1, xi, yi+1(ζi−1, xi))αi(ζi−1, xi)dζi−1,

for h 6= 0 with a (uniformly) continuous integrand. Indeed, αi, which is the restriction
of ai to z(fi), is continuous by definition (5). From the standard integration theory,
we immediately obtain

lim
h→0,h 6=0

1

h

∫ ηi−1(xi,xi+1)+h

ηi−1(xi,xi+1)

∂i−1fi−1(ζi−1, xi, yi+1(ζi−1, xi))αi(ζi−1, xi)dζi−1

= (ai∂i−1fi)(ηi−1(xi, xi+1), xi, yi+1(ηi−1, xi))

= (ai∂i−1fi)(ηi−1(xi, xi+1), xi, xi+1).

The limit is locally uniform with respect to xi, xi+1 by continuity of all functions
involved. Inserting the expansion (9) of fi, we obtain
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lim
h→0,h 6=0

1

fi

∫ ηi−1(xi,xi+1)+h

ηi−1(xi,xi+1)

∂i−1fi−1(ζi−1, xi, xi+1)αi(ζi−1, xi)dζi−1

= lim
h→0,h 6=0

h · (ai∂i−1fi)(ηi−1(xi, xi+1), xi, xi+1)

h · (∂i−1fi(ηi−1(xi, xi+1), xi, xi+1) + τ(h, xi, xi+1))

= ai(ηi−1(xi, xi+1), xi, xi+1),

locally uniformly with respect to xi, xi+1. This proves the continuity of ai, defined
by (5) and (7).

Now we show that the partial derivatives ∂i−1(aifi) and ∂i+1(aifi) exist and are
continuous.

This is immediate from the integral representation (7) of aifi, which holds for all
(xi−1, xi, xi+1); from continuity of the integrand, which does not contain xi+1 and
xi−1; from differentiability of ηi−1; and from the fundamental theorem of calculus.

Acknowledgments. T.G. wants to thank Mary Silber and Vivien Kirk for the
useful discussion, which showed him the futility of the previous attempt to solve the
problem.
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Abstract. This paper examines a wide class of ill-posed initial value problems for partial differ-
ential equations, and surveys logarithmic convexity results leading to Hölder-continuous dependence
on data for solutions satisfying prescribed bounds. The discussion includes analytic continuation in
the unit disc, time-reversed parabolic equations in Lp spaces, the time-reversed Navier–Stokes equa-
tions, as well as a large class of nonlocal evolution equations that can be obtained by randomizing
the time variable in abstract Cauchy problems. It is shown that in many cases, the resulting Hölder-
continuity is too weak to permit useful continuation from imperfect data. However, considerable
reduction in the growth of errors occurs, and continuation becomes feasible, for solutions satisfying
the slow evolution from the continuation boundary constraint, previously introduced by the author.

Key words. ill-posed problems, analytic continuation, backwards in time continuation, logarith-
mic convexity, Hölder-continuity, parabolic equations, growing diffusion coefficients, non self-adjoint
problems, Navier–Stokes equations, holomorphic semigroups, subordinated processes, slow evolution
from continuation boundary, SECB constraint
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1. Introduction. The problem of reconstructing the past behavior of a system,
given knowledge of its current state, is of interest to many branches of science. For
evolution equations, such backwards in time continuation is typically ill-posed in
the presence of dissipative terms. Other spatial continuation problems in elliptic or
parabolic equations exhibit similar characteristics. This paper is concerned with the
Hölder-continuous dependence on data that results when certain ill-posed continuation
problems in partial differential equations are stabilized by prescribed bounds [14], [21].

Because the Hölder exponent must decay to zero as the continuation boundary
is approached, there is an unavoidable growth of errors originating from imperfect
data. In some cases, such errors may preclude continuation into a region of partic-
ular interest. The slow evolution from the continuation boundary (SECB) constraint
introduced in [6], [7] is an a priori statement about the rate of change of the desired
solution near the continuation boundary. This information supplements information
provided by prescribed bounds on the solution. As a consequence, stronger stability
estimates can be obtained for solutions satisfying the SECB constraint than is oth-
erwise possible. This constraint was shown to be effective in controlling the growth
of noise in certain image deblurring problems, in which backwards in time continua-
tion in diffusion equations involving fractional Laplacians plays a key role. In these
problems, the Hölder exponent decays linearly to zero.

The present self-contained paper deals with a much wider class of problems. We
survey important classes of equations, including the Navier–Stokes equations, where
logarithmic convexity inequalities can be shown to hold. Using the theory of holomor-
phic semigroups, we consider parabolic equations in Lp spaces, as well as a large class
of nonparabolic problems, typically involving nonlocal differential operators, that can
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be constructed by subordination [8]. The resulting Hölder exponents are particularly
instructive in their dependence on the continuation variable. Linear decay to zero is
the exception, the behavior being generally sublinear, and rapid exponential decay is
possible in some cases. In time-dependent problems, such Hölder exponents are in-
dicative of the rate at which the evolution equation has forgotten the past, and hence,
of the subsequent difficulty of reconstructing the past from imperfect knowledge of
the present.

It is shown that the SECB constraint, when applicable, becomes progressively
more significant the faster the Hölder exponent decays to zero. Considerable error re-
duction is possible in many cases. Indeed, continuation problems that were heretofore
intractable may become amenable to numerical computation, provided their solutions
satisfy an SECB constraint. The paper concludes with a simple, explicit example of
backwards in time continuation in an evolution equation with exponentially decaying
Hölder exponent.

The following problem is important in its own right and serves to motivate the
subsequent discussion.

1.1. Analytic continuation in the unit disc. Let A be the class of complex-
valued functions u(z) that are continuous in the closed unit disc and holomorphic in
its interior, and let

‖ u(r) ‖∞= max
0≤θ≤2π

|u(reiθ)|.(1)

Fix a with 0 < a < 1, and consider the problem of determining u(reiθ) for a < r < 1
from approximate knowledge of u(z) on the circle r = a. Hadamard’s three-circle
theorem asserts that log ‖ u(r) ‖∞ is a convex function of log r for a ≤ r ≤ 1. If

ω(r) = log r/ log a, 0 < a ≤ r ≤ 1,(2)

then

‖ u(r) ‖∞≤‖ u(1) ‖1−ω(r)
∞ ‖ u(a) ‖ω(r)

∞ , 0 < a ≤ r ≤ 1.(3)

We have equality in (3) for u(z) = zn. This convexity inequality is the basis for
stabilizing the ill-posed continuation problem when noisy data are given on r = a.
Restrict the class of admissible continuations to functions u(z) ∈ A satisfying a pre-
scribed bound,

‖ u(1) ‖∞≤M.(4)

Fix ε > 0, ε�M , and let data f(θ) be given on r = a such that for some u(z) ∈ A
satisfying (4), we have

‖ u(a)− f ‖∞≤ ε.(5)

If now u1(z), u2(z) ∈ A are any two objects satisfying (4) and (5), we get from (3)

‖ u1(r)− u2(r) ‖∞≤ 2M1−ω(r)εω(r), a ≤ r ≤ 1.(6)

For fixed r0 < 1, the difference between any two possible continuations at r = r0

can be made arbitrarily small in the L∞ norm by giving sufficiently accurate data
at r = a, i.e., by making ε > 0 sufficiently small in (5). On the other hand, no
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matter how small one chooses ε in (5), the inequality (6) cannot ensure accurate
results at the continuation boundary r = 1, since ω(1) = 0. Indeed, with M given in
(4), and ε > 0 given in (5), consider continuing the function u(z) ≡ M/2 from data
f(θ) = M(1 + aneinθ)/2 at r = a, where n is such that an < 2ε/M . At r = 1, the
continuation v(z) = M(1+zn)/2 satisfies the prescribed bound, but approximates the
desired continuation u(z) ≡M/2 with a relative error of 100% in the L∞ norm. The
inequality (6) establishes Hölder-continuous dependence on the data only on compact
subsets of the region where bounds are prescribed. This situation prevails in diverse
classes of improperly posed problems in partial differential equations stabilized by
a priori bounds. Use of such bounds, together with the analysis of the resulting
continuity with respect to the data, was pioneered by Fritz John in a landmark paper
[14].

A basic difficulty with the above Hölder-continuity is the following. In most
applications, ε > 0 is determined by the accuracy of the instrumentation used to
acquire the data. While ε is usually small, it is fixed and cannot be made arbitrarily
small. In such applications, the dependence of the Hölder exponent µ(t) on the
continuation variable t plays a crucial role. In some cases, such as backwards in time
continuation in the heat equation, we have µ(t) = t/T , so that µ(t) decays linearly to
zero as continuation progresses from t = T > 0 to the continuation boundary t = 0.
More typically, µ is sublinear in the continuation variable. If µ decays too rapidly
to zero, useful continuation becomes impossible, even in regions well away from the
continuation boundary. This is the case in (2), for example, when a > 0 is small.
In the case of evolution equations, as will be seen below, rapid decay of µ to zero
can be brought about by various factors, including nonlinearity, non-self-adjointness,
diffusion coefficients that grow with time, or adverse spectral properties in the spatial
differential operator.

It develops that while prescribed bounds are necessary to stabilize ill-posed initial
value problems, they are frequently insufficient to allow continuation far enough into
the region of interest. Further a priori information must be provided for this purpose.
In this paper we show that knowing the rate of change of the desired solution near
the continuation boundary is slow can be very helpful.

2. Slow evolution from the continuation boundary (SECB). We consider
linear or nonlinear continuation problems in a single variable t, 0 ≤ t ≤ T , with con-
tinuation boundary at t = 0. In spatial continuation problems with radial symmetry,
t is a radial coordinate, e.g., t = 1− r in (1). In applications involving continuation
in the time variable, t is related to time. In an appropriate Banach space X with
norm ‖ ‖, the continuation u(t) is an X-valued function with norm ‖ u(t) ‖ for fixed
t. Let u1(t), u2(t), be any two continuations from the given data f(x) at t = T , with
‖ ui(T ) − f ‖≤ ε, and satisfying a prescribed bound, ‖ ui(0) ‖≤ M at t = 0. Here,
ε, M > 0 are both known, and ε � M . Let w(t) = u1(t) − u2(t). We assume w(t)
satisfies a convexity inequality

‖ w(t) ‖≤‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t), 0 ≤ t ≤ T(7)

with known exponent µ(t), 0 ≤ µ(t) ≤ 1. For given K with 0 < K �M/ε, define µ∗

by

µ∗ = log{M/(M −Kε)}/ log(M/ε).(8)

The SECB constraint is expressed as follows: There exists a known small constant
K > 0, and a known fixed s > 0, with µ(s) > µ∗, such that ‖ u(s)− u(0) ‖≤ Kε.
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By continuity as t ↓ 0, given any ε > 0, there always exists a sufficiently small
s > 0 such that the last inequality holds with a small K. However, the requirement
that s be known and be such that µ(s) > µ∗, constitutes further a priori information
about the continuation problem. It will turn out to be desirable that µ(s)� µ∗.

There are several sets of circumstances that can result in solutions satisfying
SECB. As an example, consider linear parabolic initial value problems with time-
independent coefficients, homogeneous boundary conditions, and no forcing term. If
the coefficients are small and the initial values are not dominated by very high fre-
quency components, the solution will evolve slowly from these data at the continuation
boundary t = 0. This situation prevails in some important biomedical image deblur-
ring problems, where the blurring kernel is a Gaussian distribution with small vari-
ance. In that case, the blurred image can be viewed as the solution at time t = T > 0,
of an initial value problem for a diffusion equation with a small diffusivity, the data
at t = 0 being the desired unblurred image. See [6], [7, Fig. 2]. Despite the small
diffusivity, fine scale information that may be of vital significance typically cannot be
discerned in the blurred image. Hence the need for deblurring. More generally, in
parabolic problems with time-dependent coefficients, consider the case where the co-
efficients are initially small but grow with time. Again, the solution will evolve slowly
from the initial values, while it may change rapidly at later times. See the example
in section 8 below. Inhomogeneous boundary conditions provide another mechanism
that can produce solutions satisfying SECB, even when the coefficients are not small.
Thus, if a body in thermal equilibrium at t = 0 is subjected to a boundary heat flux
b(t), where, with b(0) = 0, b(t) increases slowly in the interval 0 ≤ t ≤ T/4; increases
rapidly between T/4 and T/2; and decreases rapidly to zero between T/2 and 3T/4,
the solution at time T will differ considerably from its initial values, while evolving
slowly near t = 0. Similar behavior can occur in the Navier–Stokes initial value prob-
lem. Consider flows in lid-driven cavities as in [20] and the references therein. If the
velocity of the driving lid has a time dependence similar to that in the heat flux b(t)
above, the solution of the Navier–Stokes system at time T > 0 will differ substantially
from its initial state, while having evolved slowly near t = 0. Examples of SECB may
likewise be found in spatial continuation problems.1

Lemma 1. For 1 > µ(s) > µ∗, let Γ(K, s) be the unique root of the transcendental
equation

x = K + x1−µ(s).(9)

Then

K + 1 < Γ < M/ε,

{K/µ(s)} ≤ Γ log Γ ≤ {K/µ(s)}{Γ/(Γ−K)},

Γ log Γ ≈ K/µ(s) ≤ {µ∗/µ(s)}(M/ε) logM/ε, K � Γ.

(10)

Moreover, if K + 1 ≤ x0 ≤M/ε, the iteration xn+1 = K + x
1−µ(s)
n converges to Γ.

Proof. The curve y = x intersects the curve y = K + x1−µ(s) at a single point,
Γ. From (8), we have M/ε = K + (M/ε)1−µ∗ , so that M/ε is the root of (9) when

1In spatial continuation for the heat equation in the quarter plane, or sideways heat equation
problem [10], large, rather than small, diffusivities near x = 0 are conducive to slow evolution from
that boundary.
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µ(s) = µ∗. The roots of (9) decrease monotonically as µ(s) increases. Therefore,
Γ < M/ε. Evidently, Γ > 1, which implies Γ > K + 1. Using the inequality w ≤
log{1/(1 − w)} ≤ w/(1 − w), 0 ≤ w < 1, we get K/Γ ≤ µ(s) log Γ ≤ K/(Γ − K).
Thus, Γ log Γ ≈ K/µ(s) if K � Γ. Next, Kε/M ≤ µ∗ log(M/ε), which leads to the
last inequality in (10). The last statement in Lemma 1 is a standard result called
“fixed point iteration.”

Theorem 1. Let ε, M, K be given positive constants with ε < M and Kε < M .
Let X be a Banach space with norm ‖ ‖, and let f ∈ X. Let C be a linear or nonlinear
continuation problem from the data f for the X-valued function u(t), 0 ≤ t ≤ T , where
‖ u(0) ‖≤ M and ‖ u(T )− f ‖≤ ε. Let C be such that the difference w(t) of any two
possible continuations satisfies

‖ w(t) ‖≤‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t), 0 ≤ t ≤ T,(11)

with known µ(t), 0 ≤ µ(t) ≤ 1. If the solutions of C also satisfy ‖ u(s)− u(0) ‖≤ Kε
for some known s > 0 with µ(s) > µ∗, where µ∗ is defined in (8), then

‖ w(t) ‖≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ T,(12)

where Γ is the constant defined in Lemma 1. Moreover, Γ�M/ε if µ∗ � µ(s).
Proof. From (11), the difference of any two continuations satisfies

‖ w(t) ‖≤ Λ1−µ(t)δµ(t), 0 ≤ t ≤ T,

‖ w(s)− w(0) ‖≤ Kδ, s > 0, µ(s) > µ∗,
(13)

where Λ = 2M, δ = 2ε. From

‖ w(t) ‖ ≤ ‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t)

≤ {‖ w(s)− w(0) ‖ + ‖ w(s) ‖}1−µ(t) ‖ w(T ) ‖µ(t),(14)

together with (13), we get

‖ w(s) ‖≤ {Kδ + Λ1−µ(s)δµ(s)
}1−µ(s)

δµ(s).(15)

The initial estimate for w(s), ‖ w1(s) ‖≤ Λ1−µ(s)δµ(s), has been used in (14) to produce
a new estimate, ‖ w2(s) ‖, given by (15). We may insert (15) back into (14) to
produce a third estimate for w(s), and so on. At the nth step of that iteration, we

get ‖ wn(s) ‖≤ Z1−µ(s)
n δµ(s), where

Z1 = Λ, Zk/δ = K + (Zk−1/δ)
1−µ(s), k > 1.(16)

We have Zn → Γδ as n ↑ ∞, where Γ is defined in Lemma 1. Thus, ‖ w(s) ‖≤ Γ1−µ(s)δ.
Inserting this back into (14), and using (13), we get

‖ w(t) ‖≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ T.(17)

Finally, the last inequality in (10) shows that Γ log Γ � (M/ε) log(M/ε) provided
µ(s)� µ∗.

To illustrate the SECB constraint, we return to analytic continuation in the unit
disc, as discussed in the Introduction. Let M = 4, ε = 10−5, a = 0.1, and consider
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continuing the function u(z) = 1 + 0.1z from data f(θ) = 1 + 0.1aeiθ + 2a6e6iθ at
r = a. Let v(z) = 1 + 0.1z + 2z6. Then,

‖ u(1) ‖∞= 1.1 < M, ‖ u(a)− f ‖∞= 2× 10−6 < ε,

‖ v(1) ‖∞= 3.1 < M, ‖ v(a)− f ‖∞= 0 < ε.
(18)

Thus, both u(z) and v(z) satisfy the a priori constraints (4), (5). However, at r = 3/4,
we find ‖ u(3/4)−v(3/4) ‖∞ / ‖ u(3/4) ‖∞= 33%, and ‖ u(1)−v(1) ‖∞ / ‖ u(1) ‖∞=
182% at r = 1. These are unacceptable relative errors. Additional a priori information
about u(z) near the continuation boundary r = 1 can reduce this uncertainty. With
K = 12 and s = 0.001, we have

‖ u(1)− u(1− s) ‖∞= 0.1s ≤ Kε,(19)

while

‖ v(1)− v(1− s) ‖∞ = max
θ
|0.1seiθ + 2{1− (1− s)6}e6iθ|

= max
θ
|10−4eiθ + 1.197× 10−2e6iθ|

> 10−2 > Kε.(20)

Therefore, the SECB constraint (19), with s = 0.001 and K = 12, eliminates v(z)
as a possible continuation. With ω(r) as in (2), let µ(t) = ω(1 − t), 0 ≤ t ≤ 1 − a.
Since µ(s) = 4.345 × 10−4, while µ∗ = 2.326 × 10−6, we have µ(s)/µ∗ = 187, and
Γ log Γ ≈ K/µ(s) = 27618. This gives Γ = 3397 while M/ε = 400, 000 = 118Γ.
Let w(r, θ) be the difference between any two possible continuations from data at
r = a = 0.1 satisfying (4), (5), with M = 4 and ε = 10−5. Without the SECB
constraint (19), we have ‖ w(1) ‖∞≤ 2M = 8. With the SECB constraint, we have
‖ w(1) ‖∞≤ 2 Γ ε = 0.0679.

Theorem 1 leads to the following corollary to the Hadamard three-circle theorem.
Theorem 2 (corollary). In the analytic continuation problem in the unit disc,

let u1(z), u2(z) be as in (6), let 0 < s < 1 − a, let ω(r) be as in (2), and let
µ(s) = ω(1− s). If

‖ ui(1)− ui(1− s) ‖∞≤ Kε, i = 1, 2,(21)

with known K, 0 < K < M/ε, and known s such that µ(s) > µ∗, where µ∗ is defined
in (8), then

‖ u1(r)− u2(r) ‖∞≤ 2Γ1−ω(r)ε, a ≤ r ≤ 1,(22)

where Γ < M/ε is the constant in Lemma 1. Moreover, Γ�M/ε if ω(1−s)� µ∗.
Remark 1. The SECB constraint does not imply differentiability of u(1, θ), as a

function of θ, on the circle r = 1. More generally, at the continuation boundary t = 0,
u(t) need not be differentiable in its remaining variables in order to satisfy an SECB
constraint. This point is emphasized in [6], [7, Fig. 2], and again in the example in
section 8 below.

3. An approach to logarithmic convexity. The following method has been
widely used to obtain continuous dependence inequalities in linear and nonlinear ini-
tial value problems, typically in a Hilbert space setting [2], [16], [17]. Let H be a
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Hilbert space, and let S be an initial value problem for a system of partial differential
equations, with solutions u(t) ∈ H for each t ∈ (0, T ]. Let F (t) be a real-valued twice
continuously differentiable function of t, defined on the set of solutions u(t) of S and
satisfying

F (t) ≥ 0, F (t) = 0⇐⇒ u(t) = 0, 0 ≤ t ≤ T,

F (t)F ′′(t)− {F ′(t)}2 ≥ −a1 F (t)F ′(t)− a2 F
2(t), 0 < t < T,

(23)

where a1 and a2 are constants. If a1 = a2 = 0 in (23), then

F (t) ≤ {F (0)}(T−t)/T {F (T )}t/T , 0 ≤ t ≤ T.(24)

More typically, a1 6= 0 in (23). In that case, let

m = −a2/a1, µ(t) = {e−a1t − 1}{e−a1T − 1}−1, 0 ≤ t ≤ T.(25)

Then (see [2], [17])

e−mtF (t) ≤ {F (0)}1−µ(t){e−mTF (T )}µ(t), 0 ≤ t ≤ T.(26)

We now give two examples of the use of this technique in L2, with F (t) =‖ u(t) ‖2.
Many other examples, and choices for F (t), may be found in [2], [16], [24], and the
references therein.

4. Self-adjoint parabolic problems with time-dependent coefficients.
Let Ω be a bounded domain in Rn with sufficiently smooth boundary ∂Ω. For x ∈ Rn
and t ≥ 0, let a(t;u, v) and ȧ(t;u, v) be symmetric bilinear forms on Hm

0 (Ω) given by

a(t;u, v) =
∑

|p|,|q|≤m

∫
Ω

apq(x, t)D
quDpvdx,

ȧ(t;u, v) =
∑

|p|,|q|≤m

∫
Ω

ȧpq(x, t)D
quDpvdx,

(27)

where the coefficients apq depend smoothly on x and t, apq = aqp, and ȧpq denotes
∂apq/∂t. We assume a(t;u, v) to be uniformly strongly coercive on Hm

0 (Ω), i.e., there
exists α > 0, independent of t, such that

a(t; v, v) ≥ α ‖ v ‖2m, v ∈ Hm
0 (Ω).(28)

Both a(t;u, v) and ȧ(t, u, v) are continuous on Hm
0 (Ω)×Hm

0 (Ω), uniformly in t; i.e.,
there exist β, γ > 0, independent of t, such that

|a(t;u, v)| ≤ β ‖ u ‖m‖ v ‖m, |ȧ(t;u, v)| ≤ γ ‖ u ‖m‖ v ‖m, u, v ∈ Hm
0 (Ω).(29)

The bilinear form a(t, u, v) defines a positive self-adjoint operator A(t) in L2(Ω), [28],
with domain DA = H2m(Ω) ∩Hm

0 (Ω) such that

(A(t)v, v) = a(t : v, v), (Ȧ(t)v, v) = ȧ(t; v, v), v ∈ DA,

|(Ȧ(t)v, v)| ≤ (γ/α)(A(t)v, v), v ∈ DA,

(30)
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where ( , ) denotes the scalar product in L2(Ω). The operator A(t) is the closed
extension of the strongly elliptic symmetric differential operator

A(x, t,D)u =
∑

|p|,|q|≤m
(−1)|p|Dp(apq(x, t)D

qu), x ∈ Ω, t > 0,(31)

with zero Dirichlet data on ∂Ω. We distinguish two cases: a) the case where diffusion
is constant or decreases with time and (Ȧ(t)v, v) ≤ 0, and b) the case where diffusion
increases at least some of the time and (Ȧ(t)v, v) ≤ γ ‖ v ‖2m. The theorem below is
due to Agmon and Nirenberg [1].

Theorem 3. Let α and γ be the positive constants in (28) and (29). Let u(t) ∈
L2(Ω) be a solution of ut = −A(t)u, t > 0. If (Ȧ(t)v, v) ≤ 0, 0 < t ≤ T , let
µ(t) = t/T . If (Ȧ(t)v, v) ≤ γ ‖ v ‖2m, 0 < t ≤ T , let c = γ/α and let µ(t) =
{ect − 1}{ecT − 1}−1. Then,

‖ u(t) ‖≤‖ u(0) ‖1−µ(t)‖ u(T ) ‖µ(t), 0 ≤ t ≤ T.(32)

Proof. With F (t) =‖ u(t) ‖2, we have F ′(t) = −2(A(t)u, u), and

FF ′′ − {F ′}2 = −2(Ȧ(t)u, u)F + 4 ‖ A(t)u ‖2‖ u ‖2 −4|(A(t)u, u)|2
≥ −2(Ȧ(t)u, u)F(33)

on using Schwarz’s inequality. If (Ȧ(t)u, u) ≤ 0, we have the case a1 = a2 = 0 in
(23) and the result follows from (24). If (Ȧ(t)u, u) ≤ γ ‖ u ‖2m, we use (30) to obtain
−2(Ȧ(t)u, u)F ≥ (γ/α)FF ′ in (33). This is the case a2 = 0, a1 = −γ/α in (23), and
the result follows from (26) with m = 0.

Evidently, growing diffusion coefficients can result in exponential decay in µ(t).
In section 8 below, we study a simple explicit example where this is indeed the case.
Applying Theorem 1 to the Agmon–Nirenberg result, we have the following corollary.

Theorem 4 (corollary). In Theorem 3, let positive constants ε, M, be given,
with ε < M. Let f ∈ L2(Ω) be given data at time T > 0, and let u1(t), u2(t) be
two solutions of ut = −A(t)u + g(t), 0 < t ≤ T, such that ‖ ui(T ) − f ‖≤ ε, and
‖ ui(0) ‖≤M, i = 1, 2. Let w(t) = u1(t)− u2(t). Then, with µ(t) as in Theorem 3,

‖ w(t) ‖≤ 2M1−µ(t)εµ(t), 0 ≤ t ≤ T.(34)

If, in addition, ‖ ui(s) − ui(0) ‖≤ Kε, i = 1, 2, with known K, 0 < K < M/ε, and
known s > 0 such that µ(s) > µ∗, where µ∗ is defined in (8), then

‖ w(t) ‖≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ T,(35)

where Γ < M/ε is the constant in Lemma 1. Moreover, Γ�M/ε if µ(s)� µ∗.

5. Navier–Stokes equations backwards in time. With i = 1, 3, and summa-
tion convention understood, consider the Navier–Stokes system in a bounded domain
Ω ⊂ R3, with smooth boundary ∂Ω,

ui,t = ν∆ui − ujui,j − ρ−1p,i +Gi(x, t)
uj,j = 0

}
(x, t) ∈ Ω× (0, T ],

ui(x, T ) = fi(x), x ∈ Ω, ui = gi(x, t), (x, t) ∈ ∂Ω× [0, T ].

(36)

Here, differentiation is denoted by a comma, ν is the kinematic viscosity, ρ is the con-
stant density, p the unknown pressure, ui(x, t) is the ith component of fluid velocity,
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Gi(x, t) is a prescribed body force per unit mass, and gi(x, t) are prescribed boundary
values. In [18], Knops and Payne study the stability of reconstructing the solution of
(36) on [0, T ), under small perturbations of the solution values fi(x) at some positive
time T . Let P and Q be prescribed positive constants. A function ui(x, t) is said to
belong to the set P provided

sup
Ω×[0,T ]

uiui ≤ P 2,(37)

while it belongs to the set Q whenever

sup
Ω×[0,T ]

{uiui + (ui,j − uj,i)(ui,j − uj,i) + ui,tui,t} ≤ Q2.(38)

In [25], the same stability problem is studied under weaker constraints. Let u1
i (x, t)

and u2
i (x, t) denote classical solutions of (36) corresponding to terminal data f1

i (x)
and f2

i (x) at time T > 0. Let vi(x, t) = (u1
i − u2

i )(x, t). Define the spatial L2 norm of
vi(x, t) at time t by

‖ v(t) ‖=
{∫

Ω

vi(x, t)vi(x, t)dx

}1/2

.(39)

Knops and Payne [18] show that if u1
i (x, t) ∈ P and u2

i (x, t) ∈ Q, and if F (t) =
‖ v(t) ‖2,

F (t)F ′′(t)− {F ′(t)}2 ≥ 2ν−1(P 2 + 1)F (t)F ′(t)−Q2{2ν−2(P 2 + 1) + 1}F 2(t)

= −a1F (t)F ′(t)− a2F
2(t).(40)

Hence, with

c = −a1 = 2ν−1(P 2 + 1),

µ(t) = (ect − 1)(ecT − 1)−1,

wi(x, t) = e−mtvi(x, t), m = −a2/2a1, 0 ≤ t ≤ T,

(41)

it follows from (40) and (26) that

‖ w(t) ‖≤‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t), 0 ≤ t ≤ T.(42)

Applying Theorem 1 to the Knops–Payne result (42), we have the following corollary.
Theorem 5 (corollary). For the given positive ε,M , with ε < M , let wi(x, t) in

(41) satisfy ‖ w(0) ‖≤M, ‖ w(T ) ‖≤ ε, and let µ(t) be as in (41). Then

‖ w(t) ‖≤M1−µ(t)εµ(t), 0 ≤ t ≤ T.(43)

If, in addition, ‖ w(s)−w(0) ‖≤ Kε, with known K, 0 < K < M/ε, and known s > 0
such that µ(s) > µ∗ ≡ log{M/(M −Kε)}/ log(M/ε), then

‖ w(t) ‖≤ Γ1−µ(t)ε, 0 ≤ t ≤ T,(44)

where Γ < M/ε is the unique root of x − x1−µ(s) −K = 0. Moreover, Γ � M/ε if
µ(s)� µ∗.
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For large c, the rapid exponential decay of µ(t) as t decreases from t = T makes
it unlikely that the most general solutions satisfying the constraints (37) or (38) can
be continued very far into the past. However, it may be possible to continue so-
lutions that have evolved slowly near t = 0. Consider the following example. Let
P = 1, ν = 10−1, T = 0.25, M = 20, and ε = 10−6. Then, c = 40 and µ(t) =
{e40t − 1}{e10 − 1}−1, 0 ≤ t ≤ 0.25. In particular, µ(T/2) = 6.693 × 10−3. Conse-
quently, (43) gives

‖ w(T/2) ‖≤ 19.603× 0.911681 = 17.872(45)

On the other hand, suppose that the solutions to be reconstructed are known to
have evolved slowly enough near t = 0 that with s = 0.01T and K = 10, we have
‖ w(s) − w(0) ‖≤ Kε. Then µ(s) = 4.775 × 10−6, while µ∗ = 2.974 × 10−8. Thus,
{µ(s)/µ∗} = 160.55. From Γ log Γ ≈ K/µ(s), we find Γ ≈ 173, 600 and M/ε = 115Γ.
From (44), we get

‖ w(T/2) ‖≤ 160, 134× 10−6 = 0.16.(46)

Thus, the difference between any two solutions satisfying the SECB constraint is over
one hundred times smaller at t = T/2 than it is in the more general case of (45).

6. Holomorphic semigroups and evolution equations. Let X be a complex
Banach space, let A be a closed linear operator with domain DA dense in X, and
consider the evolution equation ut = −Au, t > 0, for the X-valued function u(t).
We assume that −A generates a holomorphic semigroup e−tA in an open sector of
the complex t-plane, Σφ = {Re t > 0, |Arg t| < φ}, for some fixed φ, 0 < φ ≤ π/2.
Moreover, for any 0 < σ < φ, e−tA is strongly continuous at t = 0 within Σφ−σ,
reduces to the identity operator at t = 0, and satisfies ‖ e−tA ‖≤ Bσ < ∞ for
t ∈ Σφ−σ. Thus, e−tA is a bounded holomorphic semigroup as defined in [15].

Parabolic initial boundary value problems constitute the best-known area of ap-
plication of holomorphic semigroups. We briefly sketch this connection below, and
refer the reader to [12] and [28] for a complete treatment. Less well known are appli-
cations to a wide class of nonparabolic equations, typically involving nonlocal partial
differential operators, that are obtained by “subordination” in well-posed Cauchy
problems [4], [11], [8]. This class of problems, mentioned in section 6.1, is drawing
increasing interest from physical scientists working in certain areas of fractal analysis.

Let Ω be a bounded domain in Rn with a sufficiently smooth boundary ∂Ω. For
x ∈ Rn, let A(x,D) =

∑
|α|≤2m aα(x)Dα be a linear partial differential operator with

coefficients aα(x) continuous in the closure of Ω. If A(x,D) is strongly elliptic, and
zero Dirichlet data are given on ∂Ω, a closed linear operator A in L2(Ω), with dense
domain DA = H2m(Ω) ∩Hm

0 (Ω), can be defined by

(Au)(x) = A(x,D)u(x), u ∈ DA.(47)

Moreover, as shown in [12], [28], for some k ≥ 0 the linear operator−(A+kI) generates
a bounded holomorphic semigroup in L2(Ω). If A(x,D) is a symmetric differential
operator, then A+ kI is self-adjoint, and we may choose φ = π/2 in Σφ.

More general boundary conditions can be handled and parabolic equations of
order 2m can be considered in Lp(Ω), 1 ≤ p < ∞. Let Hj,p(Ω) denote the Sobolev
space of functions in Lp(Ω) whose weak derivatives of order less than or equal to j
exist and belong to Lp(Ω). Let {Bj}mj=1 be m boundary operators of respective orders
mj < 2m, given by
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Bj(x,D) =
∑
|α|≤mj

bjα(x)Dα,(48)

and consider the boundary value problem

A(x,D)u = g, x ∈ Ω,

Bj(x,D)u = 0, x ∈ ∂Ω, 1 ≤ j ≤ m.
(49)

A closed linear operator A with dense domain DA = H2m,p(Ω; {Bj}), consisting of
the closure in H2m,p(Ω) of the set of functions u ∈ C2m(Ω) that satisfy the boundary
conditions in (49), can be defined via

(Au)(x) = A(x,D)u, u ∈ DA.(50)

If the system Bj is normal, and satisfies further complementary conditions, and
if A(x,D) is strongly elliptic, one obtains a regular elliptic boundary value problem,
(A, {Bj},Ω), such that for some k ≥ 0, the linear operator −(A + kI) generates a
bounded holomorphic semigroup in Lp(Ω). See [12], [28].

6.1. Subordinated semigroups. LetH(y) denote the Heaviside unit step func-
tion, and consider the family py(t) given by

py(t) =
tH(y)e−t

2/4y√
4πy3

, t > 0.(51)

For each fixed t > 0, py(t) is a probability density function on y ≥ 0, and py(t) tends
to the Dirac δ-function δ(y) as t ↓ 0. Moreover, if ∗ denotes convolution with respect
to y, then py(t) ∗ py(s) = py(t+ s), for s, t ≥ 0. The Laplace transform with respect
to y of py(t) is given by

L{py(t)} ≡
∫ ∞

0

e−yzpy(t)dy = e−t
√
z, Re z > 0.(52)

The “inverse Gaussian” family in (51) is just one example of an infinitely divisible
family of probability density functions on the half-line y ≥ 0, [11].

Let T (t) = e−tA, t ≥ 0, be a uniformly bounded, not necessarily holomorphic, C0

semigroup on a complex Banach space X. Using (51), one may construct a new C0

semigroup U(t) on X, with ‖ U(t) ‖≤‖ T (t) ‖≤ B <∞, t ≥ 0, by means of

U(0) = I, U(t)g =

∫ ∞
0

py(t)T (y)g dy, t > 0, g ∈ X.(53)

Indeed, it turns out that U(t) = e−tA
1/2

and that U(t) can be extended to a bounded
holomorphic semigroup in some sector Σω.

The construction in (53) amounts to randomization of the time variable t in the
original semigroup T (t). A wide variety of infinitely divisible families qy(t) may be
used in (53). The new semigroup U(t) is said to be “subordinated” to T (t) through
the “directing process” qy(t) [11]. This concept originated in [4] and was subsequently
refined into a functional calculus in [26], [23], and [3]. The observation that U(t) is
holomorphic whenever the directing process qy(t) = L−1{e−tzα}, 0 < α < 1, was
made in [29]. In that case, U(t) = e−tA

α

. Subordinated processes and fractional
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differential operators are of interest in polymer science [9], while diffusion equations
with fractional Laplacians play a role in image deblurring [6]. Further applications
are discussed in [5, pp. 140–156] and [11].

An arbitrary infinitely divisible family qy(t) on y ≥ 0 can be characterized in terms
of its Laplace transform [11]. We have L{qy(t)} = e−tψ(z), t ≥ 0, where the exponent
ψ(z) is holomorphic for Re z > 0 and continuous for Re z ≥ 0, with Re ψ(z) ≥ 0.
Moreover, ψ(0) = 0, and ψ′(x) is completely monotone for x > 0. In [8], the results
of [29] are extended. A necessary and sufficient condition on qy(t) is given, in order
that the subordinated semigroup U(t) = e−tψ(A) be holomorphic on X, whenever
T (t) is C0 and uniformly bounded on X. In addition, a necessary condition on the
exponent ψ(z) is obtained for that to be the case. In [13], a sufficient condition on
ψ(z) is given that ensures analyticity of U(t). As a consequence of [29], [8], and [13],
a rich class of exponents ψ(z) is known, with the property that −ψ(A) generates a
bounded holomorphic semigroup on X whenever −A generates a uniformly bounded
C0 semigroup on X. As one example, consider the symmetric hyperbolic system,

ut =

n∑
i=1

ai(x)uxi + b(x)u, x ∈ Rn, t > 0,

u(x, 0) = f(x),

(54)

where u(x) is an N -component vector, ai(x), b(x) are N×N matrices with boundedly
differentiable entries on Rn, and ai(x) is Hermitian. The differential operator on the
right-hand side of (54) can be extended into a closed densely defined linear operator
−A in L2(Rn)N . As shown in [28], for some k ≥ 0, −(A+kI) generates a contraction
semigroup on L2(Rn)N . It follows from [29], [8] that if

ψ1(A) = (A+ kI)α, 0 < α < 1, ψ2(A) = Log{A+ (k + 1)I},(55)

then each of −ψ1(A),−ψ2(A), generates a holomorphic semigroup on L2(Rn)N . If
{αn}∞n=1 and {an}∞n=1 are any two sequences satisfying an ≥ 0, a1 > 0, 1 > α1 >
α2 > · · · > αn > · · · > 0,

∑∞
n=1 an/αn <∞, and if

ψ3(A) =
∞∑
n=1

an(A+ kI)αn ,(56)

it follows from [13] that −ψ3(A) generates a holomorphic semigroup on L2(Rn)N .
None of the ψi(A), i = 1, 3, are elliptic operators when −A is the differential oper-
ator on the right-hand side of (54). This shows that holomorphic semigroup theory
encompasses a class of initial value problems in partial differential equations that is
considerably wider than the class of parabolic problems.

7. Logarithmic convexity and holomorphic semigroups. In Banach space,
approaches different from those used in sections 3–5 appear necessary to obtain log-
arithmic convexity inequalities. Following the basic work in [19], further convexity
results were obtained in [1], [12], and [22]. Theorems 6 and 7 below are a reformulation
of results originating with these authors.

For any a ≥ 0, and 0 < ξ ≤ 1, let S(a, ξ) be the set in the complex τ -plane given
by

S(a, ξ) = {τ = t+ is; t ≥ a; |s| ≤ (t− a) tan(πξ/2)} .(57)
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Let T > 0. Then, S(T, ξ) ⊂ S(0, ξ). Let G(T, ξ) = S(0, ξ) \ S(T, ξ), and let ΛL, ΛR
be, respectively, the left and right boundary arcs of G(T, ξ). Let ωξ(t, s) be the unique
bounded continuous function on G(T, ξ) which is harmonic in the interior of G(T, ξ),
equals zero on ΛL, and equals one on ΛR. Let µξ(t) = ωξ(t, 0), 0 ≤ t ≤ T .

Lemma 2. µ1(t) = t/T, and, if 0 < ξ < η ≤ 1, µξ(t) < µη(t), 0 < t < T .
Proof. Let H(ξ, η) = S(0, η) \ S(T, ξ). Then G(T, ξ) ⊂ H(ξ, η), and G(T, η) ⊂

H(ξ, η). Let Λ′L be the left boundary arc of H(ξ, η), and let Λ′R be the right boundary
arc of G(T, η). Let ω̃(t, s) be the unique bounded continuous function on H(ξ, η)
which is harmonic in the interior of H(ξ, η), equals zero on Λ′L, and equals one on
ΛR. The harmonic function ω̃−ωξ in G(T, ξ) has value zero on ΛR, is nonnegative on
ΛL and hence must be strictly positive in the interior of G(T, ξ). Therefore µξ(t) <
ω̃(t, 0), 0 < t < T . A similar argument, applied to the harmonic function ωη − ω̃ in
G(T, η), shows that µη(t) > ω̃(t, 0), 0 < t < T . Finally, if ξ = 1, then G(T, 1) is the
vertical strip 0 ≤ Re τ ≤ T , and ω1(t, s) = t/T .

We now consider the evolution equation ut = −Au, t > 0, in a complex Ba-
nach space X with norm ‖ ‖, under the assumption that −A generates a bounded
holomorphic semigroup in an open sector Σφ in the complex τ = t + is plane. With
0 < απ/2 < φ ≤ π/2, let S(0, α), defined in (57), be a closed subsector of Σφ, and let
‖ e−τA ‖≤ Bα <∞, τ ∈ S(0, α). Introduce the equivalent norm ‖ ‖α on X defined
by

‖ x ‖α≡ sup
τ∈S(0,α)

‖ e−τAx ‖, x ∈ X.(58)

Then, as is easily verified,

‖ x ‖≤‖ x ‖α≤ Bα ‖ x ‖, x ∈ X, ‖ e−τA ‖α≤ 1, τ ∈ S(0, α).(59)

Theorem 6. Let X be a complex Banach space with norm ‖ ‖, let u(t) be
a solution of ut = −Au, 0 < t ≤ T , where −A generates a bounded holomorphic
semigroup on X. Then, with ‖ ‖α as in (58) and µα(t) as in Lemma 2,

‖ u(t) ‖α≤‖ u(0) ‖1−µα(t)
α ‖ u(T ) ‖µα(t)

α , 0 ≤ t ≤ T,(60)

and

‖ u(t) ‖≤ Bα ‖ u(0) ‖1−µα(t)‖ u(T ) ‖µα(t), 0 ≤ t ≤ T.(61)

Proof. Let l be a linear functional on X with |l|α = 1, where | |α denotes the norm
on X∗ corresponding to the norm ‖ ‖α on X. Let h(τ) = l(e−τAu(0)) for τ ∈ S(0, α).
We have that h(τ) is continuous and bounded on S(0, α), with |h(τ)| ≤‖ u(0) ‖α, and
h(τ) is holomorphic in the interior of S(0, α). The same is true for h(τ) in S(T, α),
with |h(τ)| ≤‖ u(T ) ‖α. This follows from e−τA = e−(τ−T )Ae−TA for τ ∈ S(T, α). Let
G(T, α) and ωα(t, s) be as defined above, and consider the function v(t, s) in G(T, α)
where

v(t, s) = log |h(τ)| − ωα(t, s) log ‖ u(T ) ‖α +(ωα(t, s)− 1) log ‖ u(0) ‖α .(62)

The function v(t, s) is upper semicontinuous and bounded above on G(T, α), subhar-
monic in the interior of G(T, α), and nonpositive on the left and right boundary arcs
of G(T, α). Therefore v(t, s) ≤ 0 on G(T, α). Using

‖ u(τ) ‖α= sup
l∈X∗, |l|α=1

|h(τ)|,(63)
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we obtain

‖ u(τ) ‖α≤‖ u(0) ‖1−ωα(τ)
α ‖ u(T ) ‖ωα(τ)

α , τ ∈ G(T, α),(64)

which implies, on using (59),

‖ u(τ) ‖≤ Bα ‖ u(0) ‖1−ωα(τ)‖ u(T ) ‖ωα(τ), τ ∈ G(T, α).(65)

Finally, (60), (61), follow from the above on putting τ = t.
Remark 2. The inequality (61) follows from (60) but not vice versa. From Lemma

2, we see that µα(t) is sublinear in t, and this sublinearity becomes more severe as α
becomes smaller. The choice of α depends on the spectrum of the spatial operator A.
Since −A generates a holomorphic semigroup in the open sector Σφ, the spectrum of
A must be contained in the closed sector Arg |z| ≤ β = π/2−φ in the right half-plane.
As β increases, φ, and hence α, must decrease. Theorem 6 does not yield the explicit
dependence of µα(t) on t, which is necessary for applying the SECB constraint. The
next result is more useful in that regard.

Theorem 7. With u(t) and α as in Theorem 6, let 0 < σ < α < 1, and let

λ = inf0≤θ≤π/2 {cosσθ [1− tanσθ/ tan(απ/2)] /(cos θ)σ},

ρσ(t) = (λt/T )1/σ, 0 ≤ t ≤ T.
(66)

Then,

‖ u(t) ‖α≤‖ u(0) ‖1−ρσ(t)
α ‖ u(T ) ‖ρσ(t)

α , 0 ≤ t ≤ T,(67)

and

‖ u(t) ‖≤ Bα ‖ u(0) ‖1−ρσ(t)‖ u(T ) ‖ρσ(t), 0 ≤ t ≤ T.(68)

Proof. Note that λ in (66) satisfies 0 < λ < 1 and may be found graphically
given α and σ. Let Y > 0, let l be a linear functional on X with |l|α = 1, and let
h(τ) = l(e−τAu(0)) for τ ∈ S(0, α). As in Theorem 6, h(τ) is continuous and bounded
on S(0, α) (resp., S(Y, α)) and holomorphic in its interior, with |h(τ)| ≤‖ u(0) ‖α,
(resp., |h(τ)| ≤‖ u(Y ) ‖α). Let 0 < σ < α, let V be the vertical strip 0 ≤ Re τ ≤ Y ,
and consider the function ψ(τ) = h(τσ) for τ ∈ V . We have that ψ(τ) is continuous
and bounded on V , holomorphic in its interior, with |ψ(τ)| ≤‖ u(0) ‖α. A more
precise estimate for |ψ(τ)| on the line Re τ = Y will now be obtained. We first show
that with λ as in (66),

Re τ = Y =⇒ τσ ∈ S(λY σ, α).(69)

Indeed, with τ = Y + is = reiθ, 0 ≤ |θ| < π/2, we have τσ = rσ(cosσθ + i sinσθ),
and Y = r cos θ. Therefore, τσ ∈ S(λY σ, α) if and only if

rσ| sinσθ| ≤ {rσ cosσθ − λ(r cos θ)σ} tan(απ/2), 0 ≤ |θ| < π/2,(70)

i.e., if and only if ∀ 0 ≤ θ < π/2, we have

λ ≤ cosσθ {1− tanσθ/ tan(απ/2)} /(cos θ)σ.(71)
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But this is guaranteed from the definition of λ. It follows that

|ψ(τ)| ≤‖ u(0) ‖α, Re τ = 0, |ψ(τ)| ≤‖ u(λY σ) ‖α, Re τ = Y.(72)

We may now apply the “three lines theorem,” [27, p. 244], to ψ(τ) in the strip V and
conclude that

|ψ(y)| ≤‖ u(0) ‖1−y/Yα ‖ u(λY σ) ‖y/Yα , 0 ≤ y ≤ Y.(73)

Using (63), we obtain

‖ u(yσ) ‖α≤‖ u(0) ‖1−y/Yα ‖ u(λY σ) ‖y/Yα , 0 ≤ y ≤ Y.(74)

Putting t = yσ, T = λY σ, ρσ(t) = (λt/T )1/σ in (74) gives

‖ u(t) ‖α≤‖ u(0) ‖1−ρσ(t)
α ‖ u(T ) ‖ρσ(t)

α , 0 ≤ t ≤ T/λ.(75)

Since T/λ > T , (75) implies (67) which implies (68).
Remark 3. When X is a Hilbert space, ρσ(t) in (66) may be viewed as expressing

the penalty for non-self-adjointness in the spatial operator A. When A is self-adjoint,
we have ρ(t) = t/T . If the spectrum of A leaves the nonnegative real axis and expands
into the sector Arg |z| ≤ π/2− φ, ρσ(t) decays to zero faster than t/T, through the
exponent 1/σ. It is remarkable that (66) actually holds in any complex Banach space
X. The next theorem summarizes the main results of this section.

theorem 8 (corollary). Let X be a complex Banach space with norm ‖ ‖. Let
−A generate a holomorphic semigroup e−τA on X, satisfying ‖ e−τA ‖≤ Bα < ∞,
in a closed sector |Arg τ | ≤ απ/2 of the complex τ = t + is plane, for suitable α
with 0 < α < 1. Let ‖ ‖α be the equivalent norm on X defined in (58), (59).
Let 0 < σ < α, and let λ and ρσ(t) be as in (66). For given ε,M, with ε < M ,
let f ∈ X be given data at time T > 0, and let ui(t), i = 1, 2, be two solutions of
ut = −Au + g(t), 0 < t ≤ T , with ‖ ui(T ) − f ‖≤ ε/Bα, and ‖ ui(0) ‖≤ M/Bα.
Finally, let w(t) = u1(t)− u2(t). Then

‖ w(t) ‖≤‖ w(t) ‖α≤ 2M1−ρσ(t)ερσ(t), 0 ≤ t ≤ T.(76)

If, in addition, ‖ ui(s) − ui(0) ‖≤ Kε/Bα, i = 1, 2, with known K, 0 < K < M/ε,
and known s > 0 such that ρσ(s) > µ∗, where µ∗ is defined in (8), then

‖ w(t) ‖≤‖ w(t) ‖α≤ 2Γ1−ρσ(t)ε, 0 ≤ t ≤ T,(77)

where Γ < M/ε is the unique root of x −K − x1−ρσ(s) = 0. Moreover, Γ � M/ε if
ρσ(s)� µ∗.

Proof. From (59), we have ‖ w(0) ‖α≤ 2M, ‖ w(T ) ‖α≤ 2ε. Hence, (76) follows
from (67). Likewise, ‖ w(s) − w(0) ‖α≤ 2Kε. Applying Theorem 1 with the ‖ ‖α
norm on X, we obtain (77) from (67).

8. An example. In the Navier–Stokes equations, where the Hölder exponent
µ(t) in (41) depends on 1/ν, it is not known whether or not there can be equality
in the Knops–Payne inequality (42). However, the following example demonstrates
that rapid exponential decay in µ(t) can be realized in quite simple problems. With
positive constants a, c, Q, consider the 1-D parabolic initial value problem in L2(0, π),

ut = aectuxx, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(x, 0) = Q sinmx, 0 ≤ x ≤ π.
(78)
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The unique solution of (78) is

u(x, t) = Q e−am
2(ect−1)/c sinmx, t ≥ 0.(79)

Moreover, u(x, t) satisfies

‖ u(t) ‖=‖ u(0) ‖1−µ(t)‖ u(T ) ‖µ(t), 0 ≤ t ≤ T,(80)

where µ(t) = {ect− 1}{ecT − 1}−1 and ‖ ‖ is the norm on L2(0, π). This shows that
Theorem 3 is sharp. By choosing c > 0 sufficiently large in (78), we can expect to
simulate some of the difficulties that would attend backwards in time continuation in
the Navier–Stokes equations.

Let a = 2× 10−5, let c = 10, and, for any positive integer m, let

gm(t) = e−am
2(ect−1)/c, t ≥ 0.(81)

Let p =
√

2/π. With M = 10, and ε = 2× 10−7, consider the initial data

u(x, 0) = p
√

(1− ε2)/2 M sin 2x+ p

∞∑
n=1

b2n+1 sin(2n+ 1)x,(82)

where

∞∑
n=1

b22n+1 = ε2M2/2,
∞∑
n=1

nqb22n+1 =∞ ∀ q > 0.(83)

Thus, u(x, 0) is an L2 function on (0, π) which is not in Hq(0, π) for any q > 0, and
‖ u(0) ‖= M/

√
2. We may think of the second term in (82) as representing highly

localized, nondifferentiable singularities that are superimposed onto the first term.
With these initial data in (78), the unique solution is

u(x, t) = p
√

(1− ε2)/2 Mg2(t) sin 2x+ p
∞∑
n=1

b2n+1 g2n+1(t) sin(2n+ 1)x.(84)

Given an a priori L2 bound for u(x, t) at t = 0, consider recovering the solution (84)
on 0 ≤ t < 1, from approximate data f(x) at t = 1, with ‖ u(1)− f ‖≤ ε. Let

‖ u(0) ‖≤M = 10(85)

be this prescribed bound, and let the data f(x) at t = 1 be given by

f(x) = u(x, 1) + p(M/
√

2) g20(1) sin 20x.(86)

Then

‖ u(1)− f ‖= (M/
√

2)g20(1) = 1.574× 10−7 < ε,

‖ u(1)− f ‖ / ‖ u(1) ‖< g20(1){√1− ε2 g2(1)}−1 = 2.66× 10−8.

(87)

Evidently, the given data f(x) approximates u(x, 1) extremely closely in both absolute
and relative terms. However, if v(x, t) is the function

v(x, t) = u(x, t) + p(M/
√

2) g20(t) sin 20x, 0 ≤ t ≤ 1,(88)
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then v(x, 1) = f(x), v(x, t) is a solution, and, since ‖ v(0) ‖= M , v(x, t) is an equally
valid continuation. Noteworthy is the substantial qualitative difference between u(x, t)
and v(x, t), which emerges as early as t = 1/2, as continuation unfolds backwards from
t = 1. While g2(1) = 0.8384 and g20(1) = 2.226 × 10−8, we find g2(1/2) = 0.9988
and g20(1/2) = 0.8888. Consequently, while the primary component in u(x, t) is
the large amplitude sin 2x oscillation for 0 ≤ t ≤ 1, the sin 2x and sin 20x terms have
approximately equal amplitudes in v(x, t), for 0 ≤ t ≤ 1/2. Clearly, Hölder-continuous
data dependence is simply too weak to distinguish u(x, t) from v(x, t) in this example,
even though ‖ u(1/2)− v(1/2) ‖= 6.285 is roughly the same size as ‖ u(0 ‖.

We shall show that an SECB constraint can easily distinguish between u(x, t) and
v(x, t), although neither function is differentiable in x at t = 0. Indeed, with K = 35
and s = 0.01, we find

‖ u(s)− u(0) ‖2 = (1− ε2)(M2/2)(1− g2(s))2 +
∞∑
n=1

b22n+1 (1− g2n+1(s))2,

≤ (1− ε2)(M2/2)(1− g2(s))2 + ε2M2/2,

= (6.115× 10−6)2 < K2 ε2.(89)

On the other hand, with s = 0.01,

‖ v(s)− v(0) ‖2 = ‖ u(s)− u(0) ‖2 +(M2/2)(1− g20(s))2,

> (M2/2)(1− g20(s))2 = (5.949× 10−4)2,

> (2974)2 ε2.(90)

Therefore, the SECB constraint

‖ u(0.01)− u(0) ‖≤ 35 ε(91)

eliminates v(x, t) in (88) as a possible continuation, while allowing u(x, t) in (84).
Here, µ(s)/µ∗ = 121, Γ = 554, 235, and M/ε = 90Γ. It follows from Theorem 1 and
(80) that if u1(x, t) is any other continuation satisfying (91), then ‖ u(t) − u1(t) ‖
≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ 1. Hence, ‖ u(1/2) − u1(1/2) ‖≤ 0.203, and ‖ u(0) − u1(0) ‖
≤ 0.222. Since ‖ u(1/2) ‖> {(1 − ε2)/2}1/2 Mg2(1/2) = 7.063, and ‖ u(0) ‖= 7.071,
the maximum L2 relative errors in approximating u(x, t) at t = 1/2 and at t = 0,
are, respectively, 2.87% and 3.14%. Without the SECB constraint (91), these relative
errors are, respectively, 251% and 283%.
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Abstract. We study the Riemann problem for isothermal flow of a gas in a thin pipe with a
kink in it. This is modeled by a 2 × 2 system of conservation laws with Dirac measure sink term
concentrated at the location of the bends in the pipe. We show that the Riemann problem for this
system of equations always has a unique solution, given an extra condition relating the speeds on
both sides of the kink. Furthermore, we study the related problem where the flow is perturbed by
a continuous addition of momentum at distinct points. Under certain conditions we show that this
Riemann problem also has a unique solution.

Key words. Riemann problem, isothermal gas dynamics, nonlinear resonance
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0. Introduction. We consider the flow of an isothermal gas in a (infinitely)
long, thin pipe of constant cross section. If the walls of the pipe have no effect on the
flow, and the pipe is straight, this can be modeled by the system of conservation laws
[15, p. 56]

ρt + (ρv)x = 0, (ρv)t + (ρv2 + ρ)x = 0.(0.1)

Here, ρ(x, t) denotes the density of the gas, and v(x, t) the velocity. The position
along the pipe is described by the coordinate x, and t denotes the time variable.
These equations describe the conservation of mass and momentum, respectively.

We here discuss the isothermal case rather than the more general case of poly-
tropic gas modeled by replacing the second equation in (0.1) by (ρv)t+(ρv2 +κργ)x =
0. This equation yields more unwieldy calculations, and thus we focus on the isother-
mal case here.

In this paper we discuss the situation where the pipe is not straight but has one
or several kinks in it. In between these kinks the pipe is straight. Hence the pipe can
be described by a polygonal curve, and we ignore gravity. As in the model without
kinks, we let ρ(x, t) denote the density of the gas, and v(x, t) its velocity. We now
let x be the arc-length parameter along the pipe, or rather the curve describing the
pipe. Away from the kinks, conservation of mass and momentum is given by (0.1). It
remains to determine the equations holding at the kinks.

Since the cross section of the pipe is assumed to be constant on each side of a
kink, conservation of mass reads, as before,

ρt + (ρv)x = 0.(0.2)

In general, we cannot assume that ρ and v are continuous at the location of the kink.
Since a kink is always located at the same x, which for simplicity we assume to be at
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θ

Fig. 1. The kink.

x = 0, discontinuities at kinks must satisfy a Rankine–Hugoniot condition where the
speed of the discontinuity is zero. Hence, from (0.2) we obtain

0 = 0 (ρl − ρr) = (ρv)l − (ρv)r,

where we have used the notation fl,r = limx→0∓ f(x). Therefore the product ρv is
continuous across kinks. To derive the momentum balance, we again consider a kink
located at x = 0; the angle of the kink is given by θ (see Figure 1). Since the velocity
of the gas is assumed to be parallel to the pipe (except at the kinks), we have

vl = vl(1, 0), vr = vr(cos θ, sin θ).

Consequently, the change in momentum introduced by the kink is given by

ρrvr − ρlvl = ρv(cos θ − 1, sin θ).

Therefore, the kink will act as a momentum sink, with a magnitude given by

|ρrvr − ρlvl| = ρv
√

2(1− cos θ).(0.3)

To compensate for the complicated and probably genuinely two-dimensional behavior
at the kink, we introduce a multiplicative empirical factor f ∈ [0, 1]. This factor has
dimension length(time)−1 and is assumed to depend on the properties of the pipe and
the gas. For simplicity, we will assume that the pipe is homogeneous, such that f is
not dependent on location. Hence, we then arrive at the following model:

ρt + (ρv)x = 0,

(ρv)t +
(
ρv2 + ρ

)
x

= −f
∑
i

kiδxiρv,
(0.4)

where δxi is the Dirac measure located at the position xi of the ith kink and ki is
given by the angle of this kink θi as

ki =
√

2 (1− cos θi).

In order to examine one simple consequence of the model (0.4), we imagine a
closed piecewise linear pipe approximating a circle of radius r. Assume that we have
n equally spaced kinks, each of an angle θ = 2π/n. We are interested in what happens
for large n; then

ki =
√

2(1− cos (2π/n)) ≈ 2π

n
.
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Also, the distance between adjacent kinks ∆x = xi − xi−1 ≈ r2π/n. Therefore

n∑
i

ρvkiδxi ≈
n∑
i

ρv
∆x

r
⇀

ρ(x, t)v(x, t)

r
,

where ⇀ denotes weak convergence. Hence, for a smooth pipe, conservation of mo-
mentum is expressed by

(ρv)t +
(
ρv2 + ρ

)
x

= −ρvfκ(x),(0.5)

with κ(x) denoting the curvature of the pipe at x and f(x) the local empirical bending
factor at x.

In our model (0.4) ki ∈ 〈0, 2〉. Mathematically, however, one can study the model
for any value of ki. For ki nonnegative we find that (0.4) has a unique solution if ki
is less than 4. In our discussion we are mostly concerned with ki =

√
2 (1− cos θi).

When one continuously adds momentum to the gas at distinct points xi, we
obtain the model (0.4) with ki negative. The quantity |fki| is proportional to the
added momentum. For ki ≥ 2(1 − √2) the equation has a unique solution with the
appropriate entropy condition. This case is studied mutatis mutandis in section 3.

The model (0.4) also arises as a model for the boundary behavior in an important
two-dimensional system of conservation laws. Consider the two-dimensional version
of (0.1),

ρt + (ρv)x + (ρu)y = 0,

(ρv)t +
(
ρv2 + ρ

)
x

+ (ρvu)y = 0,

(ρu)t + (ρvu)x +
(
ρu2 + ρ

)
y

= 0.

(0.6)

Here, v and u denote the velocity in the x and y direction, respectively. Let p(x)
denote the function

p(x) =

{
0 for x < 0,

x tan θ for x ≥ 0,

and let Ω denote the set

{(x, y) | y > p(x)}.
Then consider (0.6) in Ω with the boundary condition that the velocity is parallel to
∂Ω at ∂Ω. This system models the isothermal flow across a ramp in two dimensions.
If one imposes the initial condition

(ρ, u, v)(x, 0) =

{
(ρl, ul, vl) for x < 0,

(ρr, ur, vr) for x ≥ 0,

the solution along the boundary will be given by the solution of the Riemann problem
considered here, (1.10). As an application, one could envision using the solution
computed in this paper as input at the boundary in a numerical scheme for solving
(0.6).

The model (0.5) is an example of a system of conservation laws with source,
sometimes referred to as balance equations. The general form of such equations is

wt + f(w)x = g(x,w),(0.7)
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where w = w(x, t) is in Rn, and consequently f is a mapping Rn → Rn and g is a
mapping R × Rn → Rn. Balance equations of this form are used to model a variety
of situations. One system of equations, which is somewhat related to the model
presented here, is a quasi-one-dimensional model for gas flow in a variable area duct.
This model reads

ρt + (ρv)x = −a
′(x)

a(x)
ρv,

(ρv)t +
(
ρv2 + p(v)

)
x

= −a
′(x)

a(x)
ρv2,

(ρE)t + (ρEv + p(v)v)x = −a
′(x)

a(x)
(ρEv + p(v)v) ,

(0.8)

where ρ and v are as before, and p(v) denotes the pressure and E the total energy
of the gas. The cross sectional area of the duct is denoted by a(x). This model (0.8)
has been analyzed by Liu in [4, 5, 7, 8]. A scalar version was analyzed by Greenberg
et al. [3]. A discussion of multiple steady states in the context of one-dimensional
transonic flow can be found in [1]. If the source term g is smooth and bounded, and if
the eigenvalues of the Jacobian df are real, distinct, and different from zero, existence
of a global (in t) solution was obtained in [4] by a generalization of Glimm’s method,
and uniqueness and stability were proved by Crasta and Piccoli [6] in the 2× 2 case.
A numerical method for such systems was analyzed by Glaister [2]. If, however, the
eigenvalues may take the value zero, (0.7) is a so-called resonant hyperbolic system.
This is the case for the system (0.8), as well as for the system discussed in this paper.
Chen and Glimm [11] proved existence of global solutions of the system consisting of
the first two equations in (0.8) with a smoothly varying cross section.

The wave structure for resonant hyperbolic systems may be surprisingly compli-
cated; see Isaacson and Temple [12], as well as the above-mentioned works by Liu.

If the cross sectional area of the duct in (0.8) is piecewise constant, the source
term becomes a point source similar to the source in (0.4). The Riemann problem for
(0.8) with a piecewise constant a was analyzed by Marchesin and Paes-Leme in [9].

In addition, we mention that systems of equations exhibiting nonlinear resonance
also occur in models of two- and three-phase flow in porous media; see [10] and [13].

1. The Riemann problem. We consider the following system of equations:

ρt + (ρv)x = 0,

(ρv)t +
(
ρv2 + ρ

)
x

= −
∑
i

fikiδxiρv,

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x),

(1.1)

where the unknowns ρ and v are functions of x and t. The effects of the bends in the
pipe are expressed by the term kiδxiρv, where δxi denotes the unit point mass located
at xi and ki is given by

ki = k(θi) =
√

2 (1− cos (θi)) ,(1.2)

where θi is the angle of the bend located at xi. Even in the absence of source terms,
(1.1) generally develops discontinuities, so we seek weak solutions. By definition these
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satisfy

∫∫
ρϕt + ρvϕx dxdt+

∫
ρ0(x)ϕ(x, 0) dx = 0,∫∫

ρvϕt +
(
ρv2 + ρ

)
ϕx dxdt+

∫
ρ0(x)v0(x)ϕ(x, 0) dx =∫ ∑

i

fikiϕ (xi, t) ρ (xi, t) v (xi, t) dt.

(1.3)

If there are no source terms, (1.1) is a strictly hyperbolic conservation law, with
eigenvalues

λ1 = v − 1 and λ2 = v + 1.(1.4)

The corresponding eigenvectors are

e1 = (1, v − 1) and e2 = (1, v + 1).(1.5)

When solving the Riemann problem we are interested in those states (ρ, v) that
can be joined to a given state (ρ0, v0) by a simple wave, i.e., either a shock wave or a
rarefaction wave. The shock waves satisfy the Lax entropy condition. For a definition
of these concepts, see [14, 15]. Through each (ρ0, v0) there are two curves, C1 (ρ0, v0)
and C2 (ρ0, v0), of such states. If (ρ, v) is on C1 (ρ0, v0), then the initial value problem

ρt + (ρv)x = 0,

(ρv)t +
(
ρv2 + ρ

)
x

= 0,

ρ(x, 0) =

{
ρ0 for x < 0,

ρ for x > 0,
v(x, 0) =

{
v0 for x < 0,

v for x > 0

(1.6)

is solved by a slow wave (also denoted as a one-wave). This wave is a (one-)shock
wave if ρ > ρ0 and a (one-)rarefaction wave if ρ < ρ0. The curve C1 is given by the
following expression [15, pp. 71ff and p. 84f ]:

C1 : v1 (ρ; ρ0, v0) =

v0 − ln
(
ρ
ρ0

)
for ρ < ρ0,

v0 − ρ−ρ0√
ρρ0

for ρ > ρ0.
(1.7)

Similarly, if (ρ, v) is on C2 (ρ0, v0), then the initial value problem (1.6) is solved by
either a two-shock wave or a two-rarefaction wave. The curve C2 is given by [15, pp.
71ff and p. 84f ]

C2 : v2 (ρ; ρ0, v0) =

v0 + ρ−ρ0√
ρρ0

for ρ < ρ0,

v0 + ln
(
ρ
ρ0

)
for ρ > ρ0,

(1.8)

with two-shock waves corresponding to ρ < ρ0 and two-rarefaction waves correspond-
ing to ρ > ρ0. Whenever convenient we will denote the shock and rarefaction part
of Ci by Si and Ri, respectively. Furthermore, when we consider the right state
R as fixed, we denote the corresponding wave curves by C−i , etc. Note that C1
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is given by a decreasing convex function of v1(ρ), such that limρ→0+ v1 = ∞ and
limρ→∞ v1 = −∞, and that C2 is given by an increasing concave function v2(ρ), such
that limρ→0+ v2 = −∞ and limρ→∞ v2 = −∞. If the source terms in (1.1) are absent,
the unique solution of the Riemann problem is ensured.

The speed of shock waves is given by the Rankine–Hugoniot condition and may
be computed from the first equation in (1.1):

sj =
ρvj − ρ0v0

ρ− ρ0
= v0 + (−1)j

√
ρ

ρ0
= vj + (−1)j

√
ρ0

ρ
.(1.9)

Note that both shock speeds and the speed of rarefaction waves can be both positive
and negative. In our construction of the solution of the Riemann problem we will
need certain points on the shock curves. If (ρ, v) is a given state, we denote the point
on the shock curve that can be connected with a shock of zero speed by Z(ρ, v). From
expressions (1.7)–(1.9) we find that

Z(ρ, v) =

(
ρv2,

1

v

)
;

for one-shocks it is defined for v ≥ 1, while for two-shocks it is defined for v ∈ [−1, 0〉.
Furthermore, we will need the intersection of C1(L) and the line v = −1, and we

denote by L̂ the unique point in C1(L) ∩ {v = −1}. In addition, we let L̃ denote the
unique intersection of C1(L) and the line v = v−c (see (2.4)).

The Riemann problem for (1.1) is the initial value problem

ρt + (ρv)x = 0,

(ρv)t +
(
ρv2 + ρ

)
x

= −kδ0ρv,

ρ(x, 0) =

{
ρL for x < 0,

ρR for x > 0,
v(x, 0) =

{
vL for x < 0,

vR for x > 0,

(1.10)

where we have absorbed the empirical factor f in the geometric factor k. We study
two distinct but related cases; k positive (where θ = arccos(1−k2/2) denotes the angle
of the kink) and k negative. In both cases, |k| ≤ 2. We seek self-similar solutions to
(1.10); that is, ρ = ρ (x/t) and v = v (x/t). Away from the point x = 0, we can use
the curves C1 and C2 to connect states (ρ, v). We label such connections C-waves.
At the point x = 0, we will in general have a discontinuity. This discontinuity will
satisfy the Rankine–Hugoniot conditions

[[ρv]] = 0, [[ρv2 + ρ]] = −kρv,(1.11)

where by [[φ]] we denote the jump in φ, i.e., [[φ]] = φr−φl. (Recall that the momentum
ρv is continuous across the kink.) Given (ρl, vl), the last equation in (1.11) can be
solved for vr, giving

vr := g± (vl) :=
1

2vl

(
α (vl)±

√
α2 (vl)− 4v2

l

)
,(1.12)

where

α(v) = v2 − kv + 1.(1.13)
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We can now use the first equation in (1.11) to calculate ρr,

ρr := ρlf± (vl) := ρl
vl

g± (vl)
.(1.14)

For any point (ρl, vl) we therefore have two candidates for (ρr, vr). In order to choose
between these we impose the extra condition

dvr
dvl
≥ 0;(1.15)

an increase in velocity of the gas coming into the kink should result in an increase in
outgoing velocity. We will use the same criterion for k negative. The choice (1.15)
selects a branch of g± and hence of f±. The remaining discussion will depend on the
properties of this function determined by the sign of k.

2. The Riemann problem for flow through a kink. We will need detailed
properties of the function g± which satisfies

vg2 − α(v)g + v = 0, g = g±,(2.1)

and this implies that the solution satisfies

v = −g(−g(v)).(2.2)

The two solutions fulfill

g±(v) = g±(1/v), g+(v)g−(v) = 1.(2.3)

Define

v+
c = −g+(−1), v−c = −g−(−1).(2.4)

We have that v−c ≤ 1 ≤ v+
c , equality holding only if k = 0. The symmetry (2.2)

implies that g±(v±c ) = 1. Furthermore,

g′+(v) ≥ 0 for v ≤ −1 and for v ≥ v+
c ,

g′−(v) ≥ 0 for v ∈ [−1, v−c
]
.

In Figure 2 below we show g± and f± for k = 0.5.
This means that for vl ∈ 〈−∞,−1] ∪ [v+

c ,∞〉, we choose the plus sign in (1.12)
and (1.14), while for v ∈ [−1, v−c ], we choose the minus sign. There are no solutions
in the region 〈v−c , v+

c 〉. In the figure this choice is indicated by solid lines. Therefore
let the mapping K be given by

K(ρ, v) =

{
(ρf+(v), g+(v)) for v ≤ −1 and for v ≥ v+

c ,

(ρf−(v), g−(v)) for v ∈ [−1, v−c ].
(2.5)

In the following we use the term “K-wave,” meaning the mapping K. An important
property of the K mapping is that it commutes with the stationary shocks.

Lemma 2.1. The K mapping commutes with Z, i.e., Z(K(ρ, v)) = K(Z(ρ, v))
whenever the two mappings are defined.
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Fig. 2. The functions g± (left) and f± (right) for k = 0.5.

Proof. Let (ρ, v) be a point with v ≥ v+
c . We then compute

Z (K (ρ, v)) = Z (ρvg+ (v) , g− (v))

=

(
ρvg+ (v) g2

− (v) ,
1

g− (v)

)
= (ρvg− (v) , g+ (v))

and

K (Z (ρ, v)) = K

(
ρv2,

1

v

)
=

(
ρv2 1

v
g−

(
1

v

)
, g+

(
1

v

))
= (ρvg− (v) , g+ (v))

= Z (K (ρ, v)) .

The case for fast waves is similar.
So when solving the Riemann problem we have three waves at our disposal: C1-

waves, C2-waves, and K-waves. The K-waves always have zero speed, and the C-
waves can have both positive and negative speed. The solution has to contain a
K-wave to bring us from one part of the pipe to the other. This means that a priori
the solution may consist of up to five different waves: C1C2KC1C2. However, the
following lemma limits this to four.

Lemma 2.2. The wave configuration . . . C2KC1 . . . is impossible.
Proof. The smallest speed of the right edge of any C2-wave with a right state

(ρl, vl) is vl + 1, and the largest speed of the left edge of a C1-wave with a left state
(ρr, vr) is vl − 1. Therefore we have the inequalities

vl + 1 ≤ 0 ≤ vr − 1,

which means that vl ≤ −1 and vr ≥ 1. Since ρv is constant across K-waves, there
can be no K-wave connecting (ρl, vl) and (ρr, vr).

Consequently, we are left with the four possible wave configurations to solve the
Riemann problem:

C1KC1C2, C1KC2, C1C2KC2, and KC1C2.
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When solving the Riemann problem, we use the strategy that for each fixed left
state L = (ρL, vL) we construct waves with increasing speed until we reach the right
state R. In this way we partition the (ρ, v) plane into regions such that for each
R = (ρR, vR) in a region, the wave structure of the solution is constant. Hence, we
may have a C1C2KC2 region, a C1KC2 region, etc. States to the left of the K-wave
are denoted by l and states to the right are denoted by r.

It turns out that there are two cases: vL > v+
c and vL ≤ v+

c .

Case 1. vL > v+
c . Consider first a right state R near L. The waves in a neigh-

borhood of L all have positive speed, and hence we have to start with a K-wave. Let
r1 = (ρr1 , vr1) = K (L). Then vr1 ∈ [1, vL]. We now construct wave curves C1 (r1)
and C2 (r1). For r2 ∈ R1 (r1) wave speeds are all positive, and we may continue with
a fast wave C2 (r2) to reach a right state R, viz. R ∈ C2 (r2). If, however, r2 ∈ C1 (r1),
the shock speed is positive only down to the point Z (r1), which by Lemma 2.1 equals
K(Z(L)). Thus for each r2 = (ρr2 , vr2) with vr2 ∈ [1/vr1 , vr1 ], we may continue with
a fast wave to a right state R ∈ C2 (r2). In this way we fill the region denoted by
KC1C2 above the curve C2(K(Z(L))). To prove uniqueness, consider a right state R
in this region. The Riemann problem with left state K(L) and right state R has a
unique solution by standard techniques, and hence the only alternative would be to
start from the right with a K-wave to the state K−1(R), which, however, is in the
region with only waves with positive speed and hence is impossible.

Consider now a point l1 on S1(L) between Z(L) and L̂. L connects to l1 with
a slow shock with negative speed. For each such state l1, we may continue with a
K-wave to a state r1 = K (l1). At the state L̂ the K-map ceases to be continuous,
and the wave structure will be different. Fast rarefaction waves from r2 will all have
positive speed and may be used in the construction to reach a right state R ∈ R2 (r2).
For fast shock waves emanating from r1 with positive vr1 , the shock speed remains
positive (the Z map is not defined), and hence R may be any point on S2 (r1). If,
however, r1 is between v = 0 and v = −v−c , the shocks on C2 (r1) have positive speed
down to Z (r1), and only states R above this point can be reached with this wave
structure. Let c denote the part of S1(L) between v = 0 and v = −v−c , and let
κ = K(c), and finally ζ = Z(K(c)). We then find that the solution reads C1KC2 in
the region bounded from above by C2(K(Z(L))) and bounded from below by ζ and

C2(K(L̂)), the two latter curves starting from Z(K(L̂)). To prove uniqueness we first

define c̃ as the part of C1(L) between Z(L) and L̂, and subsequently κ̃ = Z(c̃). First
we have to prove that the curve κ̃ is transversal to C2 curves starting from κ̃. This
is the content of Lemma A.1 in the appendix. Furthermore, let R be above ζ. The
only alternative to the given solution would be to connect the states K−1(R) and R
instead of using a fast shock. As K−1 is monotone in the v variable, K−1(R) will be
above K−1(ζ) = Z(c). But then the state K−1(R) can be reached only with shocks
with positive speed, making it impossible to end with a K-wave.

Consider now a right state R in the region denoted C1C2K, i.e., below the curves
ζ and v = −v+

c . Let l2 = K−1(R). Then vl2 ≤ −1. The curves C−2 (l2) and S1(L)
intersect uniquely at a point l1. If l2 (yes, l2) is below S1(L), the states l1 and l2 will
connect using a rarefaction wave with negative speed, as vl2 ≤ −1. If, on the other
hand, l2 is below S1(L), we will use a fast shock wave to connect l1 with l2. As R is
below ζ and the map K−1 is monotone in the v variable, l2 = K−1(R) also will be
below K−1(ζ) = Z(c) using Lemma 2.1, and the shock will have negative speed as
required. In this way we solve the Riemann problem in the region C1C2K.

Finally, the region C1C2KC2 is bounded from above by the curve C2(K(L̂)) and
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by the line v = −v+
c from below, both curves emanating from Z(K(L̂)). Let R be

in this region. Assume R is such that vR ≥ −v−c . Then we let r = (ρr,−v−c ) be the
unique point such that R ∈ R2(r), and subsequently l2 = K−1(r) = (ρl2 ,−1). There
is a unique state l1 on S1(L) such that l2 ∈ R2(l1). Thus the solution consists of the
following waves: The left state L is connected to state l1 using a slow shock wave
(with negative speed), followed by a fast rarefaction wave (with nonpositive speed)
up to the state l2 on the line v = −1. This state is connected with a K-wave to the
state r. Finally, we use a fast wave to connect to R. If R has vR less than −v−c ,
we start by using a fast shock with positive speed from r = (ρr,−v−c ) down to R,
i.e., R ∈ S2(r). The remaining part of the solution is the same. For the uniqueness
question, consider first the case with vR > −v−c . Any waves connecting to K−1(R)
would have positive speed, which would make it impossible to connect K−1(R) and R
with a stationary K-wave. If vR is between −v+

c and −v−c , we cannot apply K−1(R),
and all fast waves have negative speed in that region, making it impossible to construct
a different solution.

Case 2. vL ≤ v+
c . If vL ≤ v+

c , we can connect to the state l1 = L̃ on the
intersection C1(L)∩{v = v−c } with a wave of nonpositive speed. (If vL < v−c the wave
is a rarefaction wave, and if vL > v−c it will be a shock wave.) l1 can be connected
to the state r1 = K(l1) with a K-wave. The slow rarefaction wave starting from
r1 will have nonnegative speed, and hence we may use fast waves from any point
r2 ∈ R1(r1) to reach a right state R ∈ C2(r2). In this way we fill the region above the

curve C2(K(L̃)) with a solution of the form C1KC1C2. The remaining part of the
construction is similar to that of Case 1.

The curves separating the various regions are illustrated in Figures 3 (Case 1)
and 4 (Case 2). An illustration of solution curves in all cases is given in Figure 5: the
left column for Case 1 and the right column for Case 2.

Hence we have proven the following result.
Theorem 2.3. Let 0 ≤ k < 2. Then the Riemann problem

ρt + (ρv)x = 0,

(ρv)t +
(
ρv2 + ρ

)
x

= −kδ0ρv,

ρ(x, 0) =

{
ρL for x < 0,

ρR for x > 0,
v(x, 0) =

{
vL for x < 0,

vR for x > 0

(2.6)

has a unique solution in the class of combinations of Lax shocks, rarefaction waves,
and K-waves for any left state (ρL, vL) and right state (ρR, vR) with positive densities
ρL and ρR given by the above construction.

3. The Riemann problem for addition of momentum. The general struc-
ture of the argument is identical to that used in the case with k positive. However,
the properties of the function g± and f± are different in the two cases (cf. Figure 2
and Figure 6), and a separate discussion is required. To keep the presentation short,
we give the details only where they are different from those of the previous section.
Define

v±c = g±(1), v−c ≤ 1 ≤ v+
c .

The symmetry properties of g± imply that g±(−v±c ) = −1. Furthermore, we have
that

dg+(v)

dv
≥ 0 for v ∈ 〈−∞,−v+

c ] ∪ [1,∞〉
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Fig. 3. The solution to the Riemann problem where vL ≥ v+
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Fig. 4. The solution to the Riemann problem where vL ≤ v+
c .

and
dg−(v)

dv
≥ 0 for v ∈ [−v+

c , 1],

and hence the K-wave reads
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Fig. 5. The solution in phase space in all subcases: vL ≥ v+
c right, vL ≤ v+

c left.

K(ρ, v) =

{
(ρf+(v), g+(v)) for v ≤ −v+

c and for v ≥ 1,

(ρf−(v), g−(v)) for v ∈ [−v−c , 1].
(3.1)

The Z map (defined as before) and the K-map still commute, i.e., Lemma 2.1 remains

valid. As designated points on the slow wave curve, it is convenient to define L̂ as
the unique intersection of C1(L) and {v = −v−c }, and L̃ as the unique intersection
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Fig. 6. The functions g± (left) and f± (right) for k = −.5.

between C1(L) and {v = 1}.
The general strategy for the construction of the solution of the Riemann problem

is independent of the sign of k. Lemma 2.2 still reduces the number of possible wave
combinations to four. As in the previous case, the analysis requires two distinct
subcases; vL > 1 and vL ≤ 1.

Case 1. vL > 1. Waves in the neighborhood of L all have positive speed and we
start with a K-wave to the state r1 = K(L). From the state r1 we construct fast
wave curves C1(r1) and C2(r1), which are all permissible except states on the slow
shock below Z(r1) = K(Z(L)). This results in a wave structure of the solution given
by KC1C2 above the curve C2(K(Z(L))).

Now let l1 be a state on S1(L) between Z(L) and L̂. The left state L connects to l1
with a shock with negative speed. We now employ the K-map to a state r1 = K(l1).
Fast rarefaction waves emanating from r1 all have positive speed and can be used
if the right state R ∈ R2(r1). If vr1 is positive, fast shocks on S2(r1) will always
have positive speed, while if vr1 ≥ −1 but negative, then the fast shocks will have
positive speed only down to Z(r1). As before let c denote the part of S1(L) between
v = 0 and v = −v−c , and κ = K(c) and ζ = Z(κ). Then we obtain a solution with
structure C1KC2 in the region bounded from above by C2(K(Z(L))) and below by ζ

and C2(K(L̂)) (starting from Z(K(L̂))). The question of uniqueness is more difficult
in this case as we see that the curve κ̃ = K(c̃), where c̃ is the part of C1(L) between

Z(L) and L̂, is in fact tangent to the curve C2(K(L̂)). A proof that κ̃ is transversal

to C2 curves originating from κ̃ (except at K(L̂)) is given in the appendix under the
assumption that k > 2(1−√2).

The construction of a solution with right state R in the region below ζ and v = −1
is similar to that in the case k positive.

Finally, let R be in the region bounded from above by R2(K(L̂)) and from below
by v = −1. Then there is a unique state r on v = −1 such that R ∈ R2(r), hence
using only positive speeds. We have that r can be connected with K-wave from a
state l2 with vl2 = −v+

c . For each such state there is a unique state l1 on C1(L) such
that l2 ∈ C2(l1). This concludes the discussion of Case 1.

Case 2. vL ≤ 1. Because vL ≤ 1 we can use a one-rarefaction wave with non
positive speed to reach the state L̃ on the intersection of C1(L) and v = 1. When
v = 1 we have two options for the map K, and denote K±(ρ, 1) = (ρv∓c , v

±
c ). (For
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Fig. 7. The solution of the Riemann problem for vL > 1.

the curve κ̃ we used the map K−.) From the state L̃ we use the K+-map to the state

r1 = K+(L̃). We can now employ both slow and fast waves using C1(r1) and C2(r1).
However, as in the case with k positive, we can use slow shocks only down to the
point Z(K+(L̃)) which is equal to K−(L̃). Hence we obtain a solution structure of

the form C1KC1C2 in the region above C2(K−(L̃)).

The remaining part of the construction equals that of Case 1.

We have proved the following theorem.

Theorem 3.1. Let 0 ≥ k > 2(1−√2). Then the Riemann problem

ρt + (ρv)x = 0,

(ρv)t +
(
ρv2 + ρ

)
x

= −kδ0ρv,

ρ(x, 0) =

{
ρL for x < 0,

ρR for x > 0,
v(x, 0) =

{
vL for x < 0,

vR for x > 0

(3.2)

has a unique solution in the class of combinations of Lax shocks, rarefaction waves,
and K-waves for any left state (ρL, vL) and right state (ρR, vR) with positive densities
ρL and ρR given by the above construction.

See Figures 7 and 8 for an illustration of the various regions in Cases 1 and 2,
respectively.

4. Conclusion. We have solved the Riemann problem for isothermal gas flow in
a thin pipe through a sharp bend, a kink, modeled by a Dirac delta function located
at the bend in the momentum equation. The equations then read

ρt + (ρv)x = 0, (ρv)t +
(
ρv2 + ρ

)
x

= −kδ0ρv



RIEMANN PROBLEMS WITH A KINK 511

 -3.00

 -1.00

  1.00

  3.00
  0.00   2.00   4.00   6.00

L

C1C2K

C1C2KC2

C1KC2

C1KC1C2

Fig. 8. The solution of the Riemann problem for vL < 1.

with Riemann initial data. Here k =
√

2(1− cos θ), where θ is the angle of the kink.
By considering the case where k is positive, we model the case when momentum is
added at an isolated point along the pipe. In both cases the Riemann problem has a
unique solution.

Several important extensions are possible: First of all, the case of more general
Cauchy initial data would be very interesting; i.e., both the source and the initial
data are more general functions than those considered here. It is likely that the
solution with Riemann initial data will play an important role, for instance, in building
approximate solutions by Glimm’s method or by front tracking.

Second, the extension to polytropic gas rather than isothermal gas would be quite
interesting. In this case the algebraic manipulations are more complicated.

5. Appendix. In this appendix we prove that the curve κ̃ and C2 curves starting
from κ̃ are transversal. We first observe that for the C2 curves originating on κ̃ we
have that dρ̃/dṽ = ρ̃, and hence it suffices to show that dρ̃/dṽ for the curve κ̃ is not
equal to ρ̃. In the case k positive we show that indeed dρ̃/dṽ is negative, while in the
case k is negative, the estimates have to be sharper as the curves are in fact tangent
at the end point.

We start with the case when k is positive.

Lemma A.1. Assume that 0 ≤ k ≤ 2. Let (ρ̃, ṽ) be an arbitrary point on κ̃. Then

dρ̃

dṽ
≤ 0.(A.1)
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Proof. By the chain rule

dρ̃

dṽ
=

ρ̃

g′−(v)

(
ρ′

ρ
+

1

v
− g′−
g−

)
,(A.2)

where we let the C1 curve through (ρL, vL) be parameterized by (ρ(v), v). We have
that ρ′/ρ ≤ 0, and the lemma will follow if

1

v
− g′−
g−

=
g− − g′−v
vg−g′−

≤ 0.(A.3)

The last inequality holds since g′− satisfies the differential equation

g′− =
1− v2

v
√
α2 − 4v2

g−,(A.4)

which implies that g− − g′−v ≤ 0 as long as k ≤ 4.
We now discuss the more complicated question of transversality of the κ̃ curve in

the case with k negative.
Lemma A.2. Assume 2(1 −√2) < k < 0. Let (ρ̃, ṽ) be an arbitrary point on κ̃.

Then

dρ̃

dṽ
< ρ̃,(A.5)

except at the point K(L̂).
Proof. We parametrize the curve κ̃ using the parameter v running along the C1(L)

curve, and hence write ρ̃ = ρ̃(ρ(v), v) and similarly for the other dependent variables.
We first compute

dρ̃

dṽ
=

dρ̃
dv
dṽ
dv

=

(ρ′v+ρ)g−ρvg′
g2

g′

=
1

g′

(
ρ′ρv
gρ

+
ρv

gv
− ρvg′

gg

)
=

ρ̃

g′

(
ρ′

ρ
+

1

v
− g′

g

)
.(A.6)

What we aim to show is that

1

v
+
ρ′

ρ
<
g′

g
(g + 1),(A.7)

except at the point K(L̂). From this it follows that dρ̃/dṽ < ρ̃ away from the point

K(L̂).
We have that

ρ′

ρ
=

{
−1 for ρ ≤ ρL,
− 2
√
ρρL

ρ+ρL
for ρ > ρL.

We first show that κ̃ is never tangent to the C2 curves for v > 0. Now we need
the following lemma, the proof of which comes after this proof.
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Lemma A.3. Let (ρ, v) = (ρ(v), v) ∈ C1(L). Then

ρ′

ρ
<
−2v

v2 + 1
(A.8)

for 0 < v < 1.
With (A.7) in mind we introduce the reparametrization β by

β(u) = u− k +
1

u
,

u =
1

2

(
γ −

√
γ2 − 4

)
,

where γ = β + k ≥ 2. The parameter β is in the interval [2− k,∞〉. We have that
dβ/dv = 1− 1/v2 < 0, in this interval. Therefore, (A.7) will follow if

V (v) :=
1
v − 2v

v2+1

1− 1
v2

=
−v

v2 + 1
= − 1

γ

is greater than

H(v) :=

dg
dβ

g
(g + 1) = −1

2

(√
β + 2

β − 2
− 1

)
.

Solving the equation H = V for γ = γ̃(k), we obtain

γ̃(k) =
2 + k

k + 1
.(A.9)

Since γ ≥ 2, and γ̃(k) < 0 for k > −1, we have that H < V for all k > −1. This
concludes the case v > 0.

For the (harder) case where v < 0, we use the crude estimate ρ′/ρ < 0 and wish
to prove

1

v
<
g′

g
(g + 1).(A.10)

Now we use the reparametrization

β = −v + k − 1

v
,

v = −1

2

(
γ −

√
γ2 − 4

)
,

where γ = β−k. Now β is in the interval [2,∞〉. We have that dβ/dv = 1/v2−1 > 0;
consequently, (A.10) will follow if we can show that

V (v) :=
1
v

1
v2 − 1

=
v

1− v2
=

−1√
γ2 − 4

is less than

H(v) :=

dg
dβ

g
(g + 1) =

1

2

(√
β − 2

β + 2
− 1

)
.
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Fig. 9. The function k̃(β).

In this case we can solve the equation V = H for k = k̃(β), obtaining

k̃(β) = −β +

√√√√1

2
(β + 2)2

(√
β − 2

β + 2
+ 1

)
− (β − 2) .

For β in the interval [2,∞〉, k̃(β) ≥ k̃(2) = 2(1−√2); see Figure 9 below. Hence, for
k > 2(1−√2), V (v) < H(v).

Proof of Lemma A.3. If (ρ, v) is on the rarefaction part of the C1 curve, then
ρ′/ρ = −1, and the lemma certainly holds. Assume therefore that (ρ, v) is on the shock
part of the C1 curve. Then it is below Z(L) = (ρLv

2
L, 1/vL), and hence v ≤ 1/vL. In

this case we have that

ρ′

ρ
=
−2σ

σ2 + 1
,(A.11)

where σ(v) =
√
ρ0/ρ(v). We see that σ′ ≤ 1/2, and σ(1/vL) = 1/vL, showing that

σ(v) > v for v ≤ 1/vL. The function φ(t) = −2t/(t2 + 1) is monotonically decreasing
for |t| ≤ 1, and hence we infer that

ρ′

ρ
<
−2v

v2 + 1
.
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Abstract. Any compact smooth manifold, X, with boundary admits a Riemannian metric of the

form x−4dx2 +x−2h
′

near the boundary with x a boundary defining function and h
′

restricting to a
metric on the boundary. Melrose [Spectral and scattering theory for the Laplacian on asymptotically
Euclidean spaces, in Spectral and Scattering Theory, M. Ikawa, ed., Marcel Dekker, New York,
1994] has associated a scattering matrix to such metrics and potentials in xC∞(X). It is shown for
potentials of the form Ax+O(x2) that this scattering matrix is a Fourier integral operator and that
the asymptotics of such potentials can be recovered from the scattering matrix for various manifolds
including Euclidean space.

Key words. scattering theory, Coulomb-like potentials, Lagrangian

AMS subject classification. 58G15
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1. Introduction. Our purpose in this article is to examine the microlocal prop-
erties of the scattering matrix at fixed energy associated to a class of potentials, which
are similar to the Coulomb potential and show that the total symbols of these op-
erators determine the asymptotics of these potentials. We shall work in the general
context of a manifold with boundary equipped with a scattering metric which contains
the important special case of Euclidean space. Our approach will be to extend the
arguments of [3] and [5] to cover this more general case. In particular, we show that
the scattering matrix at fixed energy is still a Fourier integral operator associated
with geodesic flow at time π of order 0 but now with a classical symbol of imaginary
order.

Recall, from [4], that a scattering metric on the manifold with boundary (X, ∂X)
is a metric which can be written in the form

g =
dx2

x4
+

h

x2
(1.1)

for some boundary defining function x, with h a symmetric tensor restricting to a
positive definite form on T (∂X). (The choice of x is actually fixed up to O(x2) by g.)
A long range potential is then a potential in the class xC∞(X) and we shall define a
Coulomb-like potential to be a long range potential of the form Ax+O(x2) for some
A ∈ R. Let ∆ denote the Laplacian associated with g; then for each f ∈ C∞(∂X)
and λ 6= 0 there is a unique eigenfunction u such that

(∆ + V − λ2)u = 0

of the form

e
iλ
x x

n−1
2 +iαf ′ + e

−iλ
x x

n−1
2 −iαf ′′,

∗Received by the editors September 22, 1997; accepted for publication (in revised form) April 29,
1998; published electronically March 19, 1999.

http://www.siam.org/journals/sima/30-3/32763.html
†Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill

Lane, Cambridge CB2 1SB, England, UK (joshi@dpmms.cam.ac.uk).

516



COULOMB-LIKE POTENTIALS 517

where α = A
2λ with f ′, f ′′ ∈ C∞(X), and such that the restriction of f ′ to the

boundary is f. The scattering matrix associated with g and V is then defined to be
the map

S(λ) : f 7→ f
′′
|∂X .

In the special case where A = 0, it is shown by Melrose and Zworski [5] that
S(λ) is a classical Fourier integral operator of order 0. The question of how to recover
the asymptotics of V from the total symbol of S(λ) in that case is addressed by
Barreto and Joshi [3]. There, it is shown that given two potentials equal up to order
k, the difference of the scattering matrices is order 1 − k. The principal symbol of
the difference of the associated scattering matrices was linearly determined by and
determines weighted integrals of the lead term of the difference of the potentials along
geodesics. It was also shown that a function could be recovered from these weighted
integrals and thus that the asymptotics of a potential could be recovered from the
scattering matrix.

Here we show that the analogous results hold when A is nonzero.
Theorem 1.1. Let (X, ∂X, g) be manifold with boundary, with scattering metric

g, and boundary defining function x. Let V be a Coulomb-like potential on (X, ∂X)
with lead term Ax; then the scattering matrix at energy λ associated with g and V is
an elliptic, classical Fourier integral operator of order −iA/λ.

Note that a classical Fourier integral operator of order−iA/λ is of course a Fourier
integral operator of order 0.

Theorem 1.2. Let (X, ∂X, g, x) be as above. Let V1, V2 be Coulomb-like poten-
tials on X such that

V1 − V2 = xkW +O(xk+1)

for W ∈ C∞(∂X); then if Sj(λ) is the scattering matrix associated with Vj we have
that S1(λ)−S2(λ) is a classical Fourier integral operator of order −iA/λ+ 1− k and
the principal symbol of S1(λ)− S2(λ) determines and is determined by∫ π

0

sin(s)k−1W (γ(s))ds

for all geodesics γ of length π on ∂X.
The boundary ∂X has a natural Riemannian structure so the X-ray transform of

a function on it is well defined. The x-ray transform is the operator on the space of
functions on ∂X to the space of functions on the space of closed geodesics obtained
by integrating along the geodesics. We recall that a manifold has an injectivity radius
of at least R if the exponentiation map from the tangent space to the manifold is
injective for vectors of size up to R. Then the same argument as in [3] is shown below.

Theorem 1.3. If (X, ∂X) is such that the X-ray tranform on ∂X is injective, or
the injectivity radius of ∂X is greater than π, or ∂X is a sphere not of radius 1

k+1 ,
k > 0, then if the Coulomb-like potentials V1, V2 have scattering matrices at some
energy which are equal up to smoothing then V1 − V2 = O(x∞).

In particular, scattering data determine the asymptotics on Euclidean space as it
is a special case, where the boundary is a sphere which is of radius 1.

The problem of recovering the short range part of a long range potential has been
studied by Isozaki and Kitada [2] in the 2-body case and Enss and Weder [1] in the
n-body case. They proved that the short range part is uniquely determined by the
high energy limit of the scattering matrix.
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It is known that one cannot recover Schwartz potentials, and examples of trans-
parent potentials at fixed energy have been constructed by Regge [7], Newton [6],
Sabatier [8], and others. Thus one would not expect to do better than the asymp-
totics in the long range case.

Vasy [9] has informed us of an alternative proof of Theorem 1.1, which avoids the
necessity of using a symbol calculus and therefore does not prove Theorems 1.2 and
1.3.

2. Review of definition of scattering matrix. In this section, we review some
work of Melrose [4] on how to define the scattering matrix of a Coulomb-like potential
on a general manifold with boundary equipped with a scattering metric. Suppose
that a boundary defining function x has been chosen and that V = Ax+ O(x2). We
work in a fixed product decomposition near the boundary. The Laplacian is then of
the form

(x2Dx)2 + ix(n− 1)x2Dx + x2∆∂X +R,

where R is lower order at the boundary. Then

(∆ + V − λ2)(xpeiλ/xb(y)) = iλ(2p− n+ 1− iA/λ)xp+1eiλ/xb+O(x<p+1).

Thus if we take p = n−1
2 + iα with α = A/2λ, the lead term vanishes and we can

iteratively solve away the error terms and, applying the Borel lemma, obtain f(x, y) ∈
C∞(X) such that (∆+V −λ2)(eiλ/xxpf(x, y)) vanishes to infinite order at x = 0 and
f(0, y) = b(y). With this modification, the arguments in [4] are resolved and there is
a unique eigenfunction of the form

e
iλ
x x

n−1
2 +iαf + e−

iλ
x x

n−1
2 −iαf ′

with f ′ ∈ C∞(X). The scattering matrix at energy λ is then the map

S(λ) : b 7→ f
′
|∂X .

It is a unitary operator.

3. Review of Legendrian distributions. In this section, we review and rephrase
the material we need from [4] and [5]. In this section, X is a compact manifold with
boundary ∂X and g is a scattering metric on X with x a boundary defining function
for ∂X such that g takes the form (1.1). Our account is necessarily brief and we refer
the reader to [4] and [5] for more details.

There is a natural bundle over X called the scattering cotangent bundle, which is
denoted scT ∗(X). This is the dual to the bundle of smooth, vector fields of bounded
length with respect to some (and hence all) scattering metrics on X. The restriction of
scT ∗(X) to ∂X is denoted scT ∗(X)|∂X and carries a natural contact structure. If y are
local coordinates on ∂X and µ are the corresponding dual coordinates, then (y, µ, τ)
form local coordinates on scT ∗(X)|∂X , where τ is the coefficient of dx

x2 . We assume
that a product decomposition close to the boundary has been chosen X = ∂X ×R+.
If y are coordinates on ∂X, we then have coordinates ∂X × R+ on X close to the
boundary.

We omit the definition of scattering pseudodifferential operators as we need
only consider differential operators; however, we note that a differential operator
P (x, y, xDy, x

2Dx) will be in Ψm,k
sc (X, scΩ1/2) if it is of order m and that the total
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symbol as an operator in xDy, x
2Dx vanishes to kth order at the boundary. The

operator P then has a well-defined symbol at the boundary:

j(P ) = xkpk + xk+1pk+1, pk, pk+1 ∈ C∞(R× T ∗∂X).

Definition 3.1. An intersecting pair with conic points is a subset, W̃ , of
scT ∗(X)|∂X , which is a union of the closure of a smooth Legendrian submanifold,

W , and W#, a finite union of global sections of the form W#(λj) = {(y, 0, λj)},
containing W \W. We also require W to have an at most conic singularity at µ = 0;
that is, it is smooth if polar coordinates are introduced along W \W.

The process of introducing polar coordinates along W \W can be given an in-

variant meaning and is then called blow-up. We denote the blown-up manifold Ŵ .
The metric g induces a metric h on the nearby boundary. It is of the form

τ2 + h′(y, µ) + xg′

as a function on scT ∗X; we obtain h′ from h via the isomorphism

µ.
dy

x
7−→ µ.dy.

Example 3.1. For each y′ ∈ ∂X and 0 6= λ ∈ R, let Gy′(λ) be equal to the set of
(τ, y, µ), such that τ2 + |µ|2 = λ2, µ 6= 0, and, putting µ = |µ|µ̂,

τ = |λ| cos(s),

|µ| = |λ| sin(s),

(y, µ̂) = exp(sH 1
2h

)(y′, µ̂′),
(3.1)

where s ∈ (0, π), (y′, µ̂′) ∈ T ∗∂X, and h(y′, µ̂′) = 1. Then Gy′(λ) ∪ {(λ, y, 0)} is an

intersecting pair with conic points. We denote this pair G̃(λ). This is the pair we are
interested in this paper. The set G](λ) = {(−λ, y, 0, y′, 0)} is also important in our
construction. Note that G](λ) is the initial or incoming surface and that G](−λ) is
the outgoing surface. Note that in the coordinates defined by (3.1), G](λ) is s = π
and G](−λ) is s = 0, when λ is positive.

Associated with these intersecting pairs at each conic point is a unique homoge-
neous Lagrangian submanifold Λ(W̃ , λi) of T ∗(∂X). For the pair we are interested

in, G̃(λ) this is precisely the relation of being π apart along a lifted geodesic (see
Proposition 4 of [5]). For simplicity, we shall henceforth take λ to be positive, the λ
negative case is similar (or could be deduced from the positive case).

Melrose and Zworski [5] associated any such intersecting pair with a class of
smooth functions whose asymptotics on approach to the boundary are determined by
symbols on the Legendrians. A symbol bundle over the smooth Legendrian W (λ) in

pair W̃ can be defined and is denoted Êm,p. The sections of this bundle are of the
form

aSp−m|dx|m−n/4

with a a smooth section of C∞(Ŵ ; Ω
1
2

b ⊗MĤ), S a defining function of the boundary

of W, M the Maslov bundle, and Ω
1
2

b the b−half density bundle. For G above, one
could take S = sin s. Melrose and Zworski remove this singularity at the endpoints
by rescaling, but for us it will be easier not to do so.
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Proposition 3.1. If W̃ (λ) is an intersecting pair with conic points then there is a

class of smooth half-densities on Xo, denoted Im,psc (X, W̃ ), such that
⋂
m,p I

m,p
sc (X, W̃ )

is equal to the class of half-densities vanishing to infinite order at the boundary. There
exists a symbol map

σ̂sc,m,p : Im,psc (X, W̃ , scΩ1/2)→ C∞(Ŵ ; Êm,p)

which gives a short exact sequence

0→ Im+1,p
sc (X, W̃ , scΩ1/2)→ Im,psc (X, W̃ , scΩ1/2)→ C∞(Ŵ ; Êm,p)→ 0.

This is Proposition 12 from [5]. An important related fact we need to know is, how
do Legendrian distributions map under scattering pseudodifferential operators? We
recall Proposition 13 from [5].

Proposition 3.2. Suppose P ∈ Ψl,k
sc (X, scΩ1/2) has symbol xkpk + xk+1pk+1

with respect to a product decomposition of X near ∂X, and suppose that

W ⊂ scT ∗∂X(X)

is a smooth Legendre submanifold. Then for any m ∈ R,

P : Imsc(X,W ; scΩ1/2)→ Im+k
sc (X,W ; scΩ1/2),(3.2)

σsc,m+k(Pu) = (pk|G)σsc,m(u)⊗ |dx|k.(3.3)

Furthermore, if pk vanishes identically on W , then

P : Imsc(X,W ; scΩ1/2)→ Im+k+1
sc (X,W ; scΩ1/2)

and

σsc,m+k+1(Pu)

=

(
1

i

(
LV +

(
1

2
(k + 1) +m− n

4

)
∂pk
∂τ

)
+ pk+1|W

)
a⊗ |dx|m+k+1−n4 ,

where σsc,m(u) = a⊗|dx|m−n4 and V is the rescaled Hamiltonian vector field associated
with pk.

We omit the definition of the rescaled Hamiltonian vector field but recall that for
the pair G we are studying, it is equal to

2λ sin s
∂

∂s

in the semiglobal coordinates given by (3.1).
We also need two push-forward theorems, Propositions 16 and 17 from [5]. They

relate the singularities of the scattering matrix to the asymptotics in small x of the
Poisson operator. Given a product decomposition near the boundary, there is a nat-
ural pairing

B : C−∞(X, scΩ1/2)× C∞(∂X; scΩ1/2)→ C−∞([0, ε), scΩ1/2),(3.4)

B(u, f) = x
n−1

2

∫
∂X

u(x, y)f(y).(3.5)
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Proposition 3.3. For any intersecting pair of Legendre submanifolds with conic
points W, the partial pairing (3.5) gives a map

B : Im,psc (X, W̃ ; scΩ1/2)× C∞(∂X; scΩ1/2) 7→
∑
j

Ip+
n−1

4 ([0, ε),W ′(τ̄j ; scΩ1/2)),

where the W ′(τ̄j) = {(0,−τjdx/x2)} are the Legendre submanifolds corresponding to
the components of W# and

B(u, f) =
∑
j

e−iτ̄/xxp+n/4Q0
τ̄j (u, f)

∣∣∣∣dxx2

∣∣∣∣ 1
2

+O(xp+n/4+1)

with

Q0
τ̄ (u) ∈ Ip−m−

n−1
4

phg (∂X,Λ(W̃ , τ̄)),

and the principal symbol of Q0
τ̄ (u) determines and is determined by the lead singularity

of the principal symbol of u on W on approach to W ′(τ̄j).
When the Legendrian distribution is actually associated with a smooth Legen-

drian submanifold the push-forward becomes much simpler, and this simplifies the
construction of the Poisson operator.

Proposition 3.4. If G is a smooth Legendre variety and u ∈ Imsc(X,G′scΩ1/2) near
τ = τ̄ , then the distribution Q0

τ̄ is a Dirac delta distribution.

4. Construction of the Poisson operator. In this section, we apply the cal-
culus reviewed in section 3 to construct the Poisson operator and prove Theorem 1.1.
We shall refer heavily to [5, section 15], as our construction is a modification of the
one there.

We assume a product decomposition of X close to the boundary has been chosen
and is fixed throughout this section. We then have as in [5] that ∆, the intrinsic
Laplacian acting on scattering half-densities on X × ∂X, induces an operator

∆X ∈ Diff2
sc(X × ∂X, scΩ1/2(X × ∂X))

by

∆X

(
u

∣∣∣∣dxx2

∣∣∣∣ 1
2
∣∣∣∣ dyxn−1

∣∣∣∣ 1
2
∣∣∣∣ dy′xn−1

∣∣∣∣ 1
2

)
= ∆

(
u(., y)

∣∣∣∣dxx2

∣∣∣∣ 1
2
∣∣∣∣ dyxn−1

∣∣∣∣ 1
2

)∣∣∣∣ dy′xn−1

∣∣∣∣ 1
2

,

where (x, y; y′) is a point in X×∂X. Throughout this section V will be a Coulomb-like
potential, that is,

V = Ax+ x2f, f ∈ C∞(X),

and α will be A
2λ .

We recall the following from [3].
Lemma 4.1. The symbol at the boundary of ∆X is p = p0 + xp1 with p1 equal

to −i(n− 1)τ + c, where c is the derivative of the metric at the boundary and of the
form c(y, µ, τ) = τf(y, µ) + g(y, µ) with f linear in µ and g quadratic in µ.

We also note the following lemma, which is important in our construction to show
that the transport equations are solvable.
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Lemma 4.2. If L ∈ Im,− 1
4 +iα(X × ∂X, G̃(λ), scΩ1/2) is such that

(∆X − λ2 + V )L ∈ Im+2, 34 +iα(X × ∂X, G̃(λ), scΩ1/2),

then

(∆X − λ2 + V )L ∈ Im+2, 74 +iα(X × ∂X, G̃(λ), scΩ1/2).

This is a modification of Lemma 15 from [5], and in fact, the α = 0 case is essential
to the construction there also.

Proof. The proof is no different from that of Lemma 15 in [5], the only difference
being that in (15.17), there appears an extra term α, which is canceled by the lead
term of the potential.

Proposition 4.1. For any 0 6= λ ∈ R there exists

K ∈ Im,p1,p2(X × ∂X, G̃(λ); scΩ1/2),

such that

(∆X − λ2 + V )K ∈ C∞(X × ∂X; scΩ1/2)

and

Q0
λ(K) = Id

with

m = −2n− 1

4
+ iα, p1 = −1

4
+ iα, p2 = −1

4
− iα,

and the principal symbol of K on G is

C sin(s)
n−1

2 −iα tan(s/2)−iα
|ds| 12 |dy| 12 |dµ̂| 12

(sin s)
1
2

|dx|m− 2n−1
4 ,

where C(y, µ̂) is a nonzero smooth function.
Note that in contrast to [5], we allow different orders on G](λ) and G](−λ).
Proof. As in [5], we first construct Kb ∈ Im,p2(X × ∂X, G̃(λ); scΩ1/2) such that

(∆X − λ2 + V )Kb ∈ I 3
4−iα
sc (X × ∂X,G](−λ)),(4.1)

Q0
λ(Kb) = Id .(4.2)

We construct Kb as an asymptotic sum of

Kj ∈ I−
2n−1

4 +j+iα,− 1
4−iα

sc (X × ∂X, G̃(λ); scΩ1/2).

We would like

(∆X − λ2 + V )K0 ∈ I−
2n−1

4 +iα+2, 34−iα
sc (X × ∂X, G̃(λ); scΩ1/2) ,(4.3)

σ0(Q0
λ(K0)) = σ0(Id);(4.4)
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then (∆X − λ2 + V )K0 is automatically in

I
− 2n−1

4 +iα+2, 74−iα
sc (X × ∂X, G̃(λ); scΩ1/2)

by Lemma 4.2. We also want

(∆X − λ2 + V )

(
j−1∑
l=0

Kl

)
∈ I−

2n−1
4 +iα+j+2, 34−iα

sc (X × ∂X, G̃(λ); scΩ1/2)

and this, of course, implies that it will also be an element of

I
− 2n−1

4 +iα+j+2, 74−iα
sc (X × ∂X, G̃(λ); scΩ1/2).

Now near G ∩ G](λ), where G is smooth, we can as in [5] give an explicit con-
struction, and it is then necessary only to have that the principal symbol of Q0

λ(K0)
is equal to 1 to ensure that Q0

λ(Kb) = Id . We look for Kj of the form

xj+iαeiλφ(y,y′)/xaj(x, y, y
′, λ)v, aj ∈ C∞(X × ∂X)

with v a fixed scattering half-density and φ the cosine of the Riemannian distance from
y to y. Let a

′
j be the restriction of aj to x = 0. Taking geodesic normal coordinates,

y, about each y′ the transport equations for a
′
j is of the form

(y · ∂y + j)a
′
j + bja

′
j = cj ∈ C∞(X × ∂X)

near y = 0, where c0 is identically zero and bj vanishes quadratically at y = 0. Note
that the extra power xiα cancels with the extra term coming from the lead term of
the potential. Thus, as in [5], the terms Kj exist sc-microlocally close to G](λ).

We now need to continue each Kj up to G](−λ); we do so by solving transport
equations for the principal symbols and iteratively solving away the error.

Now the principal symbol of K0, σm(K0) is of the form

b
|ds| 12 |dy| 12 |dµ̂| 12

(sin s)
1
2

|dx|m− 2n−1
4 .

On the lifted geodesic β(s) the subprincipal term c(β(s)) = 2λ sin(s)d(β(s)) for some
smooth d. From Proposition 3.2, the transport equation for b is

2λ

i

(
sin(s)

d

ds
+

(
1− n

2
+ iα

)
cos(s) + i sin(s)d(β(s))

)
b+Ab = 0

with the final term being the contribution coming from the long range nature of the

potential. Writing b̃ = (ei
∫
d(β(s′))ds′ sin(s))

1−n
2 +iαb, we thus have

db̃

ds
+ i

α

sin(s)
b̃ = 0

(using the fact that α = V/(2λ)). Introducing an integrating factor, this becomes

d

ds

[
e
iα
∫

1
sin(s′)ds

′
b̃

]
= 0.
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This means that

b = C sin(s)
n−1

2 −iαe−iα
∫

1
sin(s′)ds

′
e−i
∫
d(β(s′))ds′

= C sin(s)
n−1

2 −iα tan(s/2)−iαe−i
∫
d(β(s′))ds′ .

As s→ π−, that is, near G](λ), this has a singularity of the form (π−s)n−1
2 , and

as s→ 0+, this has the form s
n−1

2 −2iα.

As the order on G](λ) is p1 = − 1
4 + iα and on G](−λ) is p2 = − 1

4 − iα, the orders
p1 −m and p2 −m are equal to the orders of singularities, and thus the solution of
the transport equation is a legitimate symbol and we can construct K0.

Now by Lemma 4.2,

(∆ + V − λ2)(K0) ∈ Im+2,p1+2,p2+2(X × ∂X, G̃; scΩ1/2),

and we look for

K1 ∈ Im+1,p1,p2(X × ∂X, G̃; scΩ1/2),

such that

(∆ + V − λ2)(K0 +K1) ∈ Im+3,p1+1,p2+1(X × ∂X, G̃; scΩ1/2).

Now by Lemma 4.2, we have Im+3,p1+2,p2+2(X×∂X, G̃; scΩ1/2). Letting the principal

symbol of K1 be b1|dx|m+1− 2n−1
4 times the trivializing density above, we obtain a

transport equation; arguing as above, it becomes

sin(s)
n−1

2 +iα tan(s/2)−iαe−i
∫
d(β(s′))ds′

d

ds
ei
∫
d(β(s′))ds′

(
sin(s)

1−n
2 +1+iα tan(s/2)iαb1

)
= g(s)e−i

∫
d(β(s′))ds′ sin(s)

n−1
2 −iα tan(s/2)−iα

with g(s) a smooth function on [0, π] (and depending smoothly on the suppressed
parameters). Canceling, we obtain that

d

ds

(
ei
∫
d(β(s′)ds′ sin(s)

1−n
2 +1+iα tan(s/2)iαb1

)
= g(s),

which has a solution in the appropriate symbol class. The same argument, after
appropriately shifting indices, constructs all the terms Kj .

Asymptotically summing, we obtain Kb such that

(∆ + V − λ2)Kb ∈ I7/4+iα(G](λ)) + I7/4−iα(G](−λ)).

These errors can now be removed by an iterative construction of their Taylor series
(cf. Lemma 16 of [5]), and we obtain K as desired.

The remainder of the proof of Theorem 1.1 is identical to that of the main theorem
in [5] and we therefore omit the details.
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5. Recovering asymptotics of potentials. In this section, we prove Theorem
1.2 and recall from [3] the deduction of Theorem 1.3. Note that the lead term of the
Coulomb-like potential is automatically determined by the order of the elliptic Fourier
integral operator S(λ). Thus we need consider only potentials which have the same
lead term and thus which have Poisson operators with the same principal symbol.

Let V1, V2 be two Coulomb-like potentials with lead term A such that

V1 − V2 = xkW +O(xk+1)

with W ∈ C∞(∂X). Letting P1, P2 be the associated Poisson operators at energy λ,
we then have that

(∆− λ2)Pj = −VjPj
and thus that

(∆− λ2)(P1 − P2) = −V1P1 + V2P2 = −V1(P1 − P2) + (V2 − V1)P2.

Hence

(∆ + V1 − λ2)(P1 − P2) = (V2 − V1)P2.

We also have that

Q0
−λ(P1 − P2) = Id− Id = 0.

Thus as in [3], we conclude that P1 − P2 is of order − 2n−1
4 + iα − k on G as the

transport equations for the principal symbol at each level will be homogeneous with
zero initial data and thus have zero solution. At the kth level, the equation becomes
inhomogeneous, and we obtain the following transport equation, using Proposition
4.1 and Proposition 3.2:

2λ

i

(
sin(s)

d

ds
+

(
1− n

2
+ k + iα

)
cos(s) + i sin(s)d(β(s))

)
b+Ab

= CW (γ(s))e−i
∫
d(β(s′))ds′ sin(s)

n−1
2 −iα tan(s/2)−iα,

where b|dx|− 2n−1
2 +iα+k |ds|

1
2 |dy| 12 |dµ̂| 12
(sin s)

1
2

is the principal symbol of P1 − P2. Writing b̃ =

ei
∫
d(β(s′))ds′(sin(s))

1−n
2 +k+iαb, this becomes

db̃

ds
=

i

2λ
(sin(s))k−1W (γ(s)),

where γ(s) is the geodesic in ∂X. Thus as in [3], on approach to G](−λ) the symbol

will be (sin(s))
n−1

2 −k−iα tan( s2 )−iαe−i
∫
d(β(s′))ds′ times the weighted integral∫ π

0

(sin(s))k−1W (γ(s))ds

and thus from Proposition 3.3, the principal symbol of

S1 − S2 = Q0
λ(P1 − P2)

will be a fixed elliptic factor times
∫ π

0
(sin(s))k−1W (γ(s))ds; the result follows. Note

that the geodesic γ required to compute σ1−k−2iα(S1 − S2) at a point (x, ξ) is just
the geodesic, which when lifted, ends at (x, ξ).
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Abstract. We consider the subset E of R2 of all points whose first and second components,
respectively, coincide with the first and second eigenvalues of the Laplace operator −∆ with zero
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1. Introduction. Let B ⊆ RN be a fixed ball and let c > 0 be a positive number.
We denote by

Ac(B) =
{
A ⊆ B : A quasi open, m(A) ≤ c}

the family of all quasi-open subsets of B having Lebesgue measure less than or equal
to c, and by s : Ac(B)→ R2 the “spot” function defined by

s(A) = (λ1(A), λ2(A)),

where λ1(A), λ2(A) are the first two eigenvalues (counted with their multiplicities) of
the Laplace operator −∆ on the Sobolev space H1

0 (A). Since we will always work
with Sobolev functions it is convenient to consider domains which are quasi-open
(that is, subsets of RN of the form {u > 0} where u ∈ H1(RN )) instead of usual
domains which are open subsets of RN . This choice is also justified by the relaxation
theory of Dirichlet problems. In fact, the family of quasi-open sets is the largest class
of domains contained in the closure of the family of open sets with respect to the
γ-topology, on which Sobolev spaces H1

0 are well defined.
The purpose of this paper is to prove that the range of s is closed in R2 if, for a

given c, the ball B is large enough. This will immediately imply the existence of a
solution for problems of the form

min
{

Φ(λ1(A), λ2(A)) : A ∈ Ac(B)
}

for a large class of cost functions Φ.
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Set E

0

λ2

s(B1)

s(B2)

λ1λ1(B1) λ1(B2) = λ2(B2)

λ2(B1)

λ2(B2)

Fig. 1.

Let us denote by E = s(Ac(B)) the image of s in R2. Some classical remarks
already give an idea where the set E lies.

Denoting by B1 the ball of mass c and by B2 the union of two disjoint balls of
mass c

2 , classical arguments give that
• ∀A ∈ Ac(B), λ1(A) ≥ λ1(B1) (proved by Faber [10] and Krahn [15],

[16]);
• ∀A ∈ Ac(B), λ2(A) ≥ λ2(B2) = λ1(B2) (we refer to Krahn [16]; see also

[17] for a proof by P. Szegö);
• ∀A ∈ Ac(B), λ2(B1)/λ1(B1) ≥ λ2(A)/λ1(A) ≥ 1 (recently proved by

Ashbaugh and Benguria (see [1]));
• the set E is conical with respect to the origin, that is (tx, ty) ∈ E whenever

(x, y) ∈ E and t ≥ 1 (by homothety of ratio 1√
t
).

For a numerical study of the set E in the case N = 2 we refer the interested reader
to the paper by Wolf and Keller (see [18]), where the picture for E (see Figure 1) is
obtained.

Unfortunately, we are not able to prove the convexity of the set E, which the pic-
ture above seems to show; this would imply the closure result quite straightforwardly.
However, we can prove that E is convex horizontally and vertically, and this is enough
to imply that it is closed (see Lemma 2.1).

In the paper we often use the definition of γ-convergence for sequences of domains
and some of its properties; this definition, which we recall in section 2, was introduced
by Dal Maso and Mosco (see [9]) and turned out to be a very powerful tool in several
shape optimization problems (see Buttazzo and Dal Maso [7], [8]).

We conclude the paper with a section where some open problems are presented.

2. The main theorem and some preliminary results. Let c > 0 be given
and let B ⊆ RN be a ball containing two disjoint balls of mass c

2 . We shall prove the
following result.



ATTAINABLE EIGENVALUES OF THE LAPLACE OPERATOR 529

Theorem 2.1. The set E is closed in R2.
The proof of the theorem above is based on the following lemma.
Lemma 2.1. If the set E is convex on the vertical and horizontal directions, then

E is closed in R2.
Following this lemma it suffices to prove the convexity of E on vertical and hori-

zontal directions. For this purpose, we shall split the proof in two steps:
Step 1. A is convex on horizontal lines; namely, if A ∈ Ac(B), then the segment

joining (λ1(A), λ2(A)) to (λ2(A), λ2(A)) is contained in E.
Step 2. A is convex on vertical lines; namely, if A ∈ Ac(B), then the segment

joining (λ1(A), λ2(A)) to (λ1(A), λ2(B1)
λ1(B1)λ1(A)) is contained in E.

The proofs of Lemma 2.1 and of Steps 1 and 2 will be given in section 3; we recall
now classical notions and give some preliminary results.

The capacity of a set E ⊆ B is defined by

cap(E) = inf

{∫
B

|∇u|2, u ∈ UE
}
,

where UE is the class of all functions u ∈ H1
0 (B) such that u ≥ 1 almost everywhere

(a.e.) in a neighborhood of E. We say that a property p(x) holds quasi everywhere on
E (q.e. on E) if the set of all points x ∈ E for which p(x) does not hold has capacity
zero.

A subset A ⊆ B is called quasi-open if for every ε > 0 there exists an open subset
Gε of B such that A∪Gε is open and cap(Gε) < ε. It easily can be seen that for any
quasi-open set there exists a decreasing sequence {An}n∈N of open sets containing A
such that cap(An \A)→ 0. A function f : B 7→ R is said to be quasi-continuous if for
all ε > 0 there exists an open set Gε with cap(Gε) < ε such that f is continuous on
B \Gε (see [13], [19]). For a quasi-open set A, the Sobolev space H1

0 (A) is defined as

H1
0 (A) = {u ∈ H1

0 (B) : u = 0 q.e. on B \A}.

The fine topology on B is the coarsest topology making all superharmonic functions
continuous. The relation between the quasi topology and the fine topology is studied
in [12], [14].

For a quasi-open set A ∈ Ac(B), we denote by λ1(A), λ2(A) the first two eigen-
values (counted with their multiplicity) of the Laplace operator −∆ on H1

0 (A). They
are given by the classical formulae

λ1(A) = min
ϕ∈H1

0
(A)

ϕ6=0

∫
A
|∇ϕ|2dx∫
A
|ϕ|2dx ,

λ2(A) = max
ψ∈H1

0
(A)

ψ 6=0

min
ϕ∈H1

0
(A)\{0}
ϕ⊥ψ

∫
A
|∇ϕ|2dx∫
A
|ϕ|2dx .

If we denote by ϕ1, ϕ2 the eigenfunctions corresponding to λ1(A) and λ2(A), then we
have

ϕ1 ∈ H1
0 (A) and −∆ϕ1 = λ1(A)ϕ1 in H1

0 (A),

ϕ2 ∈ H1
0 (A) and −∆ϕ2 = λ2(A)ϕ2 in H1

0 (A).
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Generally, we shall use the notation A1 = {ϕ1 > 0} and A2 = {ϕ2 6= 0}, where we
denote here by ϕ1 and ϕ2 the quasi-continuous representatives of the corresponding
eigenfunctions. In order to establish the possible relations between A1 and A2 we
shall give a lemma which is an extension of a classical result on open sets.

Lemma 2.2. If C1, C2 are two quasi-open sets with cap(C1 ∩ C2) = 0 and
u ∈ H1

0 (C1 ∪ C2), then u|C1
∈ H1

0 (C1) and u|C2
∈ H1

0 (C2).
Proof. There exists a sequence of elements un ∈ D(C1 ∪ C2) such that un → u

strongly in H1
0 (C1 ∪ C2). (See [14] for the definition of D(C1 ∪ C2).) Therefore it

suffices to consider only elements of D(C1∪C2) since un|C1
→ u|C1

and un|C2
→ u|C2

.
Following Lemma 2.4 of [14], there exists a sequence of functions gk → u strongly in
H1

0 (C1 ∪ C2) and gk = g1
k + g2

k where g1
k ∈ H1

0 (C1) and g2
k ∈ H1

0 (C2) since {C1, C2}
is a quasi covering of C1 ∪ C2. Since cap(C1 ∩ C2) = 0 the functions g1

k and g2
k are

orthogonal in L2(B) and in H1
0 (B); this implies that the sequences {g1

k}k, {g2
k}k are

bounded in both spaces. For subsequences still denoted with the same index we get
g1
k ⇀ u1 weakly in H1

0 (C1) and g2
k ⇀ u2 weakly in H1

0 (C2). From the strong L2

convergence we have u1 = u|C1
and u2 = u|C2

, which concludes the proof.
We can formulate now the following lemma.
Lemma 2.3. Let A be a quasi-open set such that λ1(A) < λ2(A). Then the fine

interior of A1 is finely connected and there are two possibilities: either A2 ⊆ A1 or
cap(A1 ∩A2) = 0 for a convenient second eigenfunction ϕ2.

Proof. If A is open the result is immediate. If A is quasi open, the proof is similar
and based on the previous lemma and the following assertion (see [12]): any positive
superharmonic function on a finely open and connected set is either strictly positive
or equal to zero. Particularly, this will be the case of the first eigenfunction.

Indeed, if A1 is not finely connected (we denoted here by A1 its fine interior),
then it can be decomposed in a union of disjoint finely connected components {Ci}i∈I
and, since ϕ1|Ci ∈ H1

0 (Ci) ⊆ H1
0 (A), we have that

∀i ∈ I
∫
Ci
|∇ϕ1|Ci |2dx∫

Ci
|ϕ1|Ci |2dx

= λ1(A).

Thus, if I contains at least two indices this would mean that λ1(A) is at least double
since we have two independent eigenfunctions (defined by the restriction of ϕ1 on each
set). Therefore A1 has only one finely connected component.

Suppose now that cap(A1 ∩A2) 6= 0. Decomposing A2 = ∪i∈IC ′i, C ′i being finely
connected, then for any component for which cap(A1 ∩ C ′i) 6= 0 we have C ′i ⊆ A1;
otherwise C ′i∪A1 would be finely connected and ϕ1 could not vanish on C ′i \A1. Thus
the finely connected components of A2 are of two types, C ′i ⊆ A1 and cap(C ′j∩A1) = 0.
In this case we can see that ϕ2|∪C′

i
and ϕ2|∪C′

j
are both orthogonal to ϕ1 and they

are still second eigenfunctions. Then A2 can be chosen as ∪C ′i or ∪C ′j .
In order to introduce the γ-convergence for a sequence {An}n∈N in Ac(B) we

recall the Mosco conditions:
(M1) ∀ϕ ∈ H1

0 (A), ∃ϕn ∈ H1
0 (An), such that ϕn → ϕ strongly in H1

0 (B).
(M2) ∀ϕnk ∈ H1

0 (Ank), with ϕnk ⇀ ϕ weakly in H1
0 (B), we have ϕ ∈ H1

0 (A).
It is said that An γ-converges to A if M1 and M2 hold simultaneously (see, for

instance, [8]). It is said that An weakly γ-converges to A if A = {w > 0} and wn ⇀ w
weakly in H1

0 (B), where wn are the solutions of{ −∆wn = 1,
wn ∈ H1

0 (An)
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extended by zero on B \An. It is known that the weak γ-convergence is sequentially
compact on Ac(B) (see [5]).

An important tool that we shall use in the proof of Steps 1 and 2 is the continuous
Steiner symmetrization (CSS) (see Brock [3], [4]). It is well known that the CSS of
an open set keeps constant its measure and decreases the first Dirichlet eigenvalue of
the Laplacian. Here, we are interested in the behavior of the second eigenvalue with
respect to the CSS, which derives from the Mosco behavior of the associated Sobolev
space (see [6]). Let’s recall from [6] some useful results. Consider a measurable set A
and a hyperplane H ⊆ RN . For t ∈ [0, 1] denote by At the Steiner symmetrization of
A at time t in the orthogonal direction to H.

Proposition 2.1. If A is open, the mapping t 7→ At is γ-continuous from the
left and M1 continuous from the right.

For a quasi-open set A ∈ Ac(B), the set At is defined in the following way:
Consider a decreasing sequence of open sets {An}n∈N with cap(An \ A) → 0 and
A ⊆ An ⊆ B. For any t ∈ [0, 1] the set Atn is well defined and by monotonicity we
define Atn ⊇ Atn+1. Then {Atn}n∈N is γ-convergent and

At = γ − lim
n→∞A

t
n.

Proposition 2.2. If A is quasi-open, the mapping t 7→ At is M2 continuous
from the left and M1 continuous from the right.

In terms of eigenvalues, Proposition 2.2 gives the following corollary.
Corollary 2.1. For every A ∈ Ac(B) and every positive integer i, the mappings

t 7→ λi(A
t) are lower-semicontinuous on the left and upper-semicontinuous on the

right.
This result will permit us to prove that the second eigenvalue has a Darboux-like

property, that is, if t1 < t2 and λ2(At1) < λ2(At2), then ∀λ∗ ∈ [λ2(At1), λ2(At2)]
there exists t∗ ∈ [t1, t2] such that λ2(At∗) = λ∗.

In the proof of Steps 1 and 2, the idea is to make a sequence of CSS to transform
a given quasi-open set A ∈ Ac(B) into a ball. Here, one can see that the choice of B
is important since if A ∈ Ac(B) for any hyperplane H we still have At ∈ Ac(B).

For a compact set K ∈ RN it is known the existence of a sequence of hyper-
planes {Hn}n∈N such that, denoting K0 = K and Kn the symmetrization of Kn−1

with respect to Hn, we have m(Kn∆K#)→ 0 (generally by C# we denote the closed
ball of measure m(C); see [2]). If the convergence in measure is replaced by the
Hausdorff convergence, a similar type of result can be found in Federer (see [11]).

For quasi-open sets we can formulate the following.
Proposition 2.3. Let A ∈ Ac(B). There exists a sequence of Steiner sym-

metrizations of A, denoted {An}n∈N , such that m(An \A#)→ 0 for n→∞.
Proof. This result appears to be weaker than the similar one for compact sets,

but nevertheless it is still sufficient for the proof of Step 2.
Suppose first that A is open. Consider K1 ⊂⊂ A such that m(A \ K1) ≤ ε1/2.

We make a finite number of Steiner symmetrizations given by the result of [2] for K1

such that

m
(

(K1)n1
∆K#

1

)
≤ ε1

2
.

Then, by monotonicity,

m
(
An1
\A#

)
≤ ε1

2
+
ε1
2

= ε1.
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Choosing now another set K2 ⊂⊂ An1
with m(An1

\ K2) ≤ ε2/2 we continue the
process and obtain

m
(

(K2)n2
\K#

2

)
≤ ε2

2
,

and so on. Choosing a sequence εn → 0, we conclude the proof in the case of open
sets.

If A is quasi-open, consider a sequence of open sets {Cr}r∈N such that

A ⊆ Cr+1 ⊆ Cr ⊆ B
and cap(Cr \ A) → 0. We apply the previous result for Cr and begin by making a
finite number of symmetrizations to C1 such that

m
(

(C1)n1
\ C#

1

)
≤ ε1.

Then m(An1
\ C#

1 ) ≤ ε1. Now making a finite number of symmetrizations for C2

we get m((C2)n2
\ C#

2 ) ≤ ε2, and so on. Finally we get m(An \ A#) → 0, since
m(C#

n ∆A#)→ 0.
Corollary 2.2. For every A ∈ Ac(B) there exists a sequence {An}n∈N of

Steiner symmetrizations of A such that any weak γ-limit point of {An}n∈N is con-
tained in A#.

Proof. Indeed, from the previous proposition we have m(An \ A#) → 0. If U is
the weak γ-limit of {Ank}, then wnk ⇀ w weakly in H1

0 (B) and U = {w > 0}. Since
m(An \ A#) → 0 and wnk → w in L2(B), we get w = 0 a.e. on RN \ A#, hence
w ∈ H1

0 (A#), which means U ⊆ A#.
Corollary 2.3. For the sequence {An}n∈N given by Proposition 2.3 we have

λ2(A#) ≤ lim inf
n→∞ λ2(An).

3. Proof of the results. We proceed now with the proofs of Lemma 2.1 and of
Steps 1 and 2. It is convenient to indicate by d1 the half-line {ts(B1) : t ≥ 1} and by
d2 the half-line {ts(B2) : t ≥ 1} = {(x, x) ∈ R2 : x ≥ λ1(B2)}.

Proof of Lemma 2.1. Consider (x, y) ∈ Ē. There exists a sequence of sets
{An}n∈N ⊆ Ac(B) such that s(An) → (x, y). From the weak γ-compactness of
the set Ac(B) for a subsequence still denoted with the same indices, we can write
An → A in the weak γ-sense. Then A ∈ Ac(B) and, since the eigenvalues of the
Laplacian are weakly γ-lower-semicontinuous, we get λ1(A) ≤ lim infn→∞ λ1(An) = x
and λ2(A) ≤ lim infn→∞ λ2(An) = y. From the vertical convexity of E, the vertical
segment joining s(A) with the half-line d1 is contained in E. If y < λ2(B1), we can
find the point (λ1(A), y) on this segment, and now using the horizontal convexity, the
segment joining (λ1(A), y) to d2 is in E. But this segment contains the point (x, y)
since λ1(A) ≤ x.

If y ≥ λ2(B1), then the horizontal convexity gives directly (x, y) ∈ E.
We give now a general result which establishes the existence of a γ-continuous

and decreasing homotopy between two quasi-open sets A1 ⊆ A0.
Proposition 3.1. Let A1 ⊆ A0 be two quasi-open sets. There exists a decreasing

homotopy from A0 to A1 which is γ-continuous; namely, there exists a γ-continuous
mapping h : [0, 1] → A(RN ) such that for t1 < t2, h(t1) ⊇ h(t2), and h(0) = A0,
h(1) = A1.
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Proof. Denote by K a closed cube containing A0. We shall divide the cube in 2N

equal closed cubes K0, . . . ,K2N−1; each cube Ki is analogously divided in 2N closed
cubes Ki0, . . . ,Ki2N−1, and so on. Then with each real number t ∈ [0, 1] written in
the 2N -basis by 0, α1, α2, . . . we associate the set

Λt = (A0 \ Ft) ∪A1,

where

Ft = ∪∞n=1 ∪αn−1
i=0 Kα1...αn−1i.

Remark first that Λt is quasi-open since Ft is quasi-closed. Indeed, let’s denote by

Ft,k = ∪kn=1 ∪αn−1
i=0 Kα1...αn−1i

the closed set consisting of the first k-blocks of Ft. Set also

Λt,k = (A0 \ Ft,k) ∪A1,

which is obviously quasi-open, and remark that

∩k≥1Λt,k = Λt.

Since cap(Λt,k \ Λt) → 0 for k → ∞ we get that Λt is quasi-open. Moreover, the
mapping t → Λt is continuous in capacity. Indeed, fix t ∈ [0, 1] and consider tn → t.
We have to distinguish two situations: either t has an infinite number of digits and
is not finishing with aa . . . aa . . . , or t has a finite number of digits or finishes with
aa . . . aa . . . (a being the greatest digit in the basis 2N , namely a = 2N − 1). In the
first case, if tn → t, then ∀k ∈ N ∃nk ∈ N such that ∀n ≥ nk, tn, and t have the same
first k digits. In this case

cap(At∆Atn) ≤ cap(Kα1...αk),

and we derive the continuity in capacity.
If t has a finite number of digits t = 0.α1α2 . . . αk, then t written as

t = 0.α1α2 . . . αk0000 . . .

is identified with

t′ = 0.α1α2 . . . (αk − 1)aaaa . . . .

The difference between At and At
′

is a point, hence of zero capacity. Consider tn → t.
If tn ≥ t, the first k digits of tn and t coincide for n ≥ nk. If tn < t, then the first k
digits of tn and t′ coincide for n ≥ nk and the conclusion follows.

Since the mapping t 7→ Λt is obviously decreasing and γ-continuous, to achieve
the proof it is enough to take

h(t) = Λt.

Proof of Step 1. Let A ∈ Ac(B). If there exists a subset A∗ of A, such that
λ1(A∗) = λ2(A∗) = λ2(A), then one can directly apply Proposition 3.1, and Step 1 is
proved since there exists a decreasing and γ-continuous homotopy from A to A∗. Since



534 D. BUCUR, G. BUTTAZZO, AND I. FIGUEIREDO

λ2(A) = λ2(A∗), then by monotonicity λ2(Λt) = λ2(A). Since the first eigenvalue is
γ-continuous, for each α ∈ [λ1(A), λ2(A)] there exists some tα such that λ1(Λtα) = α.

Let’s prove now the existence of the set A∗. If λ1(A) = λ2(A), there is nothing to
prove. Hence we suppose λ1(A) < λ2(A), and from what we have seen in the previous
section we have two possibilities: either A2 = {ϕ2 6= 0} ⊆ {ϕ1 > 0} = A1 (and in this
case A∗ = A2) or cap(A1 ∩A2) = 0. Denoting by Pt the open half-space

Pt = {(x1, . . . , xN ) ∈ RN |t < x1},
there exists some t0 ∈ R such that λ1(A1 ∩ Pt0) = λ2(A). Choosing

A∗ = (A1 ∩ Pt0) ∪A2,

the conclusion follows.
Proof of Step 2. Let’s consider A ∈ Ac(B) and denote by A# the closed ball

of measure m(A). The idea of proving the convexity in the vertical direction is to
make a sequence of continuous Steiner symmetrizations transforming A such that
m(An \ A#) → 0 and to use the horizontal convexity. If λ2(A) ≥ λ2(A#), then the
segment {

(λ1(A), γ) : for γ ∈
[
λ2(A), λ1(A)

λ2(B1)

λ1(B1)

]}
is contained in E. This follows immediately from the convexity on the horizontal lines
since all the half-line supported by d1 and having B1 as extreme point is in E.

So let’s suppose λ2(A) < λ2(A#) and choose α ∈]λ2(A), λ2(A#)[. We intend to
prove that (λ1(A), α) ∈ E. We use Corollary 2.3 and we find a sequence of Steiner
symmetrizations {An}n∈N such that lim infn→∞ λ2(An) ≥ λ2(A#). In order to un-
derline the evolution of the set A “toward” the ball, we say that the CSS from An to
An+1 is parametrized by t ∈ [n, n + 1] by simple translation of the interval [0, 1]. In
this way we can define the set At for every t ≥ 0, and the set An can also be written
as An.

On the other hand, λ1(An) ≤ λ1(A). There exists some n0 ∈ N such that
λ2(An0) ≥ α and denote

t∗ = sup
{
t ∈ [0, n0] : λ2(At) ≤ α

}
.

From the upper-semicontinuity on the right we have λ2(At
∗
) ≥ α and from the lower-

semicontinuity on the left we get λ2(At
∗
) ≤ α which give λ2(At

∗
) = α.

Using now the convexity on the horizontal lines, the segment joining (λ1(At
∗
), α)

with (α, α) ∈ d2 is contained in E. However, since λ1(At
∗
) ≤ λ1(A), the point

(λ1(A), α) belongs to E.

4. Further remarks. There are many other questions which can be raised. Is
the set E convex? Is E still closed if the pair (λ1, λ2) is replaced by (λi, λj) or, more
generally, if we consider the set

EK =
{

(λi(A))i∈K : A ∈ Ac(B)
}
,

where K is a given subset of positive integers? Are the sets A on the boundary of E
smooth? If the ball B is replaced by an open set Ω, is the set s(Ac(Ω)) still closed?
Or if the Laplace operator is replaced by

L = −∂i(aij∂j) + bi∂i + c ?
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Let’s give a proposition which yields some information on the boundary of the set E.
For a set A ∈ Ac(B) we shall denote

Rinf(A) = {(x, y) ∈ R2 : x ≤ λ1(A), y ≤ λ2(A)}.
Proposition 4.1. For every A ∈ Ac(B), there exists a set Ã ∈ Ac(B) which is

either finely connected or two balls, such that s(Ã) ∈ Rinf(A).
Proof. Fix A ∈ Ac(B) and set A1 = {ϕ1 > 0} and A2 = {ϕ2 6= 0}. If λ1(A) =

λ2(A) the assertion is obvious since s(A) ∈ d2. If λ1(A) < λ2(A) there are two
possibilities: if A2 ⊆ A1, then A1 is finely connected and s(A1) ∈ Rinf(A); if cap(A2∩
A1) = 0, we make the Schwarz rearrangements of A1 and A2 into the disjoint balls
C1 and C2 and we get s(C1 ∪ C2) ∈ Rinf(A) and C1 ∪ C2 ∈ Ac(B).

This proposition means that any A whose s(A) is on ∂E \ (d1 ∪ d2) is either
finely connected or two balls. An open question is to study if these sets are simply
connected.

To conclude, we remark that the result of this paper can be applied to prove the
existence of solutions for some classes of shape optimization problems for which the
shape functional is not monotone with respect with the set inclusion (see [8]). We
can consider problems of the form

min
{

Φ(λ1(A), λ2(A)) : A ∈ Ac(B)
}
,(4.1)

where Φ : E → R is lower semicontinuous and goes to +∞ at infinity. This is the
case, for instance, of

Φ(x, y) = (x− α)2 + (y − β)2,

where (α, β) is any element in R2. Therefore by Theorem 2.1 the minimization prob-
lem (4.1) admits at least a solution.
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[16] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm.

Univ. Dorpat., A9 (1926), pp. 1–44.
[17] G. Polya, On the characteristic frequencies of a symmetric membrane, Math. Z., 63 (1955),

pp. 331–337.
[18] S. A. Wolf and J. B. Keller, Range of the first two eigenvalues of the Laplacian, Proc. Roy.

Soc. London Ser. A, 447 (1994), pp. 397–412.
[19] W. Ziemer, Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989.



EXACT SOLUTIONS TO DEGENERATE CONSERVATION LAWS∗

ROBIN YOUNG†

SIAM J. MATH. ANAL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 30, No. 3, pp. 537–558

Abstract. We consider large variation solutions to systems of conservation laws, for which the
Glimm–Lax theory of decay breaks down. We identify and isolate geometric nonlinearities which
are distinct from the usual genuine nonlinearity of each wave field by describing some degenerate
systems in which all nonlinearity is geometric and is manifested in the coupling of the different wave
families. We then construct exact explicit solutions to these equations and examine properties of
these solutions. We find a wide variety of phenomena, depending on the form of the nonlinearity. The
most striking of these include strong nonlinear instability of solutions and nontrivial time-periodic
solutions. We also find solutions which grow or decay exponentially and oscillating solutions which
correspond to rotations by an irrational angle. These oscillating, periodic, and exponential solutions
can all appear in a single system with small initial data, demonstrating sensitive dependence on
initial conditions.

Key words. conservation laws, linear degeneracy, periodic solutions
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1. Introduction. We are interested in periodic solutions to systems of nonlinear
conservation laws in one space dimension,

ut + f(u)x = 0,

where u ∈ RN for N ≥ 3. For these systems, the Glimm–Lax theory of decay
breaks down due to geometric nonlinearities which are not present for systems of two
equations.

The nonlinearity of the flux f is usually manifested as genuine nonlinearity: non-
linear wave-speeds lead to expansion of rarefactions and eventual shock formation.
The appearance of shocks means that we must consider weak solutions, which are
solutions of the integral conservation law∫ ∞

0

∫ ∞
−∞

(ψtu+ ψxf(u)) dx dt+

∫ ∞
−∞

ψ(x, 0)u0(x) dx = 0,

where ψ is a smooth test function. After a shock forms, it interacts with rarefactions,
leading to decay and loss of information. This is a stabilizing and time-irreversible
effect. If the system consists of two equations, or if the total variation of the data
is small, then this is the dominant phenomenon. Here the Glimm–Lax decay theory
holds, and solutions decay like 1/t [2].

If the system consists of three or more equations and the total variation of the
data is large, then a new nonlinear phenomenon emerges. This is a geometric non-
linear effect due to the coupling of the different wave families. This coupling is a
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manifestation of the failure of the wave curves to form a coordinate system. The wave
curves are composite rarefaction and shock curves and are approximately the integral
curves of the eigenvector fields. The failure of these to commute is quantified by the
Lie brackets

[rj , rk] = rj ·∇rk − rk·∇rj =
∑

Λjki r
i

of the eigenvectors. The interaction coefficient Λjki defined here represents the i-wave
generated by the interaction of a j- and a k-wave, to leading order. These effects are
quadratic and indeed yield all quadratic effects of interactions: when corrections for
these terms are included, all errors become cubic [12].

These quadratic effects accumulate and become dominant when the total variation
is large. Heuristically, this can be seen by counting waves and interactions: if all
waves have strength O(ε) and there are approximately O(V/ε) waves, then there
are O(V 2/ε2) interactions. Thus the cumulative effect due to quadratic terms in
interactions is O(V 2), which does not vanish as the amplitude ε → 0. On the other
hand, if these quadratic terms are not present, as is the case for two equations, the
cumulative error becomes O(V 2ε) and can be controlled.

In this paper, we wish to investigate the consequences of these quadratic effects
for solutions of large total variation, and in particular for data which is periodic. We
study strictly hyperbolic systems in which there are no genuinely nonlinear fields, so
that all the nonlinearity comes from the coupling of eigenvector fields. Specifically, we
will assume that all wave-speeds, which are eigenvalues of the flux matrix Df(u), are
constant in a neighborhood. This assumption leads to simplifications which allow us
to construct a class of exact weak solutions to the conservation law and study proper-
ties of these solutions. Since all fields are linearly degenerate, there are no shocks or
rarefactions present, and all waves in our solutions are contact discontinuities. More-
over, the wave curves are then exactly the integrals of the eigenvector fields. We
remark that in systems of two equations, the assumption of constant wave-speeds
necessarily implies that the system be linear, as can be seen by rewriting the system
in Riemann invariant coordinates.

The method of weakly nonlinear geometric optics has been used to predict a
variety of new phenomena [9, 5, 6]. These include the strong nonlinear instability
of solutions as well as the indefinite delay of shock formation. It is apparent from
these simplified equations that the values of the interaction coefficients considered
together are crucial to knowledge of the behavior of solutions. Thus we expect different
behaviors depending on how many of these coefficients vanish and the positivity or
negativity of others.

Not all of the interaction coefficients play an important role: with a careful nor-
malization of the eigenvectors, all coefficients Λiki can be made to vanish at the origin

[11]. Since the Lie bracket is antisymmetric, we thus need know only the values Λjki ,
where j > k and both are distinct from i. Thus, for three equations we need only
consider the triple {Λ1,Λ2,Λ3}, where Λ1 = Λ32

1 , etc. We shall see that different
values for these triples lead to quite different qualitative behavior of solutions. This
indicates that in order to make statements about the pointwise behavior of solutions,
it will be necessary to make some assumptions about the systems and about the in-
teraction coefficients in particular. Clearly, these assumptions should be based on
physical principles.

The class of weak solutions which we study can be easily constructed due to the
simplicity of the systems. We shall work with a 3× 3 system for which the (constant)
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wave-speeds are −1, 0, and 1. Our initial data is a piecewise constant with jumps
at regular intervals. All waves are then contact discontinuities which propagate with
speeds 0 or ±1, and a repeating resonant interaction pattern develops. All interactions
in this wave pattern are triple interactions and occur at the points of a regular lattice.
In order to completely describe the solution, we need only keep track of the wave
strengths. The problem thus reduces to a discrete problem, namely that of finding
the wave strengths, which change only at points of interaction on the lattice.

We now describe some of the effects that appear for these systems depending on
the choice of triples of interaction coefficients. The worst case of instability occurs
when all three coefficients have the same sign: in this case a triple interaction may
cause growth in each wave entering the interaction. Indeed, we shall set up a pattern
in which each interaction has this magnification property, which has the effect of
causing unbounded growth in amplitude of the solution in finite time. In this case,
the wave strengths satisfy a Riccati-type difference equation,

εk+1 ≈ εk + ε2k,

solutions of which explode in finite time. In fact, since our conservation law is com-
pletely linearly degenerate, the solutions can be scaled in such a way that the growth
rate can be accurately controlled. We remark that the amplitudes do not actually
become infinite, before which our methods break down, but become large relative
to the initial amplitude. As a corollary, we find solutions which decay by a similar
mechanism. We emphasize that this decay is not due to genuine nonlinearity and
is the result of a different phenomenon. Indeed, all the solutions we consider are
time-reversible, as may be expected from the lack of genuine nonlinearity.

This instability of solutions is the same phenomenon as that predicted by weakly
nonlinear geometric optics in [5, 6]. However, here we are able to give an explicit
description of the growth mechanism, as well as give accurate estimates of the rate of
growth and the time of existence of solutions with sharp bounds on the total variation.

When considering realistic systems, physical assumptions lead to extra conditions
on the interaction coefficients; the effects of various assumptions are described in [11].
The existence of a convex entropy function for which an additional conservation law
can be derived is one such assumption and is equivalent to the assumption that we
have a symmetric hyperbolic system. This symmetry leads to algebraic constraints
on the interaction coefficients; for three equations, this is the relation

Λ1

λ3 − λ2
+

Λ2

λ3 − λ1
+

Λ3

λ2 − λ1
= 0.

In particular, this relation precludes the strong instability mentioned above, which
requires that the Λi’s have the same sign.

Another common constraint is the existence of a Riemann coordinate. This is
a function whose gradient is a left eigenvector of the system, and implies that the
corresponding interaction coefficient vanishes. This family can be thought of as being
weakly decoupled from the system, in that it is not affected (to quadratic order) by
the presence of waves of other families. We construct a class of degenerate systems
of conservation laws with a 2-Riemann coordinateand study the variety of behaviors
that can occur for these systems. In this class of examples, we are able to integrate the
eigenvectors exactly and thus obtain exact formulæ for Riemann solutions and wave
interactions. This in turn leads to a detailed description of the solutions constructed
earlier. We remark that these solutions need not be small, and indeed the integrals
of eigenvectors are globally defined.
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Depending on the fluxes in these systems and on the initial data, our solutions
exhibit qualitative differences. For a system with coefficients {1, 0, 1}, we find that we
again obtain growing or decaying solutions, although in this case the rate of growth
or decay is exponential. In particular, there is no finite time blowup in amplitude.
Indeed, together with Blake Temple, the author has recently shown that solutions
to systems of three conservation laws with one Riemann coordinate grow at most
exponentially, so that this example shows that those results are sharp [10].

In [10], a new length scale was identified for solutions with large variation, which
also determines the rate of growth of solutions. More precisely, a norm ‖u‖′d is intro-
duced which measures the variation of the solution over intervals of fixed size d, and
the ratio ρ = ‖u‖′d/d is seen to bound the rate of growth of the solutions. Indeed, the
theorem in [10] states that if the sup-norm of the initial data is small, then solutions
satisfy the bound

TV
(
u(·, t)) ≤ TV (u0

)
exp(kρt) +O(ε),

where k = 8Λλ depends only on the flux. In this paper, we show that this bound is
sharp; our solution satisfies

TV
(
u(·, t)) ≥ TV (u0

)
exp(ρt),

so that the ratio again determines the rate of growth of solutions (we have Λ = λ = 1).
Thus control of the d-norm leads to control of the time of existence of solutions.

When the coefficients are {1, 0,−1}, the behavior is very different. We may
view this system as a completely linearly degenerate model for the equations of gas
dynamics, as these are the coefficients for the Lagrange equations. In this case, we
find that there are time-periodic solutions, as well as solutions which correspond to
irrational rotations of the circle. These results indicate that there may be periodic
solutions to the Euler equations, as well as other solutions which do not decay.

Although periodic solutions to 2 × 2 systems have been previously constructed
[3, 4], those mechanisms for periodicity are different from the present case; indeed,
those systems are genuinely nonlinear with trivial mode-mode interactions. In that
case, the change in wave-speeds is exploited to piece together solutions consisting
entirely of centered rarefaction waves.

These different types of solutions are not mutually exclusive; indeed, there are
flux functions for which there are solutions which have exponential growth and decay,
as well as periodic and irrationally oscillating solutions. The exact solutions can be
described by a family of linear maps Gβ of R2 parameterized by a number β, and with
determinant 1. The dynamics of these maps are then determined by the eigenvalues,
which may be real, corresponding to growth and decay, or complex, corresponding to
rotations. As β varies, the map Gβ may bifurcate, leading to the different phenomena
we have described. Depending on the chosen flux, all of these phenomena may occur
for one system. We remark that all of the initial data leading to these solutions may
be chosen arbitrarily small in any periodic p-norm, showing sensitive dependence on
initial data.

The paper is arranged as follows: in section 2, we recall the solution to the
Riemann problem and the basic interaction estimate. In section 3, we construct the
exact solutions which are to be analyzed. In section 4, we consider a specific system
and find strongly unstable solutions. In section 5, we consider systems with a Riemann
coordinateand describe in detail the exact solutions constructed above. Finally, in the
appendix we show that the system used in section 4 exists; we were not able to write
this system down explicitly.
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2. Preliminaries. We briefly recall the construction of solutions to the Riemann
problemand interactions of nonlinear waves. The Riemann problem is the problem
obtained by taking Cauchy data consisting of two constant states, say uL and uR.
It is solved by resolving the solution into constant states separated by N nonlinear
waves, each wave corresponding to an eigenvalue of the flux matrix Df . These waves
are either rarefactions or shocks when the field is genuinely nonlinear, rk·∇λk > 0, or
contact discontinuities for a linearly degenerate field.

A k-rarefaction is a continuous expanding fan for which the state uε propagates
along the characteristic given by x/t = λk(uε). Here the state uε lies on the integral
curve of the eigenvector field rk(u) through the left state, that is, on the solution
curve

du

dε
= rk(u), with u(0) = uL.

This makes sense only if the wave-speed λk(uε) increases along this integral curve,
which only accounts for positive values of the parameter ε. In order to pick up the
other states to which uL may be connected, we must consider discontinuous weak
solutions, i.e., shocks. By considering the weak (integral) formulation of the conser-
vation law, it is easy to see that discontinuities must satisfy the Rankine–Hugoniot
relation

s(uR − uL) = f(uR)− f(uL),

where uR and s are the right state and shock speed, respectively. This relation defines
one curve in each family, tangent to the corresponding rarefaction curve. The entropy
condition, which determines physically relevant shocks, selects that part of the curve
along which λk decreases from left to right.

Combining the admissible parts of the shock and rarefaction curves, we complete
the locus of states which can be connected to uL by a (weak) nonlinear k-wave. It is
well known that for a genuinely nonlinear field, the composite k-wave curve through
a point is C2 with discontinuous third derivative. The strength of a wave is given by
the (signed) difference of a parameter which is increasing along the wave curve.

If the kth field is linearly degenerate, that is rk·∇λk ≡ 0 in a neighborhood,
then the shock and rarefaction curves coincide, and the nonlinear wave is a jump
discontinuity which propagates with speed λk(uL). In this case, the wave curve is
exactly the integral curve of rk and is as smooth as the flux. In particular, in our
examples for which all eigenvalues are constant, and hence linearly degenerate, all
nonlinear waves resolving Riemann problems are contacts which propagate with the
constant speed λk. There are thus no nonlinear effects due to the expansion and
compression of waves; rather, all nonlinear effects come from interactions of waves of
different families.

Once we have constructed the wave curves, the general Riemann problem is solved
by centering N nonlinear waves, one for each family, at the origin, and finding the
correct intermediate states so that the extreme left and right states are those of the
Riemann data. Note that we are using strict hyperbolicity here: since all waves are
centered at the origin, these must appear in increasing order of wave-speed from left
to right. This gives us a natural ordering of wave curves which must be taken into
account when resolving wave interactions. Also, because the eigenvectors form a basis,
the implicit function theorem yields a unique decomposition into waves and constant
states [7].
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The Riemann interaction problem is formulated as follows: suppose that the
Riemann problems with data 〈uL, uM 〉 and 〈uM , uR〉 are resolved into waves of known
strength {αi} and {βi}, respectively. If the resulting Riemann problem with data
〈uL, uR〉 is resolved into waves {εi}, the interaction problem is to estimate the wave
strengths εi in terms of αi and βi. This problem has a satisfactory answer for weak
waves, namely

εi = αi + βi +
∑
j>k

Λjki αjβk +O(SD).(2.1)

Here the coefficients Λjki are the interaction coefficients determined by the Lie bracket,

[rj , rk] =
∑

Λjki r
i, while S is equivalent to the L∞-norm of the solution and D is a

quadratic error term measuring the error due to interactions [1, 12]. For our purposes,
it is enough to note that D = O(S2), where S can be taken to be the maximum
strength of interacting waves.

To interpret the estimate geometrically, we observe that the leading order effect of
the interaction of a pair of waves from different families is simply the transposition of
these waves, which is achieved by integrating along the wave curves in reversed order.
The quadratic correction due to this reversal is then given by the Lie bracket of the
vector fields, which yields the quadratic term in the estimate. We get the interaction
estimate by including one bracket for each pair of transposed waves, namely αj and
βk, where j > k, and separating these corrections into wave components. We remark
that this interaction effect is determined by the geometry of the eigenvector fields,
and is not related to the genuine nonlinearity of any individual wave family.

The interaction problem cannot in general be interpreted (locally) as the solution
to a Riemann problem, except when all the pairwise interactions occur simultaneously.
This can happen whenever a number of waves converge at a single point of space-time.
In this case, a similar interaction estimate holds, and the continuation of the solution
beyond the point of interaction is indeed an exact solution to the conservation law.
In our examples, all waves are jump discontinuities, so we shall consider three waves
in decreasing families converging to a single point, as in Figure 2.1, and refer to this
as a triple interaction. Suppose the incident waves are γ, β, and α and these are,
respectively, 3-, 2-, and 1-waves. After interaction, we resolve the solution into waves
in increasing order of wave-speed. If waves are labeled as in the figure, then the
outgoing wave strengths are given by

α′ = α+ Λ32
1 γβ +O(S3),

β′ = β + Λ31
2 γα+O(S3), and(2.2)

γ′ = γ + Λ21
3 βα+O(S3),

where S = max{α, β, γ}. Here we have normalized the eigenvectors so that all other
interaction coefficients vanish at a point (see [11]). Figure 2.1 illustrates the inter-
action in two spaces, first by tracing the paths of the contacts (“characteristics”) in
space-time, and also by showing the constant states lying on the integral curves of
eigenvectors in state space. Note that the characteristics are exactly as for a linear
system, but the intermediate states are changing nonlinearly.

We shall use these triple interactions to build up periodic resonant solutions to
our degenerate conservation laws, in which all interactions are of this type. These
solutions will be piecewise constant, and we shall analyze them in some detail.
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Fig. 2.1. A triple interaction.

3. Exact periodic solutions. We now construct exact solutions for certain
Cauchy data for our degenerate conservation laws. Recall that these systems have
constant wave-speeds, and the nonlinearity comes from the geometry of the eigen-
vector fields. We shall construct periodic solutions, although it is clear that these
can be restricted to compact support. Our building blocks are the triple interactions
constructed above.

In order to generate a repeating resonance pattern, we require that the ratio of
differences of wave-speeds, λ3−λ2

λ2−λ1
, be rational [5], and we shall take this to be unity.

For simplicity, we assume that the eigenvalues of the conservation law are identically
−1, 0, and 1. Thus all waves are contact discontinuities and propagate along straight
line “characteristics” of slope 0 or ±1 in space-time, and we set ∆t = ∆x. This
is analogous to solutions of linear systems, for which singularities propagate along
characteristics, x = 0 or x = ±t, respectively. In our case, the singularities are jump
discontinuities which, although they propagate at fixed speed, change strength after
passing through each interaction.

We now set up a periodic resonant wave pattern. This is a local construction
and all waves will be assumed to be weak, so that the solution is restricted to a
neighborhood of state space, and Riemann problems can be solved. We start with a
localized configuration of waves and extend this by periodicity. Referring to Figure
3.1, we choose a reference state, which we label 1. We then find state 2 on the 2-wave
curve of 1, so that this 2-wave has strength δ1, say. Choose another state 5, and
connect this to state 6 by another 2-wave, say of strength δ2. We now let ∆x be a
small positive number: our Cauchy data will be constant on intervals of length ∆x.
Indeed, we define the Cauchy data to take on the states 1, 2, 5, and 6 on consecutive
intervals of length ∆x, respectively, and extend this data periodically. We shall choose
the states 1 and 5 and strengths δ1 and δ2 to obtain different types of behavior.

Once the Cauchy data has been prescribed, we can determine the solution as
follows. Up to time t = ∆x, we simply resolve the Riemann problems into constant
states separated by waves, which by degeneracy are all contacts. By our choice of
states, the Riemann problems 〈1, 2〉 and 〈5, 6〉 are resolved into a single 2-wave. Re-
solving the Riemann problems 〈6, 1〉 and 〈2, 5〉, we get three waves emanating from
each point x = 2k∆x. At time t = ∆x triple interactions occur, and the solution is
of the same form as the Cauchy data. Continuing in this way, a resonant periodic
wave interaction pattern is formed. Figure 3.1 illustrates the resonance pattern by
showing the characteristics and a projection of state space, where we integrate along
the wave curves. We have labeled the constant states to show how they change, and
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Fig. 3.1. A resonant interaction pattern.

the dashed lines show a single interaction.
It is clear that all interactions of waves are triple interactions, occurring exactly

at the points (x, t) = (k∆x, j∆x), for j + k even. Moreover, the solution at each
interaction time t = j∆x is of the same form as the Cauchy data, and the wave pattern
is repeated, although the intermediate states and wave strengths themselves change
in time. This is to be contrasted with the usual behavior for nonlinear conservation
laws, in which the wave patterns change and may become very complicated due to
the expansion of rarefactions and formation of shock waves. We emphasize that we
have constructed an exact solution to the degenerate conservation law and not an
approximation.

At each fixed time, our solution is space-periodic with period 4∆x and takes on
8 (or 4) constant values. If these intermediate values are known, it is easy to write
down the Lp-norm of the solution (as a 4∆x-periodic function.) For example, labeling
the states as in Figure 3.1, at time t = 2∆x we have

‖u‖pp = |b|p + |c|p + |f |p + |g|p.
Similarly, by knowing the wave strengths at any time, we can estimate the Lp-norm of
the solution. In fact, since the wave pattern and period of the solution do not change,
a knowledge of the minimum and maximum wave strengths (the sup-norm) will allow
us to deduce estimates for the other Lp-norms as well.

Temple and Young have introduced a norm, called the d-norm, which measures
the local variation of the solution [10]. This norm is defined for fixed (small) d as

‖u‖′d = sup
a
TV[a,a+d](u(·))(3.1)

to be the maximum variation of a function u(x) over intervals of length d. Clearly,
if we set d = 4∆x, then for our examples the d-norm is just the total variation per
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period of the solution. In [10], it was shown that the size of d and the corresponding
value of the d-norm are critical in determining the growth of solutions.

Thus far we have set up the wave pattern without specifying the interaction
coefficients or the exact Cauchy data. We shall choose the states 1 and 5 and wave
strengths δ1 and δ2 to give different effects depending on the values of the interaction
coefficients. We are primarily interested in two cases: all three interaction coefficients
are positive and one coefficient vanishes.

Before proceeding with specific choices, we recall the interaction estimate (2.3):

α′ = α+ Λ1γβ +O(S3),

β′ = β + Λ2γα+O(S3), and(3.2)

γ′ = γ + Λ3βα+O(S3),

where α, β, and γ are 1-, 2-, and 3-waves, respectively, and ′ refers to the outgoing
wave, as in Figure 2.1. Assuming that Λi ≥ 0 and ignoring cubic effects, we see
that growth can occur in each family with a nonzero coefficient if the product αβγ is
positive. That is, each outgoing wave will be of the same sign but have greater strength
than the corresponding incident wave. We shall say that magnification occurs in the
interaction. This product is positive if all three incident waves are positive, or if
exactly two are negative. This gives us room to set up the resonance pattern so that
each triple interaction yields magnification of wave strengths. Similarly, if the product
αβγ is negative, then after interaction each wave is weaker but of the same sign, and
we find resonant solutions which decay.

A careful check using Figure 3.1 reveals that if consecutive waves in each family
alternate in sign, then the sign of the product of incident waves is the same at each
lattice point. For example, with the notation of Figure 3.1, we take the 1-waves 23
and 67 to have opposite sign, and similarly the 2-waves 12, 34, 56, and 70 to alternate
in sign, etc. Here 23 refers to the 1-wave between constant states 2 and 3, and so on.
If this product of incident waves is positive we expect growth, and if it is negative we
expect decay. In the following sections we shall examine the behavior of solutions for
some specific values for the interaction coefficients.

4. Instability of solutions. We now make specific assumptions on the interac-
tion coefficients and study the consequences of these assumptions. In this section we
shall suppose that the interaction coefficients are all positive. The existence of a flux
function which has constant wave-speeds and these coefficients is established in the
appendix. The system can thus be described as follows: the wave-speeds are given by
−1, 0, and 1, and the interaction coefficients Λi are positive. The following theorem
holds for this system.

Theorem 1. There are solutions with initial data of bounded variation and
arbitrarily small Lp-norm which grow arbitrarily in any finite time. More precisely,
given positive constants τ , ε, and K � 1, there are some te < τ and weak solutions
u(x, t) defined for t ∈ [0, te) satisfying

‖u(·, 0)‖∞ < ε, ‖u(·, 0)‖1 < ε, and

8/Λm ≤ TV
(
u(·, 0)

) ≤ 10/Λm,

where 0 < Λm < min Λi, while for some tb < te, we have

‖u(·, tb)‖∞ > K ‖u(·, 0)‖∞,
‖u(·, tb)‖1 > K ‖u(·, 0)‖1, and

TV
(
u(·, tb)

)
> K TV

(
u(·, 0)

)
.
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Similar statements hold for all other Lp-norms.
We note that although these solutions are highly unstable, they do not necessarily

become infinite in finite time. That is, although the amplitudes can be arbitrarily
magnified, our construction breaks down before solutions become infinite. Indeed,
once the amplitude becomes large, the global structure of the wave curves becomes
important and the Riemann problem is not necessarily well-posed. This is the same
type of behavior seen in the constructions of geometric optics [5, 6].

It is remarkable that instability occurs for data which has total variation larger
than 8/Λm, when contrasted with the result of the author that solutions are stable
as long as the initial total variation is less than 1/3ΛM , where ΛM = max Λi, and
the sup-norm is small enough [12]. In this case, although a resonating pattern can
be established and rapid growth may occur, there are not enough waves initially to
preserve the resonance, so that the different families will separate, halting the growth
process. In general, once the families separate, genuine nonlinearity takes over and
solutions decay [8].

This behavior is clarified by the growth rate of solutions established in [10] and
its relation to the d-norm defined there. The d-norm, given by (3.1), measures the
“local” variation of the solution and provides a scale for the short-range effects of
interactions, which do not cause growth in the solution. However, when the total
variation is large, the long-range effects of interactions (namely those accumulating
over multiple d-intervals) may dominate and cause instability. In our examples, the
growth rate is a constant multiple of the ratio ‖u0‖′d/d, which in turn determines the
time of existence without explicit reference to the total variation and sup-norm. In
particular, if we let d→ 0 faster than ‖u0‖′d, then our solutions explode in arbitrarily
short time. The following corollaries are evident from the proof of the theorem.

Corollary 1. The d-norm determines the rate of growth and time of existence
of solutions. That is, the amplitude η(t) of the solution satisfies

η(t) ≥ η(0)

1− k ρ t ,

where ρ is the ratio ‖u‖′d/d and k is a constant depending only on the flux.
Corollary 2. There are space-periodic solutions with arbitrarily small Lp-norms

(measured over one period) which grow arbitrarily in finite time. That is, there are
periodic solutions u(x, t) satisfying

‖u(·, 0)‖p < ε, while ‖u(·, tb)‖p > K ‖u(·, 0)‖p
for each 1 ≤ p ≤ ∞.

Corollary 3. There are periodic solutions (to the same conservation law) de-
fined for all time, which decay at the rate 1/(1 +Kt), for any given constant K.

Proof. We shall use the exact solutions constructed above and analyze changes in
wave strengths after carefully choosing the initial data. In the notation of Figure 2.1,
recall that we have the freedom to choose constant states which we labeled 1 and 5,
and initial 2-wave strengths δ1 and δ2. We shall make these choices so that all waves
have approximately the same strength, while waves in each family have alternating
signs. Let η > 0 denote a small number to be determined, and fix state 1 inside a
neighborhood of the origin. Let δ1 = δ2 = η, which determines states 2 and 6, once 5
has been chosen. We choose state 5 by setting the strengths of the waves 23, 34, and
45 to be η, −η and −η, respectively. This fixes our initial data and implies that the
waves 67, 70, and 01 have approximate strength −η, −η, and η, respectively. We now
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find η0 ≈ η so that all initial wave strengths are between η0 and 5η0/4, where η0 will
be chosen later.

With these choices, we see that the product of strengths of waves entering each
interaction of the lattice is positive, so that magnification occurs at each interaction.
In order to see that unstable growth occurs, we now define ηq to be the minimum
strength of all waves at time t = 2q∆x+, that is, after each wave has passed through
at least q interactions. Then, assuming that the waves remain weak, for some positive
Λ′ < Λm < Λi, we have

ηq+1 ≥ ηq + Λm η
2
q ≥ ηq + Λ′ ηq ηq+1(4.1)

for each q. This is true by the interaction estimate (2.3), where we observe that the
error O(SD) is cubic in ηq, so that it is dominated by the quadratic part. Now, by
comparison with the exact solution of the corresponding difference equation, we get

ηn ≥ η0

1− Λ′ η0 n
for each n.(4.2)

We obtain solutions with compact support simply by cutting off the wave pattern
for some |x| > L. Note that if we do this, resonance occurs in a region containing the
set S = {(x, t)|−L+ t < x < L− t}. Our calculation of ηn remains valid as long as ηn
measures the strength of waves contained in S. We now estimate the norms for the
solution by waves contained in S. The sup-norm is measured by the maximum wave
strength, and the total variation is measured by the sum of (absolute) wave strengths.
We thus have

η0 ≤ ‖u(., 0)‖∞ ≤ 5η0/4 and

4Lη0/∆x ≤ TV
(
u(., 0)

) ≤ 5Lη0/∆x,

as there are four waves per interval of length 2∆x. The L1-norm is given by

‖u(., 0)‖1 = 2L/4∆x ·
∫ 4∆x

0

|u| ∼ η0L.

Similarly, the norms at time t < L satisfy

‖u(., t)‖∞ ≥ ηn,
TV
(
u(., t)

) ≥ 4(L− t) ηn/∆x, and

‖u(., t)‖1 ≥ (L− t) ηn,
where n is given by n = [t/2∆x]. Now, given any constant K, instability in all norms
will follow as long as ηn > η0 · 5KL/4(L− t), or by (4.2), if

1

1− Λ′ η0 n
>

5K L

4 (L− τ)
,(4.3)

while also t < τ < L. Therefore we take L > τ and choose η0 and ∆x such that the
relations

Λ′ η0 n→ 1 and t→ τ

are equivalent. This can be accomplished by defining ρ = 2/Λ′ τ and setting η0 =
ρ∆x. We now choose ∆x so small that (4.3) holds, while ηn+2 remains small enough
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that all estimates used above still hold. It is clear that the sup- and L1-norms of the
initial data can be made arbitrarily small, while the initial total variation is bounded
below by 4Lρ > 8/Λ′. Also, since the waves remain a fixed distance ∆x apart while
they grow in size, we have instability of the solution in all Lp-norms. Similar estimates
hold for space-periodic solutions.

We can interpret our choice of the parameter ρ in terms of the d-norm as follows:
with d = 4∆x set to one period, we see that the d-norm satisfies

8η0 ≤ ‖u(., 0)‖′d ≤ 10η0

or equivalently the ratio

2ρ ≤ ‖u(., 0)‖′d
d

≤ 2.5ρ.

That is, our choice of ρ is just our choice of the ratio ‖u‖′d/d, which in turn determines
the growth rate of solutions. Indeed, we can rewrite (4.2) as

ηn ≥ η0

1− Λ′ρt/2
,

and Λ′ is a constant depending only on the flux.
The proof of the third corollary proceeds as above, except that we change the sign

of the waves in one of the families in the initial data, say setting 45 to η. This makes
all triple interactions lead to decay, so that the estimates will be reversed. Indeed, if χi
denotes the maximum absolute wave strength, then we will get χq+1 ≤ χq− Λ̄χq+1χq
for Λ̄ ≥ ΛM , so that

χn ≥ χ0

1 + Λ̄χ0 n
.

We can now scale the initial data by taking χ0 = ρ∆x with ρ = 2K/Λ̄. We omit the
details.

The growth and decay of solutions is analogous to that of solutions of the equation
y′ = y2 depending on the sign of the initial data. The extra freedom in choosing the
rate of growth or decay is a consequence of total linear degeneracy: we are able to move
the contacts closer together so that oscillations are more rapid without changing the
basic wave pattern. In a genuinely nonlinear system, increasing the rate of oscillations
in a fixed interval just leads to faster decay in each family as shock and rarefactions
collide at a higher rate. We control the growth rate by choosing the d-norm, which
in turn measures the scaling η0 ∼ ∆x.

5. Time-periodic solutions. In realistic systems, there are usually extra con-
straints placed on the system by physical principles. One of the most common of these
is to assume the existence of a Riemann coordinate. For these systems, solutions are
more stable than the examples given above, and Temple and Young have recently
shown that growth of solutions to 3 × 3 systems with a single Riemann coordinate
can be at most exponential [10]. In this section we show that this theorem is sharp
in the absence of other assumptions. The variety of qualitative phenomena present
even when there is a Riemann coordinate suggests that further assumptions need to
be made in order to determine specific properties of solutions.

A Riemann coordinate for the kth field is a function ρ whose gradient is orthogonal
to all other eigenvectors: rj ·∇ρ = 0 for each j 6= k. The existence of a Riemann
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coordinate implies that the corresponding wave family decouples from the system and
is equivalent to the vanishing of one of the interaction coefficients. The definition
implies that ∇ρ is a kth left eigenvector, which in turn allows for a trivial row of the
matrix A = Df in some coordinate system, corresponding to a dimension reduction.

We shall consider three systems, with different flux coefficients, solutions of which
exhibit different qualitative behavior. For definiteness we suppose that we have a 2-
Riemann coordinate. The flux functions and their respective triples of interaction
coefficients are given by

f1(u, v, w) =

 we2v

0
ue−2v

 with coefficients {1, 0,−1},(5.1)

f2(u, v, w) =

 w + 2uv
0

u(1− 4v2)− 2vw

 with {1, 0, 1}, and(5.2)

f3(u, v, w) =

 uv + wev

0
u(1− v2)e−v − vw

 with

{
1− v

2
, 0,
−v
2

}
.(5.3)

We have the following theorem.
Theorem 2. For the system with flux f1, there are space-periodic solutions of

period πx which are periodic in time with period πt = nπx for integers n. These
solutions are not stable under perturbations of the initial data, and we also have
oscillating solutions corresponding to rotation by an irrational angle.

For the system with flux f2, there are periodic solutions which grow exponentially
in those families not associated to the Riemann coordinate. Similarly, there are also
solutions which decay exponentially in these families.

For the system with flux f3, there are solutions exhibiting all of the above behav-
iors. That is, depending on the initial data, the solution may be exponentially growing
or decaying, be periodic, or may oscillate as an irrational rotation.

These phenomena are local, in that the initial data may be arbitrarily small in
any (periodic) Lp-norm. The growth of decay can be measured in these Lp-norms,
while the oscillating solutions remain on an ellipse.

We remark that as in the previous examples, the linear degeneracy gives us the
freedom to choose the rates at which these solutions decay or grow in time. We
expect that if one weakens the hypothesis of degeneracy, it is still possible to get
exponential growth of the solution, albeit not with an arbitrary rate. The variety
of behaviors obtained for these simple examples again demonstrates the necessity
of knowing exactly what the interaction coefficients are in order to make general
statements about properties of solutions to conservation laws. We shall see that
because of the simplicity of our examples, we do not require the solutions to be small,
and indeed the solutions are globally defined.

Our analysis of system (5.2) shows that the result of [10] on stability of solutions
is sharp: that result says that for data with small sup-norm, the total variation grows
at most exponentially:

TV
(
u(·, t)) ≤ TV (u0

)
exp(kδt/d) +O(ε),

where k = 8Λλ (Λ and λ are the interaction coefficient and CFL number); δ is the
d-norm of the Riemann coordinate; and ε is the amplitude of the initial data. Note
that for (5.2), we have Λ = λ = 1.
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Corollary 4. The d-norm determines the growth rate of solutions to 3 × 3
systems with one Riemann coordinate. That is, there is a solution of (5.2) whose total
variation satisfies

TV
(
u(·, t)) ≥ TV (u0

)
exp(δt/d),

where δ = ‖v0‖′d is the d-norm of the Riemann coordinate v. A similiar statement
holds for w. Here the vector u0 = (u0, v0, w0) is the initial data, and this can be taken
to have arbitrarily small sup-norm.

Proof. The proof is an exact calculation of the wave strengths for the exact
periodic solutions constructed earlier. We shall consider a general case, substituting
in the specific fluxes at the end.

By inspection, we see that the matrix

A =

 σ C1 τ
0 ν 0

1−σ2

τ C2 −σ


has eigenvalues −1, ν, and 1, and left eigenvector (0, 1, 0) corresponding to ν, which
we take to be zero. With σ and τ yet to be chosen, we find C1 and C2 so that the
rows become gradients. We compute the eigenvectors directly and the interaction
coefficients according to the definition Λjki = li · [rj , rk]. We then choose the functions
σ and τ so that these take on the desired values.

It suffices to take σ and τ to be functions of v alone and choose C1 and C2 so
that the rows of A are curl-free. For convenience we define the 2× 2 matrix

Â(v) =

(
σ(v) τ(v)

1−σ(v)2

τ(v) −σ(v)

)
,

and we take (
C1

C2

)
=

(
σ τ

1−σ2

τ −σ
)′(

u
w

)
= Â′(v)

(
u
w

)
.(5.4)

The full eigensystem of A is given by

λ −1 0 1

r

 τ
0

−1− σ

  a
1
b

  τ
0

1− σ



l ( 1−σ
2τ .. −1

2 ) (0 1 0) (σ+1
2τ .. 1

2 ),

where a and b satisfy

Â

(
a
b

)
+

(
C1

C2

)
= 0,(5.5)

and so, since Â−1 = Â and by (5.4),(
a
b

)
= −Â−1

(
C1

C2

)
= −Â(v) Â′(v)

(
u
w

)
.(5.6)
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For this class of systems, we can integrate the wave curves and describe Riemann
solutions and interactions explicitly, and thus find exact algebraic expressions for the
solutions constructed in section 3. Since σ and τ are functions of v only, and this is
the 2-Riemann coordinate, the 1- and 3-wave curves through {u0, v0, w0} are simply
straight lines. If we define

r̂+(v) =

(
τ(v)

1− σ(v)

)
and r̂−(v) =

(
τ(v)

−1− σ(v)

)
to be the eigenvectors of Â corresponding to the eigenvalues ±1, then we can describe
the 1- and 3-wave curves by(

u
w

)
=

(
u0

w0

)
+ εr̂±(v0) and v = v0,

respectively, where ε is the wave strength. The 2-wave curve is found by noticing
that we can use v as dependent variable and rewriting the system u′ = a, w′ = b.
According to (5.4) and (5.5), the 2-wave curve satisfies

d

dv

[
Â(v)

(
u
w

)]
= 0,

so the wave curve is given by

Â(v)

(
u
w

)
= Â(v0)

(
u0

w0

)
with wave strength ε = v − v0.

We can now write the complete solution to the Riemann problem: if states
{uL, vL, wL} and {uR, vR, wR} are connected by 1-, 2-, and 3-waves α′, β′, and γ′

respectively, then the wave strengths are determined by

Â(vL)

{(
uL
wL

)
+ α′r̂−(vL)

}
= Â(vR)

{(
uR
wR

)
− γ′r̂+(vR)

}
(5.7)

and β′ = vR − vL. The same expression can be used to find the right state once we
are given a left state and wave strengths. Similarly, if {uL, vL, wL} and {uR, vR, wR}
are connected by 3-, 2-, and 1-waves γ, β, and α, respectively, and converging at a
point as in Figure 2.1, we get the expression

Â(vL)

{(
uL
wL

)
+ γr̂+(vL)

}
= Â(vR)

{(
uR
wR

)
− αr̂−(vR)

}
.

Combining these expressions, we can describe the triple interaction depicted in Figure
2.1 by solving

α′r̂−(vL)− γ′r̂+(vR) = αr̂−(vR)− γr̂+(vL) and β′ = β,(5.8)

where vR = vL +β. We stress that this is an exact formula, and it is also global; that
is, it holds for incident waves of arbitrary strength.

We can compute the interaction coefficients directly: clearly r0 · ∇r± = r±′, and
from (5.6) we get

r̂± · ∇{u,w}
(
a
b

)
= −Â Â′ r̂±.
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Using these facts we get

Λ1 =
τσ′ − (σ − 1)τ ′

2τ
, Λ2 = 0 and Λ3 =

τσ′ − (σ + 1)τ ′

2τ
.

If we now choose σ(v) = 0 and τ(v) = e2v, we get flux f1, while if τ(v) = 1 and
σ(v) = 2v, we get f2. Flux f3 is obtained by taking σ(v) = v and τ(v) = ev. The
corresponding interaction coefficients are then as in (5.1)–(5.3).

We now construct periodic initial data for the resonant pattern used previously
and examine the behavior of these solutions. We shall consider only the simplest
cases, but because the calculations are exact, it should be possible to treat more
general cases.

Referring to Figure 3.1 and using the notation described earlier, we choose our
initial data as follows. Fix state 1 and numbers α, β, and γ, which will refer to 1-,
2-, and 3-waves, respectively. As before, we choose the wave strengths 12, 23, 34, 45,
and 56, which determine states 2 through 6, and resolve the Riemann problem 〈6, 1〉
to determine the remaining wave strengths. If we define strengths 12, 23, 34, 45, and
56 to be β, α, −β, −γ, and β, respectively, then by a direct calculation using (5.7),
we see that strengths 67, 70, and 01 are given exactly by −α, −β, and γ, respectively.
Moreover, we have that v4 = v5 = v0 = v1 and v2 = v3 = v6 = v7 = v1 + β, where
vi is the v-component of state i, and these values do not change in time. This is
to be expected from the “decoupled” equation vt = 0 corresponding to the Riemann
coordinate.

As a consequence of these observations, we see that we can describe the solution
fully for all time with a knowledge of v1 and v2 and the strengths of the 1- and 3-waves
in the solution at each time. In other words, once state 1 and strength β have been
chosen, all we need to describe the system fully is a knowledge of the 1- and 3-wave
strengths (corresponding to α and β) at each time. We shall use (5.8) to describe
these changing wave strengths and choose different values for α, β, and γ to find
solutions with different properties.

To this end, we let αk denote the strength of the 1-wave in the solution (with
the same sign as α = α0) for time k∆x < t < (k + 1)∆x and define γk similarly.
Then a representative triple interaction at time (2k+ 1)∆x has waves γ2k, β, and α2k

entering and α2k+1, β, and γ2k+1 leaving, so that according to (5.8), we have

α2k+1r̂
−(v1)− γ2k+1r̂

+(v2) = α2kr̂
−(v2)− γ2kr̂

+(v1).

On the other hand, an interaction at time 2k∆x has waves ±γ2k+1, −β, and ∓α2k+1

entering, so that in this case, we get

α2k+2r̂
−(v2) + γ2k+2r̂

+(v1) = α2k+1r̂
−(v1) + γ2k+1r̂

+(v2).

We express the foregoing in matrix form as follows. We define

M =
(
r̂−1 r̂+

2

)
, N =

(
r̂−2 r̂+

1

)
, and S =

(
1 0
0 −1

)
,

where the vectors r̂i = r̂(vi) are viewed as columns. We then rewrite the above as

M S

(
α2k+1

γ2k+1

)
= N S

(
α2k

γ2k

)
and N

(
α2k+2

γ2k+2

)
= M

(
α2k+1

γ2k+1

)
.
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This in turn yields (
α2k+2

γ2k+2

)
= G(v1, v2)

(
α2k

γ2k

)
,

where the matrix G(v1, v2) is given by

G(v1, v2) = N−1 M S M−1 N S.(5.9)

The wave strengths α2k and γ2k are now easily calculated, namely(
α2k

γ2k

)
= G(v1, v2)k

(
α
γ

)
,

and α2k+1 and γ2k+1 are found similarly.
In order to complete the description of our solution to the conservation law, we

calculate the powers of the matrix G. By inspection, G has determinant 1, so we can
find the eigenvalues of G by a knowledge of its trace. Indeed, if tr(G) = 2µ, then the

eigenvalues are µ ±
√
µ2 − 1. Thus if |µ| < 1, these are complex (with modulus 1),

corresponding to oscillations, while if |µ| > 1, they are real, corresponding to growth
and decay.

As we have seen, the 2-wave strength β does not change with time, and the
behavior of the solution to the conservation law is given by knowledge of the wave
strengths αk and γk. This can be regarded as a discrete dynamical system determined
by the 2-parameter family of linear maps G(v1, v2). With this point of view, we can
study the stability and bifurcation properties of G. This in turn leads to statements
about the stability or lack thereof for solutions to the conservation law.

We now restrict ourselves to the fluxes specified earlier, and describe the solutions.
First, for the flux f1, we had σ(v) = 0 and τ(v) = e2v, and we set v2 = v1 +β, so that
τ(v2) = e2βτ(v1). After substituting and manipulating, we get

G(v1, v2) =

(
sechβ e−βtanhβ
−eβtanhβ sechβ

)2

.

The (complex) eigenvalues of G are (sechβ±itanhβ)2, with corresponding eigenvector
given by (∓i, eβ)T . We can now write down the values of α2k and γ2k explicitly: if
we define the complex constant C by(

α
γ

)
= C

( −i
eβ

)
+ C∗

(
i
eβ

)
,

then we have(
α2k

γ2k

)
= C(sechβ + itanhβ)2k

( −i
eβ

)
+ C∗(sechβ − itanhβ)2k

(
i
eβ

)
.

Depending on our choice of initial 2-wave strength β, there are two possibilities. First,
if the eigenvalues are nth roots of unity, so sechβ = cos mπn , then α2n = α and γ2n = γ,
so that our solutions are periodic in time with period 4n∆x. (There is an extra sign
change in the waves.) On the other hand, if the eigenvalues are not roots of unity,
there is a continuous transfer of energy between the two wave families and oscillation
of wave strengths, but solutions are not time-periodic. Here we view G as a skewed
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rotation of the α − γ plane, and the orbit of G is dense in an ellipse containing the
point (α, γ). In other words, the origin is a nonhyperbolic fixed point for the map G.
In particular, the periodic solutions are not stable under perturbations of the 2-wave
strength β.

We now consider solutions of the conservation law with flux f2, for which we took
τ(v) = 1 and σ(v) = 2v. Again we have v2 − v1 = β, and substituting these values
into (5.9), we get

G(v1, v2) =
1

1− β2

(
1 + β2 2β

2β 1 + β2

)
.

The eigenvalues of G are 1−β
1+β and 1+β

1−β , with corresponding eigenvectors (1,−1)T and

(1, 1)T , respectively. Since these eigenvalues are real, we have one growing mode and
one decaying mode. For definiteness, suppose that 0 < β < 1. Then choosing α = γ
initially is the pure growth mode, and we have

α2k = γ2k =

(
1 + β

1− β
)k

α,(5.10)

so that the 1- and 3-components of the solution grow exponentially in time. The other
extreme is when γ = −α, in which case we get exponential decay in the first and third
families. In general, there will be a combination of growth and decay, but there will
be some growth in Lp-norms of the solution to the conservation law, if the projection
of the vector (α, γ)T onto the growing mode is nonzero. This indicates that these
solutions are more stable under perturbations than those above. In the α− γ plane,
the origin is a hyperbolic fixed point of the map G corresponding to a saddle.

Since (5.10) gives an exact expression for the waves α2k and γ2k, we can calculate
all norms of the solutions directly. Since there is one jump in v of size β per ∆x,
we take d = ∆x and we have ‖v‖′d = β = ρ∆x, where, as in section 4, ρ is a scaling
parameter which determines the growth rate. In particular, we have for t = 2k∆x,

TV
(
u(·, t)) = TV

(
u0

) (1 + β

1− β
)k

= TV
(
u0

) (1 + ρ∆x

1− ρ∆x

)t/2∆x

≥ TV (u0

)
exp(ρt),

since 1+y
1−y ≥ e2y for y ≤ 1, which proves the corollary. Indeed, since 1+y

1−y = e2y+O(y3),

we can make the growth as close to eρt as we like.
For the flux f3, similar calculations follow. We shall not carry out the tedious

details but rather describe the general situation. The matrix G(v1, v2) is viewed as
a linear map on the α − γ plane. It has determinant 1, and the diagonal entries are
equal and are given by µ = 1

2 tr(G). As we noted earlier, the eigenvalues η and 1/η
of G, which determine the dynamics of the map, are complex (with unit length) if
µ2 < 1, and real otherwise. For τ(v) > 0, an equivalent description is the following:
defining

Σ(v1, v2) =
(
σ(v2)τ(v1)− σ(v1)τ(v2)

)2 − (τ(v2)− τ(v1)
)2
,

we have complex eigenvalues for Σ < 0 and real eigenvalues for Σ > 0. As above,
complex eigenvalues correspond to oscillations without growth, while real eigenvalues
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correspond to growth and decay. Thus, each time Σ changes sign, we get a bifurcation
from one type of behavior to another. In particular, for the flux f3, we have σ(v) = v
and τ(v) = ev. Now fixing v1 = 0 and v2 = β, we get Σ = β2−(eβ−1)2 = −β3+O(β4),
which changes sign as β passes through 0. Thus, for β < 0 we get growth and decay,
while for β > 0 we get oscillations and periodic solutions.

We remark that in all of the above examples, we obtain less interesting periodic
solutions as follows. Referring again to Figure 3.1, we choose the initial 2-waves 12 and
56 to vanish, while choosing 34 and 70 to be β and −β, respectively, and choosing the
1- and 3-wave strengths as above. Calculations similar to the above then show that
the solutions with these data are indeed periodic with period d = 4∆x, irrespective
of the flux which is used.

Since these solutions are exact and global, they do not depend on the size of the
initial data, and we can again scale the parameter ∆x and the initial wave strengths
to change the quantitative behavior of solution to get different values of d and the
d-norm. Thus the rate at which the solution grows or decays, or the period of the
solution, can be set according to our needs. These simple examples indicate that there
is a wide variety of nonlinear phenomena associated with these simple equations. The
author and Blake Temple have recently shown that for general systems with one
Riemann coordinate, if the sup-norm of the data is small enough, then there can be
at most exponential growth in the solution, with growth rate depending on d [10].
The examples presented here show that this result is sharp in the absence of further
assumptions on the flux.

Appendix. Construction of the flux. We now describe the systems of degen-
erate conservation laws which satisfy the conditions used in earlier sections. Recall
that the conservation law is given by

ut + f(u)x = 0,

where u ∈ R3 and f : U → R3 is a smooth vector valued function in an open
neighborhood U ⊂ R3. The hyperbolic wave-speeds are given by the (constant)
eigenvalues λi of the matrix A(u) = Dfu, and the corresponding wave curves are the
integrals of the right eigenvectors ri(u). The local nonlinear interactions of waves of
different families are determined by the Lie algebra of eigenvector fields, quantified
by the interaction coefficients

Λi ≡ Λjki = li · [rj , rk], where i 6= j > k 6= i,

evaluated at the single point ũ ∈ U , which we take to be the origin.
Our task is thus to find a matrix A(u) with constant (distinct) eigenvalues and

whose eigenvectors are such that the coefficients Λjki take on specified values at the
origin. In addition, the matrix A(u) should be the gradient of some vector function
defined in a neighborhood of the origin. When there was a Riemann coordinate, we
wrote down the system in closed form; if there is no Riemann coordinate we are not
able to do this.

The eigenvalues λi of A are the roots of the characteristic polynomial PA(λ) =
det(A− λI) of A = [Aij ]. The condition that the eigenvalues of A(u) be constant in
a neighborhood is thus equivalent to the statement that PA(λ) does not depend on
u. In addition, we require that the curl of each row vanishes, so that each row of A is
the gradient of a scalar function.

We reformulate the problem as a system of PDEs for the components Aij(u) with
independent variables uk, as follows. We shall consider a Cauchy problem, where
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we take the Cauchy surface to be the plane u1 = 0, and describe changes in the
components Aij of A in the (time-like) direction of u1.

Since the characteristic polynomial PA(λ) is to be constant in the neighborhood,
differentiating (each coefficient) with respect to u1 must give zero. This gives three
nonlinear equations, namely one for each coefficient of PA(λ). Since we have nine
dependent variables, we need six more equations. These are obtained using the re-
quirement that the rows of A be gradients, or curl-free. This is the condition that

∂Aij/∂uk = ∂Aik/∂uj ,(A.1)

which is a nontrivial restriction for each j 6= k. We wish to describe changes in the
time-like direction u1, so we take as the remaining equations those obtained by letting
k = 1 and j = 2 or 3, while i varies from 1 to 3. Thus our full system of equations is
given by

∂PA(λ)/∂u1 = 0 and
(A.2)

∂Aij/∂u1 = ∂Ai1/∂uj .

If we choose analytic initial data, the Cauchy–Kowalewski theorem implies the exis-
tence and uniqueness of a local solution to this system. It remains to choose initial
data on a noncharacteristic surface in such a way that the solution matrix A = [Aij ]
satisfies our requirements.

We take the Cauchy surface to be the plane u1 = 0 and choose data A0 satisfying
the above conditions on the plane. That is, A0 should have constant eigenvalues,
while equations (A.1) hold in the plane u1 = 0, when u2 and u3 vary. Uniqueness of
solutions then implies that since PA(λ) is constant on the plane u1 = 0 and satisfies
PA(λ)u1

= 0, it is constant everywhere. Similarly, differentiating the linear equations
in (A.2) gives

∂2Ai2
∂u3∂u1

=
∂2Ai1
∂u3∂u2

=
∂2Ai3
∂u2∂u1

for each i. Thus, again by uniqueness, if the Cauchy data satisfies (A.1) with j = 2
and k = 3, then this is satisfied throughout the neighborhood, and A(u) is indeed a
gradient.

It remains to choose appropriate Cauchy data A0(u2, u3) and calculate the in-
teraction coefficients. We shall choose the second and third columns of A0 to satisfy
(A.1) and then choose the first column so that we get the correct characteristic poly-
nomial. The interaction coefficients are given in terms of the gradient DA of A by
the formula

Λjki =
λj − λk

(λj − λi)(λk − λi) li ·DA(rj) · rk,(A.3)

so we calculate DA at the origin [11]. This amounts to finding all partial derivatives of
the Aij at the origin. These are found from (A.2) as follows. The quantities ∂Aij/∂uk
can be immediately calculated for all i and j and for k = 2 and 3. The derivatives
∂Aik/∂u1, for k = 2 and 3, are then equated with ∂Ai1/∂uk. Finally, ∂Ai1/∂u1 are
obtained implicitly from the equation PA(λ)u1 = 0, by substituting in the previously
found values for ∂Aik/∂u1.
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We carry out the details, assuming that the eigenvalues are −1, ν, and 1. Given
some function ψ(u2, u3) to be chosen later, define the matrix

A0(u2, u3) =

 α 1 0
β 0 1
γ ψu2

ψu3

 ,

where we must solve for α, β, and γ as functions of u2 and u3 so that the correct
characteristic polynomial is realized. The coefficients of PA0(λ) are easily seen to
be α + ψu3

, β + ψu2
− αψu3

, and γ − αψu2
− βαψu3

, respectively. It is now clear
what α, β, and γ should be as functions of u2 and u3 to ensure a given constant
characteristic polynomial on the plane u1 = 0. If we make the further assumption
that the first partial derivatives of ψ vanish at the origin, then it is easy to calculate
the eigenvectors there. Indeed, we have

A0(0, 0) =

 α0 1 0
β0 0 1
γ0 0 0

 =

 ν 1 0
1 0 1
−ν 0 0

 ,

whose eigenvectors are easily calculated.
To calculate DA at the origin, we differentiate the characteristic polynomial and

evaluate at the origin, to get the system of three equations

A11,z +A22,z +A33,z = 0,

α0(A22,z +A33,z)−A21,z − β0A12,z − γ0A13,z −A32,z = 0, and(A.4)

γ0(A12,z +A23,z) +A31,z − α0A32,z − β0A33,z = 0.

We now take the dummy variable z to be u2 and u3 to get the derivatives of Ai1
with respect to these; use symmetry; and finally take z to be u1 to get the ∂Ai1/∂u1.
Denoting ∂Aij/∂uk by Aij,k and ψujuk by ψjk, using (A.4) with z = u2 and u3

together with symmetry, we find

A12,1 = A11,2 = −ψ23,

A13,1 = A11,3 = −ψ33,

A22,1 = A21,2 = νψ23 − ψ22,

A23,1 = A21,3 = νψ33 − ψ23,

A32,1 = A31,2 = νψ22 + ψ23, and

A33,1 = A31,3 = νψ23 + ψ33.

Finally, we substitute these values back into (A.4) with z = u1 to get

A11,1 = ψ22 − 2νψ23 − ψ33,

A21,1 = 2ν2ψ23 − 2νψ22, and

A31,1 = ν2ψ22 + (1 + ν2)ψ33.

This determines completely the total derivative DA(0, 0, 0) of A at the origin, and
allows us to calculate the interaction coefficients. Note that (A.4) with z = u1 de-
termines Ai1,1 at the origin which, together with the linear equations in (A.2), shows
that the Cauchy surface u1 = 0 is noncharacteristic.
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The eigenvectors at the origin are

r1 = (1 − 1− ν ν)T ,

r2 = (1 0 1)T , and

r3 = (1 1− ν − ν)T ,

respectively, and we take ψ(u2, u3) to be quadratic with second derivatives

ψ22 =
2

1− ν2
± 1

2
ν2,

ψ23 =
−2ν

1− ν2
± 1

2
ν, and

ψ33 =
2

1− ν2
± 1

2
.

Substituting all of the above into (A.3), we calculate the coefficients to be {1,±1, 1}.
Thus we have found a matrix A(u) that satisfies the necessary conditions and that
has these interaction coefficients.
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Abstract. We consider a two-dimensional problem of scattering of a time-harmonic electromag-
netic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between
semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed to be a fixed
positive constant. The material properties of the media are characterized completely by an index of
refraction, which is a bounded measurable function in the layer and takes positive constant values
above and below the layer, corresponding to the homogeneous dielectric media. In this paper, we
examine only the transverse magnetic (TM) polarization case. A radiation condition appropriate for
scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condi-
tion for diffraction gratings. With the help of the radiation condition the problem is reformulated as
an equivalent mixed system of boundary and domain integral equations, consisting of second-kind
integral equations over the layer and interfaces within the layer. Assumptions on the variation of
the index of refraction in the layer are then imposed which prove to be sufficient, together with the
radiation condition, to prove uniqueness of solution and nonexistence of guided wave modes. Recent,
general results on the solvability of systems of second kind integral equations on unbounded domains
establish existence of solution and continuous dependence in a weighted norm of the solution on the
given data. The results obtained apply to the case of scattering by a rough interface between two
dielectric media and to many other practical configurations.

Key words. scattering, integral equation, inhomogeneous medium, Helmholtz equation
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1. Introduction. Consider a time harmonic electromagnetic plane wave inci-
dent on a layer of some inhomogeneous, isotropic, conducting, or dielectric material
in R3. The media, above and below the layer, consist of some homogeneous dielec-
tric materials. Adopting Cartesian axes 0x1x2x3, we assume throughout that the
material is invariant in the x3 direction. Thus, in effect, the problem geometry is two-
dimensional. Further, we assume that the magnetic permeability is a fixed positive
constant. The material properties of the media are then characterized completely by
an index of refraction, dependent on the permittivity and conductivity, which is as-
sumed to be a bounded measurable function in the layer and takes positive constant
values above and below the layer. The scattering problem is to study the electromag-
netic field distributions.

In this paper we formulate first the scattering problem as a boundary value prob-
lem for the reduced wave equation (Helmholtz equation), using a radiation condition
recently introduced for problems of scattering by infinite one-dimensional rough sur-
faces and interfaces [4, 5, 7, 8, 9], which is a generalization of the usual radiation
condition used in the study of plane wave diffraction by one-dimensional periodic
gratings (see, e.g., [23, 1, 2, 4, 19, 20, 25]). Next, in section 3, we derive a novel
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integral equation formulation of the problem, as a system of coupled second-kind do-
main and boundary integral equations, over the layer and over interfaces within the
layer, and establish that this formulation is equivalent to the formulation as a bound-
ary value problem. The radiation condition imposed does not rule out guided waves,
localized in the inhomogeneous layer, which are thus solutions of the homogeneous
boundary value problem and the homogeneous integral equation formulation. From
section 4 onward we make restrictions on the variation of the index of refraction in
the layer. Under these restrictions we establish, in section 4, an a priori inequality
satisfied by any solution. Using this inequality, a key lemma from [8], and extensions
of arguments in [7, 31], uniqueness results and hence conditions for the nonexistence
of guided wave modes are established in section 5. In section 6, existence of solution
is established by employing a novel form of Fredholm alternative based on general
results on the solvability of systems of integral equations on unbounded domains in
[10].

The assumptions we impose on the index of refraction from section 4 onward
are satisfied in many practical cases. In particular, the results obtained apply to the
case of scattering by a rough interface between two dielectric media and apply to
scattering by a homogeneous layer having rough interfaces, with the media above
and below, provided that the wavenumbers in the layer (k∗), and in the media above
(k+) and below (k−), satisfy either that =k∗ > 0 or that max(k−, k+) > k∗. For a
precise statement of the cases covered see section 2. Our conclusion that no guided
waves exist if max(k−, k+) > k∗ or =k∗ > 0 is in agreement with explicit analytical
calculations of guided wave modes for the case of plane interfaces between the layer
and the media [24].

Integral equation methods have been used widely in the theoretical and numerical
study of wave scattering by finite obstacles or local inhomogeneities (see, e.g., [12, 13]
and the references quoted there). More recently they have been employed to study
scattering by periodic structures [11, 17, 19, 20, 22] and by a nonstratified local
inhomogeneity in a stratified medium [30]. Integral equation formulations have also
been used extensively in computations of wave scattering by infinite one- and two-
dimensional rough surfaces and interfaces (see, e.g., [26, 14, 21, 29] and the references
quoted there), but little attention appears to have been paid in the literature to their
mathematical justification (a recent exception is [15]).

This present paper is intended, in part, as a contribution to the mathematical
analysis of rough surface scattering problems and of the well-posedness of their formu-
lation as integral equations. It is related, in terms of results and methods of argument,
to recent studies of scattering of a wave incident from a homogeneous half-space onto
an inhomogeneous impedance plane [5]; of electromagnetic waves by a one-dimensional
perfectly conducting rough surface [6, 8]; of electromagnetic waves by an inhomoge-
neous conducting or dielectric layer on a perfectly conducting plate [7]; and of acoustic
waves by an inhomogeneous layer on a rigid plate [31]. In particular, the present study
is closest to this last paper [31] in that the existence proof depends on the same novel
results on the solvability of systems of weakly singular second-kind integral equations
on unbounded domains. However, the whole space problem considered here requires
a substantially more elaborate uniqueness proof and integral equation formulation,
related to the presence of transmitted as well as reflected waves, in contrast to the
half-plane problems considered in [5, 6, 8, 7, 31]. Moreover, in these latter papers
integral equation formulations using half-plane Green’s functions appear natural: as
proposed here, the formulation of the whole-space problem as a system of integral
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equations in overlapping half-planes, using half-plane Green’s functions, is surprising
but proves powerful in establishing uniqueness and existence results.

This paper can also be viewed as a generalization of the results of Bonnet-Bendhia
and Starling [3] and Strycharz [25], who study plane wave scattering by an inhomo-
geneous periodic layer. In fact, our uniqueness results derive in part from those of
Bonnet-Bendhia and Starling [3] and Strycharz [25], and include some of their results
for a periodic layer as special cases; however, note that our results are obtained with-
out an a priori assumption of quasi periodicity of the scattered field. We note also
that our existence arguments, based on integral equation methods, differ from the
variational methods used in [3] and [25] which appear restricted to the periodic case.
We further point out that while integral equation-based existence proofs are common
(and more straightforward) in the periodic, diffraction grating case (e.g., [19, 11]),
they usually fail for a discrete set of combinations of grating period and angle of inci-
dence at which the integral equation formulation is undefined. Our results show that,
at least in the two-dimensional case, this problem can be avoided by use of a half-
plane rather than a whole-space Green’s function in the integral equation formulation.
A finite element method for the case of plane wave scattering by an inhomogeneous
periodic layer is analyzed in [1].

We remark that aside from the theoretical use to which the formulation is put
in this paper, we anticipate that the novel integral equation formulation we derive
in section 3 may also be of value for numerical computation. We point out that
the integral operators in our formulation are exclusively of convolution type or are
products of convolution and multiplication operators so that, after discretization,
the matrix vector multiplications required in an iterative solution scheme can be
performed efficiently using the FFT (see [27, pp. 109–111] and [28]). We further point
out that, even for the simple case of a single interface between two dielectric media,
for which a boundary integral equation formulation on the interface is usual (avoiding
domain integrals), a recently successful numerical algorithm involves imbedding the
one-dimensional boundary curve in a two-dimensional grid so that FFT techniques
can be applied [29].

We conclude this section by introducing some notations used throughout. For
h ∈ R, define Γh = {x = (x1, x2) ∈ R2|x2 = h} and Uh = {x ∈ R2|x2 > h}. Set
EHh = Uh\UH for H > h, and write U, Γ, and EH for U0, Γ0, and EH0 , respectively.
Define DA = {x ∈ R2| |x1| < A}, A > 0, and Γh(A) = Γh ∩DA, EHh (A) = EHh ∩DA.
For G ⊂ R2 let BC(G) denote the space of bounded continuous functions defined
on G. For v ∈ C1(R2) denote by ∂jv, j = 1, 2, the derivative ∂v(x)/∂xj . Finally, for
A > 0, x ∈ R2, let BA(x) = {y ∈ R2| |y − x| < A}.

2. The scattering problem and radiation conditions. Let us assume that
R3 is filled with an inhomogeneous, isotropic, conducting, or dielectric medium of
electric permittivity ε > 0, magnetic permeability µ > 0, and electric conductivity
σ ≥ 0. Suppose that the medium is nonmagnetic, i.e., the magnetic permeability µ
is a fixed constant in R3, and suppose that the fields are source free. Then the elec-
tromagnetic wave propagation is governed by the time-harmonic Maxwell equations
(time dependence exp(−iωt) with frequency ω > 0)

∇× E − iωµH = 0,(2.1)

∇×H + (iωε− σ)E = 0,(2.2)

where E and H are the electric field and magnetic field, respectively. In this paper, it
is assumed that the medium is invariant in the x3 direction, i.e., ε = ε(x) and σ = σ(x)
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with x = (x1, x2) ∈ R2. Also, we restrict ourselves to the transverse magnetic (TM)
polarization case; that is, the electric field E is assumed to point along the x3 axis. Let
E = (0, 0, u), where u = u(x) is a scalar function. Then it follows from the Maxwell
equations (2.1)–(2.2) that u satisfies the reduced wave equation

∆u+ k2u = 0 in R2,(2.3)

where ∆ is the Laplacian in R2 and k2 = ω2µε[1 + iσ/(ωε)] so that =(k2) ≥ 0.
Additionally we make the following assumptions on k throughout:
(A1) k ∈ L∞(R2).
(A2) There are positive constants B, k+, and k− such that k(x) = k+ for x ∈ UB ,

= k− for x ∈ R2\U.
These two assumptions are sufficient (together with the radiation conditions we

introduce below) to derive, in section 3, an equivalent integral equation formulation
of the problem. In sections 4 and 5 we address the question of uniqueness of solution
which is related to the question of existence or otherwise of guided wave solutions of
the homogeneous problem.

We remark that the radiation conditions we will impose will ensure that the
scattered field does not contain a downward propagating component and that the
transmitted wave does not contain an upward propagating component but (in common
with the usual radiation condition for plane wave incidence on periodic gratings) will
not rule out solutions of the homogeneous problem which are guided waves localized
in the inhomogeneous layer. (See Theorem A.1 in the appendix, where a precise
definition of a guided wave in this context is given.) Thus, to prove any uniqueness
result, we will have to impose additional conditions (on k) which rule out guided
waves. In other words (and more positively), any uniqueness proof will simultaneously
establish conditions for the nonexistence of guided waves.

The additional requirements for our uniqueness proof (sections 4 and 5) and for
proving the existence of solution (section 6) are that assumption (A3) is satisfied or
that both assumptions (A4) and (A5) below are satisfied.

(A3) There exist constants λ1, λ2, η, and ρ, with λ1 > 0, 1 > λ2 > 0 and 0 ≤
η < ρ ≤ B such that =(k2(x)) ≥ λ1 for almost all x ∈ Eρη , =(k2(x)) ≥
λ2|k2(x) − k2

+| for almost all x ∈ EBη , and =(k2(x)) ≥ λ2|k2(x) − k2
−| for

almost all x ∈ Eρ0 .
(A4) There exists β ∈ R such that <(k2(x)) is monotonic nondecreasing in Uβ

and monotonic nonincreasing in R2\Uβ as x2 increases: precisely, for all
h > 0, where e2 = (0, 1), <[k2(x+ e2h)] ≥ <[k2(x)] for almost all x ∈ Uβ and
<[k2(x− e2h)] ≥ <[k2(x)] for almost all x ∈ R2\Uβ .

Let k̃(x) = k+ for x2 ≥ β, = k− for x2 < β. Then Assumption (A4) implies that
<[k2(x)] ≤ k̃2(x) for almost all x ∈ R2.

(A5) There are constants λ3, η, and ρ, with λ3 > 0 and 0 ≤ η < ρ ≤ B, such
that <[k2(x)] ≤ k̃2(x)− λ3 for almost all x ∈ Eρη .

We can write (A4) succinctly as

(x2 − β)∂2(<(k2)) ≥ 0

in a distributional sense in R2 (cf. Bonnet-Bendhia and Starling [3, equation (3.34)]
and [7]). If (A4) and (A5) hold with β < ρ, then it must be the case that <[k2(x)] ≤
k2

+ − λ3 for almost all x ∈ Eρβ , while if β > η, then <[k2(x)] ≤ k2
− − λ3 for almost all

x ∈ Eβη .
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To clarify the above assumptions we list some important practical cases in which
they are satisfied:

(i) Suppose that k+ 6= k− and, for some f ∈ L∞(R), that k(x) = k+, x2 > f(x1),
= k−, x2 < f(x1), and assume without loss of generality that ε ≤ f(x1) ≤ B − ε for
some ε > 0, B > ε. Then (A1), (A2), (A4), (A5) are satisfied, with 0 = β = η, ρ = ε,
if k− < k+, B − ε = η, B = β = ρ, if k− > k+.

(ii) Suppose that k∗ > 0 and, for some f+, f− ∈ L∞(R), with f− ≤ f+, that
k(x) = k+, x2 > f+(x1), = k−, x2 < f−(x1), = k∗, f−(x1) < x2 < f+(x1). Suppose
further without loss of generality that, for some B > ε > 0, ε ≤ f−(x1) ≤ f+(x1) ≤
B− ε, x1 ∈ R. Then assumptions (A1) and (A2) are satisfied and so are assumptions
(A4) and (A5) in the following cases: (a) k− < k∗ < k+ (set β = η = 0, ρ = ε); (b)
k− > k∗ > k+ (set η = B − ε, β = ρ = B); (c) k∗ < k+, k

∗ < k− provided, for some
0 < η < ρ < B, k(x) = k∗, x ∈ Eρη , and η ≤ β ≤ ρ.

(iii) Suppose that =k∗ > 0 and that, for some 0 < η < ρ < B, and disjoint open
sets S+, S, and S−, with S+∪S ∪S+ = R2 and Eρη ⊂ S, UB ⊂ S+, and R2 \U ⊂ S−,

k(x) =

{ k+, x ∈ S+,
k∗, x ∈ S,
k−, x ∈ S−.

Then (A1)–(A3) are satisfied.
We mention one simple example not covered by the above assumptions. In the

case k ≡ k+ assumptions (A1), (A2), and (A4) are satisfied (with k− = k+), but
assumption (A5) is not satisfied. Thus, the uniqueness results established in section 4
do not apply, and indeed, our problem as formulated will not have a unique solution
in this case as is shown by the simple example u(x) = exp(±ik+x1), which satisfies
(2.3) with k ≡ k+ and, by Remark 2.3 below, the radiation conditions (2.4) and (2.5).

Let ui(x) = exp(ik+x·α) be the time-harmonic incoming plane wave incident from
UB on the finite inhomogeneous layer EB , where x ∈ R2, α = (cos θ,− sin θ) ∈ R2,
and θ ∈ (0, π) is the incident angle. We are interested in finding the total field u
satisfying the reduced wave equation (2.3).

In order to determine the physical solution u, a radiation condition as x2 tends
to infinity has to be imposed on the scattered field us = u − ui in UB ; that is, the
scattered field us should behave as an outgoing wave as x2 → +∞. Similarly, the
transmitted field u in R2\U should behave as an outgoing wave as x2 → −∞. The
standard Sommerfeld radiation condition is not appropriate in this context as we
cannot expect that the scattered and the transmitted fields will decay at infinity. We
will use a radiation condition proposed in [5] and utilized recently in [7, 8] and [31],
which we will usefully relate to the Sommerfeld radiation condition. To this end we
introduce the following definitions.

Definition 2.1. Given a domain G ⊂ R2 and k∗ > 0, call v ∈ C2(G)∩L∞(G) a
radiating solution of the Helmholtz equation for wavenumber k∗ in G if ∆v+k2

∗v = 0
in G and

v(x) = O(r−1/2),

∂v(x)

∂r
− ik∗v(x) = o(r−1/2),

as r = |x| → ∞, uniformly in x/|x|.
Let Φ(x, y; k±) denote the free-space Green’s function for ∆ + k2

±; that is,

Φ(x, y; k±) =
i

4
H

(1)
0 (k±|x− y|), x, y ∈ R2, x 6= y,
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with H
(1)
0 being the Hankel function of the first kind of order zero.

Definition 2.2. Given a domain G ⊂ R2, say that v+ : G → C satisfies the
upward propagating radiation condition (UPRC) for wavenumber k+ in G if, for
some H ∈ R and φ+ ∈ L∞(ΓH), it holds that UH ⊂ G and

v+(x) = 2

∫
ΓH

∂Φ(x, y; k+)

∂y2
φ+(y)ds(y), x ∈ UH ;(2.4)

and say that v− : G → C satisfies the downward propagating radiation condition
(DPRC) for wavenumber k− in G if, for some h ∈ R and φ− ∈ L∞(Γh), it holds that
R2\Uh ⊂ G and

v−(x) = −2

∫
Γh

∂Φ(x, y; k−)

∂y2
φ−(y)ds(y), x ∈ R2\Uh.(2.5)

Note that the existence of the integrals in (2.4) and (2.5) for arbitrary φ+ ∈ L∞(ΓH)
and φ− ∈ L∞(Γh) is ensured by the bound which follows from the asymptotic behavior
of the Hankel function for small and large argument,∣∣∣∣∂Φ(x, y; k±)

∂y2

∣∣∣∣ ≤ C|x2 − y2|(|x− y|−2 + |x− y|−3/2), x, y ∈ R2, x 6= y,(2.6)

which holds for some constant C > 0 dependent only on k±.
The next lemma states properties of the upward propagating radiation condi-

tion needed later and, in particular, shows that, for h ∈ R, a radiating solution for
wavenumber k∗ in Uh (R2\Uh) satisfies the UPRC (DPRC) for wavenumber k∗. We
first remark that the DPRC can be expressed, through reflection, in terms of the
UPRC.

Remark 2.1. For x = (x1, x2) ∈ R2 let x′ = (x1,−x2), and for G ⊂ R2 let
G′ = {x′|x ∈ G}. Then v− : G → C satisfies the DPRC for wavenumber k∗ in G if
and only if v+ : G′ → C, given by v+(x) = v−(x′), x ∈ G′, satisfies the UPRC for
wavenumber k∗ in G′.

Lemma 2.1 (see [7, Theorem 2.1]). Given H ∈ R and v : UH → C, the following
statements are equivalent:

(i) v ∈ C2(UH), v ∈ L∞(UH\Ua) for all a > H, ∆v + k2
+v = 0 in UH , and v

satisfies the UPRC for wavenumber k+;
(ii) v ∈ L∞(UH\Ua) for some a > H and v satisfies (2.4) for each h > H with

φ = v|Γh ;
(iii) v ∈ C2(UH), v ∈ L∞(UH\Ua) for all a > H, ∆v + k2

+v = 0 in UH , and for
every h > H and radiating solution in UH , w, such that the restrictions of w and ∂2w
to Γh are in L1(R), it holds that∫

Γh

(
v
∂w

∂n
− w∂v

∂n

)
ds = 0.(2.7)

From Lemma 2.1 and Remark 2.1 we can deduce corresponding characteristics of
downward propagating solutions of the Helmholtz equation.

For convenience, we now state a local regularity estimate used throughout the
paper.

Lemma 2.2 (see [18, Theorem 3.9, Lemma 4.1] ). If for some A > 0 and x ∈ R2

it holds that v ∈ L∞(BA(x)) and ∆v = f ∈ L∞(BA(x)) (in a distributional sense),
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then v ∈ C1(BA(x)) and

|∇v(y)| ≤ CA−1(||v||∞ +A2||f ||∞), y ∈ BA/2(x),

where C is an absolute constant.
Remark 2.2. A consequence of Lemma 2.2 is that if ∆v + k2v = 0 in some region

G and v ∈ L∞(G), k ∈ L∞(G), then v ∈ C1(G) and ∇v is bounded in every compact
subset of G. Further, if the sequence (vn) ⊂ L∞(G) is uniformly bounded, ∆vn +
k2
∗vn = 0 in G for some k∗ ∈ C and each n, and vn(x)→ v(x) uniformly on compact

subsets of G, then v ∈ C2(G) and ∆v + k2
∗v = 0 in G.

Our problem of scattering of a time-harmonic plane wave by an inhomogeneous
layer can now be formulated as the following boundary value problem.

Problem (P). Find u ∈ C(R2) such that (i) u satisfies the reduced wave equation
(2.3) in a distributional sense; (ii) us and u satisfy the UPRC and DPRC (2.4) and
(2.5), respectively; and (iii) u is bounded in EA−A for every A > 0.

Remark 2.3. From (iii) and Lemma 2.2, it follows that u ∈ C1(R2) ∩ C2(UB) ∩
C2(R2\U) and

sup
x∈EA−A

[|∇u(x)|+ |u(x)|] <∞(2.8)

for every A > 0. Further, by (2.3) and standard local regularity results [18], we have
that u ∈ H2

loc(R2).
Remark 2.4. The radiation conditions (2.4) and (2.5) are generalizations of the

standard radiation conditions for one-dimensional periodic gratings. Precisely, it was
proven in [4] that if us has the usual representation as a Rayleigh expansion [2, 19, 20]
in some Uτ , then it also satisfies (2.4) for all h > τ and thus satisfies the UPRC. As a
consequence, any upward or horizontally propagating plane wave satisfies the UPRC
and, by Remark 2.1, any downward or horizontally propagating plane wave satisfies
the DPRC.

In what follows we are concerned with deriving an equivalent integral equation
formulation of Problem (P) and with establishing unique solvability for Problem (P),
employing integral equation methods.

3. An integral equation formulation. For h ∈ R let y′h = (y1, 2h − y2) be
the image of y in Γh and define

G±h (x, y) = Φ(x, y; k±)− Φ(x, y′h; k±), x, y ∈ R2, x 6= y.

Then G±h is the Dirichlet Green’s function for ∆+k2
± in the half-planes Uh and R2\Uh.

It follows from [6, Lemma 3.1] that, for some constant C depending only on k± and
h,

|G±h (x, y)|, |∇xG±h (x, y)|, |∇yG±h (x, y)| ≤ C (1 + x2)(1 + y2)

|x− y|3/2(3.1)

if x, y ∈ Uh or x, y ∈ R2\Uh with |x − y| ≥ 1. On the other hand, from asymptotic
properties of the Hankel function it follows that

|G±h (x, y)| ≤ C (1 + |log |x− y||) , |∇xG±h (x, y)|, |∇yG±h (x, y)| ≤ C|x− y|−1(3.2)

if x, y ∈ Uh or x, y ∈ R2\Uh with |x− y| ≤ 1. It follows from (3.1) and (3.2) that, for
0 ≤ h ≤ B,

|G±h (x, y)|, |∇xG±h (x, y)|, |∇yG±h (x, y)| ≤ Cb(1 + |x1 − y1|)−3/2(3.3)
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if y ∈ EBh , x ∈ Γb, with b > B, or if y ∈ Eh0 , x ∈ Γb, with b < 0, where Cb depends
only on b, B, h, and k±.

Let ur denote the upward propagating plane wave ur(x) = − exp(ik+x
′
c · α),

x ∈ R2.
Theorem 3.1. Let u be a solution of Problem (P), and let 0 ≤ c < d ≤ B. Then

we have

u(x) = ui(x) + ur(x) +

∫
EBc

u(y)[k2(y)− k2
+]G+

c (x, y)dy

+

∫
Γc

u(y)
∂G+

c (x, y)

∂y2
ds(y), x ∈ Uc,(3.4)

u(x) =

∫
Ed0

u(y)[k2(y)− k2
−]G−d (x, y)dy

−
∫
Γd

u(y)
∂G−d (x, y)

∂y2
ds(y), x ∈ R2\Ud.(3.5)

Remark 3.1. In view of (3.1) and (3.2), (A1), and the fact that u ∈ BC(EB), the
integrals in (3.4) and (3.5) are well defined.

Proof. Take x ∈ Uc, choose b > max(x2, B), A > |x1|, and ε > 0 sufficiently
small and apply Green’s second theorem to G+

c (x, ·) and u in the bounded region
Ebc(A) \Bε(x), and then let ε→ 0 to obtain that

u(x) =

∫
EBc (A)

u(y)[k2(y)− k2
+]G+

c (x, y)dy

+

∫
∂(Ebc(A))

[
G+
c (x, y)

∂u

∂n
(y)− u(y)

∂G+
c (x, y)

∂n(y)

]
ds(y).(3.6)

Letting A→∞ in (3.6), in view of (3.1), we find that

u(x) =

∫
EBc

u(y)[k2(y)− k2
+]G+

c (x, y)dy +

∫
Γc

u(y)
∂G+

c (x, y)

∂y2
ds(y) + Ib,(3.7)

where

Ib =

∫
Γb

[
G+
c (x, y)

∂u

∂n
(y)− u(y)

∂G+
c (x, y)

∂n(y)

]
ds(y).(3.8)

Now v = ui +ur satisfies the Helmholtz equation ∆v+k2
+v = 0 in Uc and the Dirichlet

condition v = 0 on Γc, so that by the same argument used to derive (3.7), we can
show that v(x) = Ĩb, where Ĩb is given by (3.8) but with u replaced by v. It follows
that

Ib = ui(x) + ur(x) +

∫
Γb

[
G+
c (x, y)

∂w

∂n
(y)− w(y)

∂G+
c (x, y)

∂n(y)

]
ds(y),(3.9)

where w = us − ur. Further, by Remark 2.4, ur and thus w satisfies the UPRC. Also,
G+
c (x, ·) is a radiating solution in Uτ for τ > max(x2, B) so that, in view of (3.1) and
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the equivalence of (i) and (iii) in Lemma 2.1, the integral in (3.9) vanishes. Thus (3.4)
follows.

Take x ∈ R2\Ud, and choose a < min(x2, 0), A > |x1|, and ε > 0 sufficiently
small. Then (3.5) can be derived similarly by applying Green’s second theorem to
G−d (x, ·) and u in the bounded region Eda(A) \ Bε(x), letting ε → 0, A → ∞, and
finally utilizing the equivalence of (i) and (iii) in Lemma 2.1 and noting Remark
2.1.

The next two lemmas state properties of volume and surface potentials of the
type appearing in (3.4) and (3.5). Lemma 3.1(i) was proved as Lemma 3.1 in [7] while
Lemma 3.2(i) was proved as Theorem 3.2 in [5]. In both lemmas the assertion (ii) is
a consequence of (i) on noting Remark 2.1.

Lemma 3.1. (i) Define the volume potential v+ with density φ+ ∈ L∞(EBc ) by

v+(x) =

∫
EBc

G+
c (x, y)φ+(y)dy, x ∈ U c,

and extend the definition of φ+ to Uc by setting φ+(x) = 0, x ∈ UB. Then v+ ∈
C1(U c) ∩ L∞(Ebc) for b > c, v+ = 0 on Γc, ∆v+ + k2

+v+ = −φ+ in Uc, and v+

satisfies the UPRC.
(ii) Define the volume potential v− with density φ− ∈ L∞(Ed0 ) by

v−(x) =

∫
Ed0

G−d (x, y)φ−(y)dy, x ∈ R2\Ud,

and extend the definition of φ− to R2\Ud by setting φ−(x) = 0, x ∈ R2\U . Then
v− ∈ C1(R2\Ud)∩L∞(Eda) for a < d, v− = 0 on Γd, ∆v−+ k2

−v− = −φ− in R2\Ud,
and v− satisfies the DPRC.

Lemma 3.2. (i) Define the double layer potential D+ with density ψ+ ∈ BC(Γc)
by

D+(x) =

∫
Γc

∂G+
c (x, y)

∂y2
ψ+(y)ds(y), x ∈ Uc.

Then D+ ∈ C(U c)∩C2(Uc)∩L∞(Ebc) for b > c, D+ = ψ+ on Γc, ∆D+ + k2
+D+ = 0

in Uc, and D+ satisfies the UPRC.
(ii) Define the double layer potential D− with density ψ− ∈ BC(Γd) by

D−(x) =

∫
Γd

∂G−d (x, y)

∂y2
ψ−(y)ds(y), x ∈ R2\Ud.

Then D− ∈ C(R2\Ud)∩C2(R2\Ud)∩L∞(Eda) for a < d, D− = −ψ− on Γd, ∆D−+
k2
−D− = 0 in R2\Ud, and D− satisfies the DPRC.

As in Theorem 3.1, choose c and d so that 0 ≤ c < d ≤ B and let λ = (k+c +
k−d)/(k− + k+) so that k−(d − λ) = k+(λ − c). Suppose that u satisfies Problem
(P) and let ψ1 = u|

E
B

λ

, ψ2 = u|
E
λ

0

, and k± = k2 − k2
±. Then, by Theorem 3.1,

ψ1 ∈ BC(E
B

λ ) and ψ2 ∈ BC(E
λ

0 ) satisfy the pair of second-kind integral equations

ψ1(x) = ui(x) + ur(x) +

∫
EB
λ

ψ1(y)k+(y)G+
c (x, y)dy +

∫
Eλc

ψ2(y)k+(y)G+
c (x, y)dy
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+

∫
Γc

ψ2(y)
∂G+

c (x, y)

∂y2
ds(y), x ∈ EBλ ,(3.10)

ψ2(x) =

∫
Eλ0

ψ2(y)k−(y)G−d (x, y)dy +

∫
Ed
λ

ψ1(y)k−(y)G−d (x, y)dy

−
∫
Γd

ψ1(y)
∂G−d (x, y)

∂y2
ds(y), x ∈ Eλ0 .(3.11)

Conversely, suppose now that ψ1 ∈ BC(E
B

λ ) and ψ2 ∈ BC(E
λ

0 ) satisfy the inte-
gral equations (3.10) and (3.11) and define u as follows:

u(x) = ui(x) + ur(x) +

∫
EB
λ

ψ1(y)k+(y)G+
c (x, y)dy +

∫
Eλc

ψ2(y)k+(y)G+
c (x, y)dy

+

∫
Γc

ψ2(y)
∂G+

c (x, y)

∂y2
ds(y), x ∈ Uc,(3.12)

u(x) = lim
y→x, y∈Uc

u(y), x ∈ Γc,(3.13)

u(x) =

∫
Eλ0

ψ2(y)k−(y)G−d (x, y)dy +

∫
Ed
λ

ψ1(y)k−(y)G−d (x, y)dy

−
∫
Γd

ψ1(y)
∂G−d (x, y)

∂y2
ds(y), x ∈ R2\U c.(3.14)

Then it follows, provided d − c is small enough, that u is a solution of Problem (P).
To see this define v by

v(x) =

∫
Eλ0

ψ2(y)k−(y)G−d (x, y)dy +

∫
Ed
λ

ψ1(y)k−(y)G−d (x, y)dy

−
∫
Γd

ψ1(y)
∂G−d (x, y)

∂y2
ds(y), x ∈ R2\Ud,(3.15)

v(x) = lim
y→x, y∈R2\Ud

v(y), x ∈ Γd.(3.16)

Then, comparing (3.10) and (3.12), ψ1 = u|
E
B

λ

, and comparing (3.11) and (3.15),

ψ2 = v|
E
λ

0

. Also, by Lemmas 3.1 and 3.2 applied to (3.12) and (3.15), ψ2 = u on Γc

and ψ1 = v on Γd. Thus u = v on Γc and Γd. Define w = u− v. Then it is clear from
Lemmas 3.1 and 3.2 again, together with the above results, that (i) w is bounded in Edc
and w ∈ C(E

d

c)∩C1(Edc ); (ii) ∆w+ k̂2w = 0 in Edc , where k̂(x) = k−, x ∈ Edλ, = k+,
x ∈ Eλc ; (iii) w = 0 on Γc and Γd. Now, consider the following eigenvalue problem: find
z ∈ C1[c, d]∩H2(c, d), Λ ∈ R, such that −z′′− qz = Λz in (c, d) and z(c) = z(d) = 0,
where q(x2) = k−, λ < x2 < d, = k+, c < x2 < λ. Provided this problem has only
positive eigenvalues Λ > 0, and this is the case if (d − λ)k− = (λ − c)k+ < π/2,
i.e., provided 2k+k−(d− c) < π(k+ + k−), then an elementary separation of variables
argument establishes that w ≡ 0 in Edc and hence u ≡ v in Edc . It is now easy to see, by
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further applications of Lemmas 3.1 and 3.2, that u, defined by (3.12)–(3.14), satisfies
Problem (P). Thus we have the following equivalence theorem between Problem (P)
and the integral equation problem (3.10) and (3.11).

Theorem 3.2. If u ∈ C(R2) is a solution of Problem (P), then ψ1 := u|
E
B

λ

and

ψ2 := u|
E
λ

0

satisfy the integral equations (3.10) and (3.11). Conversely, suppose that

ψ1 ∈ BC(E
B

λ ) and ψ2 ∈ BC(E
λ

0 ) satisfy the integral equations (3.10) and (3.11) and
define u by (3.12)–(3.14). Then, provided (d− λ)k− = (λ− c)k+ and 2k+k−(d− c) <
π(k+ + k−), u satisfies Problem (P).

Remark 3.2. Let (d−λ)k− = (λ−c)k+ and 2k+k−(d−c) < π(k+ +k−). Then from
Theorem 3.2 it follows that in order to prove the existence of a solution to Problem
(P), it is enough to show that the pair of integral equations (3.10) and (3.11) has a
solution. This will be done in section 6.

4. A basic inequality. In this section a basic inequality satisfied by solutions
of (2.3) is established, which is a key step in the proof of the uniqueness theorem.

Suppose that u ∈ C(R2) satisfies (2.3). Then, by Remark 2.3, u ∈ C1(R2) ∩
H2

loc(R2). Let η < c < d < ρ with η, ρ being as defined in assumptions (A3) or (A5)
and define, for t ∈ R and A > 0,

JA(t) = =
∫

Γt(A)

u∂2uds, LA(t) = <
∫

Γt(A)

u∂2uds,(4.1)

I±A (t) =

∫
Γt(A)

{|∂2u|2 − |∂1u|2 + k2
±|u|2}ds,(4.2)

KA =

∫
EBη (A)

|u|2|k2 − k2
+|dx+

∫
Eρ0 (A)

|u|2|k2 − k2
−|dx(4.3)

+

∫
Γc(A)

|u|2ds+

∫
Γd(A)

|u|2ds.(4.4)

Let a < 0 < B < b, and for t ∈ R, let γ(t) = {(t, x2)|a ≤ x2 ≤ b}.
Theorem 4.1. Assume that (A3) holds or that both (A4) and (A5) hold. Then,

for some nonnegative constants Cj , j = 1, 2, 3, there holds

KA ≤ C1[(b− β)I+
A (b)− (a− β)I−A (a)] + C1[LA(b)− LA(a)]

+C2[JA(a)− JA(b)] + C3R1(A) + C1R2(A),(4.5)

for all A > 0, where

R1(A) =

[∫
γ(A)

+

∫
γ(−A)

]
|u∂1u|ds

and

R2(A) = <
[∫

γ(A)

−
∫
γ(−A)

]
[2(x2 − β)∂2u∂1u+ u∂1u]ds.

Proof. First we will deduce the inequality (4.5) in the case that (A3) holds.
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Apply Green’s first theorem to u and u in Eba(A) and take the imaginary part of
the result thus obtained to get that since =(k2(x)) = 0 for x2 > B and x2 < 0,∫

EB(A)

=(k2)|u|2dx+ JA(b)− JA(a) ≤ R1(A).(4.6)

Let θ ∈ C2(R) be such that 0 ≤ θ(t) ≤ 1 for t ∈ R, θ(t) = 1 for c ≤ t ≤ d, and
θ(t) = 0 for t ≥ ρ and t ≤ η. Then, by applying Green’s first theorem to u and
θ(x2)u in EB(A) and taking the real part of the result thus obtained, we obtain on
integrating by parts that∫

EB(A)

θ(x2)|∇u|2dx ≤
∫

EB(A)

[
<(k2)θ(x2) +

1

2
θ′′(x2)

]
|u|2dx+R1(A),

which together with the definition of θ implies that∫
Edc (A)

|∇u|2dx ≤ (‖k‖2∞ + C)

∫
Eρη(A)

|u|2dx+R1(A),(4.7)

for some constant C > 0 depending only on the choice of θ.
Now, for any r, t ∈ R,

u((x1, r))− u((x1, t)) =

r∫
t

∂2u(x)dx2, x1 ∈ R,(4.8)

so that using the Cauchy–Schwarz inequality,

|u((x1, t))|2 ≤ 2|u((x1, r))|2 + 2(r − t)
r∫
t

|∂2u(x)|2dx2, x1 ∈ R.(4.9)

From (4.9) it follows that, for R < T, r, t ∈ [R, T ],∫
Γt(A)

|u|2ds ≤ 2

∫
Γr(A)

|u|2ds+ 2(T −R)

∫
ET
R

(A)

|∂2u|2dx(4.10)

and hence that

(T −R)

∫
Γt(A)

|u|2ds ≤ 2

∫
ET
R

(A)

|u|2dx+ 2(T −R)2

∫
ET
R

(A)

|∂2u|2dx.(4.11)

Thus, assuming that (A3) holds, the required inequality (4.5), with C1 = 0, follows
from (4.6), (4.7), and (4.11) with R = c, T = d, t = c, d.

Suppose now that (A4) and (A5) hold. Multiplying (2.3) by 2(x2 − β)∂2u + u,
integrating over Eba(A), and taking the real part, we obtain on noting that =(k2(x)) =
0 for x2 > B and x2 < 0,

2

∫
Eba(A)

|∂2u|2dx = <
∫

Eba(A)

{2∇ · [(x2 − β)∂2u∇u]− ∂2[(x2 − β)|∇u|2] +∇ · (u∇u)}dx
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+

∫
Eba(A)

<(k2)∂2[(x2 − β)|u|2]dx+ 2

∫
EB(A)

(x2 − β)=(k2)={u∂2u}dx

= (b− β)

∫
Γb(A)

(|∂2u|2 − |∂1u|2)ds− (a− β)

∫
Γa(A)

(|∂2u|2 − |∂1u|2)ds

+LA(b)− LA(a) +R2(A) +

∫
Eba(A)

<(k2)∂2[(x2 − β)|u|2]dx

+2

∫
EB(A)

(x2 − β)=(k2)={u∂2u}dx.(4.12)

Now, if <(k2) ∈ C1(R2), then from (A4) we have that (x2 − β)∂2(<(k2)) ≥ 0, and
integrating by parts, we obtain that∫

Eba(A)

<(k2)∂2[(x2 − β)|u|2]dx ≤ (b− β)k2
+

∫
Γb(A)

|u|2ds− (a− β)k2
−

∫
Γa(A)

|u|2ds

=

∫
Eba(A)

k̃2∂2[(x2 − β)|u|2]dx.(4.13)

Thus

GA ≡
∫

Eba(A)

[k̃2 −<(k2)]∂2[(x2 − β)|u|2]dx ≥ 0.(4.14)

In the general case where k ∈ L∞(R2), let φ(x) = <(k2(x)), ψ(x) = (x2 − β)|u(x)|2,
and for h ∈ R, let φh(x) = φ(x+ he2), ψh(x) = ψ(x+ he2). Then, since φ(ψh − ψ) +
φh(ψh − ψ) = 2(φhψh − φψ) − (φh − φ)(ψ + ψh), we have that for sufficiently small
h > 0, ∫

Eba(A)

φ(ψh − ψ)dx+

∫
Eb+h
a+h

(A)

φ(ψ − ψ−h)dx

= 2

∫
Eb+h
b

(A)

φψdx− 2

∫
Ea+h
a (A)

φψdx−
∫

Eba(A)

(φh − φ)(ψ + ψh)dx.(4.15)

By using (A4) the last term on the right-hand side of (4.15) can be estimated as
follows. First, in the cases where β ≤ a and β ≥ b+ h, it is easy to see that

I ≡ −
∫

Eba(A)

(φh − φ)(ψ + ψh)dx ≤ 0,

while if a < β < b+ h, then

I ≤ 2||k||2∞
∫

Eβ
β−h(A)

|ψ + ψh|dx ≡ Ih.
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Therefore, I ≤ Ih in any case, and thus it follows from (4.15) that∫
Eba(A)

φ(ψh − ψ)dx+

∫
Eb+h
a+h

(A)

φ(ψ − ψ−h)dx

≤ 2k2
+

∫
Eb+h
b

(A)

ψdx− 2k2
−

∫
Ea+h
a (A)

ψdx+ Ih(4.16)

on using (A2). Since ψ ∈ C1(R2) and ψ = 0 on Γβ , dividing (4.16) by 2h and taking
the limit h→ 0 we obtain that (4.13) and (4.14) hold in the general case.

It follows from (4.12) that

2

∫
Eba(A)

|∂2u|2dx+GA = (b− β)I+
A (b)− (a− β)I−A (a) + LA(b)− LA(a) +R2(A)

+2

∫
EB(A)

(x2 − β)=(k2)={u∂2u}dx.(4.17)

Since 0 ≤ =(k2) ≤ ‖k‖2∞, the Cauchy–Schwarz inequality yields that

2

∫
EB(A)

(x2 − β)=(k2)={u∂2u}dx ≤
∫

EB(A)

|∂2u|2dx+ (B + |β|)2‖k‖2∞
∫

EB(A)

=(k2)|u|2dx.

(4.18)

Thus, it follows from (4.17), (4.18), and (4.6) that∫
Eba(A)

|∂2u|2dx+GA ≤ (b− β)I+
A (b)− (a− β)I−A (a) + LA(b)− LA(a) +R2(A)

+(B + |β|)2‖k‖2∞[JA(a)− JA(b) +R1(A)] ≡ FA.(4.19)

Now, from (4.19) and the fact that GA ≥ 0, it is seen that∫
Eba(A)

|∂2u|2dx ≤ FA.(4.20)

On the other hand, since 2|(x2 − β)<(u∂2u)| ≤ |u|2/2 + 2(b + |β|)2|∂2u|2 in Eba, we
have

∂2[(x2 − β)|u|2] = |u|2 + 2(x2 − β)<(u∂2u) ≥ |u|2/2− 2(b+ |β|)2|∂2u|2,
for x ∈ Eba, so that on noting that k̃2 ≥ <(k2) by (A4),

GA ≥ 1

2

∫
Eba(A)

[k̃2 −<(k2)]|u|2dx− 4(b+ |β|)2||k||2∞
∫

Eba(A)

|∂2u|2dx.

This, together with (4.19) and (4.20), implies that∫
Eba(A)

[k̃2 −<(k2)]|u|2dx ≤ 2[1 + 4(b+ |β|)2||k||2∞]FA.(4.21)
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We now make use of (4.20) and (4.21) to derive the required inequality (4.5).
First, using (4.9) and the fact that <(k2) ≤ k̃2 by (A4), we obtain (cf. (4.11)) that∫

Edc (A)

[k̃2 −<(k2)]|u((x1, c))|2dx

≤ 2

∫
Edc (A)

[k̃2 −<(k2)]|u|2dx+ 4(d− c)2||k||2∞
∫

Edc (A)

|∂2u|2dx.(4.22)

Using (A4) and (A5) yields that

(d− c)λ3

∫
Γc(A)

|u|2ds ≤ 2

∫
Eba(A)

[k̃2 −<(k2)]|u|2dx+ 4B2||k||2∞
∫

Eba(A)

|∂2u|2dx.(4.23)

From (4.10) with R = a, T = b, r = c, we obtain that∫
Eba(A)

|u|2dx ≤ 2(b− a)

∫
Γc(A)

|u|2ds+ 2(b− a)2

∫
Eba(A)

|∂2u|2dx.(4.24)

Thus, utilizing (4.20) and (4.21) together with (4.23), (4.24), and (4.11), with R = a,
T = b, t = d, it follows that KA is bounded by a multiple of FA. Thus the required
result (4.5) holds with C2 = C3.

5. Uniqueness of solution. In this section we establish the following unique-
ness theorem for Problem (P).

Theorem 5.1. If (A3) holds or both (A4) and (A5) hold, then Problem (P) has
at most one solution.

We prove this theorem by showing that the homogeneous version of Problem (P)
has only the trivial solution. Since guided waves are solutions of the homogeneous
problem (see Definition A.1 and Theorem A.1 in the appendix), we have immediately
the following corollary.

Corollary 5.1. If (A3) holds or both (A4) and (A5) hold, then there are no
guided wave solutions to the homogeneous problem.

In the proof of Theorem 5.1 we utilize the following two lemmas, the first of which
is a special case of Lemma A in [8].

Lemma 5.1. Suppose that F ∈ L∞(R) and that, for some nonnegative constants
C, ε, and A0,∫ A

−A
|F (t)|2dt ≤ C

∫
R\[−A,A]

G2
A(t)dt+ C

∫ A

−A
(G∞(t)−GA(t))G∞(t)dt+ ε, A > A0,

where, for A0 < A ≤ +∞,

GA(s) =

∫ A

−A
(1 + |s− t|)−3/2|F (t)|dt, s ∈ R.

Then F ∈ L2(R) and ∫ +∞

−∞
|F (t)|2dt ≤ ε.
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Lemma 5.2. If φ+ ∈ L2(ΓH) ∩ L∞(ΓH), φ− ∈ L2(Γh) ∩ L∞(Γh), and v± are
defined by (2.4) and (2.5), respectively, then the restrictions of v+, ∂1v+, and ∂2v+ to
Γb are in L2(Γb) ∩ BC(Γb) for b > H; the restrictions of v−, ∂1v−, and ∂2v− to Γa
are in L2(Γa) ∩BC(Γa) for a < h; and

=
∫
Γb

v+∂2v+ds ≥ 0, <
∫
Γb

v+∂2v+ds ≤ 0,(5.1)

∫
Γb

[|∂2v+|2 − |∂1v+|2 + k2
+|v+|2]ds ≤ 2k+=

∫
Γb

v+∂2v+ds,(5.2)

and

=
∫
Γa

v−∂2v−ds ≤ 0, <
∫
Γa

v−∂2v−ds ≥ 0,(5.3)

∫
Γa

[|∂2v−|2 − |∂1v−|2 + k2
−|v−|2]ds ≤ −2k−=

∫
Γa

v−∂2v−ds.(5.4)

The statements in this lemma concerning v+ were proved as in Lemma 6.1 in [7].
The statements regarding v− follow from Remark 2.1.

Proof of Theorem 5.1. As in section 4, let η < c < d < ρ and a < 0, b > B. Also
for convenience choose a and b so that b− β = β − a ≡ ω > 0.

Suppose that u1 and u2 are solutions of Problem (P). Then, by Remark 2.3,
u = u1−u2 ∈ C1(R2) and satisfies (2.3), the bound (2.8), the UPRC, and the DPRC.
Also, by Theorem 3.1,

u(x) =

∫
EBc

u(y)k+(y)G+
c (x, y)dy +

∫
Γc

u(y)
∂G+

c (x, y)

∂y2
ds(y), x ∈ Uc,(5.5)

u(x) =

∫
Ed0

u(y)k−(y)G−d (x, y)dy −
∫
Γd

u(y)
∂G−d (x, y)

∂y2
ds(y), x ∈ R2\Ud,(5.6)

and by Theorem 4.1, for some constants Cj ≥ 0, j = 1, 2, 3,

KA ≤ C1[ωI+
A (b) + ωI−A (a) + LA(b)− LA(a) +R2(A)]

+C2[JA(a)− JA(b)] + C3R1(A),(5.7)

where JA, I±A , LA, and KA are given by (4.1) and (4.2). Clearly, for j = 1, 2,

Rj(A) = O(1) as A→∞,(5.8)

and by (4.6),

JA(b)− JA(a) ≤ R1(A).(5.9)

Now to make use of Lemma 5.1 and the bound (5.7), we define

v(x) =

∫
EBc (A)

u(y)k+(y)G+
c (x, y)dy +

∫
Γc(A)

u(y)
∂G+

c (x, y)

∂y2
ds(y), x ∈ Uc,(5.10)

v(x) =

∫
Ed0 (A)

u(y)k−(y)G−d (x, y)dy −
∫

Γd(A)

u(y)
∂G−d (x, y)

∂y2
ds(y), x ∈ R2\U c.(5.11)
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Then, by (3.1)–(3.2), v|ΓB ∈ L2(ΓB)∩BC(ΓB) and v|Γ0
∈ L2(Γ0)∩BC(Γ0). Moreover,

by Lemmas 3.1 and 3.2 and the equivalence of Lemmas 2.1(i)–(ii) and 2.2, v satisfies
(2.4), with h = B and φ+ = v|ΓB , and satisfies (2.5) with h = 0 and φ− = v|Γ0

. For
t ∈ R set,

J ′A(t) = =
∫

Γt(A)

v∂2vds, J ′′A(t) = =
∫
Γt

v∂2vds,

I±′A (t) =

∫
Γt(A)

{|∂2v|2 − |∂1v|2 + k2
±|v|2}ds, I±′′A =

∫
Γt

{|∂2v|2 − |∂1v|2 + k2
±|v|2}ds,

L′A(t) = <
∫

Γt(A)

v∂2vds, L′′A(t) = <
∫
Γt

v∂2vds.

Then, by Lemma 5.2,

J ′′A(b) ≥ 0, L′′A(b) ≤ 0, I+′′
A (b) ≤ 2k+J

′′
A(b),

J ′′A(a) ≤ 0, L′′A(a) ≥ 0, I−′′A (a) ≤ −2k−J ′′A(a).

Hence, by the preceding and (5.7),

KA ≤ C1{ω [ I+
A (b)− I+′′

A (b)] + ω[I−A (a)− I−′′A (a)] + [LA(b)− L′′A(b)] + [L′′A(a)− LA(a)]}
+ [C2 + 2C1ω(k+ + k−)]{[J ′′A(b)− JA(b)] + [JA(a)− J ′′A(a)]}
+[C3 + 2C1ω(k+ + k−)]R1(A) + C1R2(A).(5.12)

Now note that

KA =

∫ A

−A
|w(x1)|2dx1,

where

w(x1) =
{∫ B

η

|u(x)|2|k2(x)− k2
+|dx2 +

∫ ρ

0

|u(x)|2|k2(x)− k2
−|dx2

+|u(x1, c)|2 + |u(x1, d)|2
}1/2

, x1 ∈ R,

and note that by (3.3) and the Cauchy–Schwarz inequality, for x ∈ Γa, Γb,

|v(x)|, |∇v(x)| ≤ CWA(x1),

|u(x)− v(x)|, |∇u(x)−∇v(x)| ≤ C(W∞(x1)−WA(x1)),

where C is a constant independent of A and, for 0 ≤ A ≤ +∞,

WA(x1) =

∫ A

−A
(1 + |x1 − y1|)−3/2w(y1)dy1, x1 ∈ R.

It follows that

|I±′A (t)− I±′′A (t)|, |J ′A(t)− J ′′A(t)|, |L′A(t)− L′′A(t)|
≤ C

∫
R\[−A,A]

(WA(x1))2dx1, (t = a, b),
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where C is a constant independent of A, and that

|I±A (t)− I±′A (t)|, |JA(t)− J ′A(t)|, |LA(t)− L′A(t)|

≤ C
A∫
−A

(W∞(x1)−WA(x1))W∞(x1)dx1, (t = a, b),

so that, from (5.12) for some constant C0 > 0 and all A > 0,

KA ≤ C0

{∫
R\[−A,A]

W 2
A(x1)dx1 +

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1)dx1

+|R1(A)|+ |R2(A)|
}
.(5.13)

Applying Lemma 5.1 to (5.13) we obtain that w ∈ L2(R), i.e., u ∈ L2(EB)∩L2(Γc)∩
L2(Γd) and, for all A0 > 0,∫

EB

|u|2dx+

∫
Γc

|u|2ds+

∫
Γd

|u|2ds =

∫ +∞

−∞
|w|2

≤ C0 sup
A>A0

(|R1(A)|+ |R2(A)|).(5.14)

Since u ∈ L2(EB)∩L2(Γc)∩L2(Γd), it follows from (5.5), (5.6), the bounds (3.1) and
(3.2), and applications of Young’s theorem that u ∈ L2(Eba) for any a, b ∈ R with

a < b. Also, since ∇u ∈ BC(Eba) so that u is uniformly continuous in Eba, it follows
that u(x)→ 0 as x1 →∞ uniformly in x2 for a ≤ x2 ≤ b for any real numbers a < b.
Also, noting Lemma 2.2, it follows that Rj(A) → 0 as A → ∞, j = 1, 2, and thus,
from (5.14), that u = 0 in EB and on Γc ∪ Γd; and hence, from (5.5) and (5.6), that
u ≡ 0 in R2.

6. Existence of solution. In this section existence of a solution for Problem
(P) will be established by making use of general results on the solvability of the system
of second-kind integral equations

ψi = φi +
N∑
j=1

Kijψj , i = 1, . . . , N,(6.1)

in which φi ∈ Yi := BC(Ωi) is assumed known, ψi ∈ Yi is to be determined, and
Kij : Yj → Yi is the integral operator defined by

Kijψ(x) =

∫
Ωj

kij(x, y)ψ(y)dµj(y), x ∈ Ωi,(6.2)

i, j = 1, . . . , N. Here Ωj is an open subset of Rnj (nj ≥ 1) and dµj is nj-dimensional
Lebesgue measure. The function kij : Ωi × Ωj → C is assumed to take the form, for
some M ∈ N,

kij(x, y) =
M∑
m=1

k
(m)
ij (x, y)z

(m)
j (y),
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where z
(m)
j ∈ Xj := L∞(Ωj) and k

(m)
ij (x, ·) ∈ L1(Ωj) for every x ∈ Ωi (i, j =

1, . . . , N, m = 1, . . . ,M). We assume that the following conditions on k
(m)
ij and Ωj

hold:
(C.1) supx∈Ωi

∫
Ωj
|k(m)
ij (x, y)|dµj(y) <∞ and, for all x ∈ Ωi,∫

Ωj

|k(m)
ij (x, y)− k(m)

ij (x′, y)|dµj(y)→ 0

as x′ → x with x′ ∈ Ωi (i, j = 1, . . . , N, m = 1, . . . ,M).

(C.2) For some n0 ≤ minj nj and i = 1, . . . , N , there exists a
(i)
j ∈ Rni , j =

1, . . . , n0, and a bounded set ωi ⊂ Ωi such that

(i) Ωi =
⋃
P∈Zn0 ω

(P )
i , where ω

(P )
i := ωi +

∑n0

j=1 a
(i)
j pj , for P = (p1, . . . , pn0) ∈

Zn0 ;

(ii) ω
(Q)
i ∩ ω(P )

i = ∅ for Q,P ∈ Zn0 , Q 6= P ;

(iii) k
(m)
ij (x + a

(i)
l , y + a

(j)
l ) = k

(m)
ij (x, y), x ∈ Ωi, y ∈ Ωj , i, j = 1, . . . , N , l =

1, . . . , n0,
m = 1, . . . ,M.

Let X and Y denote the product spaces X :=
∏N
j=1Xj and Y :=

∏N
j=1 Yj ⊂ X.

Let φ = (φ1, . . . , φN )t, ψ = (ψ1, . . . , ψN )t ∈ Y, where (·, . . . , ·)t denotes the transpose
of (·, . . . , ·). For m = 1, . . . ,M, define the matrix operator K(m) on X by

K(m) =


K

(m)
11 · · · K

(m)
1N

. . .

K
(m)
N1 · · · K

(m)
NN

 ,(6.3)

where K
(m)
ij : Xj → Xi is the integral operator defined by (6.2) with Kij , kij replaced

by K
(m)
ij , k

(m)
ij . For z = (z1, . . . , zN )t ∈ X define ẑ by

ẑ =

 z1 · · · 0
. . .

0 · · · zN

 ,

and for m = 1, . . . ,M and z ∈ X, define K
(m)
z : Y → Y by

K(m)
z ψ = K(m)(ẑψ), ψ ∈ Y.(6.4)

For w = (w(1), . . . , w(M)) ∈ XM let Kw denote the matrix integral operator

Kw =
M∑
m=1

K
(m)

w(m) .(6.5)

Then (6.1) can be abbreviated as

ψ = φ+Kzψ,(6.6)

where z = (z(1), . . . , z(M)) and z(m) = (z
(m)
1 , . . . , z

(m)
N )t, m = 1, . . . ,M.
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For j = 1, . . . , N, i = 1, . . . , n0, define the translation operator T
a

(i)
j

: Xj → Xj

by

T
a

(i)
j

ψ(x) = ψ(x− a(i)
j ), x ∈ Ωj ,

and for a = (a1, . . . , aN ) ∈ τ := {(a(1)
l , . . . , a

(N)
l )t|l = 1, . . . , n0}, define the matrix

operator Ta : X → X by

Ta =

 Ta1 0
. . .

0 TaN

 .

Then, by (C.2) (iii), TaK
(m) = K(m)Ta, a ∈ τ, m = 1, . . . ,M. Let B(Y ) denote the

Banach space of bounded linear operators on Y and I the identity matrix operator
on Y. The following results have been proved in [10], extending the results of [9] for
single integral equations to systems of integral equations.

Theorem 6.1. Suppose that (C.1) and (C.2) are satisfied, that W ⊂ XM is weak∗
sequentially compact, that TaW := {(Taz(1), . . . , Taz

(M))|(z(1), . . . , z(M)) ∈ W} = W,
a ∈ τ, and that I−Kz is injective for all z ∈W. Then (I−Kz)

−1 exists as an operator
on the range space (I −Kz)Y for all z ∈W and

sup
z∈W
‖(I −Kz)

−1‖ <∞.

Also, if for every z ∈ W there exists a sequence (zj) ⊂ W such that (zj) converges
weak∗ to z in X and

for all j, I −Kzj injective =⇒ I −Kzj surjective,

then I −Kz is surjective also for each z ∈W so that (I −Kz)
−1 ∈ B(Y ).

Theorem 6.2. If (C.1) and (C.2) are satisfied, z = ((z
(1)
1 , . . . , z

(1)
N )t, . . . ,

(z
(M)
1 , . . . , z

(M)
N )t) ∈ XM , and for some constants λ

(m)
j ∈ C, j = 1, . . . , N, m =

1, . . . ,M, it holds that

ess sup|x|≥A,x∈Ωj |z(m)
j (x)− λ(m)

j | → 0

as A→∞, then

I −Kλ, I −Kz injective ⇒ I −Kz surjective, (I −Kz)
−1 ∈ B(Y ),

where λ = ((λ
(1)
1 , . . . , λ

(1)
N )t, . . . , (λ

(M)
1 , . . . , λ

(M)
N )t).

To apply Theorems 6.1 and 6.2 to show the existence of a solution to Problem
(P), we choose λ, c, and d so that 0 ≤ c < d ≤ B, k−(d − λ) = k+(λ − c), and
2(d− c)k+k− < π(k+ + k−). It then follows from Theorem 3.2 that Problem (P) and
the integral equation problems (3.10) and (3.11) are equivalent.

Let N = 4, n0 = 1, Ω1 = EBλ ⊂ R2, Ω2 = Eλ0 ⊂ R2, Ω3 = Ω4 = R, ω1 =
{x ∈ Ω1|0 ≤ x1 < B, λ < x2 < B}, ω2 = {x ∈ Ω2|0 ≤ x1 < B, 0 < x2 < λ},
ω3 = ω4 = [0, B), a

(1)
1 = a

(2)
1 = (B, 0), and a

(3)
1 = a

(4)
1 = B. Define ỹ := y and

ŷ := y for y ∈ R2 and ỹ := (y, c) and ŷ := (y, d) for y ∈ R. Let χ(t) = 1, t > 0,

= 0, t < 0, and let M = 2, k
(1)
ij (x, y) = G+

c (x̂, y)χ(y2 − c) for all x ∈ Ωi, y ∈ Ωj ,
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x̂ 6= y, i = 1, 3, j = 1, 2, k
(1)
ij (x, y) = G−d (x̃, y)χ(d− y2) for all x ∈ Ωi, y ∈ Ωj , x̃ 6= y,

i = 2, 4, j = 1, 2, k
(1)
i4 (x, y) = ∂G+

c (x̂, z)/∂z2|z=ỹ for all x ∈ Ωi, y ∈ Ω4, i = 1, 3,

k
(1)
i3 (x, y) = ∂G−d (x̃, z)/∂z2|z=ŷ for all x ∈ Ωi, y ∈ Ω3, i = 2, 4, k

(1)
ij (x, y) = 0 for all

x ∈ Ωi, y ∈ Ωj , with i = 1, 3, j = 3, or i = 2, 4, j = 4. Let k
(2)
ij = k

(1)
ij , i = 2, 4,

j = 1, 2, = 0, otherwise. Then conditions (C.1) and (C.2) are satisfied with these

choices of k
(m)
ij and Ωj (i, j = 1, 2, 3, 4,m = 1, 2). Set w

(1)
j (y) = k+(y) for y ∈ Ωj ,

j = 1, 2, w
(1)
3 (y) = −1, y ∈ Ω3, w

(1)
4 (y) = 1, y ∈ Ω4, and set w(1) = (w

(1)
1 , . . . , w

(1)
4 )t,

w(2) = (k2
+ − k2

−)(1, 1, 0, 0)t. Then the integral equations (3.10) and (3.11) can be
written as the 4× 4 matrix system

(I −Kw)ψ = φ, ψ = (ψ1, . . . , ψ4)t, φ = (φ1, . . . , φ4)t ∈ Y,(6.7)

where w = (w(1), w(2)), Kw is defined by (6.5), (6.4), and (6.3), φ2 = φ4 = 0, φj(y) =
ui(ŷ) + ur(ŷ), y ∈ Ωj , j = 1, 3, and ψ3, ψ4 ∈ BC(R) are defined by ψ3(y) = ψ2(ŷ),
ψ4(y) = ψ1(ỹ), y ∈ R.

Theorem 6.3. Assume that (A3) holds or that (A4) and (A5) hold and that
k−(d− λ) = k+(λ− c) and 2(d− c)k+k− < π(k+ + k−). Then (I −Kw)−1 ∈ B(Y ) so
that the system of integral equations (6.7) has a unique solution ψ ∈ Y. Furthermore,
for any L > 0, there is a constant C > 0 depending only on L, k±, c, d, η, ρ, B, λ1,
and λ2, in the case that (A3) is satisfied, or on L, k±, c, d, η, ρ, B, β, and λ3, in the
case that (A4) and (A5) are satisfied such that, provided ‖k‖∞ ≤ L, ‖(I−Kw)−1‖ ≤ C
so that ‖ψ‖ ≤ C‖φ‖.

Proof. Theorem 6.3 is proved by means of Theorems 6.1 and 6.2. To this end,
suppose without loss of generality that L > k2

± + λ1 and set

Q = Q3 := {µ ∈ L∞(EB)|=µ ≥ 0,=µ(x) ≥ λ1, x ∈ Eρη ,=µ(x) ≥ λ2|µ(x)− k2
+|,

x ∈ EBη ,=µ(x) ≥ λ2|µ(x)− k2
−|, x ∈ Eρ0 , ||µ||∞ ≤ L2}

in the case that (A3) is satisfied. In the case that (A4) and (A5) are satisfied suppose
without loss of generality that L2 > k2

± + λ3 and set

Q = Q4 := {µ ∈ L∞(R2)|=µ ≥ 0, µ(x) = k2
+, x ∈ UB , µ(x) = k2

−, x ∈ R2\U,
||µ||∞ ≤ L2, ess infx∈Uβ <[µ(x+ e2h)− µ(x)] ≥ 0,

ess infx∈R2\Uβ <[µ(x− e2h)− µ(x)] ≥ 0, h > 0,

ess infx∈Eρη{k̃2(x)−<[µ(x)]} ≥ λ3}.

Define W (1) ⊂ X by

W (1) = {(µ|Ω1 − k2
+, µ|Ω2 − k2

+, −1, 1)t|µ ∈ Q}

and W ⊂ X2 by

W = {(w(1), (k2
+ − k2

−, k
2
+ − k2

−, 0, 0)t)|w(1) ∈W (1)}.

Then TaW = W for a ∈ τ = {(a(1)
1 , . . . , a

(4)
1 )}. Also, it follows easily from Theorems

3.2 and 5.1 that I −Kz is injective for all z ∈W.
Next, we show that W is weak∗ sequentially compact. In view of the definition

of W it is sufficient to show that W (1) ⊂ X is weak∗ sequentially compact. Further,
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in view of the definition of W (1), it is sufficient to show that Q is weak∗ sequentially
compact, where Q = Q3 ⊂ L∞(EB) in the case that (A3) is satisfied and Q = Q4 ⊂
L∞(R2) in the case that (A4) and (A5) are satisfied.

Since Q is bounded it follows from the Alaoglu theorem [16, p. 60] that Q is
weak∗ sequentially compact if it is weak∗ sequentially closed. In the case Q = Q3,
the fact that Q is weak∗ sequentially closed follows from Lemma 2.13 in [9], since the
sets {w ∈ C| |w| ≤ L2,=w ≥ λ1} and {w ∈ C| |w| ≤ L2,=w ≥ 0, =w ≥ λ2|w − k2

∗|},
for k∗ = k+ and k−, are compact and convex.

In the case Q = Q4, in order to see that Q is weak∗ sequentially compact consider
a sequence (µj) ⊂ Q. Since (µj) is bounded, it follows from the Alaoglu theorem [16,
p. 60] that there is an element µ ∈ L∞(R2) and a subsequence of (µj), denoted simply
by itself, such that (µj) converges weak∗ to µ in L∞(R2) and ‖µ‖∞ ≤ L2. Thus, for
all ξ ∈ L1(R2), ∫

R2

µjξdx→
∫
R2

µξdx,(6.8)

as j → ∞ and, in particular, (6.8) holds if ξ is the characteristic function of any
bounded measurable subset of R2. This and the fact that µj ∈ Q, j = 1, 2, . . . ,
implies that =µ ≥ 0 in R2, µ(x) = k2

+ for x ∈ UB , µ(x) = k2
− for x ∈ R2\U,

ess infx∈Eρη{k̃2(x)−<[µ(x)]} ≥ λ2, and

ess infx∈Uβ <[µ(x+ e2h)− µ(x)] ≥ 0,

ess infx∈R2\Uβ <[µ(x− e2h)− µ(x)] ≥ 0

for all h > 0. Hence µ ∈ Q and (µj) converges weak∗ to µ in Q. Thus Q is weak∗
sequentially compact.

Finally, let z = (z(1), z(2)) ∈W. Then, for some µ ∈ Q, z(1) = (µ|Ω1
− k2

+, µ|Ω2
−

k2
+, −1, 1)t and z(2) = (k2

+ − k2
−)(1, 1, 0, 0)t. For j = 1, 2, . . . , set

µj(x) =

{
µ∗(x) for |x1| > j,
µ(x) for |x1| ≤ j,

where µ∗ ≡ iλ1 in the case that (A3) is satisfied, µ∗ = k2
+ in UB , = k2

− in R2\U, =
min(k2

−, k
2
+)−λ2 in EB , in the case that (A4) and (A5) are satisfied. Then µ∗, µj ∈ Q,

and setting z
(1)
j = (µj |Ω1

− k2
+, µj |Ω2

− k2
+, −1, 1)t and zj = (z

(1)
j , z(2)), j = 1, 2, . . . ,

it is easy to see that (zj) converges weak∗ to z. Define

z∗ = ((µ∗|Ω1
− k2

+, µ
∗|Ω2
− k2

+, −1, 1)t, z(2))

= ((λ∗, λ∗,−1, 1)t, (k2
+ − k2

−, k
2
+ − k2

−, 0, 0)t),

where λ∗ ∈ C is given by λ∗ = iλ1 − k2
+ in the case that (A3) is satisfied and by

λ∗ = min(k2
−, k

2
+)−λ2−k2

+ in the case that (A4) and (A5) are satisfied. Since z∗ ∈W
so that I−Kz∗ is injective, it follows from Theorem 6.2 that I−Kzj injective implies
I −Kzj surjective, for j = 1, 2, . . . .

All the assumptions in Theorem 6.1 have been verified so Theorem 6.3 follows
from Theorem 6.1.

Theorem 6.4. Assume that (A3) holds or that (A4) and (A5) hold. Then Problem
(P) has exactly one solution. Further, for any L > 0, there exists a constant C > 0
depending only on L, k±, η, ρ, B, λ1, and λ2 in the case that (A3) is satisfied, or
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on L, k±, η, ρ, B, β, and λ3 in the case that (A4) and (A5) are satisfied such that,
provided ‖k‖∞ ≤ L,

|u(x)| ≤ C(1 + |x2|)1/2, x ∈ R2.(6.9)

Proof. The existence of a unique solution to Problem (P) follows from Theorems
3.1, 3.2, and 6.3. To derive the estimate (6.9) we note from the equivalence of (i) and
(ii) in Lemma 2.1 that, for h > B,

us(x) = 2

∫
Γh

∂Φ(x, y)

∂y2
us(y)ds(y), x ∈ Uh.(6.10)

It follows from (2.6) and (6.10) (see [5]) that

|us(x)| ≤ C(1 + (x2 −B))1/2 sup
x∈ΓB

|u(x)|, x ∈ UB ,(6.11)

for some constant C > 0 dependent only on k+, which together with Theorem 6.3
implies the estimate (6.9) for x ∈ U. The estimate (6.9) for x ∈ R2\U can be proved
similarly by using Lemma 2.2.

Appendix: Guided waves. By a guided wave we mean a solution of the ho-
mogeneous problem which has its energy localized in or near the layer EB . Precisely,
for a < b, let D(a, b) = {x ∈ R2|a < x1 < b}. Then our definition is as follows.

Definition A.1. Call v ∈ C1(R2) a guided wave if v 6≡ 0, v satisfies (2.3), v is
bounded in Eh−h for every h > 0,

sup
n∈Z

∫
D(n,n+1)

(|v|2 + |∇v|2)dx <∞,(A.1)

and

ch := sup
n∈Z

∫
D(n,n+1)\Eh−h

(|v|2 + |∇v|2)dx→ 0(A.2)

as h→∞.
Remark A.1. In the case when the scatterer is a diffraction grating, i.e., k is

periodic in the x1-direction with some period L, it is usual to assume that v is corre-
spondingly quasi periodic (i.e., that v(x) exp(−ik+ cos θ x1) is periodic). Then (A.1)
and (A.2) reduce to the condition that∫

D(0,L)

(|v|2 + |∇v|2)dx <∞,

i.e., that the energy is finite in a single period of the grating (cf. Bonnet-Bendhia and
Starling [3]).

Remark A.2. Conditions (A.1) and (A.2) are satisfied if v decreases rapidly enough
in the vertical direction, in particular, if for some constants C > 0 and p > 1/2,

|v(x)| ≤ C(1 + |x2|)−p, x ∈ R2.

The following result follows from Theorem 8.1 in [7] and Remark 2.1.
Theorem A.1. If v is a guided wave, then v satisfies the UPRC for wavenumber

k+ and the DPRC for wavenumber k−.
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Abstract. This paper is devoted to the study of a solidification/melting process in the case
where the fluid is flowing. Such a phenomenon is described by the Stefan problem with transport
terms in the equation of the temperature distribution and the initial-boundary value problem for the
incompressible Navier–Stokes equations. The existence of the classical solution is proved locally in
time.
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1. Introduction. This paper is devoted to the study of solidification/melting
processes in the case where the fluid is flowing. Such phenomena have received atten-
tion only during past three decades in physics [4], [16], [23].

In contrast to the above, we have a long history of the study of phase change
in stagnant media since Stefan’s pioneering work in 1891. In these problems, the
unknowns are the interface separating the liquid and the solid regions and the tem-
perature distributions in both regions. An excellent survey is provided by Rubinstein
[19], Yamaguti and Nogi [25], and Mĕırmanov [15]. Mĕırmanov [14] and Hanzawa
[10], in particular, studied the time-dependent, multidimensional Stefan problem in
the class of smooth functions by a regularization method and by the Nash–Moser
implicit function theorem, respectively.

The classical solvability of the same problem for a convective motion in a viscous
incompressible fluid flow was discussed by Bazalĭı and Degtyarev [3]. Stimulated by
their work, in this paper we consider the same problem in another situation.

The differences between our problem (1.1)–(1.6) below and that of Bazalĭı and
Degtyarev consist of two aspects:

1. Equations (1.1) and (1.2) are the same except for the right-hand side of (1.2),
which is caused by Boussinesq approximation in [8].

2. Bazalĭı and Degtyarev imposed the boundary condition v = 0 on the interface.
Instead we impose (1.3) on the interface since, in general, the densities of a
liquid and a solid at the melting temperature are not equal; for example, the
densities of water and ice at 0◦C are 0.999 g/cm3 and 0.917 g/cm3 [7] and
we assume that the melting or freezing processes proceed without cavity.

Now let us formulate our problem: find the interface Γt which separates the
liquid and the solid phases, the temperature θ, and the fluid velocity v = (v1, v2, v3)
satisfying

∂v

∂t
+ (v · ∇)v +∇p− ν∆v = f(θ), ∇ · v = 0,(1.1)

∗Received by the editors March 2, 1998; accepted for publication July 21, 1998; published elec-
tronically April 7, 1999.
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∂θ

∂t
+ (v · ∇)θ − 1

%Cp
∇ · (κ(θ)∇θ) =

ν

2Cp

∑
i,k

(
∂vi
∂xk

+
∂vk
∂xi

)2

(1.2)

in
⋃

0<t≤T (Ωt × {t}), where Ωt denotes the liquid region, ν and Cp mean kinetic
viscosity and specific heat at constant pressure (assumed to be positive constants),
and κ(θ) is heat conductivity. Equation (1.1) is known as the Navier–Stokes equations,
and the right-hand side of (1.2) represents the heat generation due to viscosity.

We impose the following conditions on the interface
⋃

0<t≤T (Γt × {t}) (see, for
example, [11]):

v · n =

(
1− %e

%

)
V, 2νΠ D(v)n = Π [v(v − Vn)∗]n,(1.3)

l%eV = −κ(θ)∇θ · n, θ = θ1.(1.4)

Here % and %e are positive constants representing the densities of liquid and solid,
respectively; V is the normal velocity of the interface; l is a latent heat; D(v) is
the velocity deformation tensor; Π is the projection operator to Γt; n is the unit
normal vector to Γt pointing into the liquid region; θ1 is the melting (solidification)
temperature. The notation a∗ is used for the transposed vector of a. The conservation
laws of mass and momentum imply (1.3)1 and (1.3)2, respectively, and (1.4) is the so-
called Stefan condition which describes the conservation law of energy on the interface
in the process of liquid-solid phase change.

Furthermore, in order to complete the problem, we need initial conditions and
boundary conditions on the rigid boundary ΣT ≡ Σ× (0, T ):

v = v0, θ = θ0 on Ω ≡ Ω0,(1.5)

v = 0, θ = θ2 on ΣT .(1.6)

Before stating our result, we introduce the function spaces used throughout this
paper. Let D be a domain in R3 × (0, T ), l be a nonnegative integer, and 0 < α < 1.

We denote by Cl+α,
l+α

2 (D) the standard anisotropic Hölder space whose norm is

| · |(l+α,
l+α

2 )

D , and by C̃3+α, 3+α
2 (D) the function space{

f
∣∣ f ∈ C3+α, 3+α

2 (D),
∂f

∂t
∈ C2+α, 2+α

2 (D)

}
equipped with the norm

‖f‖(3+α, 3+α
2 )

D ≡ |f |(3+α, 3+α
2 )

D +

∣∣∣∣∂f∂t
∣∣∣∣(2+α, 2+α

2 )

D

.

We also define function spaces C
l+α, l+α2
0 (D) and C̃

3+α, 3+α
2

0 (D) as{
f ∈ Cl+α, l+α2 (D)

∣∣ ∂kf
∂tk

∣∣∣∣
t=0

= 0 for k = 0, 1, . . . ,

[
l

2

]}
and {

f ∈ C̃3+α, 3+α
2 (D)

∣∣ ∂kf
∂tk

∣∣∣∣
t=0

= 0 for k = 0, 1, 2

}
,

respectively.
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The following is our main result in this paper.
Theorem 1.1. Let T be an arbitrary positive real number and 0 < α < 1.

Assume that

Γ ≡ Γ0 ∈ C3+α, Σ ∈ C3+α,

f ∈ C1+α(0,∞), κ ∈ C2+α(0,∞), v0 ∈ C2+α(Ω),

θ0 ∈ C3+α(Ω), θ1 ∈ C3+α, 3+α
2 (R3 × [0, T ]), θ2 ∈ C3+α, 3+α

2 (ΣT ),

κ0 ≤ κ(θ) ≤ κ0
−1, θ2 ≥ a0, |n · ∇θ0|ΓT | ≥ a0

for some positive constants κ0(< 1) and a0. Moreover, we assume that the compati-
bility conditions up to order 1 hold. Then problem (1.1)–(1.6) has a solution

Γt ∈ C̃3+α′, 3+α′
2 , θ ∈ C3+α′, 3+α′

2

 ⋃
0≤t≤T0

(Ωt × {t})
 ,

v ∈ C2+α′, 2+α′
2

 ⋃
0≤t≤T0

(Ωt × {t})
 , ∇p ∈ Cα′,α

′
2

 ⋃
0≤t≤T0

(Ωt × {t})


for some α′, 0 < α′ < α and some T0, 0 < T0 < T .

2. Reduction of the problem. In this section, using the transformation due to
Hanzawa [10] (see also [6]), we reduce problem (1.1)–(1.6) to that in a fixed domain.
First we introduce the local coordinates (ω1, ω2, λ) in a neighborhood of Γ, where
ω = (ω1, ω2) denotes a point on the surface Γ, and a mapping x defined by x(ω, λ) =
ω+n(ω)λ from Γ× [−γ0, γ0] to N0 ⊂ R3 with n(ω) being the unit normal to Γ at ω
directing into Ω. Here a positive number γ0 is assumed to be chosen so small that the
mapping x is regular and one to one. By (ω(x), λ(x)) we denote the inverse mapping
of x from N0 to Γ× [−γ0, γ0].

Now let us assume that the interface Γt, t ∈ [0, T ] is represented by x = ω +
n(ω)d(ω, t) with a function d(ω, t) satisfying d(ω, 0) = 0. Certainly we get another
representation of

⋃
0≤t≤T (Γt × {t}),⋃

0≤t≤T
(Γt × {t}) =

{
(x, t) ∈ N0 × [0, T ]

∣∣ Φd(x, t) = 0
}
,

for a function

Φd(x, t) = λ(x)− d(ω(x), t), (x, t) ∈ N0 × [0, T ].

Accordingly, the Stefan condition can be written as

∂Φd
∂t
− c0(∇Φd · ∇θ) = 0 on

⋃
0<t≤T

(Γt × {t}),

where c0 = κ(θ1)/(l%e).
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Next let XT and YT be two coordinates (x1, x2, x3, t) and (y1, y2, y3, t) in R3 ×
[0, T ] such that

x = (ω(x), λ(x)), y = (ω(y), η(y)),

ω(x) = ω(y), λ(x) = η(y) + χ(η(y))d(ω(y), t) if (x, t) ∈ N0 × [0, T ],

ω(x) = ω(y), λ(x) = η(y) if (x, t) ∈ N0
c × [0, T ],

where χ(λ) ∈ C∞(−∞,+∞) is a cut-off function satisfying

χ(λ) =


1 for |λ| ≤ γ0

4
,

0 for |λ| ≥ 3γ0

4
,

|χ′(λ)| ≤ 4

3γ0
.

Then we define a mapping ed : YT → XT by

ed(y(ω, η), t) = (x(ω, η + χ(η)d(ω, t)), t) for (x, t) ∈ N0 × [0, T ],

ed(y(ω, η), t) = (x(ω, η), t) for (x, t) ∈ N0
c × [0, T ].

It is obvious that QT = Ω × [0, T ] and ΓT = Γ × [0, T ] are transformed onto⋃
0≤t≤T (Ωt × {t}) and

⋃
0≤t≤T (Γt × {t}), respectively, by ed. Denoting simply by

θ,v, and p the transformed functions θ ◦ ed,v ◦ ed, and p ◦ ed, respectively, we reduce
problem (1.1)–(1.6) to that in the fixed domain QT in variables (y, t):

(2.1)

∂v

∂t
+ (hd · ∇)v + (v · ∇d)v − ν∇d2v +∇dp = f(θ), ∇d · v = 0 in QT ,

v|t=0 = v0 on Ω̄,

v · nd =

(
1− %e

%

)
V, 2νΠdDd(v)nd = Πd[v(v − Vnd)∗]nd on ΓT ,

v = 0 on ΣT ,



∂θ

∂t
+ (hd · ∇)θ + (v · ∇d)θ − 1

%Cp
∇d · (κ(θ)∇dθ)

=
ν

2Cp

∑
i,k

∑
j

{
akj

∂vi
∂yj

+ aij
∂vk
∂yj

}2

in QT ,

θ|t=0 = θ0 on Ω̄,

θ = θ1,
∂d

∂t
+ c0(∇dΦd · ∇dθ) = 0 on ΓT ,

d(ω, 0) = 0 on Γ,

θ = θ2 on ΣT .

(2.2)

Here we use the notation

∇d = (E∗d)
−1∇, hd =

∂y

∂t
◦ ed, nd =

∇dη
|∇dη| , Dd(v) = D(v) ◦ ed, Πdg = Πg ◦ ed;
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Ed = (aij) is the Jacobian matrix of the mapping from y to x, E∗d is the transposed

matrix of Ed, and aij is the (i, j)-component of (E∗d)
−1

.

It is obvious that there exist the extensions θ̂ ∈ C3+α, 3+α
2 (QT ), d̂ ∈ C4+α, 4+α

2 (ΓT ),

v̂ ∈ C2+α, 2+α
2 (QT ), ∇p̂ ∈ Cα,α2 (QT ) which satisfy the conditions



θ̂(y, 0) = θ0(y),
∂θ̂

∂t
(y, 0) = θ(1)(y),

d̂(ω, 0) = 0,
∂d̂

∂t
(ω, 0) = d(1)(ω),

∂2d̂

∂t2
(ω, 0) = d(2)(ω),

v̂(y, 0) = v0(y),
∂v̂

∂t
(y, 0) = v(1)(y),

∇p̂(y, 0) = −v(1)(y)− (v0(y) · ∇)v0(y) + ν∇2v0(y) + f(θ0),

where θ(1), d(1), d(2), and v(1) are defined from the compatibility conditions of the
equations and data in (2.1) and (2.2). It is clear that such extensions can be taken to
satisfy the inequality

|θ̂|(3+α, 3+α
2 )

QT
+ |d̂|(4+α, 4+α

2 )

ΓT
+ |∇p̂|(α,α2 )

QT
+ |v̂|(2+α, 2+α

2 )

QT
≤ C

(
|θ0|(3+α)

Ω
+ |v0|(2+α)

Ω

)

with a constant C being bounded as T → 0.
Then by introducing the new functions w ≡ θ− θ̂−χσ∂θ̂/∂n, σ ≡ d− d̂,u ≡ v− v̂

and ∇q ≡ ∇p−∇p̂, problems (2.1) and (2.2) can be written in the equivalent form



∂u

∂t
− ν∆u+∇q = f

(
w + θ̂ + χ

∂θ̂

∂n
σ

)
− ∂v̂

∂t
− (hσ+d̂ · ∇

)
(u+ v̂)

+ν
(
∇2
σ+d̂
−∇2

)
(u+ v̂) + ν∆v̂ − ((u+ v̂) · ∇σ+d̂

)
(u+ v̂)

−∇σ+d̂(q + p̂) +∇q ≡ F1(u,∇q, w, σ) in QT ,

∇ · u = − (∇σ+d̂ −∇
) · u−∇σ+d̂ · v̂ ≡ F2(u, σ) in QT ,

u
∣∣
t=0

= 0 on Ω̄,

u · n = −u · (nσ+d̂ − n
)− v̂ · nσ+d̂ +

(
1− %e

%

)(
∂σ

∂t
+
∂d̂

∂t

)
≡ F3(u, σ) on ΓT ,

2νΠD(u)n = − (2νΠσ+d̂Dσ+d̂(u+ v̂)nσ+d̂ − 2νΠD(u+ v̂)n
)

−2νΠD(v̂)n+ Πσ+d̂

[
(u+ v̂)

(
u+ v̂ − ∂

∂t
(σ + d̂)nσ+d̂

)∗]
nσ+d̂

≡ F4(u, σ) on ΓT ,

u = −v̂ on ΣT ,

(2.3)
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∂w

∂t
− 1

%Cp
∇ · (κ(θ̂)∇w) = − ∂

∂t

(
θ̂ + χ

∂θ̂

∂n
σ

)

−(hσ+d̂ · ∇)

(
w + θ̂ + χ

∂θ̂

∂n
σ

)
− ((u+ v̂) · ∇σ+d̂

)(
w + θ̂ + χ

∂θ̂

∂n
σ

)

+
1

%Cp
∇ ·
(
κ(θ̂)∇

(
θ̂ + χ

∂θ̂

∂n
σ

))

− 1

%Cp
∇ ·
(
κ(θ̂)∇

(
w + θ̂ + χ

∂θ̂

∂n
σ

))

+
1

%Cp
∇σ+d̂ ·

(
κ

(
w + θ̂ + χ

∂θ̂

∂n
σ

)
∇σ+d̂

(
w + θ̂ + χ

∂θ̂

∂n
σ

))

+
ν

2Cp

∑
i,k

∑
j

{
akj

∂(ui + v̂i)

∂yj
+ aij

∂(uk + v̂k)

∂yj

}2

≡ F5(u, w, σ) in QT ,

w
∣∣
t=0

= 0 on Ω̄,

w +
∂θ̂

∂n
σ = θ1 − θ̂ on ΓT ,

∂σ

∂t
+ c0(∇η · ∇w) = −∂d̂

∂t
− c0

(
∇σ+d̂η · ∇σ+d̂

(
w + θ̂ + χ

∂θ̂

∂n
σ

))

+c0

(
∇η · ∇

(
w + θ̂ + χ

∂θ̂

∂n
σ

))
− c0

(
∇η · ∇

(
θ̂ + χ

∂θ̂

∂n
σ

))
≡ F6(w, σ) on ΓT ,

σ
∣∣
t=0

= 0 on Γ,

w = θ2 − θ̂ on ΣT .

(2.4)

3. Linear problems. In this section we consider the linear problems

∂u

∂t
− ν∆u+∇p = F 1, ∇ · u = F2 in QT ,

u
∣∣
t=0

= 0 on Ω̄,

u · n = F3, ΠD(u)n = F 4 on ΓT ,

u = G1 on ΣT ,

(3.1)



∂w

∂t
− 1

%Cp
∇ · (κ(θ̂)∇w) = F5 in QT ,

w
∣∣
t=0

= 0 on Ω̄,

w +
∂θ̂

∂n
σ = F6,

∂σ

∂t
+ c0

∂w

∂n
= F7 on ΓT ,

w = G2 on ΣT .

(3.2)
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We will solve problems (3.1) and (3.2) separately. First we consider the following
model problem in the half-space D3

∞ = R3
+×(0,∞), R3

+ = {(z1, z2, z3) ∈ R3
∣∣ z3 > 0}.

∂u

∂t
− ν∆u+∇p = 0, ∇ · u = 0 in D3

∞,

u
∣∣
t=0

= 0 on R3
+,

∂u3

∂zj
+
∂uj
∂z3

= bj (j = 1, 2), u3 = 0 on R2
∞,

(3.3)

where bj , j = 1, 2, are given functions defined on R2
∞ = R2 × (0,∞).

By means of Fourier transformation with respect to z′ = (z1, z2) and Laplace
transformation with respect to t,

[Ff ](ξ′, z3, s) ≡ f̃(ξ′, z3, s) =

∫ ∞
0

e−stdt
∫

R2

e−iz
′·ξ′f(z′, z3, t)dz

′,

the solution of the transformed problem of (3.3) can be represented as
ũj =

e0(z3)

r
+

iξj
|ξ′|(r + |ξ′|)

∑
k=1,2

iξk b̃k (e0(z3)− e1(z3)), j = 1, 2,

ũ3 =
e1(z3)

r + |ξ′|
∑
k=1,2

iξk b̃k, p̃ = − ν

|ξ′|e2(z3)
∑
k=1,2

iξk b̃k,
(3.4)

where

e0(z3) = e−rz3 , e1(z3) =
e−rz3 − e−|ξ′|z3

r − |ξ′| , e2(z3) = e−|ξ
′|z3 ,

r2 =
s

ν
+ ξ′2, s = a+ iξ0, ξ′2 = ξ2

1 + ξ2
2 (see [24]).

From (3.4) we can easily obtain

|u|(2+α, 2+α
2 )

D3
T

+ |∇p|(α,α2 )

D3
T

≤ C
∑
k=1,2

|bk|(1+α, 1+α
2 )

R2
T

,(3.5)

where D3
T = R3

+ × (0, T ), R2
T = R2 × (0, T ).

Second we proceed to the nonhomogeneous problem

∂u

∂t
− ν∆u+∇p = f , ∇ · u = g in D3

T ,

u
∣∣
t=0

= 0 on R3
+,

∂u3

∂zj
+
∂uj
∂z3

∣∣
z3=0

= bj (j = 1, 2), u3

∣∣
z3=0

= b3 on R2
T .

(3.6)

It is obvious that the solution of problem (3.6) is given by

u = u′ +∇φ+ u′′, p = π − ∂φ

∂t
+ ν∆φ,
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where u′ is a solution to the Dirichlet problem of the heat equation
∂u′

∂t
− ν∆u′ = f in D3

T ,

u′
∣∣
t=0

= 0, u′
∣∣
z3=0

= 0 on R2
T ;

(3.7)

φ is a solution of the Neumann problem of the elliptic equation with a parameter t
∆φ = g −∇ · u′ in R3

+,

∂φ

∂z3

∣∣
z3=0

= b3 on R2;
(3.8)

and (u′′, π) is a solution of problem

∂u′′

∂t
− ν∆u′′ +∇π = 0, ∇ · u′′ = 0 in D3

T ,

u′′
∣∣
t=0

= 0 on R3
+,(

∂u′′3
∂zj

+
∂u′′j
∂z3

) ∣∣
z3=0

= bj − ∂u′3
∂zj
− ∂u′j
∂z3
− 2

∂2φ

∂z3∂zj

∣∣
z3=0

(j = 1, 2),

u′′3
∣∣
z3=0

= 0 on R2
T .

(3.9)

It is well known that problems (3.7) and (3.8) have solutions satisfying

|u′|(2+α, 2+α
2 )

D3
T

≤ C |f |(α,α2 )

D3
T

,

|∇φ|(2+α)

R3
+

≤ C
(
|g|(1+α)

R3
+

+ |u′|(2+α)

R3
+

+ |b3|(2+α)
R2

)
.

With regard to problem (3.9), it follows from (3.5) that

|u′′|(2+α, 2+α
2 )

D3
T

+ |∇π|(α,α2 )

D3
T

≤ C
∑
j=1,2

|bj |(1+α, 1+α
2 )

R2
T

+ |u′|(2+α, 2+α
2 )

R2
T

+ |∇φ|(2+α, 2+α
2 )

R2
T

 .

Thus the solution of problem (3.6) is evaluated as follows:

|u|(2+α, 2+α
2 )

D3
T

+ |∇p|(α,α2 )

D3
T

≤ C
|f |(α,α2 )

D3
T

+ |g|(1+α, 1+α
2 )

D3
T

+
∑
j=1,2

|bj |(1+α, 1+α
2 )

R2
T

 .

Finally we solve problem (3.1) by a regularizer. Let {ω(k)} and {Ω(k)} be two
systems of the coverings of Ω̄ constructed in the same way as in [12] and let λ be a
positive constant determined later. For k ∈ M1, ω(k) and Ω(k) are three-dimensional
cubes included completely in Ω with common centers and with the length of their
edges, in parallel directions of axes, equal to λ/2 and λ, respectively. For k ∈M2, ω

(k)

and Ω(k) have common parts with Σ which are defined in the local coordinates {z}
in the neighborhood of Σ as follows:

ω(k) = Πz
x

{
|zi| ≤ λ

2
(i = 1, 2), 0 ≤ z3 − F (z1, z2) ≤ λ

}
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and

Ω(k) = Πz
x {|zi| ≤ λ (i = 1, 2), 0 ≤ z3 − F (z1, z2) ≤ 2λ} ,

respectively, where z3 = F (z1, z2) represents Σ and Πz
x is the transformation from z

to x. For k ∈ M3, ω
(k) and Ω(k), which are adjacent to Γ, are defined in the same

way as ω(k) and Ω(k) for k ∈ M2. Furthermore, we introduce the partitions of unity
{ξ(k)} and {η(k)} subordinated to {Ω(k)} and {ω(k)} such that

ξ(k)(x) =

 1
(
x ∈ ω(k)

)
,

0
(
x ∈ Ω\Ω(k)

)
,

0 ≤ ξ(k)(x) ≤ 1,

|Dα
x ξ

(k)(x)| ≤ Cλ−|α|, η(k)(x) =
ξ(k)(x)∑
k ξ

(k)(x)2
.

Then a regularizer R is defined by

RH =
∑
k∈M1

η(k)(u
(k)
1 , p

(k)
1 ) +

∑
j=2,3

∑
k∈Mj

η(k)Πz
x(u

(k)
j , p

(k)
j ),

where H = (F 1, F2, F3,F 4,G1). Here (u
(k)
1 , p

(k)
1 ) is a solution of the problem

∂u
(k)
1

∂t
− ν∆u

(k)
1 +∇p(k)

1 = ξ(k)F 1, ∇ · u(k)
1 = ξ(k)F2 in R3

T ,

u
(k)
1

∣∣
t=0

= 0 on R3,

(u
(k)
2 , p

(k)
2 ) is a solution of the problem

∂u
(k)
2

∂t
− ν∆u

(k)
2 +∇p(k)

2 = Πx
zξ

(k)F 1, ∇ · u(k)
2 = Πx

zξ
(k)F2 in D3

T ,

u
(k)
2

∣∣
t=0

= 0 on R3
+,

u
(k)
2

∣∣
z3=0

= Πx
zξ

(k)G1 on R2
T ,

and (u
(k)
3 , p

(k)
3 ) is a solution of the problem

∂u
(k)
3

∂t
− ν∆u

(k)
3 +∇p(k)

3 = Πx
zξ

(k)F 1, ∇ · u(k)
3 = Πx

zξ
(k)F2 in D3

T ,

u
(k)
3

∣∣
t=0

= 0 on R3
+,

u
(k)
3,3

∣∣
z3=0

= Πx
zξ

(k)F3,
∂u

(k)
3,3

∂zj
+
∂u

(k)
3,j

∂z3

∣∣
z3=0

= Πx
zξ

(k)F4,j (j = 1, 2) on R2
T .

It is not difficult to see that RH = (v̄, q̄), H = (F 1, F2, F3,F 4,G1) satisfies

∂v̄

∂t
− ν∆v̄ +∇q̄ = F 1 − T1H, ∇ · v̄ = F2 − T2H in QT ,

v̄
∣∣
t=0

= 0 on Ω̄,

v̄ · n = F3 − T3H, ΠD(v̄)n = F 4 − T4H on ΓT ,

v̄ = G1 − S1H on ΣT ,
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where

T1H = −ν
∑
k∈M1

{
η(k)∆u

(k)
1 −∆(η(k)u

(k)
1 )
}

−ν
∑
j=2,3

∑
k∈Mj

{
η(k)Πz

x(∆−∇2
)u

(k)
j + η(k)Πz

x(∇2
u

(k)
j )−∆(η(k)Πz

xu
(k)
j )
}

+
∑
k∈M1

{
η(k)∇p(k)

1 −∇(η(k)p
(k)
1 )
}

+
∑
j=2,3

∑
k∈Mj

{
η(k)Πz

x(∇−∇)p
(k)
j + η(k)Πz

x∇p(k)
j −∇(η(k)Πz

xp
(k)
j )
}
,

T2H =
∑
k∈M1

{
η(k)∇ · u(k)

1 −∇ · (η(k)u
(k)
1 )
}

+
∑
j=2,3

∑
k∈Mj

{
η(k)Πz

x(∇−∇) · u(k)
j + η(k)Πz

x(∇ · u(k)
j )−∇ · (η(k)Πz

xu
(k)
j )
}
,

T3H =
∑
k∈M3

{
η(k)Πz

x(u
(k)
3 · n0)− (η(k)Πz

xu
(k)
3 ) · n

}
,

T4H =
∑
k∈M3

{
η(k)Πz

x

(
Π0(D(u

(k)
3 )−D(u

(k)
3 ))n0

)}
+
∑
k∈M3

{
η(k)Πz

x

(
Π0D(u

(k)
3 )n0

)
−ΠD

(
η(k)Πz

xu
(k)
3

)
n
}
,

S1H = 0,

∇ = t(∂xi/∂zj)
−1∇, D = Πx

zD,n0 = t(0, 0, 1), Π0g = g − (g · n0)n0, and Πg =
g − (g · n)n. This means that R is an operator defined on the space

H = C
α,α2
0 (QT )× C1+α, 1+α

2
0 (QT )

× C2+α, 2+α
2

0 (ΓT )× C1+α, 1+α
2

0 (ΓT )× C2+α, 2+α
2

0 (ΣT )

with the range C
2+α, 2+α

2
0 (QT )× Cα,α20 (QT ).

We claim that the norm ‖T ‖ of the operator T = (T1, T2, T3, T4,S1) on H is less
than 1. Then we can find a solution of (3.1) in the form R(I − T )−1H. The proof of
the contraction of T is not difficult. Indeed, for example, evaluating each term in T1,
we have

sup
k
|T1H|(α,

α
2 )

Q
(k)

T

≤ C
(
λ+

T
1
2

λ
+
T

λ2
+ T

α
2

)
sup
k

{
|u(k)|(2+α, 2+α

2 )

Q
(k)

T

+ |∇p(k)|(α,α2 )

Q
(k)

T

}
≤ 1

2
‖H‖H, Q

(k)
T = Ω(k) × (0, T ),

for sufficiently small λ and T . In the same way similar estimates for TjH, j = 2, 3, 4
and S1 are derived. Hence we have the following theorem.

Theorem 3.1. Let us assume that

F 1 ∈ Cα,
α
2

0 (QT ), F2 ∈ C1+α, 1+α
2

0 (QT ),

F3 ∈ C2+α, 2+α
2

0 (ΓT ),F 4 ∈ C1+α, 1+α
2

0 (ΓT ),G1 ∈ C2+α, 2+α
2

0 (ΣT ).
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Then problem (3.1) has a unique solution u ∈ C2+α, 2+α
2

0 (QT ),∇q ∈ Cα,α20 (QT ) satis-
fying

|u|(2+α, 2+α
2 )

QT
+ |∇q|(α,α2 )

QT
≤ C

(
|F 1|(α,

α
2 )

QT
+ |F2|(1+α, 1+α

2 )

QT
+ |F3|(2+α, 2+α

2 )

ΓT
(3.10)

+|F 4|(1+α, 1+α
2 )

ΓT
+ |G1|(2+α, 2+α

2 )

ΣT

)
,

where a constant C depends only on F 1, F2, F3,F 4,G1, and T, and remains bounded
as T → 0.

Next we turn to problem (3.2). In the same way as above, first we treat the model
problem 

∂w′

∂t
− a∆w′ = 0 in D3

∞,

w′
∣∣
t=0

= 0 on R3
+,

w′ + bσ = 0
∂σ

∂t
+ c

∂w′

∂z3
= f on R2

∞,

(3.11)

where a, b, and c are positive constants, and f is a given function in C
2+α, 2+α

2
0 (R2

∞)
(see also [3]).

Making use of the Fourier–Laplace transformation, we obtain the explicit repre-
sentation of the transformed unknowns

w̃′ = −bσ̃ exp

[
−
(
s+ aξ′2

a

)1/2

z3

]
, σ̃ =

f̃

s+ cb(a−1s+ ξ′2)1/2
.(3.12)

Since the inverse Fourier–Laplace transformation of the symbol (s+cb(a−1s+ξ′2)1/2)−1

is

K(z′, t) =
a1/2

bc
F−1

(
1

2π1/2

∫ bct

a1/2

0

τ

(
t− a1/2τ

bc

)−3/2

(3.13)

× exp

[
−aξ′2

(
t− a1/2τ

bc

)
− τ2

4(t− a1/2τ/bc)

]
dτ

)
=

1

4π1/2

bc

a3/2

∫ t

0

τ(t− τ)−5/2 exp

[
− |z′|2

4a(t− τ)
− c2b2τ2

4a(t− τ)

]
dτ

=
1

4π1/2

bc

a3/2

∫ t

0

(t− τ)τ−5/2 exp

[
−|z

′|2
4aτ

− c2b2(t− τ)2

4aτ

]
dτ,

σ(z′, t) can be represented as

σ(z′, t) =

∫ t

0

∫
R2

K(z′ − ξ′, t− τ)f(ξ′, τ)dξ′dτ.

From (3.13) it follows that

∣∣Dr
tD

s1
z1D

s2
z2K(z′, t)

∣∣ ≤ C(t)
(
|z′|2 + t2

)−1−(r+s1+s2)/2

.
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Hence we have

‖σ‖(3+α, 3+α
2 )

R2∞
≤ C |f |(2+α, 2+α

2 )

R2∞
.(3.14)

On the other hand, in (3.11) w′ can be considered as a solution of the Dirichlet
problem of heat equation; we find the estimate for w′ as

|w′|(3+α, 3+α
2 )

D3∞
≤ Cb ‖σ‖(3+α, 3+α

2 )

R2∞
≤ C |f |(2+α, 2+α

2 )

R2∞
.

The nonhomogeneous case can be treated by adding the above w′ to a solution
w′′ of the problem 

∂w′′

∂t
− a∆w′′ = h in D3

∞,

w′′
∣∣
t=0

= 0 on R3
+,

w′′ = g on R2
∞.

Thus we have the following theorem.
Theorem 3.2. Let us assume

F5 ∈ C1+α, 1+α
2

0 (QT ), F6 ∈ C3+α, 3+α
2

0 (ΓT ), F7 ∈ C2+α, 2+α
2

0 (ΓT ), G2 ∈ C3+α, 3+α
2

0 (ΣT ).

Then problem (3.2) has a unique solution w ∈ C
3+α, 3+α

2
0 (QT ), σ ∈ C̃

3+α, 3+α
2

0 (ΓT )
satisfying

|w|(3+α, 3+α
2 )

QT
+ ‖σ‖(3+α, 3+α

2 )

ΓT
(3.15)

≤ C
(
|F5|(1+α, 1+α

2 )

QT
+ |F6|(3+α, 3+α

2 )

ΓT
+ |F7|(2+α, 2+α

2 )

ΓT
+ |G2|(3+α, 3+α

2 )

ΣT

)
,

where a constant C depends only on Fj , j = 5, 6, 7, G2, and T and remains bounded
as T → 0.

Remark. Bazalĭı and Degtyarev [3] derived the incorrect representation of the
inverse Fourier–Laplace transformation of the symbol in (3.12); the correct formula
is (3.13). However, the regularity of σ in the form of (3.14) can be obtained in the
same way as their work.

4. Proof of Theorem 1.1. We begin with the estimates of Fj , j = 1, . . . , 6 in
(2.3) and (2.4).

Lemma 4.1. Let σ ∈ C̃3+α, 3+α
2

0 (ΓT ), w ∈ C3+α, 3+α
2

0 (QT ) and 0 < α′ < α < 1.

Then the following inequalities hold for any u1,u2 ∈ C
2+α, 2+α

2
0 (QT ), ∇q1,∇q2 ∈

C
α,α2
0 (QT ):

|F1(u1,∇q1, w, σ)−F1(u2,∇q2, w, σ)|(α
′,α
′

2 )

QT

≤ CT α−α′
2

(
|u1 − u2|(2+α, 2+α

2 )

QT
+ |∇q1 −∇q2|(α,

α
2 )

QT

)
,

|F2(u1, σ)−F2(u2, σ)|(1+α′, 1+α′
2 )

QT
≤ CT α−α′

2 |u1 − u2|(2+α, 2+α
2 )

QT
,

|F3(u1, σ)−F3(u2, σ)|(2+α′, 2+α′
2 )

ΓT
≤ CT α−α′

2 |u1 − u2|(2+α, 2+α
2 )

QT
,

|F4(u1, σ)−F4(u2, σ)|(1+α′, 1+α′
2 )

ΓT
≤ CT α−α′

2 |u1 − u2|(2+α, 2+α
2 )

QT
.

(4.1)
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Let u ∈ C2+α, 2+α
2

0 (QT ) and ∇q ∈ Cα,α20 (QT ). Then the following inequalities hold for

any w1, w2 ∈ C3+α, 3+α
2

0 (QT ), σ1, σ2 ∈ C̃3+α, 3+α
2

0 (ΓT ):

|F1(u,∇q, w1, σ1)−F1(u,∇q, w2, σ2)|(α
′, 1+α′

2 )

QT

≤ CT 2+α−α′
2

(
‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT
+ |u1 − u2|(3+α, 3+α

2 )

QT

)
,

|F2(u, σ1)−F2(u, σ2)|(1+α′, 1+α′
2 )

QT
≤ CT 2+α−α′

2 ‖σ1 − σ2‖(3+α, 3+α
2 )

ΓT
,

|F3(u, σ1)−F3(u, σ2)|(2+α′, 2+α′
2 )

ΓT
≤ CT α−α′

2 ‖σ1 − σ2‖(3+α, 3+α
2 )

ΓT
,

|F4(u, σ1)−F4(u, σ2)|(1+α′, 1+α′
2 )

ΓT
≤ CT 1+α−α′

2 ‖σ1 − σ2‖(3+α, 3+α
2 )

ΓT
.

(4.2)

Here C’s in (4.1)–(4.2) are constants depending on T,w, σ,u, q, and bounded as T →
0.

Proof. Note that the definition of Ed implies∣∣∣(E∗
σ1+d̂

)−1 − (E∗
σ2+d̂

)−1
∣∣∣(l+α, l+α2 )

QT
≤ C ‖σ1 − σ2‖(l+1+α, l+1+α

2 )

ΓT
, l = 0, 1, 2.(4.3)

Then we have the following estimates:

|F1(u1,∇q1, w, σ)−F1(u2,∇q2, w, σ)|(α
′,α
′

2 )

QT

=
∣∣∣−(hσ+d̂ · ∇)(u1 − u2) + ν(∇2

σ+d̂
−∇2)(u1 − u2)

− ((u1 − u2) · ∇σ+d̂

)
(u1 + v̂) +

(
(u2 + v̂) · ∇σ+d̂

)
(u1 − u2)

− (∇σ+d̂ −∇)(q1 − q2)
∣∣∣(α′,α′2 )

QT

≤ C
(
|u1 − u2|(2+α′, 2+α′

2 )

QT
+ |∇q1 −∇q2|(α

′,α
′

2 )

QT

)
≤ CT α−α′

2

(
|u1 − u2|(2+α, 2+α

2 )

QT
+ |∇q1 −∇q2|(α,

α
2 )

QT

)
,

|F2(u1, σ)−F2(u2, σ)|(1+α′, 1+α′
2 )

QT
=
∣∣−(∇σ+d̂ −∇) · (u1 − u2)

∣∣(1+α′, 1+α′
2 )

QT

≤ C |u1 − u2|(2+α′, 2+α′
2 )

QT

≤ CT α−α′
2 |u1 − u2|(2+α, 2+α

2 )

QT
,

|F3(u1, σ)−F3(u2, σ)|(2+α′, 2+α′
2 )

ΓT
=
∣∣−(u1 − u2) · (nσ+d̂ − n)

∣∣(2+α′, 2+α′
2 )

ΓT

≤ CT α−α′
2 |u1 − u2|(2+α, 2+α

2 )

QT
,

|F4(u1, σ)−F4(u2, σ)|(1+α′, 1+α′
2 )

ΓT

=
∣∣−2νΠσ+d̂Dσ+d̂(u1 − u2)nσ+d̂ + 2νΠD(u1 − u2)n
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+Πσ+d̂

[
(u1 − u2)

(
u1 + v̂ − ∂

∂t
(σ + d̂)nσ+d̂

)∗]
nσ+d̂

+Πσ+d̂ [(u2 + v̂)(u1 − u2)∗]nσ+d̂

∣∣(1+α′, 1+α′
2 )

ΓT

≤ C |u1 − u2|(2+α′, 2+α′
2 )

QT
≤ CT α−α′

2 |u1 − u2|(2+α, 2+α
2 )

QT
.

Further we have the following estimates:

|F1(u,∇q, w1, σ1)−F1(u,∇q, w2, σ2)|(α
′,α
′

2 )

QT

=

∣∣∣∣∣f
(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)
− f

(
w2 + θ̂ + χ

∂θ̂

∂n
σ2

)
−
(

(hσ1+d̂ − hσ2+d̂) · ∇
)

(u+ v̂) + ν
(
∇2
σ1+d̂

−∇2
σ2+d̂

)
(u+ v̂)

−
(

(u+ v̂) · (∇σ1+d̂ −∇σ2+d̂)
)

(u+ v̂)− (∇σ1+d̂ −∇σ2+d̂)(q + p̂)

∣∣∣∣∣
(α′,α

′
2 )

QT

≤ C|Df |(α)

(
|w1 − w2|(α

′,α
′

2 )

QT
+ |σ1 − σ2|(α

′,α
′

2 )

QT

)

+C

∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(1+α′, 1+α′

2 )

QT

≤ CT 2+α−α′
2

(
‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT
+ |w1 − w2|(3+α, 3+α

2 )

QT

)
,

|F2(u, σ1)−F2(u, σ2)|(1+α′, 1+α′
2 )

QT

=
∣∣∣−(∇σ1+d̂ −∇σ2+d̂) · u− (∇σ1+d̂ −∇σ2+d̂) · v̂

∣∣∣(1+α′, 1+α′
2 )

QT

≤ C
∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(1+α′, 1+α′

2 )

QT

≤ CT 2+α−α′
2 ‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT
,

|F3(u, σ1)−F3(u, σ2)|(2+α′, 2+α′
2 )

ΓT

=

∣∣∣∣− u · (nσ1+d̂ − nσ2+d̂

)
− v̂ ·

(
nσ1+d̂ − nσ2+d̂

)
−
(

1− %e
%

)(
∂σ1

∂t
− ∂σ2

∂t

)∣∣∣∣(2+α′, 2+α′
2 )

ΓT

≤ C
∣∣∣nσ1+d̂ − nσ2+d̂

∣∣∣(2+α′, 2+α′
2 )

ΓT
+

∣∣∣∣∂σ1

∂t
− ∂σ2

∂t

∣∣∣∣(2+α′, 2+α′
2 )

ΓT


≤ C

∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(2+α′, 2+α′

2 )

ΓT

+

∣∣∣∣∂σ1

∂t
− ∂σ2

∂t

∣∣∣∣(2+α′, 2+α′
2 )

ΓT


≤ CT α−α′

2 ‖σ1 − σ2‖(3+α, 3+α
2 )

ΓT
,
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|F4(u, σ1)−F4(u, σ2)|(1+α′, 1+α′
2 )

ΓT

=

∣∣∣∣− 2νΠσ1+d̂Dσ1+d̂(u+ v̂)nσ1+d̂ + 2νΠσ2+d̂Dσ2+d̂(u+ v̂)nσ2+d̂

+Πσ1+d̂

[
(u+ v̂)

(
u+ v̂ − ∂

∂t
(σ1 + d̂)nσ1+d̂

)∗]
nσ1+d̂

−Πσ2+d̂

[
(u+ v̂)

(
u+ v̂ − ∂

∂t
(σ2 + d̂)nσ2+d̂

)∗]
nσ2+d̂

∣∣∣∣(1+α′, 1+α′
2 )

ΓT

≤ C
∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(1+α′, 1+α′

2 )

ΓT

+

∣∣∣∣∂σ1

∂t
− ∂σ2

∂t

∣∣∣∣(1+α′, 1+α′
2 )

ΓT


≤ CT 1+α−α′

2 ‖σ1 − σ2‖(3+α, 3+α
2 )

ΓT
.

Hence the proof is completed.

Lemma 4.2. Let u ∈ C
2+α, 2+α

2
0 (QT ). Then the following inequalities hold for

any w1, w2 ∈ C3+α, 3+α
2

0 (QT ), σ1, σ2 ∈ C̃3+α, 3+α
2

0 (ΓT ):

|F5(u, w1, σ1)−F5(u, w2, σ2)|(1+α′, 1+α′
2 )

QT

≤ CT α−α′
2

(
|u1 − u2|(3+α, 3+α

2 )

QT
+ ‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT

)
,

|F6(w1, σ1)−F6(w2, σ2)|(2+α′, 2+α′
2 )

ΓT

≤ CT α−α′
2

(
|w1 − w2|(3+α, 3+α

2 )

QT
+ ‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT

)
.

(4.4)

If w ∈ C3+α, 3+α
2

0 (QT ), σ ∈ C̃3+α, 3+α
2

0 (ΓT ), then the following inequality holds for any

u1,u2 ∈ C2+α, 2+α
2

0 (QT ).

|F5(u1, w, σ)−F5(u2, w, σ)|(1+α′, 1+α′
2 )

QT
≤ CT 1+α−α′

2 |u1 − u2|(2+α, 2+α
2 )

QT
.(4.5)

Here C’s in (4.4) and (4.5) are constants depending on T,w, σ,u, q, and bounded as
T → 0.

Proof. In the same way as in the proof of Lemma 4.1, we can prove (4.4) and
(4.5). Here we give only the estimates of the most complicated terms in each of F5

and F6. For (4.4)1,∣∣∣∣∣∇σ1+d̂ ·
(
κ

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)
∇σ1+d̂

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

))

−∇σ2+d̂ ·
(
κ

(
w2 + +θ̂ + χ

∂θ̂

∂n
σ2

)
∇σ2+d̂

(
w2 + θ̂ + χ

∂θ̂

∂n
σ2

))∣∣∣∣∣
(1+α′, 1+α′

2 )

QT

≤
∣∣∣∣∣(∇σ1+d̂ −∇σ2+d̂

)
·
(
κ

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)

∇σ1+d̂

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

))∣∣∣∣∣
(1+α′, 1+α′

2 )

QT



STEFAN PROBLEM IN A VISCOUS INCOMPRESSIBLE FLUID 599

+

∣∣∣∣∣∇σ2+d̂ ·
((

κ

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)
− κ

(
w2 + θ̂ + χ

∂θ̂

∂n
σ2

))

· ∇σ1+d̂

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

))∣∣∣∣∣
(1+α′, 1+α′

2 )

QT

+

∣∣∣∣∣∇σ2+d̂ ·
(
κ

(
w2 + θ̂ + χ

∂θ̂

∂n
σ2

)

· (∇σ1+d̂ −∇σ2+d̂)

(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

))∣∣∣∣∣
(1+α′, 1+α′

2 )

QT

+

∣∣∣∣∣∇σ2+d̂ ·
(
κ

(
w2 + θ̂ + χ

∂θ̂

∂n
σ2

)

· ∇σ2+d̂

(
w1 − w2 + χ

∂θ̂

∂n
(σ1 − σ2)

))∣∣∣∣∣
(1+α′, 1+α′

2 )

QT

≤ C
∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(1+α′, 1+α′

2 )

QT

+C
∣∣D2κ

∣∣(α)

∣∣∣∣∣w1 − w2 + χ
∂θ̂

∂n
(σ1 − σ2)

∣∣∣∣∣
(1+α′, 1+α′

2 )

QT

+C

∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(2+α′, 2+α′

2 )

QT

+C

∣∣∣∣∣w1 − w2 + χ
∂θ̂

∂n
(σ1 − σ2)

∣∣∣∣∣
(3+α′, 3+α′

2 )

QT

≤ CT α−α′
2

(
|w1 − w2|(3+α, 3+α

2 )

QT
+ ‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT

)
.

For (4.4)2,

∣∣∣∣∣(∇σ1+d̂η · ∇σ1+d̂

)(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)

−
(
∇σ2+d̂η · ∇σ2+d̂

)(
w2 + θ̂ + χ

∂θ̂

∂n
σ2

)∣∣∣∣∣
(2+α′, 2+α′

2 )

ΓT

≤ C
∣∣∣∣∣((∇σ1+d̂ −∇σ2+d̂

)
η · ∇σ1+d̂

)(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)∣∣∣∣∣
(2+α′, 2+α′

2 )

ΓT

+C

∣∣∣∣∣(∇σ2+d̂η ·
(
∇σ1+d̂ −∇σ2+d̂

))(
w1 + θ̂ + χ

∂θ̂

∂n
σ1

)∣∣∣∣∣
(2+α′, 2+α′

2 )

ΓT
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+C

∣∣∣∣∣(∇σ2+d̂η · ∇σ2+d̂

)(
w1 − w2 + χ

∂θ̂

∂n
(σ1 − σ2)

)∣∣∣∣∣
(2+α′, 2+α′

2 )

ΓT

≤ C
∣∣∣∣(E∗σ1+d̂

)−1

−
(
E∗
σ2+d̂

)−1
∣∣∣∣(2+α′, 2+α′

2 )

ΓT

+C

∣∣∣∣∣w1 − w2 + χ
∂θ̂

∂n
(σ1 − σ2)

∣∣∣∣∣
(3+α′, 3+α′

2 )

ΓT

≤ CT α−α′
2

(
|w1 − w2|(3+α, 3+α

2 )

QT
+ ‖σ1 − σ2‖(3+α, 3+α

2 )

ΓT

)
.

And for (4.5),∣∣∣∣∣(u1 · ∇σ+d̂)

(
w + θ̂ + χ

∂θ̂

∂n
σ

)
− (u2 · ∇σ+d̂)

(
w + θ̂ + χ

∂θ̂

∂n
σ

)∣∣∣∣∣
(1+α′, 1+α′

2 )

QT

≤ C |u1 − u2|(1+α′, 1+α′
2 )

QT
≤ CT 1+α−α′

2 |u1 − u2|(2+α, 2+α
2 )

QT
.

Hence the proof is completed.
Now we proceed to the proof of Theorem 1.1. Set

X ≡


(w, σ) ∈ C3+α, 3+α

2
0 (QT )× C̃3+α, 3+α

2
0 (ΓT )

∣∣
‖(w, σ)‖X ≡ |w|(3+α′, 3+α′

2 )

QT
+ ‖σ‖(3+α′, 3+α

2 )

ΓT
≤ C

 ,

Y ≡


(u,∇q) ∈ C2+α, 2+α

2
0 (QT )× Cα,α20 (QT )

∣∣
‖(u,∇q)‖Y ≡ |u|(2+α′, 2+α′

2 )

QT
+ |∇q|(α

′,α
′

2 )

QT
≤ C

 ,

where C is a positive constant. And let operators P and Q,

P : ((w1, σ1), (u1,∇q1)) 7−→ ((w1, σ1), (u2,∇q2)) ,

Q : ((w1, σ1), (u1,∇q1)) 7−→ ((w2, σ2), (u1,∇q1)) ,

assign the solution (u2,∇q2) of problem (2.3) and the solution (w2, σ2) of problem
(2.4) for arbitrary given ((w1, σ1), (u1,∇q1)) in X×Y , respectively. By using Lemmas
4.1 and 4.2, first it is easily seen that the operator Q ◦ P is continuous, i.e.,

‖Q ◦ P ((w, σ), (u,∇q))−Q ◦ P ((w′, σ′), (u′,∇q′))‖X×Y

≤ C‖((w, σ), (u,∇q))− ((w′, σ′), (u′,∇q′))‖X×Y
for arbitrary ((w, σ), (u,∇q)), ((w′, σ′), (u′,∇q′)) in X × Y , and some constant C.

Next for arbitrary ((w, σ), (u,∇q)) in X × Y we have

‖Q ◦ P ((w, σ), (u,∇q))‖X×Y
≤ ‖Q ◦ P ((w, σ), (u,∇q))−Q ◦ P ((0, 0), (0, 0))‖X×Y
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+ ‖Q ◦ P ((0, 0), (0, 0))‖X×Y
≤ C ‖(w, σ), (u,∇q))‖X×Y

+ |F1(0, 0, 0, 0)|(α
′,α
′

2 )

QT
+ |F2(0, 0)|(1+α′, 1+α′

2 )

QT
+ |F3(0, 0)|(2+α′, 2+α′

2 )

ΓT

+ |F4(0, 0)|(1+α′, 1+α′
2 )

ΓT
+ |F5(0, 0, 0)|(1+α′, 1+α′

2 )

QT
+ |F6(0, 0)|(2+α′, 2+α′

2 )

ΓT

≤ C(T ),

where C(T ) is a constant which tends to 0 as T → 0. Here we have used the fact that
((w, σ), (u,∇q)) and Fi, i = 1, . . . , 6 are equal to zero at t = 0 in the higher-order
classes. Hence Q ◦ P maps X × Y into itself for small T . Therefore Shauder’s fixed
point theorem yields the solution of problem (2.2).
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A VERTICAL DIFFUSION MODEL FOR LAKES∗
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Abstract.
The motion of a fluid in a lake with small depth compared to width is investigated. We prove

that when the depth goes to 0, the solution of the stationary Navier–Stokes equations with adherence
at the bottom and traction by wind at the surface, once conveniently normalized, goes to a three-
dimensional limit which is the solution of an incompressible model with vertical diffusion.

The limit velocity is given in terms of the vertical coordinate and of the limit pressure. This
pressure, which depends only on the horizontal coordinates, is driven by a two-dimensional equation
on the surface degenerating on the shore, which is solved in a weighted space. Thus, a three-
dimensional approximation is obtained by a simple two-dimensional computation.

Key words. Navier–Stokes equations, thin domains, asymptotic analysis, hydrostatic

AMS subject classifications. 35Q30, 35B40, 76D05

PII. S0036141097322947

Introduction. A simplified model for lakes. The fluid occupies the following
domain in R3

d = {(x, z) : x ∈ Γ, −h(x) < z < 0},

where Γ is an open bounded set in R2 (the horizontal section) and where the depth h is
a positive continuous function on Γ, vanishing on ∂Γ. The boundary is ∂d = f ∪s∪∂s
(see Figure 1), where the bottom f , the surface s, and the shore ∂s are

f = {(x,−h(x)) : x ∈ Γ}, s = {(x, 0) : x ∈ Γ}, ∂s = ∂f = {(x, 0) : x ∈ ∂Γ}.

The horizontal velocity v = (v1, v2), the vertical velocity w, and the pressure p
satisfy the stationary Navier–Stokes equations in d, which may be written as

(1)


−ν(∆v + ∂2

zv) + kBv + k′we+ (v .∇) v + w ∂zv +∇p = 0,

−ν(∆w + ∂2
zw)− k′v1 + (v .∇)w + w ∂zw + ∂zp = 0,

∇ . v + ∂zw = 0,

where ∇ = (∂/∂x1, ∂/∂x2), ∆ = ∂2/∂x2
1 + ∂2/∂x2

2, ∂z = ∂/∂z, B(v1, v2) = (−v2, v1),
e = (1, 0), k = |ω| sin θ, k′ = |ω| cos θ, ω being the rotating velocity of the earth and
θ the latitude, and ν > 0. This system is completed by the adherence on the bottom
and by the horizontal traction at the surface:

(2) v = 0, w = 0 on f, ν∂zv = g, w = 0 on s,

where the force due to the wind g = (g1, g2) is a given function on s.

∗Received by the editors June 13, 1997; accepted for publication May 27, 1998; published elec-
tronically April 7, 1999.
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Fig. 1. The domain occupied by the fluid.

Asymptotic analysis. The aspect ratio ε of the domain, that is, the ratio of the
height to the width, is assumed to be very small. Introducing a normalized depth H,
we will investigate the behavior of the solution as

(3) hε = εH, ε→ 0.

Denoting by (uε, vε, wε) the solution of (1) and (2) and dε, sε, fε the domain, the
surface, and the bottom associated with hε, we will prove that

(4)



vε(x, z) ≈ ε

ν

(
1

2
(r2 − 1)H2(x)∇P(x) + (1− r)H(x)g(x)

)
,

wε(x, z) ≈ ε2

ν
∇ .

((
r3

6
− r

2

)
H3(x)∇P(x) +

(
r − r2

2

)
H2(x)g(x)

)
,

pε(x, z) ≈ 1

ε
P(x),

where r is the relative depth in dε, which is given by r = −z/(εH(x)) and thus

0 ≤ r ≤ 1, r = 0 at the surface sε, r = 1 at the bottom fε,

and where P is the solution (unique up to a constant) of the two-dimensional (2D)
equation in Γ:

(5) ∇ .
(

1

3
H3∇P− 1

2
H2g

)
= 0,

(
1

3
H3∇P− 1

2
H2g

)
. n∂Γ = 0.

At first, we will prove (Theorem 4) that there exists a solution (vε, wε, pε) of (1)
and (2). Then we will prove (Theorem 7) that, after normalization, it converges to
the solution of the incompressible model with vertical diffusion (10). Finally, we will
prove (Theorem 10) that this solution is given by the right-hand side of (4) and by
(5).

Interest of the results. We obtain three-dimensional (3D) information—vertical
variations of the horizontal and vertical velocities—for the simple cost of a 2D com-
putation. In addition, the approximation (4) is divergence free.

Numerical simulations [5] show that this approximation of the velocity gives a
good feature of the driving by the wind at the surface, of the forward motion at the
bottom, and of the horizontal and vertical deflection of the fluid by the submarine
topography.

No regularity on the section ∂Γ is assumed, excepted that d is star-shaped with
respect to one point of s in Theorem 10, and we suppose only that the depth h is
continuous on Γ and that the force g due to the wind satisfies h1/2g ∈ (L2(Γ))2.
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Comparison with previous results. For lubrication problems, a similar asymptotic
analysis without Coriolis force has been done in [1], [2]. It gives a Reynolds equation
on P similar to (5) but which does not degenerate on the shore, since the depth
possesses a positive lower bound (the distance between pieces) which avoids the use
of weighted spaces as here.

Many authors have studied nonstationary problems in thin domains with a con-
stant depth (see [8], [12], and their references), which do not describe our problem,
for which the topography is essential. The results presented in this paper have been
announced in [6]. An outline of these results is listed here.
1. Formal calculations.

1.1. Notations.
1.2. Derivation of the vertical diffusion model.
1.3. Solution of the vertical diffusion model.
1.4. The lost condition.

2. Functional spaces.
2.1. The space E.
2.2. The space F.
2.3. Approximation of F by smooth functions.

3. Solution of the Navier–Stokes equations.
4. Solution of the vertical diffusion model.
5. Convergence as ε→ 0.
6. Semiexplicit solution of the vertical diffusion model.

1. Formal calculations.

1.1. Notations. We distinguish the horizontal variables (2D) from the vertical
ones (1D), which play a particular part: x = (x1, x2) are the horizontal coordinates,
z is the vertical one; v = (v1, v2) is the horizontal component of the velocity, w its
vertical component.

We denote by small letters the quantities in the varying domain: (x, z), the
coordinates; hε, the depth; dε, the domain; fε, sε, its bottom and its surface; g, the
force due to the wind; and (vε, wε, pε), the velocity and the pressure.

We denote by capital letters the scaled quantities in the fixed domain after change
of variable: (X,Z), the coordinates; H, the depth; D, the domain; F , S, its bottom
and its surface; G, the force due to the wind; (V ε,W ε, P ε), the scaled velocity and
pressure.

We denote in boldface the limits as ε → 0: (V,W,P), the limit of the scaled
velocity and pressure.

1.2. Derivation of the vertical diffusion model. We use the scaling

(6) x = X, z = εZ,

to get a fixed domain in R3,

D = {(X,Z) : X ∈ Γ, −H(X) < Z < 0},
with boundary ∂D = F ∪ S ∪ ∂S. Its bottom is F = {(X,−H(X)) : X ∈ Γ}; the
surface S = s and the shore ∂S = ∂s are unchanged. The force due to the wind,
G = g, is unchanged. The transported velocity and pressure are scaled to be of
magnitude one. More precisely, (V ε,W ε, P ε) is defined by

(7) vε(x, z) =
ε

ν
V ε(X,Z), wε(x, z) =

ε2

ν
W ε(X,Z), pε(x, z) =

1

ε
P ε(X,Z).
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Equations (1) and (2) scaled with (6) and (7) yield

(8)



−∂2
ZV

ε +∇P ε +
ε2k

ν
BV ε − ε2∆V ε +

ε3k′

ν
W εe

+
ε3

ν2

(
(V ε .∇)V ε +W ε ∂ZV

ε
)

= 0,

∂ZP
ε − ε3k′

ν
V ε1 − ε2∂2

ZW
ε − ε4∆W ε +

ε5

ν2

(
(V ε .∇)W ε +W ε ∂ZW

ε
)

= 0,

∇ . V ε + ∂ZW
ε = 0 in D;

(9) V ε = 0, W ε = 0 on F ; ∂ZV
ε = G, W ε = 0 on S.

The possible limit (V,W,P) of (V ε,W ε, P ε) as ε→ 0 must satisfy

(10)

{
−∂2

ZV +∇P = 0, ∂ZP = 0, ∇ . V + ∂ZW = 0 in D;

V = 0,W = 0 on F ; ∂ZV = G,W = 0 on S.

We will see (section 1.4) that some information on the shore ∂S has been lost
here.

Remark. A limit model with isotropic diffusion, namely −ν(∂2
Z + ∆)V +∇P = 0,

is obtained if the viscosity is assumed to be conveniently anisotropic—that is, if ν∆v
is replaced in (1) by ε−2ν∆v; see [4].

1.3. Solution of the vertical diffusion model. Let us solve (10) with respect
to Z for a fixed X. The second equation gives P = P(X). The first equation and the
conditions V(−H) = 0 and ∂ZV(0) = G give

(11) V =
1

2
(Z2 −H2)∇P + (Z +H)G.

The third equation and the condition W(0) = 0 yield W =
∫ 0

Z
∇ . V = ∇ . (

∫ 0

Z
V)

whence

(12) W = ∇ .
((

ZH2

2
− Z3

6

)
∇P−

(
1

2
Z2 +HZ

)
G

)
.

It remains to take into account the condition W(−H) = 0. Since we have W(−H) =∫ 0

−H ∇ . V = ∇ . (
∫ 0

−H V)−∇H . V(−H) and V(−H) = 0, it gives ∇ . (
∫ 0

−H V) = 0,
that is,

(13) ∇ .
(

1

3
H3∇P− 1

2
H2G

)
= 0 in Γ.

Therefore (10) is formally equivalent to (11)–(13).
This provides the right-hand sides of the announced approximations (4) and the

equation on P included in (5). The limit condition announced in (5) is missing,
however.

1.4. The lost condition. Equation (13) does not define a unique P since there
is no boundary condition on ∂Γ.

This comes from the fact that the boundary conditions (9) are assigned only on
F and S but not on the shore ∂S (recall that ∂D = F ∪ S ∪ ∂S). On the shore,
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V ε = 0, but this condition does not pass to the limit. Indeed V = 0 on ∂S would
give contradictory results in the expression (11), whether the shore is considered to
be at the surface (i.e., Z = 0) or at the bottom (i.e., Z = −H, which is equal to 0
too!). Besides this contradiction, it would not give the true answer (see Theorem 10),
which is the Neumann condition included in (5).

Thus, we have to use a weaker condition than V ε|∂S = 0, but one which goes to
the limit. The condition V ε . n∂S = 0 does not fit, for the same reasons. We will use
the fact that the flux through the shore cancels. The total flux on the vertical passing
through X is V ε(X) =

∫ 0

−H(X)
V εdZ. On ∂S, it vanishes since H and V ε do; thus

V ε . n∂Γ = 0, where n∂Γ is the normal to ∂Γ in R2 (that is the horizontal normal to
∂S). At the limit,

(14) V . n∂Γ = 0,

that is, due to (11),

(15)

(
1

3
H3∇P− 1

2
H2G

)
. n∂Γ = 0,

which is the Neumann condition included in (5). It closes (13), ensuring the existence
and uniqueness of P in the weighted space A(Γ) defined by (58).

Remark. We cannot write (15) as 1
3H

3∂P/∂n − 1
2H

2G . n = 0 since ∂P/∂n in
general has no sense. If it had some sense, it would be a truism since H = 0 on ∂Γ.
We will give a sense to the left-hand side of (15), that is, to the normal trace V . n∂Γ,
by using ∇ . V = 0 (see Theorem 10).

Remark. For lubrication problems, there is no such singularity on ∂Γ because H
does not vanish on it (see [2]). One can find, in some oceanic models, the introduction
of the same hypothesis H ≥ H0 > 0 (see [10, pp. 17–18] and [11, p. 1016]).

Remark. For Navier–Stokes equations, it is not necessary to give a condition on
the shore ∂S since V ε = 0 on the bottom F ensures that V ε = 0 on ∂F . Indeed V ε

cannot possess a singularity on ∂S since (V ε,W ε) ∈ (H1(D))3. This is why (9) closes
(8). On the contrary the vertical diffusion model (10) allows some singularities on ∂S
as it is checked in the following 2D example.

Example of singularity. Let us consider an infinite channel with a crossing wind:
Γ = (0, 1) × R, H = H(X1), G = (1, 0). Looking for a solution V = (V1(X1), 0) of
(10) we find, by (13), ∂1P = 3

2 (1/H + c/H3), where c is an arbitrary real number
and, by (11),

V1 =
1

4
(3Z2 + 4ZH +H2)

1

H
+

3

4
(Z2 −H2)

c

H3
.

The flux on each vertical is V1 =
∫ 0

−H V1 dZ = c/2, which is constant. If c ≥ 0,
the fluid moves from left to right; therefore, it goes in through the left shore and out
through the right shore. This corresponds to a singularity on ∂S, excepted for c = 0,
which is the only good solution satisfying the “lost condition” (14).

Nevertheless, even for c 6= 0, ∂ZV1 lies in L2(D1), where D1 is the 2D section of
the channel, when H ≥ |X1(1−X1)|α for some α > 1/3.

2. Functional spaces.
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2.1. The space E. Throughout the paper, we suppose that

Γ is an open bounded subset of R2,(16)

h ∈ C(Γ), h > 0 in Γ, h = 0 on ∂Γ.(17)

We denote

(18)
E(d) = {(v, w) ∈ (C∞(d))2 × C∞(d) : ∇ . v + ∂zw = 0,

(v, w) = 0 on a neighborhood of f, w = 0 on s}.

By definition,
E(d) is the closure of E(d) for the norm

‖(v, w)‖E(d) =

(∫
d

|∇v|2 + |∇w|2 + |∂zv|2 + |∂zw|2 dxdz
)1/2

.

Remark. In the definition (18) we suppose w = 0 only at the surface s and not in
a neighborhood of s. This is a crucial point in the proof of Lemma 3.

If we suppose in (18) that w = 0 in a neighborhood of s, we should suppose
then that the force due to the wind satisfies ∇ . g = 0. Indeed in the neighborhood
we would have ∇ . v = ∇ . v + ∂zw = 0 and thus ∇ . ∂zv = 0; on the other hand,
ν ∂zv = g on s by (2), leading to the conclusion.

Lemma 1. The embedding E(d) ⊂ (H1(d) ∩ L4(d))3 holds and for any (v, w) ∈
E(d),

‖(v, w)‖(L2(d))3 ≤ 2−1/2hmax ‖∂z(v, w)‖(L2(d))3 ,(19)

‖(v, w)‖(L4(d))3 ≤ γd ‖(∇, ∂z)(v, w)‖(L2(d))9 ,(20)

where γd = 21/8β3/4(hmax)1/4, β being defined by (23). It satisfies β ≤ 4.

Moreover, (v, w) has a trace in (H
1/2
loc (s))3 which belongs to (L2(s))3 and satisfies

w|s = 0, and

(21)

∫
s

|v|2
h
dx ≤

∫
d

|∂zv|2 dxdz.

We denote hmax = max{h(x) : x ∈ Γ}, and we identify Γ with s to give a meaning
to h (or to g) on s.

Remark. By definition, every element of E(d) is a distribution with derivatives
in L2. This single property does not imply that (v, w) belongs to L2, or a fortiori to
H1, since d does not possess the cone property. (See the remark following Theorem
4.)

Remark. To be in E(d) implies, in a weak sense, the condition (v, w) = 0 on the
bottom f . This bottom is not regular enough (it is only the graph of a continuous
function) to define the trace of (v, w) in a usual sense or even to define L2(f).

On the contrary, the trace on the surface is defined since s is a part of a
plane.

Proof of Lemma 1. It suffices to prove the inequalities for (v, w) ∈ E(d).
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Inequality (19). We have (v, w)(x, z) =
∫ z
−h(x)

∂z(v, w)(x, ζ) dζ; hence

|(v, w)(x, z)|2 ≤ (z + h(x))

∫ 0

−h(x)

|∂z(v, w)(x, ζ)|2 dζ,

and therefore∫ 0

−h(x)

|(v, w)(x, z)|2 dz ≤ 1

2
(h(x))2

∫ 0

−h(x)

|∂z(v, w)(x, z)|2 dz.

We conclude by bounding h and integrating with respect to x.
Inequality (20). With the help of Riesz’s inequality, we have

‖(v, w)‖(L4(d))3 ≤ (‖(v, w)‖(L2(d))3)1/4(‖(v, w)‖(L6(d))3)3/4.

We conclude by bounding the right-hand side with (19) and

(22) ‖(v, w)‖(L6(d))3 ≤ 21/3β‖(∇, ∂z)(v, w)‖(L2(d))9 .

This last inequality comes from the Sobolev–Gagliardo–Nirenberg inequality on
R3 by extending (v, w) by 0 in the half space {(x, z) : z ≤ 0}, then by extending ṽ
by symetrization and w̃ by antisymetrization on z in the whole space R3; that is, for
z ≥ 0,

ṽ(x,−z) = ṽ(x, z), w̃(x,−z) = −w̃(w, z).

The function (ṽ, w̃) is Lipschitz continuous and has a compact support in R3, from
which (see, for instance, [7, p. 162])

(23) ‖(ṽ, w̃)‖(L6(R3))3 ≤ β‖(∇, ∂z)(ṽ, w̃)‖(L2(R3))9 ,

which yields (22). The inequality β ≤ 4 is given in the note (2) on p. 162 of [7].

Inequality (21). We have v(x, 0) =
∫ 0

−h(x)
∂zv(x, z) dz; therefore

|v(x, 0)|2 ≤ h(x)

∫ 0

−h(x)

|∂zv(x, z)|2 dz.

We conclude by dividing by h(x) and integrating with respect to x.

2.2. The space F. By definition,

(24) F(d) is the closure of E(d) for the norm ‖(v, w)‖F(d) =

(∫
d

|∂zv|2 dxdz
)1/2

.

Lemma 2. The space F(d) is a Hilbert space and

E(d) ⊂ F(d) ⊂ (L2(d))2 ×H−1(d).

For all (v, w) ∈ F(d)

‖v‖(L2(d))2 ≤ 1√
2
hmax‖∂zv‖(L2(d))2 ,(25)

‖w‖H−1(d) ≤ 1

2
(hmax)2‖∂zv‖(L2(d))2 ,(26)

‖∂zw‖H−1(d) ≤ 1√
2
hmax‖∂zv‖(L2(d))2 ,(27)
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and v/h ∈ (L2(d))2 with

(28)
∥∥ v
h

∥∥
(L2(d))2 ≤

1√
2
‖∂zv‖(L2(d))2 .

Moreover, v has a trace in (L2(s))2 which satisfies

(29)

∫
s

|v|2
h

dx ≤
∫
d

|∂zv|2 dxdz,

and w has a trace in H−1
loc (s) which is null.

We denote

H−1(d) =

{
ϕ ∈ D′(d) : ϕ = ϕ0 +

∂ϕ1

∂x1
+
∂ϕ2

∂x2
+
∂ϕ3

∂z
, ϕj ∈ L2(d) for j ≥ 0

}
,

this space being endowed with the norm

(30) ‖ϕ‖H−1(d) = inf
{ϕj}

(∫
d

ϕ2
0 + · · ·+ ϕ2

3

)1/2

,

where the infimum is taken over all possible decompositions of ϕ.
Remark. The space H−1(d) is the dual space of H1

0 (d) and its norm is equivalent
to the dual norm, but these norms are not uniformly equivalent when d varies.

Proof of Lemma 2. It suffices to prove the inequalities ∀(v, w) in E(d).
Inequality (28). We have v(x, z) =

∫ z
−h(x)

∂zv(x, ζ) dζ, which yields, as in the

proof of (19), ∫ 0

−h(x)

|v(x, z)|2 dz ≤ 1

2
(h(x))2

∫ 0

−h(x)

|∂zv(x, z)|2 dz.

We conclude by dividing by (h(x))2 and integrating with respect to x.
Inequality (25). It follows from (28) since h(x) ≤ hmax.
Inequality (27). We have ∂zw = −∇ . v; therefore ‖∂zw‖H−1(d) ≤ ‖v‖(L2(d))2 . We

conclude with (25).
Inequality (26). Denoting by ̂ the extension by 0 for z ≤ −h(x), we have

w(x, z) = −
∫ z

−h(x)

(∇ . v)(x, ζ) dζ

= −
∫ z

−hmax

(∇ . v̂)(x, ζ) dζ

= (∇ . y)(x, z),

where y(x, z) = − ∫ z−hmax
v̂(x, ζ) dζ = − ∫ z−h(x)

v(x, ζ) dζ. We bound, as above,∫
d

|y(x, z)|2 dxdz ≤ 1

2
(hmax)2

∫
d

|v(x, ζ)|2 dxdζ;

therefore

‖w‖H−1(d) ≤ ‖y‖(L2(d))2 ≤ 1√
2
hmax‖v‖(L2(d))2 ,

which, together with (25), gives (26).



A VERTICAL DIFFUSION MODEL FOR LAKES 611
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Fig. 2. A star-shaped domain with respect to its surface.

Traces. Given (v, w) ∈ E(d), Γ′′ ⊂⊂ Γ, and h′′ = min{h(x) : x ∈ Γ′′}, we have
∂zw = −∇ . v ∈ L2((−h′′, 0);H−1(Γ′′)). Hence w ∈ C([−h′′, 0];H−1(Γ′′)), which
allows us to define its value for z = 0. We obtain a trace in H−1

loc (s) by collecting
traces in each Γ′′.

Likewise, ∂zv ∈ L2((−h′′, 0); (L2(Γ′′))2) and therefore v ∈ C([−h′′, 0]; (L2(Γ′′))2),
which allows us to define the trace in L2

loc(s) by recollection. The inequality (29)
follows from (21). It shows that the trace belongs to L2(s).

2.3. Approximation of F by smooth functions.
Lemma 3. We suppose that

(31) d is star-shaped with respect to a point of s.

Let (v, w) ∈ (D′(d))3 be such that

(32)

{
∃(ṽ, w̃) ∈ (L2(R3

−))2 ×D′(R3
−), ∂z ṽ ∈ (L2(R3

−))2, ∇ . ṽ + ∂zw̃ = 0,

(ṽ, w̃) = (v, w) in d, (ṽ, w̃) = 0 in R3
− \ d, w̃ = 0 on s.

Then (v, w) ∈ F(d).
We denote R3

− = {(x, z) : x ∈ R2, z < 0}.
Remark. The hypothesis (31) means (see Figure 2) that there exists ξ ∈ Γ such

that

mt,x = (tx+ (1− t)ξ,−t h(x)) ∈ d ∀x ∈ Γ, ∀t ∈ (0, 1).

It does not allow us to consider islands, because it implies that Γ is star-shaped with
respect to ξ. It no longer allows us to consider two submarine valleys separated by a
large plateau close to the surface.

Remark. The trace of w̃ on s is defined since ∂zw̃ = −∇ . ṽ, which lies in
L2(R−;H−1(R2)).

Remark. The property (32) characterizes F(d). Indeed it is sufficient by Lemma 3
and it is necessary from the definitions (24) and (18) and from Lemma 2.

Proof of Lemma 3. Let (v, w) satisfy (32). By definition (24) of F(d), it suffices
to find a sequence in E(d) which is a Cauchy sequence for the norm ‖∂zv‖(L2(d))3 and
which converges to (v, w) in (D′(d))3.

The condition (32) gives an extension (ṽ, w̃) ∈ (L2(R3
−))2×C(R−;H−1(R2)) such

that w̃ = 0 for z = 0. Thus we define an extension (ṽ, w̃) ∈ (L2(R3))2×C(R;H−1(R2))
in the whole space R3 by

(ṽ, w̃)(x, z) =
(
ṽ(x,−z),−w̃(x,−z)) if z > 0.
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By (31), d is star-shaped with respect to a point of s, which is chosen to be the origin.
Given η > 0, we define

(vη, wη)(x, z) = (ṽ, w̃)
(
(1 + η)x, (1 + η)z

)
.

Then, ∇ . vη + ∂zw
η = 0 and support (vη, wη) ⊂ d̃, where d̃ = {(x, z) : x ∈ Γ, |z| <

h(x)}.
Let ρη ∈ D(R3) be a mollifier such that

ρη(x, z) = ρη(x,−z),
∫
R3

ρη dxdz = 1, support ρη + support (vη, wη) ⊂ d̃.

By convolution, we obtain a function (vη ? ρη, wη ? ρη) lying in E(d). Indeed, this
function is C∞ on d, it satisfies ∇ . (vη ? ρη) + ∂z(w

η ? ρη) = 0, it vanishes in a
neighborhood of F , and wη ? ρη vanishes on s because (wη ? ρη)(x, 0) is the integral
on R3 of an antisymetric function with respect to z.

As η → 0, we have ∂z(v
η ? ρη) → ∂zv in (L2(d))2; therefore (vη ? ρη, wη ? ρη) →

(v, w) in F(d) and, by Lemma 2, in (D′(d))3.

3. Solution of the Navier–Stokes equations. We define here a variational
solution of the Navier–Stokes equations (1) and (2), for which we will pass to the limit
for ε→ 0 further. Throughout this paper, we suppose that

(33) h1/2g ∈ (L2(Γ))2.

In order to recover a unique pressure, we introduce a nonempty bounded set

(34) d′ = Γ′ × (−h′, 0), Γ′ ⊂⊂ Γ, h′ = min
x∈Γ′

h(x),

and we impose

(35)

∫
d′
p dxdz = 0.

Now we are able to state the existence and uniqueness result.
Theorem 4. Suppose that (16), (17), and (33) are satisfied.
(i) There exists a solution (v, w) ∈ E(d) of the following: ∀(ϕ,ψ) ∈ E(d),

(36)


∫
d

ν (∇v .∇ϕ+∇w .∇ψ + ∂zv . ∂zϕ+ ∂zw ∂zψ) + k′(wϕ1 − v1 ψ)

+ kv ×× ϕ+ (v .∇+ w ∂z) v . ϕ+ (v .∇+ w ∂z)wψ dxdz =

∫
s

g . ϕdx.

(ii) Every solution satisfies

(37)

∫
d

|∇v|2 + |∇w|2 + |∂zv|2 + |∂zw|2 dxdz ≤ 1

ν2

∫
Γ

h |g|2 dx.

(iii) To every solution corresponds a unique pressure p ∈ L2
loc(d) such that the

strong equation (1) is satisfied in the distribution sense and the condition (35) holds.
It satisfies ∇p ∈ (H−1(d))2, ∂zp ∈ H−1(d) and, for every Lipschitz set d′′ included

in d,

‖∇p‖(H−1(d))2+‖∂zp‖H−1(d) ≤
(

1 +
|ω|√
2ν
hmax

)
‖h1/2g‖(L2(Γ))2+

(γd
ν
‖h1/2g‖(L2(Γ))2

)2

‖p‖L2(d′′) ≤ cd,d′,d′′
((

1 +
|ω|√
2ν
hmax

)
‖h1/2g‖(L2(Γ))2 +

(γd
ν
‖h1/2g‖(L2(Γ))2

)2
)
.
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(iv) There is a unique solution (v, w, p) if

ν2 > 21/4β3/2(hmax)1/2‖h1/2g‖(L2(Γ))2 .

(v) Assume in addition that h is Lipschitz continuous on Γ and g ∈ (H1
loc(Γ))2.

Then the boundary conditions (2) are satisfied in the trace sense, and (36) is
equivalent to (1), (2), and (v, w) ∈ E(d).

We denote by ×× the vector product in R2; therefore v ×× ϕ = v1ϕ2−v2ϕ1 = Bv . ϕ,
and γd and β are defined in Lemma 1.

Remark. Without the assumptions of part (v), there is not enough regularity on
∂zv to define its trace on s and on the bottom f to define a trace on it.

Notice that the domain d does not necessarily possess the cone property, even if
h is Lipschitz continuous. Indeed the cone property may fail on the shore ∂S, unless
we assume in addition some regularity on ∂Γ (the 2D cone property) and that the
slope of the bottom does not cancel on the shore (for instance, in any point of ∂Γ,
∇h is continuous and does not vanish). We do not use such an assumption since, for
real lakes, the slope may vanish on the shore and the cone condition may fail.

Remark. The condition (35) defines a unique p if d, and therefore Γ, is connected.
Otherwise, an open set d′ must be introduced in each connected component of d, and
(35) must be imposed on each d′.

Remark. The regularity hypothesis (33) on g may be weakened in the interior
of Γ: there exists a solution as soon as g = g′ + g′′ with g′ satisfying (33) and
g′′ ∈ (H−1/2(Γ))2 with support included in Γ. Similarly, the results of part (v)

probably hold for g ∈ (H
1/2
loc (Γ))2.

Proof of Theorem 4. Part i. We will proceed by linearization and fixed point. In
order to shorten, we denote

u = (v1, v2, w), D = (∂x1
, ∂x2

, ∂z).

Linearization. Given u′ ∈ E(d), the Lax–Milgram theorem gives the existence of
a unique u ∈ E(d) such that for any µ ∈ E(d),

(38)

∫
d

νDu .Dµ+ ω × u . µ+ (u′ .D)u . µdxdz =

∫
s

g . ϕdx,

where ϕ = (µ1, µ2), ω = (0, k′, k), and ω × u = (k′w − kv2, kv1,−k′v1).

Indeed, the left-hand side defines a continuous bilinear form with respect to u
and µ since, by (20), for any u′, u and µ in E(d),∣∣∣∣∫

d

(u′ .D)u . µdxdz

∣∣∣∣ ≤ (γd)
2‖Du′‖(L2(d))9‖Du‖(L2(d))9‖Dµ‖(L2(d))9 .

This form is coercive since ω × u . u = 0 and

(39)

∫
d

(u′ .D)u . u dxdz = 0.

To prove this last equation, it suffices to consider u′ and u in E(d). Then, introducing
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dhmax
= Γ× (−hmax, 0) and denoting by ũ the extension by 0 in dhmax

\ d, we get∫
d

(u′ .D)u . u dxdz =

∫
dhmax

(ũ′ .D) ũ . ũ dxdz

=
1

2

∫
dhmax

D . (ũ′ |ũ|2) dxdz

=
1

2

∫
s

w′ |u|2 dx
= 0

since ũ′ . n∂dhmax
= w′ = 0 on s and ũ′ = 0 on the remainder of ∂dhmax

. We used

D . ũ′ = 0, which follows from the definition of E(d).
On the other hand, the right-hand side of (38) defines a continuous linear form

with respect to µ since, due to (21), we have for any µ ∈ E(d),

(40)

∣∣∣∣∫
s

g . ϕdx

∣∣∣∣ ≤ (∫
s

h |g|2 dx
)1/2(∫

s

|ϕ|2
h

dx

)1/2

≤ ‖h1/2g‖(L2(Γ))2‖∂zϕ‖(L2(d))2 .

The space E(d) is a Hilbert space: it is a complete space by definition and sep-
arated by (20). Therefore the Lax–Milgram theorem ensures the existence and the
uniqueness of u, and

(41) ‖Du‖(L2(d))9 ≤ 1

ν
‖h1/2g‖(L2(Γ))2 .

Fixed point. We denote

C =

{
u ∈ E(d) : ‖Du‖(L2(d))9 ≤ 1

ν
‖h1/2g‖(L2(Γ))2

}
.

It is a convex, nonempty, and compact set in (L4(d))3. Moreover, u′ 7→ u maps C
into itself by (41), and it is continuous from C (endowed with the norm (L4(d))3)
into itself as we will see. Therefore Schauder’s theorem gives the existence of a fixed
point. This one satisfies (38) with u′ = u, that is (36).

It remains to check the continuity. Let u′ be another element of C and u be the
corresponding solution of (38). For all µ ∈ E(d) we have∫
d

νD(u−u) .Dµ+ω×(u−u) . µ+(u′ .D) (u−u) . µ+
(
(u′−u′) .D

)
u . µdxdz = 0.

For µ = u− u we get, together with (39) and (20),

ν

∫
d

|D(u− u)|2 dxdz = −
∫
d

(
(u′ − u′) .D

)
u . (u− u) dxdz

≤ γd ‖u′ − u′‖(L4(d))3‖Du‖(L2(d))9‖D(u− u)‖(L2(d))9 .

With the help of (41) and, once again, (20) we conclude that

(42) ‖u− u‖(L4(d))3 ≤ 1

ν2
(γd)

2 ‖h1/2g‖(L2(Γ))2‖u′ − u′‖(L4(d))3 .
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Part ii. It suffices to choose (ϕ,ψ) = (v, w) in (36) (which is (38) with u′ = u)
and to use (39) and (40) to obtain the announced estimate.

Part iii. Let us choose (ϕ,ψ) = µ ∈ (D(d))3 such that D . µ = 0. Then (36) gives

〈−νD2u+ ω × u+ (u .D)u, µ〉(D′(d))3×(D(d))3 = 0;

therefore de Rham’s theorem (see, for instance, [13]) gives the existence of p ∈ D′(d)
satisfying −νD2u+ω×u+(u .D)u = −Dp, that is, (1). This equation can be written,
since D . u = 0, as

(43) Dp = −ω × u+D . (νDu− u⊗ u);

therefore, from the definition (30) of the norm in H−1(d) and (19), (20),

‖Dp‖(H−1(d))3 ≤ ‖ω × u‖(L2(d))3 + ‖νDu− u⊗ u‖(L2(d))9

≤ |ω|hmax√
2
‖Du‖(L2(d))9 + ν‖Du‖(L2(d))9 + (γd‖Du‖(L2(d))9)2,

which, with (41), gives the announced estimates on ∇p and ∂zp.
It follows (see, for instance, [14, Theorem 14], with g = 1d′) that p lies in L2(d′′)

for any Lipschitz set d′′ included in d, with

(44) ‖p‖L2(d′′) ≤ cd,d′,d′′
(
‖Dp‖(H−1(d))3 +

∣∣∣∣∫
d′
p dxdz

∣∣∣∣) .
Since Dp is unique, p is unique up to a constant which is given by (35), then p is
unique.

Part iv. The difference between two solutions u and u satisfies (42) with u′ = u
and u′ = u. Thus, it vanishes as soon as (γd)

2‖h1/2g‖(L2(Γ))2 < ν2, which gives the
announced condition due to the definition of γd given in Lemma 1.

Part v. Now g ∈ (H1
loc(Γ))2; thus u ∈ (H2

loc(d ∪ s))3 and p ∈ H1
loc(d ∪ s). This

regularity up to the surface may be proved by using either the translation method for
the mixed formulation as in [9], the representation by Green’s function as in [3], or
the Agmon–Douglis–Nirenberg method as in [15, pp. 33–35]. (The reader is referred
to these authors since this part of Theorem 4 is not used in the following.) Then, the
following Green and Stokes’s formulas hold for any µ = (φ, ψ) in E(d), and therefore
for any µ in E(d),

(45)

∫
d

Du .Dµ+D2u . µdxdz =

∫
s

∂zv . φdx,

∫
d

Dp . µdxdz = 0.

Substracting ν-times the first formula from (36) (that is, from (38) with u′ = u) and
adding the second formula, we get

(46)

∫
d

(−νD2u+ ω × u+ (u .D)u+Dp
)

. µdxdz =

∫
s

(g − ν∂z) . ϕdx.

The left-hand side vanishes from (1), and since ϕ|s spans (D(s))2 this implies that
ν∂zv = g on s.

On the other hand, here the bottom f is locally the graph of the Lipschitz function
h, and then (v, w) ∈ E(d) gives (v, w) = 0 on f in the trace sense. Finally, w = 0 on
s by Lemma 2; thus all the boundary conditions (2) are proven in the trace sense.

Conversely, if (1) and (2) hold, (46) holds and we get the variational equation
(36) by using (45).
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4. Solution of the vertical diffusion model. We prove here the existence
and uniqueness of a solution, and we give an equivalent variational formulation. Now
we work in the transported domain D (one can choose D = dtrue). The hypotheses
(17) and (33) are then equivalent to

H ∈ C(Γ), H > 0 in Γ, H = 0 on ∂Γ,(47)

H1/2G ∈ (L2(Γ))2.(48)

Theorem 5. We suppose (16), (47), and (48).
(i) There exists a unique solution (V,W,P) of

(49)

 (V,W) ∈ F(D), P ∈ H1
loc(Γ),

∫
Γ′

P dX = 0,

−∂2
ZV +∇P = 0, ∂ZP = 0, ∂ZV|S = G,

where Γ′ is given by (34).
(ii) The solution of (49) satisfies the following: ∀(Φ,Ψ) ∈ F(D),

(50)

∫
D

∂ZV . ∂ZΦ dXdZ =

∫
S

G . Φ dX.

Conversely, if (V,W) is the unique solution of (50), there exists a unique P such
that (49) is satisfied.

(iii) The solution of (49) satisfies∫
D

|∂ZV|2 dXdZ ≤
∫

Γ

H|G|2 dX.

The boundary conditions W = 0 on S, (V,W) = 0 on F , and (
∫ 0

−H V dZ) . n∂Γ =
0 announced in (10) and (14) are included in a weak sense in the condition (V,W) ∈
F(D). The traction condition has some sense according to the following result, which
gives, in addition, a Green formula and the regularity of P.

Lemma 6. Let V ∈ (L2(D))2 and P ∈ D′(D) be such that ∂ZV ∈ (L2(D))2,
∂ZP = 0 and −∂2

ZV +∇P = 0.
For all Γ′′ ⊂⊂ Γ and for H ′′ = min{H(X) : X ∈ Γ′′}, such a function satisfies

V ∈ C∞([−H ′′, 0]; (L2(Γ′′))2), which allows us to define a trace ∂ZV ∈ (L2
loc(Γ))2.

Moreover P ∈ H1
loc(Γ) and the following holds: ∀ (Φ,Ψ) ∈ E(D),∫

D

∂ZV . ∂ZΦ + ∂2
ZV . Φ dXdZ =

∫
S

∂ZV . Φ dX,(51) ∫
D

∇P . Φ dXdZ = 0.(52)

Proof of Lemma 6. Regularity of V. The equation gives ∂nZV = 0 for any n ≥ 3,
which implies V ∈ C∞([−H ′′, 0]; (L2(Γ′′))2) since V ∈ L2([−H ′′, 0]; (L2(Γ′′))2).

Regularity of P. The equation gives ∇P = ∂2
ZV ∈ C([−H ′′, 0]; (L2(Γ′′))2). Since

∇P is independent on Z, it belongs to (L2(Γ′′))2, and therefore P ∈ H1
loc(Γ).

Green formula. We cover Γ by a collection of cells Γ′′i small enough to have
Φ = 0 if X ∈ Γ′′i , Z ≤ −H ′′i . We have ∂ZV . ∂ZΦ + ∂2

ZV . Φ = ∂Z(∂ZV . Φ) in
C([−H ′′i , 0]; (L2(Γ′′i ))2). Therefore, in (L2(Γ′′i ))2,∫ 0

−H′′
i

∂ZV . ∂ZΦ + ∂2
ZV . Φ dZ = (∂ZV . Φ)|Z=0

.
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We deduce (51) by integrating with respect to X over Γ′′i and summing with respect
to i.

Proof of (52). The extension of Φ by 0 satisfies, for any fixed Z, Φ( . , Z) ∈
(D(Γ))2; thus ∫

Γ

∇P(X) . Φ(X,Z) dX = −
∫

Γ

P(X)∇ . Φ(X,Z) dX.

By definition of E(D), ∇ . Φ = −∂ZΨ; therefore∫
D

∇P(X) . Φ(X,Z) dXdZ =

∫
D

P(X) ∂ZΨ(X,Z) dXdZ

=

∫
Γ

P(X)
(∫ 0

−H(X)

∂ZΨ(X,Z) dZ
)
dX,

which cancels since Ψ(X, 0) = Ψ(X,−H(X)).
Proof of Theorem 5. Variational solution. The left-hand side of (50) defines

a continuous bilinear form on F(D), which is coercive since
∫
D
|∂ZV|2 dXdZ =

(‖(V,W)‖F(D))
2. The right-hand side of (50) defines a continuous linear form ac-

cording to (40). Then, the Lax–Milgram theorem gives the existence and uniqueness
of a solution (V,W) ∈ F(D) of (50).

Strong solution. Let us choose (Φ,Ψ) ∈ (D(D))3 such that ∇ . Φ + ∂ZΨ = 0.
Equation (50) yields

〈(−∂2
ZV, 0), (Φ,Ψ)〉(D′(D))3×(D(D))3 = 0;

therefore de Rham’s theorem (see, for instance, [13]) gives the existence of P ∈ D′(D)
such that (∇P, ∂ZP) = (∂2

ZV, 0). Then, Lemma 6 gives P ∈ H1
loc(D). Since ∇P is

unique, P is unique up to a constant which is given by
∫

Γ′ P dX = 0, and therefore
P is unique.

Let us choose now (Φ,Ψ) ∈ E(D). Substracting (50) from (51), one obtains∫
S

(∂ZV −G) . Φ dX =

∫
D

∂2
ZV . Φ dXdZ.

The right-hand side equals
∫
D
∇P . Φ dXdZ, which vanishes due to (52). Since Φ|S

spans (D(S))2, it follows that ∂ZV = G.

Converse assertion. Let us consider now a solution of (49) and (Φ,Ψ) ∈ E(D).
Since ∂2

ZV −∇P = 0,∫
D

∂ZV . ∂ZΦ dXdZ =

∫
D

∂ZV . ∂ZΦ + ∂2
ZV . Φ−∇P . Φ dXdZ.

According to (51) and (52), the right-hand side is equal to
∫
S
∂ZV . Φ dX and there-

fore, with the traction condition, to
∫

Γ
G . Φ dX which gives (50). By continuity, this

equation is satisfied for all (Φ,Ψ) in F(D).

5. Convergence as ε→ 0. We prove here that the solution of the transported
Navier–Stokes equations on the fixed domain D goes to the solution of the vertical
diffusion model.

Theorem 7. Let (3), (16), (47), and (48) be satisfied.
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As ε → 0, the image (V ε,W ε, P ε) by the scaling (6) and (7) of the solution
(vε, wε, pε) defined by Theorem 4 goes to the solution (V,W,P) of (49) in the follow-
ing sense:

(V ε,W ε, P ε) ⇀ (V,W,P) in (L2(D))2 ×H−1(D)× L2
loc(D) weak.

Remark. From Theorem 4, (vε, wε, pε), and therefore (V ε,W ε, P ε) is unique as soon
as ε < ν2/

(
21/4β3/2(Hmax)1/2‖H1/2G‖(L2(Γ))2

)
.

Remark. For the limit problem, there is a “strong” formulation, namely (49),
which is not the case for the initial problem (under the same hypothesis).

As we mentioned in the remark following Theorem 4, for the Navier–Stokes equa-
tions there is not enough regularity to define the trace of ∂ZV

ε on S. On the contrary,
for the vertical diffusion model, this trace is defined at Lemma 6 with the help of the
hydrostatic balance (that is, P independent on Z) which implies that ∂2

ZV is inte-
grable with respect to Z.

We will deduce Theorem 7 from the following properties, which are easy conse-
quences of the results for a fixed ε.

Proposition 8. The image by the scaling (3), (6), and (7) of every solution
(vε, wε, pε) defined at Theorem 4 satisfies (V ε,W ε) ∈ E(D) and ∀(Φ,Ψ) ∈ E(D),

(53)



∫
D

∂ZV
ε . ∂ZΦ + ε2∇V ε .∇Φ + ε2 ∂ZW

ε ∂ZΨ + ε4∇W ε .∇Ψ

+
ε3

ν2
(V ε .∇+W ε ∂Z)V ε . Φ +

ε5

ν2
(V ε .∇+W ε ∂Z)W εΨ dXdZ

+
ε2k

ν
V ε ×× Φ +

ε3k′

ν
(W εΦ1 − V ε1 Ψ) =

∫
Γ

G . Φ dX,

(54)

∫
D

|∂ZV ε|2 + ε2|∇V ε|2 + ε2|∂ZW ε|2 + ε4|∇W ε|2 dXdZ ≤
∫

Γ

H|G|2 dX.

Moreover, it satisfies the strong equation (8), P ε ∈ L2
loc(D), and, for ε ≤ 1,

‖∇P ε‖(H−1(D))2 ≤
(

1 +
ε2|ω|√

2ν
Hmax

)
‖H1/2G‖(L2(Γ))2+

(
γD
ν
‖H1/2G‖(L2(Γ))2

)2

(55)

‖∂ZP ε‖H−1(D) ≤ ε
((

1 +
ε2|ω|√

2ν
Hmax

)
‖H1/2G‖(L2(Γ))2+

(
γD
ν
‖H1/2G‖(L2(Γ))2

)2)
(56) ∫

D′
P ε dXdZ = 0.(57)

Here D′ = Γ′ × (−H ′, 0), Γ′ is given by (34) and H ′ = min{H(X) : X ∈ Γ′}.
Proof of Proposition 8. Equation (53) follows from (36) by observing that, if

(ϕ,ψ) ∈ E(dε), an element (Φ,Ψ) ∈ E(D) is defined by Φ(X,Z) = ϕ(x, z), Ψ(X,Z) =
εψ(x, z).

Inequality (54) follows from (37).
To get (55) and (56), we observe that, once scaled by (7), (43) may be written in

the following form:(
∇, 1

ε
∂Z

)
P ε = ε2ω

ν
× (V ε, εW ε)

+ (∇, ∂Z) .
(

(ε2∇, ∂Z)(V ε, εW ε)− ε3

ν2
(V ε,W ε)⊗ (V ε, εW ε)

)
;



A VERTICAL DIFFUSION MODEL FOR LAKES 619

therefore, with (30), (19), (20), and ε ≤ 1,∥∥∥∥(∇, 1

ε
∂Z

)
P ε
∥∥∥∥

(H−1(D))3

≤ ε2 |ω|
ν
‖(V ε, εW ε)‖(L2(D))3 + ‖(ε2∇, ∂Z)(V ε, εW ε)‖(L2(D))9

+
( ε
ν
‖(V ε, εW ε)‖(L4(D))9

)2

≤
(
ε2|ω|√

2ν
Hmax + 1

)
‖(ε∇, ∂Z)(V ε, εW ε)‖(L2(D))9

+
(γD
ν
‖(ε∇, ∂Z)(V ε, εW ε)‖(L2(D))9

)2

,

which, due to (54), gives (55) and (56).
Proof of Theorem 7. Convergence of the velocity. From (54), (V ε,W ε) is bounded

in F(D); therefore there exists a subsequence and (V,W) such that

(V ε,W ε) ⇀ (V,W) in F(D) weak.

Let us pass to the limit in (53) for (Φ,Ψ) ∈ E(D). The weak convergence gives∫
D

∂ZV
ε . ∂ZΦ dXdZ →

∫
D

∂ZV . ∂ZΦ dXdZ.

The other terms in the left-hand side of (53) go to 0. Indeed, from (54), ∂ZV
ε, ε∇V ε,

ε∂ZW
ε, and ε2∇W ε are bounded in (L2(D))n (n = 1, 2, or 4); thus V ε and εW ε are

bounded in (L2(D))n because of (19).
Therefore the limit (V,W) satisfies the variational equation (50) for any (Φ,Ψ) ∈

E(D). By continuity, it satisfies this equation for any (Φ,Ψ) ∈ F(D); thus, due to
Theorem 5, it is unique. Therefore the whole sequence converges.

Convergence of the pressure. Its gradient (∇P ε, ∂ZP ε) is bounded in (H−1(D))3

because of (55) and (56). With (57) and (44), it results that P ε is bounded in L2
loc(D).

Then, there exists a subsequence and P such that

P ε ⇀ P in L2
loc(D) weak.

One can pass to the limit in the first equation of (8), the nonlinear term converging
to 0 in (L1(D))2 since V ε, ε∇V ε, εW ε, and ∂ZV

ε are bounded in (L2(D))n for some
n. At the limit, −∂2

ZV +∇P = 0.
From (56), ∂ZP

ε → 0; thus ∂ZP = 0. Finally, passing to the limit in (57), we
obtain

∫
D′ P dXdZ = 0. Due to Lemma 6, P satisfies (49), and due to Theorem 5

it is unique. Therefore the whole sequence converges, ending the proof of Theorem
7.

6. Semiexplicit solution of the vertical diffusion model. Let us first give
a variational solution P = P(X) of the pressure equation. We denote

(58) A(Γ) =

{
P ∈ L2

loc(Γ) : H3/2∇P ∈ (L2(Γ))2,

∫
Γ′

P dX = 0

}
(recall that Γ′ is not empty and Γ′ ⊂⊂ Γ), a space which is endowed with the norm

‖P‖A(Γ) =

(∫
Γ

H3|∇P|2 dX
)1/2

.
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Notice that A(Γ) ⊂ H1
loc(Γ).

Proposition 9. Let (16), (47), and (48) be satisfied. There exists a unique
solution P ∈ A(Γ) of the following: ∀Ξ ∈ A(Γ),

(59)
1

3

∫
Γ

H3∇P .∇Ξ dX =
1

2

∫
Γ

H2G .∇Ξ dX.

It satisfies the strong equation (13) and

(60)
1

9

∫
Γ

H3|∇P|2 dX ≤ 1

4

∫
Γ

H|G|2 dX.

If Γ is a Lipschitz set, P satisfies the boundary condition (15) in H−1/2(∂Γ).
The velocity is given explicitly in terms of Z and ∇P(X) as follows.
Theorem 10. Let (16), (31), (47), and (48) be satisfied. Then, P being defined

by (59), formulas (11) and (12) define the unique velocity (V,W) satisfying (49).
Remark. The velocity is infinitely regular in the vertical direction. Indeed (49)

gives ∂2
ZV = ∇P, ∂nZV = 0 as soon as n ≥ 3, and ∂ZW = −∇ . V gives ∂nZW = 0

as soon as n ≥ 4. We recover this regularity in the explicit expressions (11) and
(12).

Remark. The hypothesis (31) is satisfied by d if and only if it is satisfied by
D.

Proof of Proposition 9. Properties of the space A(Γ). It is a separated space since,
according to (44), for any Γ′′ ⊂⊂ Γ, there exists cΓ′′ such that ∀P ∈ A(Γ),(∫

Γ′′
P2 dX

)1/2

≤ cΓ′′‖P‖A(Γ).

This inequality implies the completion; thus A(Γ) is a Hilbert space.

Solution of the variational equation (59). Its right-hand side is bounded by∣∣∣∣∫
Γ

1

2
H2G .∇Ξ dX

∣∣∣∣ ≤ 1

2

(∫
Γ

H|G|2 dX
)1/2(∫

Γ

H3 |∇Ξ|2 dX
)1/2

;

therefore the Lax–Milgram theorem gives the existence of a unique solution P ∈ A(Γ)
of (59) and the inequality (60).

Verification of the strong equation (13). Let Ξ ∈ D(Γ). There exists a (unique)
real number c such that Ξ + c ∈ A(Γ). Since ∇(Ξ + c) = ∇Ξ, (59) is satisfied by Ξ.
This proves (13) in D′(Γ).

Verification of the boundary condition (15). The function V = − 1
3H

3∇P+ 1
2H

2G

belongs to (L2(Γ))2. It satisfies ∇ . V = 0 because of (13). If Γ is a Lipschitz set, we
can define V . n∂Γ ∈ H−1/2(∂Γ) by the following: ∀Ξ ∈ H1(Γ),

〈V . n∂Γ,Ξ〉H−1/2(∂Γ)×H1/2(∂Γ) =

∫
Γ

V .∇Ξ dX.

The right-hand side is null because of (59) (it suffices to choose c such that Ξ + c ∈
A(Γ)), which gives (15) in H−1/2(Γ).

Proof of Theorem 10. Let P be defined by (59) and (V,W) be defined by (11)
and (12).
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Verification that (V,W) ∈ F(D). By Lemma 3, it suffices to find an extension

(Ṽ,W̃) satisfying (32). Let us define
Ṽ = V̂ = 1

2
̂(Z2 −H2)∇P + ̂(Z +H)G,

W̃ = ∇ .
( ̂

( 1
2ZH

2 − 1
6Z

3)∇P− ̂
( 1

2Z
2 +HZ)G

)
,

where ̂ (and ̂) denote the extension of functions by 0 outside D. Since H3/2∇P
and H1/2G lie in (L2(Γ))2 and |Z| ≤ |H| in D, each of the extended functions lies in
(L2(D))2 and therefore has an extension in (L2(R3

−))2.

The function Ṽ coincides with V in D and it vanishes outside D. The distribution
W̃ coincides with W in D and it vanishes outside D.

Let us verify that ∂ZṼ ∈ (L2(R3
−))2. In the set D∞ = Γ × (−∞, 0), one has

Ṽ = 1
2 (Z̃2 − H2)∇P + (Z̃ + H)G, where Z̃ = max{Z,−H(X)}. The map Z 7→ Z̃

is differentiable into Lq(D∞), ∀q < ∞, with ∂ZZ̃ = 1D. Since ∇P and G belong to

(L2
loc(Γ))2, Z 7→ Ṽ is differentiable into L1

loc(D∞) and

∂ZṼ = (Z∇P +G) 1D.

Therefore ∣∣∣∣∫
D∞
|∂ZṼ|2 dXdZ

∣∣∣∣ ≤ ∫
Γ

dX

∫ 0

−H(X)

|Z∇P +G|2 dZ

≤
∫

Γ

2H3

3
|∇P|2 + 2H|G|2 dX,

which is finite because of (60); thus ∂ZṼ ∈ (L2(D∞))2. In R3
− \D, we have ∂ZṼ = 0;

therefore, by recollection of distributions (R3
− is the union of the open sets D∞ and

R3
− \D)

∂ZṼ ∈ (L2(R3
−))2.

On the other hand, in D∞,

∂ZW̃ = ∇ . ∂Z

((
1

2
Z̃H2 − 1

6
Z̃3

)
∇P−

(
1

2
Z̃2 +HZ̃

)
G

)
= −∇ .

(
1

2
(Z̃2 −H2)1D∇P + (Z̃ +H)1DG

)
= −∇ . Ṽ.

This equality is also true in R3
− \ D and therefore, by recollection, in the whole set

R3
−.

Let us verify now the condition at the surface on W̃. Let Γ′′ ⊂⊂ Γ and H ′′ =
inf{H(X) : X ∈ Γ′′}. In Γ′′ × (−H ′′, 0) we have Z̃ = Z; therefore W̃ = ∇ . Y , where
Y (Z) = ( 1

2ZH
2 − 1

6Z
3)∇P − ( 1

2Z
2 + HZ)G. Since Y ∈ C([−H ′′, 0]; (L2(Γ′′))2) and

Y (0) = 0, we have W̃ ∈ C([−H ′′, 0];H−1(Γ′′)) and W̃ = 0 on S. This ends the proof
of (32).
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Verification of the other properties. Differentiating (11) in the distribution sense,
we obtain ∂2

ZV = ∇P.On the other hand, by definition of P, ∂ZP = 0 and
∫

Γ′ P dX =
0. Finally, ∂ZV = Z∇P +G, which is equal to G on S. Thus, (49) is proved.

Remark. Any element of L2(D) has a unique extension in L2(R3
−) which vanishes

outside D. In H−1(R3
−) there is not uniqueness, since it may exist a “mass” on ∂D.

This is the reason why we do not denote in the same manner the two extensions by
0 which are ̂ (the unique extension in L2(R3

−)) and ˜ (one of the possible extensions
in H−1(R3

−)).
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Abstract. We consider variational solutions of the quenching problem ∂tu−∆u = −uγχ{u>0}
with exponent γ ∈ (− 1

3
, 0) and solutions of the heat equation with Bernoulli-type condition on the

free boundary which arises in combustion theory, ∂tv −∆v = 0 in {v > 0} , |∇v| = 1 on ∂{v > 0}.
We show that blow-up limits of u and v are backward self-similar solutions and use this to determine
the Hausdorff dimension of the free boundaries ∂{u > 0} and ∂{v > 0}.

Key words. free boundary, monotonicity formula, Hausdorff dimension estimate, characteriza-
tion of blow-up limits, Bernoulli-type free boundary condition, quenching, combustion
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1. Introduction. In this paper we study the gradient flow in L2(Rn) with re-
spect to the energy

w 7→ F (w) :=

∫
Rn

(
|∇w|2 + λ+ χ{w>0} wp + λ− χ{w<0} (−w)p

)
,(1.1)

where the exponent p ∈ [0, 2), λ+ and λ− are real parameters, and χA denotes the
characteristic function of the set A .

Depending on the choice of p, λ+, and λ− as well as initial data a solution u may
exist or not. For certain sets of parameters the question of global existence, even in a
weak sense, has not yet been answered, and for a large class of parameters uniqueness
or even an ordering of solutions is unknown. Given a global weak solution in a sense to
be specified, our objective is the study of sets of special relevance for this solution: for
example, the “free boundary” ∂{u > 0} ∪ ∂{u < 0}, the set of singular free boundary
points, and the set of horizontal free boundary points in which the behavior in time is
dominant. We are interested in the size in terms of the Hausdorff dimension of these
sets as well as in regularity properties of the free boundary. Since differentiability
of the solution, even directional differentiability, is not known in advance, blow-up
sequences

uk(t, x) :=
u(T + ρk

2t, x0 + ρkx)

ρk
2

2−p
,

defined with respect to a given point (T, x0) and with respect to a given sequence ρk →
0, prove to be very useful. The underlying reason for this is that blow-up sequences
introduce the possibility of different subsequences converging to different “blow-up
limits” and thereby allow—usually by indirect arguments—to obtain information on
the solution’s behavior at a free boundary point without any knowledge of the free
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boundary’s direction. Once the blow-up limits have been characterized, the size of
the special sets mentioned above can usually be estimated by a standard dimension
reduction procedure.

In section 3 we introduce a variational formulation for the parabolic equation
associated with the energy (1.1) which involves the time-space first variation with
respect to domain variations of the time-integrated energy. This formulation makes
it possible to deal in an elegant way with the singular cases p ∈ [0, 1). Another
advantage is that the class of nondegenerate variational solutions is closed with respect
to convergence in H1,2, a fact we exploit extensively in section 5 when estimating the
Hausdorff dimension of the free boundary of variational solutions.

For these variational solutions we derive a monotonicity formula which allows
us to characterize the blow-up limits of variational solutions as backward self-similar
functions (section 4).

This we apply to the following two problems:
(1) The quenching problem with respect to exponent γ ∈ (−1

3 , 0) (see, for example,
[Ph] and [Le]):

u1
1+γ ∈ L1((0,∞)×Rn),

u1(0, x) = u0
1(x), 0 ≤ u0

1 ∈ C2,α
0 (Rn),

∂tu1 −∆u1 = −u1
γ χ{u1>0} in (0,∞)×Rn

and u1 is a solution in the sense of distributions obtained by the regularization of
Phillips [Ph] which arises in chemical engineering (see [Ph]).

(2) The heat equation with Bernoulli-type boundary condition on the free bound-
ary,

u2 ≥ 0, ∂tu2 −∆u2 = 0 in ((0,∞)×Rn) ∩ {u2 > 0},
|∇u2| = 1 on ((0,∞)×Rn) ∩ ∂{u2 > 0},(1.2)

which has been introduced as a model for flame propagation in [CaVa]. Here u2 denotes
a variational solution as introduced in Definition 3.1.

We show that the blow-up limits of u1 and u2 are backward self-similar variational
solutions. Then by a standard dimension reduction procedure it is possible to estimate
the Hausdorff dimension of special sets which we carry out only for the case of free
boundaries: the Hausdorff dimension (with respect to the parabolic metric) of ∂{ui >
0} (i = 1, 2) does not exceed n+ 1 and this estimate is optimal (Theorem 5.2).

2. Notation. Considering functions u ∈ H1,2
loc (Rn), v ∈ H1,2

loc ((0, T )× Rn), φ ∈
H1,2

loc (Rn; Rn), and ψ ∈ H1,2
loc ((0, T ) × Rn; Rn), we denote by ∇u := (∂1u, . . . , ∂nu)

and ∇v := (∂2v, . . . , ∂n+1v) the space gradient, by ∂tv := ∂1v the time derivative,

by div φ :=
∑n
i=1 ∂iφi and div ψ :=

∑n+1
i=2 ∂iψi the space divergences, by ∇t,xv :=

(∂1v, . . . , ∂n+1v) the time-space gradient, by divt,x ψ :=
∑n+1
i=1 ∂iψi the time-space

divergence, and by

Dφ :=

 ∂1φ1 . . . ∂nφ1

. . .
∂1φn . . . ∂nφn

 and Dψ :=

 ∂2ψ1 . . . ∂n+1ψ1

. . .
∂2ψn+1 . . . ∂n+1ψn+1


the space Jacobian.

Moreover let us denote by χA the characteristic function of the set A, by x · y the
Euclidean inner product in Rn×Rn, by |x| the Euclidean norm in Rn, by Br(x0) :=
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{x ∈ Rn| |x−x0| < r} the ball of center x0 and radius r, by Qr(t0, x0) := (t0−r2, t0 +
r2)×Br(x0) the cylinder of radius r and height 2r2, by T−r (t0) := (t0−4r2, t0−r2)×Rn

the horizontal layer from t0− 4r2 to t0− r2 , by T+
r (t0) := (t0 + r2, t0 + 4r2)×Rn the

horizontal layer from t0 + r2 to t0 + 4r2, and by

G(t0,x0)(t, x) := 4π(t0 − t) |4π(t0 − t)|−
n
2−1

exp

(
−|x− x0|2

4(t0 − t)
)

the backward heat kernel, defined in ((−∞, t0) ∪ (t0,+∞))×Rn.
Furthermore, by ν we will always refer to the outer normal on a given surface.

Finally Ln shall denote the n-dimensional Lebesgue measure, Hs the s-dimensional
Hausdorff measure, and W2,1

p and H1, 12 the parabolic Sobolev- and Hölder-spaces as
defined in [LSU].

3. Notion of solution and monotonicity formula. We begin by introducing
our notion of a variational solution of the equation

∂tu−∆u = −λ+

2 p up−1 χ{u>0} + λ−
2 p (−u)p−1 χ{u<0}

in the case p ∈ (0, 2) and
∂tu−∆u = 0 in {u > 0} ∪ {u < 0} ,

|∇max(u, 0)|2 − |∇min(u, 0)|2 = λ+ − λ− on ∂{u > 0} ∪ ∂{u < 0}
in the case p = 0,

(3.1)

where λ+, λ− are parameters ∈ R.
For p ≥ 1 , nonnegative λ+, λ−, and suitable initial data there exists a unique

strong solution of (3.1) and the proofs to follow can be readily simplified in this case.
Definition 3.1. We define u ∈ H1,2((t1, t2) × BR(0)) for any R ∈ (0,∞) to

be a variational solution of (3.1) if u is continuous in (t1, t2)×Rn and continuously
differentiable in the set ((t1, t2) ×Rn) ∩ ({u > 0} ∪ {u < 0}) once in time direction
and twice in space directions and

0 = I :=

∫ t2−δ

t1+δ

∫
Rn

[ (
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
divt,xψ

− 2∇t,xu Dψ ∇u − 2 ∂tu∇t,xu · ψ
]

−
[∫

Rn

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
ψ1

]t2−δ
t1+δ

=

∫ t2−δ

t1+δ

∫
Rn

[(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

) n+1∑
i=1

∂iψi

− 2
n+1∑
j=2

n+1∑
i=1

∂ju ∂jψi ∂iu − 2∂tu
n+1∑
k=1

∂ku ψk

]

−
∫

Rn

[(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
ψ1

]
(t2 − δ)
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+

∫
Rn

[(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
ψ1

]
(t1 + δ)

for almost every (a.e.) small and positive δ and any ψ ∈ C1(Rn+1) such that supp
ψ(t) ⊂⊂ Rn for any t ∈ (t1, t2). Notice that for given u, I is formally the first variation
with respect to variations of the domain in time and space of the functional

G(u, v) :=

∫ t2−δ

t1+δ

F (v(t)) dt +

∫ t2−δ

t1+δ

∫
Rn

2 ∂tu v,

i.e., I = − d
dεG(u, u((t, x) + εψ(t, x)))|ε=0.

The continuity and differentiability assumptions on u are necessary in that they
cannot be deduced from the other assumptions in Definition 3.1 by regularity theory,
but they are rather mild in the sense that they can be verified without effort in many
of the examples (see section 5). Existence of variational solutions and the relation to
other notions of weak solutions will be discussed along with applications in section 5.

In this section we are going to derive a monotonicity formula for variational
solutions with respect to any p ∈ (−∞, 2). In the case of continuous variational
solutions with respect to p ∈ [0, 2) this monotonicity will hold in arbitrary points of
(t1, t2)×Rn, and in the case of strong solutions with respect to p < 0 it will hold as
long as the solution continues to exist. So we exclude the quenching problem with a
critical exponent,

∂tu−∆u = − 1

u
χ{u>0}.

Theorem 3.1 (monotonicity formula). Suppose that t1 ≤ T ≤ t2, that x0 ∈ Rn,
that

sup
t∈(t1,T−δ)∪(T+δ,t2)

∫
Rn

exp

(
−|x− x0|2

4(T − t)
) (
|∇u|2 + |u|p

)
(t, x)

+

∫
(t1,T−δ)∪(T+δ,t2)

∫
Rn

exp

(
−|x− x0|2

4(T − t)
)(

(∂tu)2 + u2
)

(t, x) dx dt < ∞

for any positive δ, and that either p ∈ [0, 2), u is in ((t1, T )∪(T, t2))×Rn a variational
solution in the sense of Definition 3.1, and λ+, λ− are nonnegative constants in the
case p ∈ (0, 1), or that p < 0, u ∈ C0(((t1, T )∪ (T, t2))×Rn), u(t, x) 6= 0 in ((t1, T )∪
(T, t2))×Rn, and that u is a solution of (3.1) in the sense of distributions.

Then for α = 2
2−p and T−r , T+

r , and G(T,x0) as defined in section 2 the functions

Ψ−(r) := r−2(α−1)−2

∫
T−r (T )

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G(T,x0)

− α

2
r−2α

∫
T−r (T )

1

T − t u
2 G(T,x0)

and

Ψ+(r) := r−2(α−1)−2

∫
T+
r (T )

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G(T,x0)
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− α

2
r−2α

∫
T+
r (T )

1

T − t u
2 G(T,x0)

are well defined in the interval (0,
√
T−t1
2 ) and (0,

√
t2−T
2 ), respectively, and satisfy for

any 0 < ρ < σ <
√
T−t1
2 and 0 < ρ < σ <

√
t2−T
2 , respectively, the monotonicity

formulae

Ψ−(σ) − Ψ−(ρ)

=

∫ σ

ρ

r−2α−1

∫
T−r (T )

1

T − t (∇u · (x− x0) − 2(T − t)∂tu − α u)
2
G(T,x0) dr

≥ 0

and

Ψ+(σ) − Ψ+(ρ)

=

∫ σ

ρ

r−2α−1

∫
T+
r (T )

1

T − t (∇u · (x− x0) − 2(T − t)∂tu − α u)
2
G(T,x0) dr

≥ 0.

Remark 3.1. The integrand on the right-hand side of the monotonicity formula
with respect to x0 = 0 and T = 0,

−
(

1

t

)
(∇t,xu · (2t, x) − α u(t, x))

2
G(T,x0)(t, x),

is sort of a measure of the distance of u to a function being homogeneous of degree α
on paths θ 7→ (θ2t, θx). Since such a function would be of class Cβ for any β < α on
paths θ 7→ (θ2t, θx) but in general not of class Cα we may speak of a monotonicity
formula of order α.

In the special case λ+ = λ− = 0 we obtain a monotonicity formula of order α
for solutions of the heat equation which coincides when extrapolated at α = 0 with
the well-known monotonicity formula for the evolution of harmonic maps (see, for
example, the proof of Theorem 8.1 of [St]).

Also, for p > 2 the integrands in our monotonicity formula coincide if written
in similarity variables with those of the energy identity derived by Giga and Kohn
in the classical paper [GiKo] for smooth solutions of (3.1); however, for p ∈ [0, 1)
globally smooth solutions no longer exist, and this is where the variational solutions
of Definition 3.1 enter the game. The technique in our proof is motivated by that
of Allard in section 5 of [Al], where he proves Fleming’s monotonicity formula for
stationary rectifiable n-varifolds.

Proof of Theorem 3.1. We give a proof for the monotonicity of Ψ−. In order to
obtain a proof with respect to Ψ+ it is then sufficient to replace in what follows
the interval (−4r2,−r2) by (r2, 4r2). Applying a translation we may assume that
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x0 = 0 and T = 0. Omitting the index (0, 0) of G(0,0) and T−r (0, 0) and choosing
t1 := −4r2, t2 := −r2, and, after approximation, ψ(t, x) := (2t, x) G(t, x) ηκ(x) in

Definition 3.1 where ηκ ∈ H1,∞
0 (Rn) we get for a.e. r ∈ (0,

√
T−t1
2 ) the identity

0 =

∫
T−r

[(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)(
2G+ 2t∂tG+ div(xG)

)
ηκ

− 2 ηκ

n+1∑
j=2

n+1∑
i=2

∂ju (δji G + ∂jG xi) ∂iu − 2ηκ

n+1∑
j=2

∂ju ∂jG 2t ∂tu

− 2ηκ

n+1∑
j=2

∂ju G xj ∂tu − 2ηκ (∂tu)2 2t G

]

−
∫

Rn

[
2t ηκ

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G
]
(−r2)

+

∫
Rn

[
2t ηκ

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G
]
(−4r2)

+

∫
T−r

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
∇ηκ · x G

− 2

n+1∑
j=2

n+1∑
i=2

∂ju ∂jηκ xi ∂iu G − 2

n+1∑
j=2

∂ju ∂jηκ 2t ∂tu G.

Next, we derive the identity∫
T−r
|∇u|2 G ηκ = −

∫
T−r

[
u ηκ ∇u · ∇G + ηκ G

(
u ∂tu +

p

2
(λ+ χ{u>0} up

+ λ− χ{u<0} (−u)p)
)]
−
∫
T−r

u G∇u · ∇ηκ.
(3.2)

First notice that max(u, θ) is for small positive θ a subsolution of

−∂t max(u, θ) + ∆ max(u, θ)− λ+

2
p χ{u>θ} up−1 ≥ 0

and that the nonnegative distribution

−∂t max(u, θ) + ∆ max(u, θ)− λ+

2
p χ{u>θ} up−1

is a σ-finite σ-additive measure with support in ∂{u > θ}. Since λ+

2 p χ{u>θ} up−1 →
λ+

2 pχ{u>0}up−1 in L1
loc((t1, t2)×Rn) and ∂t max(u, θ)→ ∂t max(u, 0) in L2

loc((t1, t2)×
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Rn) as θ ↘ 0, we obtain that ∆ max(u, θ) ⇀ ∆ max(u, 0) weakly-* in the space
(C0((t1 + δ, t2 − δ)×BR(0)))? for each δ > 0 as θ ↘ 0 and that

supp(−∂t max(u, 0) + ∆ max(u, 0)− λ+

2
p χ{u>0} up−1) ⊂ ∂{u > 0} .(3.3)

Considering mollified functions approximating max(u, 0), we now see that∫
∇max(u, 0) · ∇ζ = −

∫
ζ∆ max(u, 0)

for any ζ ∈ C0((t1 + δ, t2 − δ)×BR(0)) ∩ L2((t1 + δ, t2 − δ);H1,2
0 (BR(0))) . An anal-

ogous formula holds for −min(u, 0) . Using this and (3.3) one can now easily derive
the formula (3.2).

Now, multiplying the identity at the beginning of the proof by −r−3−2(α−1),
choosing ηκ(x) := min(1,max(0, 2 − κ|x|)) for small positive κ, and using the fact
that ∇G = x G

2t and ∂tG + ∆G = 0 in {t < 0} ∪ {t > 0} we obtain

0 = r−3−2(α−1)

[∫
Rn

2t ηκ

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G

]−r2

−4r2

+ (−2(α− 1)− 2) r−3−2(α−1)

∫
T−r

ηκ

(
|∇u|2 + λ+ χ{u>0} up

+ λ− χ{u<0} (−u)p
)
G + (2(α− 1) + 2− 2 + 2) r−3−2(α−1)

∫
T−r

ηκ |∇u|2 G

+ (2(α− 1) + 2− 2) r−3−2(α−1)

∫
T−r

ηκ

(
λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G

+ r−3−2(α−1)

∫
T−r

ηκ

[
2∇u ·∇G∇u ·x + 4t∇G ·∇u∂tu + 2∇u ·xG∂tu + 4t (∂tu)2G

]

− r−3−2(α−1)

∫
T−r

[(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G∇ηκ · x

− 2∇u · x∇u · ∇ηκ G − 4t∇u · ∇ηκ G ∂tu
]

= r−3−2(α−1)

[∫
Rn

2t ηκ

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G

]−r2

−4r2

+ (−2(α− 1)− 2) r−3−2(α−1)

∫
T−r

(
|∇u|2 + λ+ χ{u>0}up + λ− χ{u<0}(−u)p

)
G ηκ
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+ (2(α− 1) − α p) r−3−2(α−1)

∫
T−r

ηκ

(
λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G

− r−3−2(α−1)

∫
T−r

ηκG
(α
t
u∇u ·x + 2αu∂tu − 1

t
(∇u ·x)2 − 4∇u ·x∂tu − 4t (∂tu)2

)

− r−3−2(α−1)

∫
T−r

[(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G∇ηκ · x

− 2∇u · x∇u · ∇ηκ G − 4t∇u · ∇ηκ G ∂tu
]

= r−3−2(α−1)

[∫
Rn

2t ηκ

(
|∇u|2 + λ+ χ{u>0} up + λ− χ{u<0} (−u)p

)
G

]−r2

−4r2

+ (−2(α− 1)− 2) r−3−2(α−1)

∫
T−r

ηκ

(
|∇u|2 + λ+ χ{u>0} up

+ λ− χ{u<0} (−u)p
)
G − r−2α−1

∫
T−r

ηκG

(−t) (∇u · x + 2t ∂tu − α u)
2

+ r−2α−1

∫
T−r

ηκ G
(α
t
u∇u · x + 2α u ∂tu − α2

t
u2
)

+ o(1) as κ→ 0.

Realizing finally that

r−2α−1

∫
T−r

ηκ G
(α
t
u∇u · x + 2α u ∂tu − α2

t
u2
)

= α

∫
T−1

ηκ(rx)
G(t, x)

t
r−α u(r2t, rx)

(
r−α (∇u)(r2t, rx) · x

+ r−α+1 2t (∂tu)(r2t, rx) − α r−α−1 u(r2t, rx)
)

= o(1) + ∂r

(
α

2

∫
T−1

(
u(r2t, rx)

rα

)2
G(t, x)

t
ηκ(rx)

)

= o(1) + ∂r

(
−α

2

∫
T−r

( u
rα

)2 G

(−t) ηκ
)

as κ→ 0,

integrating the resulting identity from ρ to σ, using integration by parts, and letting
κ→ 0 the theorem is proved.
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4. Characterization of blow-up limits. The result to be presented in this sec-
tion is that assuming some regularity of the solution in “parabolic direction” (2θt, x)
on the path θ 7→ (T+θ2t, x0+θx), it is possible to prove that the solution’s derivatives
at (T, x0) in this direction vanish to a certain order; this implies, of course, that any
blow-up limit at (T, x0) is a self-similar solution. The required regularity takes the
simple form of a growth estimate.

Theorem 4.1. Suppose that t1 ≤ T ≤ t2, that x0 ∈ Rn, that

sup
t∈(t1,T−δ)∪(T+δ,t2)

∫
Rn

exp

(
−|x− x0|2

4(T − t)
) (
|∇u|2 + |u|p

)
(t)

+

∫
(t1,T−δ)∪(T+δ,t2)

∫
Rn

exp

(
−|x− x0|2

4(T − t)
)(

(∂tu)2 + u2
)
< ∞

for any positive δ, that 0 < ρk → 0 as k →∞, and that either
(i) p ∈ [0, 2), u is in ((t1, T )∪ (T, t2))×Rn a variational solution in the sense of

Definition 3.1 and λ+, λ− are nonnegative constants in the case p ∈ (0, 1) or
(ii) p < 0, u ∈ C0(((t1, T ) ∪ (T, t2))×Rn), u 6= 0 in ((t1, T ) ∪ (T, t2))×Rn, and

u is a solution of (3.1) in the sense of distributions.
Suppose furthermore that in either case the growth estimates

sup

r∈(0,

√
T−t1
4 )

max

(
r−2α

∫
T−r (T )

1

T − t u
2 G(T,x0)

− r−2(α−1)−2

∫
T−r (T )

λ+ χ{u>0} up G(T,x0),

− r−2(α−1)−2

∫
T−r (T )

λ−χ{u<0}(−u)pG(T,x0)

)
< +∞

and

sup

r∈(0,

√
t2−T
4 )

max

(
r−2α

∫
T+
r (T )

1

T − t u
2 G(T,x0), − r−2(α−1)−2

∫
T+
r (T )

|∇u|2 G(T,x0) ,

− r−2(α−1)−2

∫
T+
r (T )

λ+ χ{u>0} up G(T,x0) ,

− r−2(α−1)−2

∫
T+
r (T )

λ− χ{u<0} (−u)p G(T,x0)

)
< +∞

are satisfied. Then Ψ−(r) ↘ M−(u, (T, x0)) as r ↘ 0 provided that T > t1 and
Ψ+(r) ↘ M+(u, (T, x0)) as r ↘ 0 provided that T < t2, and for any D ⊂⊂
(((−∞)

√
T − t1, 0) ∪ (0, ((+∞)

√
t2 − T )))×Rn and k ≥ k(D) the sequence

uk(t, x) :=
u(T + ρk

2t, x0 + ρkx)

ρkα
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is bounded in H1,2(D) ∩ Lp(D) and any weak H1,2-limit u0 with respect to a subse-
quence is a function homogeneous of degree α on paths θ 7→ (θ2t, θx) for θ > 0 and
(t, x) ∈ (((−∞)

√
T − t1, 0) ∪ (0, ((+∞)

√
t2 − T ))) ×Rn, i.e.,

u0(λ2t, λx) = λα u0(t, x) for any λ > 0

and for any (t, x) ∈ (((−∞)
√
T − t1, 0) ∪ (0, ((+∞)

√
t2 − T )))×Rn.

Proof. To avoid clumsy notation we give the proof only for the case t2 = T. First
we calculate for 0 < R < S <∞ (to be used later)

Ψ−(ρkR) =R−2(α−1)−2

∫
T−
R

(0)

(
|∇uk|2 +λ+ χ{uk>0} ukp+λ− χ{uk<0} (−uk)p

)
G(0,0)

− α

2
R−2α

∫
T−
R

(0)

1

(−t) uk
2 G(0,0).

Hence, using the assumed growth estimate, the monotonicity formula Theorem 3.1
yields that for k ≥ k(D) the sequences uk and ∇uk are bounded in L2(D) and uk is
bounded in Lp(D).

Since Ψ− is nondecreasing and bounded in (0, r0) for small positive r0, we know
that Ψ− has a real right limit at 0. Consequently,

0← Ψ−(ρkS)−Ψ−(ρkR)

=

∫ S

R

r−2α−1

∫
T−r (0)

1

(−t) (∇uk · x + 2t∂tuk − α uk)
2
G(0,0) dr

as k → ∞ . Thus for k ≥ k(D) the sequence uk is bounded in H1,2(D), and passing
to a subsequence k → ∞ such that uk ⇀ u0 weakly in H1,2

loc ((−∞, 0) × Rn) and
using the lower semicontinuity of the L2-norm with respect to weak convergence we
obtain ∇u0(t, x) · x + 2t∂tu0(t, x) − αu0(t, x) = 0 a.e. in (−∞, 0) × Rn. Now it is
easily seen that u0 is homogeneous of degree α on paths θ 7→ (θ2t, θx) for θ > 0 and
(t, x) ∈ (−∞, 0)×Rn.

5. Applications. In this section we will characterize the blow-up limits with
respect to two one-phase problems, the quenching problem with exponent γ ∈ (−1

3 , 0)
and the heat equation with a Bernoulli type boundary condition on the free boundary.

Before starting with these two equations let us briefly consider solutions of the
heat equation with strong absorption, i.e., γ ∈ [0, 1), u ∈ L1+γ((0,∞) × Rn) ∩
L∞((0,∞)×Rn) satisfying ∂tu−∆u = −uγχ{u>0} in (0,∞)×Rn , u(0, x) = u0(x)

in the sense of distributions. Here we assume 0 ≤ u0 ∈ C2,α
0 (Rn) for some α ∈ (0, 1)

and (u0)−γ∆u0 ∈ L∞(Rn) .
This problem, in particular the solution’s behavior at extinction points, has been

extensively studied (see [FrHe] to cite one study). For issues not concentrating on the
extinction angle see, for example, [Ca] and [ChWe].

Since we assume u to be bounded, the comparison principle holds and it follows
immediately from Lp-estimates that the now unique u ∈ W2,1

p (( 1
R , R) × BR(0)) for
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any 0 < R <∞ and 1 ≤ p <∞. Comparing u to max(0, (1−γ)( (supRn u
0)1−γ

1−γ −t)) 1
1−γ ,

we see that u(t, x) = 0 for t ≥ (supRn u
0)1−γ

1−γ ; furthermore, standard energy estimates

imply that ∇u ∈ L∞((0,∞);L2(Rn)) and ∂tu ∈ L2((0,∞)×Rn). Thus,∫ T

0

∫
Rn

(
|∇u|2 +

2

1 + γ
u1+γ + 2∂tu u

)

−
∫ T

0

∫
Rn

(
|∇v|2 +

2

1 + γ
v1+γ + 2∂tu v

)

≤
∫ T

0

∫
Rn

(−|∇(u− v)|2 + 2∇u · ∇(u− v) + 2uγ (u− v) + 2∂tu (u− v)) ≤ 0

for any v ∈ L2((0, T );H1,2
loc (Rn)) such that supp(v−u)(t) ⊂⊂ BR(0) for any t ∈ (0, T ).

Consequently u satisfies the variational inequality
G(u, u) ≤ G(u, v) for any such v and the G in Definition 3.1, and it follows that

u is in (0,∞)×Rn a variational solution in the sense of Definition 3.1.
In order to be allowed to apply Theorem 4.1 in the past of any point (T, x0) ∈

∂{u > 0} ∩ ((0,∞)×Rn), it is therefore sufficient to verify the growth estimate

sup
r∈(0,

√
T
4 )

r−
4

1−γ

∫
T−r (T )

1

T − t u
2 G(T,x0) < +∞,

but this follows directly from the regularity estimate Theorem 3.1 derived in [ChWe],

‖u 1−γ
2 ‖

H1, 1
2 ((δ, 1δ )×B 1

δ
(0))
≤ C(δ),(5.1)

and from the fact that u ∈ L∞((0,∞)×Rn). Therefore any blow-up limit of u must
be a backward self-similar solution. Let us conclude this short observation with the
remark that there exists a variety of such self-similar solutions; for example,

vk,σ(t, x) := −σ t + (1− σ)
1

2k

k∑
i=1

xi
2 and

wσ(t, x) :=
1

2
max(0, x1)2

are for t < 0 , k ∈ {1, . . . , n}, and σ ∈ [0, 1] self-similar solutions with respect to
γ = 0 . Notice that, of the stationary solutions (σ = 0), only the half-plane solution
1
2 max(0, x1)2 has a regular free boundary.

We proceed to the quenching problem: Here we consider certain distributional
solutions u of

u1+γ ∈ L1((0,∞) ×Rn), ∂tu−∆u = −uγ χ{u>0} in (0,∞)×Rn,
u(0, x) = u0(x),

γ ∈ (−1, 0) and 0 ≤ u0 ∈ C2,α
0 (Rn) for some α ∈ (0, 1).

(5.2)
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Existence of a distributional solution u of (5.2) as well as optimal regularity in space
has been shown by Phillips (see [Ph]) by way of a regularization of the equation in
(5.2):

for fε(z) :=

{
0, z ≤ 0,

z
ε+z1−γ , z > 0;

the equation ∂tv−∆v = −fε(v) in (0,∞)×Rn, v(0, x) = u0
ε(x), 0 ≤ u0

ε ∈ C∞0 (Rn), u0
ε →

u0 in C2,α(Rn) as ε→ 0 admits for positive ε a unique solution 0 ≤ uε ∈ C0
0 ([0,∞)×

Rn) ∩ C2((0,∞)×Rn) such that

∇
(
uε

1−γ
2

)
is bounded in L∞((0,∞)×Rn),

uε is bounded in C0, 1
3n ([0,∞) × Rn), and as a subsequence ε → 0 the solutions uε

converge in C0([0,∞) × Rn) to a nonnegative solution u of (5.2) in the sense of
distributions.

In order to verify the growth assumptions in Theorem 4.1 it is necessary to com-
plete the optimal regularity of u in space by the optimal regularity estimate in time:

‖∂t(u1−γ)‖L∞((δ, 1δ )×B 1
δ

(0)) ≤ C(δ).

For proof observe first that u1−γ satisfies the equation

∂t(u
1−γ)−∆(u1−γ) = −χ{u1−γ>0}

(
(1− γ)− 4γ

1− γ |∇(u
1−γ

2 )|2
)

in (0,∞)×Rn which may be written as

∂tw −∆w = −χ{w>0} g with 0 ≤ w := u1−γ and g ∈ L∞((0,∞)×Rn) .

Lemma 5.1. There exists a constant C <∞ depending on ‖g‖L∞((0,∞)×Rn) and

n such that any nonnegative solution w ∈ L1((0,∞)×Rn) of ∂tw−∆w = −g χ{w>0}
in (0,∞)×Rn satisfies for any Q2r(t0, x0) ⊂ (0,∞)×Rn the estimate

sup
Pr(t0,x0)

w ≤ C (w(t0, x0) + r2)

(here Pr(t0, x0) := {(t, x) : 0 > t− t0 > −r2 and |x− x0|2 < t0 − t} ).

Proof. We observe that the function wr(t, x) := r−2 w(t0 + r2t, x0 + rx) satisfies
in Q2(0) = (−4, 4)×B2(0) the equation ∂twr −∆wr = −gr χ{wr>0} where gr(t, x) :=
g(t0 +r2t, x0 +rx) . Therefore we may apply Harnack’s inequality to obtain a constant
C1 <∞ depending only on n and ‖g‖L∞ such that

sup
(−1,− 1

2 )×B1(0)

wr ≤ C1 (wr(0) + 1).

Scaling back yields

sup
Pr(t0,x0)

w ≤ C (w(t0, x0) + r2).
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Lemma 5.2. For the solution u from above and any positive δ there exists C <∞
such that the function w = u1−γ satisfies

‖∂tw‖L∞((δ,∞)×Rn) ≤ C.

Proof. Suppose that there exists (tk, xk) ∈ {w > 0} ∩ ((δ,∞) × Rn) such that
|∂tw|(tk, xk) → +∞ as k → ∞: since w ∈ C0

0 ([0,∞) × Rn) we conclude that
(tk, xk)→ (t0, x0) as a subsequence k →∞. Then we consider the sequence wk(t, x) :=

ρk
−2w(tk+ρk

2t, xk+ρkx) where ρk := w(tk, xk)
1
2 can be assumed to go to 0 as k →∞.

From Phillips’ space gradient estimate we now know that wk(0, x) ≤ 2 + C1|x|2
and Lemma 5.1 implies that supP1(0,x) wk ≤ C2(2 + |x|2). Thus wk is bounded in

L∞(Q−1 (0)) (where Q−r (0) = (−r2, 0)×Br(0)) and we infer from parabolic regularity

theory that wk is bounded in C0,β([− 1
2 , 0]×B 1

2
(0)) for β ∈ (0, 1). Consequently there

is a subsequence k → ∞ such that wk → w0 in C0([− 1
2 , 0] × B1(0)), and the fact

that wk(0) = 1 implies that wk ≥ c > 0 in Q−κ (0) for some κ > 0 and large k of the
subsequence.

But then uk(t, x) := ρk
− 2

1−γ u(tk + ρk
2t, xk + ρkx) ≥ c

1
1−γ > 0 in Q−κ (0) and

uk is bounded in L∞(Q−1 (0)), and we obtain from regularity theory for the equa-

tion of uk that uk is for large k uniformly positive and bounded in Cm(Q−κ
2
(0))

for m < ∞, a contradiction to the assumption that +∞ ← |∂tw|(tk, xk) = (1 −
γ)u−γ(tk, xk)|∂tu(tk, xk)| = (1− γ)uk

−γ(0)|∂tuk(0)|.
We may also state the corresponding nondegeneracy estimate.
Lemma 5.3. For the solution u from above and any δ > 0 there exists c > 0 such

that for any (T, x0) ∈ {u > 0} and any Q−r (T, x0) ⊂ ((δ,∞)×Rn) the estimate

sup
Q−r (T,x0)

u ≥ c r
2

1−γ

holds.
Proof. Notice that it is sufficient to prove the existence of c depending only on

n and γ such that the estimate is satisfied in points of {u > 0}. Since we have
∂t(u

1−γ) − ∆(u1−γ) ≤ −χ{u1−γ>0}, w := u1−γ is a subsolution of the parabolic
obstacle problem.

As before we use scaled functions wr(t, x) := r−2w(t0+r2t, x0+rx). Furthermore,
we introduce a comparison function

v(t, x) :=
1

4n
(|x|2 − 2n t);

obviously v solves ∂tv−∆v = −1 in Q−1 (0), and of course v is positive in Q−1 (0), it is

positive on ({−1} ×B1(0)) ∪ ([−1, 0]× ∂B1(0)), and it vanishes in the point 0 .
Now, if wr ≤ v on the whole parabolic boundary of Q−1 (0), then the comparison

principle would imply wr ≤ v in Q−1 (0) , a contradiction to the assumption wr(0) > 0 .
Therefore there has to be a point on the parabolic boundary of Q−1 (0) in which wr > v,
and scaling back proves the statement of our proposition.

Finally we have to verify that u is a variational solution in the sense of Definition
3.1. To this end, we confine ourselves to the case γ ∈ (−1

3 , 0) and start with another
nondegeneracy estimate whose proof follows Lemma 7.3 of [ChWe].
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Lemma 5.4. For the solution u from above and any p ∈ (0, 1−γ
2 ) there exist r0 > 0

and C <∞ such that for any (t0, x0) ∈ ∂{u > 0} ∩ ((δ,∞)×Rn) and any r ≤ r0∫
Qr(t0,x0)∩{u>0}

u−p ≤ C rn+2− 2p
1−γ .

Proof. Let us define w := u1−γ−p, which satisfies then in {u > 0} the equation

∂tw−∆w = −(1−γ−p)u−p(1−(γ+p) |∇u|
2

u1+γ

)
. Hence ∂tw−∆w ≤ −(1−γ−p)u−p(1−

2(1+η)(γ+p)
1+γ

) ≤ −κu−p < 0 in Qr(t0, x0)∩{u > 0} by Lemma 2 of [Ph], provided that

η and r0 have been chosen small enough. Furthermore we know from Lemma 2 of [Ph]

that there exist constants C1, C2, C3 such that |∇w| ≤ C1 u
1+γ

2 −γ−p ≤ C2 r
1− 2p

1−γ

and that w ≤ C3 r
2(1−γ−p)

1−γ in Qr(t0, x0).
Introducing now a C∞-function ρ satisfying ρ ≥ 0, ρ′ ≥ 0, ρ′′ ≥ 0 as well as

ρ(τ) = τ − 1 , τ ≥ 2 and ρ(τ) = 0, τ ≤ 1
2 and defining ρδ(τ) := δρ( τδ ) we obtain for

0 < δ << ε

0 ≤ 1

ε

∫
Qr(t0,x0)

∇w · ∇min(ε, ρδ(u)) = −1

ε

∫
Qr(t0,x0)∩{0<ρδ(u)≤ε}

ρδ(u) ∆w

−
∫
Qr(t0,x0)∩{ρδ(u)>ε}

∆w +

∫ t0+r2

t0−r2

∫
∂Br(x0)

min(ε, ρδ(u))

ε
∇w · ν dHn−1.

Consequently

κ

∫
Qr(t0,x0)∩{ρδ(u)>ε}

u−p ≤ C4 r
n+2− 2p

1−γ − κ

ε

∫
Qr(t0,x0)∩{0<ρδ(u)≤ε}

ρδ(u) u−p

− 1

ε

∫
Qr(t0,x0)∩{0<ρδ(u)≤ε}

ρδ(u) ∂tw −
∫
Qr(t0,x0)∩{ρδ(u)>ε}

∂tw,

and letting δ → 0 we obtain

κ

∫
Qr(t0,x0)∩{u>ε}

u−p ≤ C4 r
n+2− 2p

1−γ − 1

ε

∫
Qr(t0,x0)∩{0<u≤ε}

u ∂tw

−
∫
Qr(t0,x0)∩{u>ε}

∂tw ≤ C4 r
n+2− 2p

1−γ

− 1

ε

∫
Qr(t0,x0)

1− γ − p
2− γ − p ∂t min(ε2−γ−p, u2−γ−p)

+

∫
Br(x0)

max(ε1−γ−p, w)(t0 − r2) −
∫
Br(x0)

max(ε1−γ−p, w)(t0 + r2).

Integrating by parts in time and letting ε→ 0 the lemma is proved.
From Lemma 2 of [Ph] as well as Lemma 5.4 we obtain now that uγ |∂tu| ≤ Cu2γ is

locally contained in L1 provided that −2γ < 1−γ
2 , which is the case since we assumed
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γ ∈ (− 1
3 , 0). We use this to prove that u is a variational solution in the sense of

Definition 3.1: Since the variational formulation does not contain any discontinuous
or singular term it is sufficient to prove that uε → u strongly in L2((0,∞);H1,2(Rn))
and that ∂tuε → ∂tu strongly in L2((0,∞)×Rn). To this end we take uε and max(u, δ)
as test functions for the weak equation of uε and u, respectively, to obtain (after δ → 0)
the convergence of the L2-norm of ∇uε to that of ∇u, and we take ∂tuε and ∂tu as
test functions for the weak equation of uε and u, respectively, to obtain∫ ∞

0

∫
Rn

|∂tuε|2 − 1

2

∫
Rn

|∇u0
ε |2 =

∫
Rn

Fε(u
0
ε)

→
∫

Rn

F0(u0) =

∫ ∞
0

∫
Rn

|∂tu|2 − 1

2

∫
Rn

|∇u0|2

as the subsequence ε → 0; here Fε(z) :=
∫ z

0
fε(s) ds and F0(z) :=

∫ z
0

max(s, 0)γ ds.
Since ∇t,xuε ⇀ ∇t,xu weakly in L2((0,∞) × Rn) it follows that ∇t,xuε → ∇t,xu
strongly in L2((0,∞)×Rn) and that u is a variational solution in the sense of Defi-
nition 3.1.

As before, the estimates required in the assumptions of Theorem 4.1 follow from
the regularity in time and space and from the fact that u ∈ L∞((0,∞)×Rn). Thus,
supposing u to be a solution of (5.2) with respect to γ ∈ (− 1

3 , 0) constructed by
Phillips’ regularization the blow-up limits are characterized as nontrivial self-similar
variational solutions in Rn+1 ∩ {t ≤ 0} as follows.

For (T, x0) ∈ ∂{u > 0} ∩ ((0,∞) ×Rn) and 0 < ρk → 0 as k → ∞ we have for
any open D ⊂⊂ Rn+1 the following: the blow-up sequence

uk(t, x) =
u(T + ρ2

kt, x0 + ρkx)

ρk
2

1−γ
(5.3)

is bounded in C0, 12 (D̄) and any pointwise limit u0 with respect to a subsequence is
a nontrivial nonnegative variational solution of (5.2) which is homogeneous of degree

2
1−γ on paths θ 7→ (θ2t, θx) for positive θ and (t, x) ∈ Rn+1 ∩ {t ≤ 0} and which
preserves the regularity estimates in time and space.

That the blow-up limit is again a variational solution can be inferred from the
fact that uk → u0 strongly in H1,2(D), which can in turn be proved as before.

We proceed to the heat equation with Bernoulli-type condition on the free bound-
ary which has been suggested in [CaVa] as a model for flame propagation. Here we
consider variational solutions of

u ≥ 0 , ∂tu−∆u = 0 in ((0,∞)×Rn) ∩ {u > 0}, and
|∇u| = 1 on ((0,∞)×Rn) ∩ ∂{u > 0}.(5.4)

Since in general singularities appear in finite time there exists no global strong solution
of (5.4). In [CaVa] Caffarelli and Vazquez introduce a notion of a weak solution for
which they show existence in the case of an advancing flame (∂tu ≤ 0).

Here we use the notion of nondegenerate variational solutions in the sense of
Definition 3.1 with respect to p = λ− = 0. In this context, too, the question of
existence with respect to general initial data remains unanswered: that a limit u of
the solutions uε of the regularized equation in [CaVa] is a variational solution is in
fact equivalent to the condition that no energy loss occurs in the limit, i.e.,

lim sup
ε→0

∫ (
(∂tuε)

2 + χ{uε>0}
) ≤ ∫ (

(∂tu)2 + χ{u>0}
)
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(where ε → 0 is the subsequence with respect to u), which is very much like the
situation in mean curvature flow or the Mullins–Sekerka equation—compare to [LuSt].
Notice that this may actually be used to construct numerical solutions since a sudden
drop of the energy of the approximate solutions (as ε and the parameter h of the
Galerkin approximation become small) can be registered numerically. Here we are
going to show that no energy loss happens when passing to the blow-up limit of
nondegenerate variational solutions, which means that the class of nondegenerate
variational solutions is closed with respect to the blow-up process.

Concerning the subsequent nondegeneracy condition we like to point out that in
the stationary case a nondegenerate variational solution can always be found, namely,
a minimizer of the energy (compare to Lemma 3.4 of [AC] and Theorem 4.1 of [BCN]).
In the nonvariational case, especially in the time-dependent case, however, the absence
of a forcing term of order −1 makes for a severe difficulty: obviously any constant > ε
solves the regularized equation in [CaVa] with respect to suitable initial data and
violates the nondegeneracy of uε. Therefore a nondegeneracy assumption arises in a
natural way when introducing weak solutions of the problem; compare to Definition
5.1 in [AC] for the stationary case.

Theorem 5.1. Let u ∈ H1, 12 ((0,∞)×Rn) be a variational solution of (5.4), i.e.,
a nonnegative solution in the sense of Definition 3.1 with respect to p = λ− = 0 and
λ+ = 1 , and suppose that (T, x0) ∈ ((0,∞)×Rn)∩ ∂{u > 0} and that 0 < ρk → 0 as
k →∞ . Then for any open D ⊂⊂ Rn+1 the sequence

uk(t, x) =
u(T + ρ2

kt, x0 + ρkx)

ρk

is bounded in C0, 12 (D̄) and any pointwise limit u0 with respect to a subsequence is a

function ∈ H1, 12
loc ((−∞,∞)×Rn) homogeneous of degree 1 on paths θ 7→ (θ2t, θx) for

positive θ and (t, x) ∈ Rn+1 ∩ {t ≤ 0}.
Moreover, if u satisfies the nondegeneracy condition that for any open D ⊂⊂

(0,∞) ×Rn there exists c > 0 and δ > 0 such that for any Qr(t, x) ⊂ D satisfying
r ≤ δ the implication

sup
Qr(t,x)

u ≤ c r ⇒ u = 0 in Q r
2
(t, x)(5.5)

holds, then any pointwise limit u0 with respect to a subsequence is in Rn+1 ∩ {t < 0}
a nondegenerate variational solution of (5.4).

Proof. The fact that u ∈ H
1, 12
loc ((0,∞) × Rn) along with the sublinear growth

in space imply that the growth estimates of Theorems 3.1 and 4.1 are satisfied in
the past of any free boundary point (T, x0) ∈ (0,∞) × Rn. The point therefore is

to show that u0 is again a variational solution. To this end, we first prove that
χ{uk>0} → χ{u0>0} a.e. in Rn+1 as (having passed to an appropriate subsequence)
k →∞.

First observe that Qr1(t1, x1) ⊂ ((−∞,+∞) × Rn) ∩ {u0 > 0} and Qr2(t2, x2)
⊂⊂ ((−∞,+∞)×Rn)∩{u0 = 0} imply by the uniform regularity and nondegeneracy
of the sequence uk that uk ≥ c1 > 0 in Q r1

2
(t1, x1) and uk = 0 in Q r2

2
(t2, x2) for large

k. Thus χ{uk>0} = 1 in Q r1
2

(t1, x1) and χ{uk>0} = 0 in Q r2
2

(t2, x2) for large k and

it is therefore sufficient to prove Ln+1(∂{u0 > 0}) = 0 in order to verify the a.e.
convergence of χ{uk>0}. But this follows from the positive Lebesgue density of the set
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{u0 > 0} in free boundary points. For any D ⊂⊂ (−∞,∞)×Rn, (t, x) ∈ D∩ ∂{u0 >
0}, and r ≤ δ1, we have

Ln+1({u0 > 0} ∩Qr(t, x))

Ln+1(Qr)
≥ c2 > 0 :(5.6)

since u0 is again nondegenerate, there is (t3, x3) ∈ Qr(t, x) such that u0(t3, x3) ≥ c r.
Therefore the fact that u0 ∈ H1, 12 (B2δ(D)) implies that u0 > 0 in Qc3r(t3, x3) , where
c3 ∈ (0, 1) is a constant depending only on c as well as on the Hölder norm of u0.
Now, since Ln+1-a.a. points in (−∞,+∞)×Rn are Lebesgue-points with respect to
χ∂{u0>0} we know that

Ln+1(∂{u0 > 0} ∩ Er(t, x))

Ln+1(Er)
→ 1 as r → 0

for Ln+1-a.a. points (t, x) ∈ ((−∞,+∞)×Rn)∩ ∂{u0 > 0} and Er(t, x) := (t− r, t+
r)×Br(x) . Considering such a point (t, x) and a subsequence r → 0 such that 1

2r ∈ N
we may therefore decompose (up to a set of vanishing Ln+1-measure) Er(t, x) into 1

r
parabolic cylinders Qr(ti, xi) (1 ≤ i ≤ 1

r ) and conclude that Q r
2
(ti, xi)∩∂{u0 > 0} 6= ∅

for at least 1
2r cylinders Q r

2
(ti, xi) if r has been chosen small enough. With respect to

those cylinders we may apply (5.6) to obtain

Ln+1({u0 > 0} ∩Qr(ti, xi))
Ln+1(Qr)

≥ c(n) c2 > 0.

Taking the sum with respect to the 1
2r cylinders we see that

Ln+1({u0 > 0} ∩ Er(t, x))

Ln+1(Er)
≥ 1

2
c(n) c2 > 0

if r has been chosen small enough, a contradiction to

Ln+1(∂{u0 > 0} ∩ Er(t, x))

Ln+1(Er)
→ 1.

Thus we obtain a contradiction for Ln+1-a.e. point (t, x) ∈ ((−∞,+∞)×Rn)∩∂{u0 >
0} , proving that Ln+1(∂{u0 > 0} ∩ ((−∞,+∞) ×Rn)) = 0. Note that in the just-
finished proof of the convergence χ{uk>0} → χ{u0>0} a.e. we did not make use of uk be-
ing a blow-up sequence. The same remains true regarding the strong convergence of uk
to u0 in L2

loc((−∞,∞);H1,2
loc (Rn)): since uk solves for given t1, t2 and large k the heat

equation in the open set ((t1, t2)×Rn)∩{uk > 0}, multiplication by ηmax(uk− δ, 0)
yields for δ > 0 and η ∈ C∞0 (Rn)∫ t2

t1

∫
Rn

|∇max(uk − δ, 0)|2 η =

∫ t2

t1

∫
Rn

(−∂tuk max(uk − δ, 0) η

−max(uk − δ, 0)∇uk · ∇η =

∫
Rn

η

(
1

2
max(uk − δ, 0)2(t1)− 1

2
max(uk − δ, 0)2(t2)

)

−
∫ t2

t1

∫
Rn

max(uk − δ, 0)∇uk · ∇η ,
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and the analogous identity holds for u0. Letting in both identities first δ ↘ 0 and
then the subsequence k →∞ we obtain∫ t2

t1

∫
Rn

|∇uk|2η →
∫ t2

t1

∫
Rn

|∇u0|2η,

which, together with the weak convergence of uk to u0 in L2((t1, t2);H1,2(BR(0)))
for R ∈ (0,∞), proves the strong convergence of uk to u0 in L2

loc(H1,2
loc ). Next we

use the monotonicity Theorem 3.1 to prove the strong convergence of ∂tuk to ∂tu0

in L2
loc(Rn+1 ∩ {t < 0}) which will, incidentally, complete the proof of our theorem.

For some R,S ∈ (0,∞) let E be any subset of (−4R2,− 9
4R

2)×BS(0) such that E is
Ln+1-measurable. Then Theorem 3.1 implies that∫

E

(2t ∂tuk)2 =

∫
E

(∇uk · x + 2t∂tuk − uk)2

−
∫
E

(∇uk · x − uk)2 −
∫
E

4t∂tuk (∇uk · x − uk)

≤ 2 ‖∇uk · x − uk‖2L2(E) +
1

2

∫
E

(2t ∂tuk)2

+ C(n,R, S)

∫ 3
2R

R

r−3

∫
T−r (0)

1

−t (∇uk · x + 2t∂tuk − uk)2 G(0,0) dr

≤ 81R4 ε

32
+

1

2

∫
E

(2t ∂tuk)2

+ C(n,R, S)

∫ 3
2R

R

r−3

∫
T−r (0)

1

−t (∇uk · x + 2t∂tuk − uk)2 G(0,0) dr

provided that Ln+1(E) ≤ δ. Since the third term on the right-hand side goes to 0
as k → ∞, we obtain for any positive ε positive constants δ and k0 < ∞ such that∫
E

(∂tuk)2 ≤ ε
2 provided that Ln+1(E) ≤ δ and k ≥ k0. Last, we infer from the

a.e. convergence ∂tuk to ∂tu0, which can be proved exactly as the a.e. convergence
of χ{uk>0} to χ{u0>0} (using the fact that Ln+1(∂{u0 > 0}) = 0 as well as the
nondegeneracy of uk), that ∂tuk → ∂tu0 in L2

loc(Rn+1 ∩ {t < 0}).
Let us finally estimate the Hausdorff dimension of the free boundary of variational

solutions of (5.2) and (5.4).
Lemma 5.5. Let u be either a variational solution of (5.4) satisfying the nonde-

generacy (5.5) as well as the regularity u ∈ H1, 12 ((0,∞)×Rn), or let u be a solution
of (5.2) with respect to γ ∈ (− 1

3 , 0) derived by Phillips’ approximation. Then for any
(T, x0) ∈ ((0,+∞) × Rn) ∩ ∂{u > 0}, any sequence 0 < ρk → 0 and any open
D ⊂⊂ Rn+1 the blow-up sequence

uk(t, x) :=
u(T + ρk

2t, x0 + ρkx)

ρk
2

1−γ



SELF-SIMILAR BLOW-UP AND HAUSDORFF DIMENSION 641

(here γ := −1 in the case of a solution of (5.4)) is bounded in C0, 12 (D̄) and any
pointwise limit u0 with respect to a subsequence is a nontrivial variational solution
in Rn+1 ∩ {t < 0} again satisfying the respective regularity and nondegeneracy and
being homogeneous of degree 2

1−γ on paths θ 7→ (θ2t, θx) for positive θ and (t, x) ∈
Rn+1 ∩ {t ≤ 0}. Furthermore for every compact set K ⊂ Rn+1 and every open set
U ⊃ K ∩ ∂{u0 > 0} there exists k0 <∞ such that ∂{uk > 0} ∩K ⊂ U for k ≥ k0.

Note that the last statement is stronger than the one direction in the definition
of the convergence in Hausdorff distance in that it holds for any open set U.

Proof. Except for the last statement everything follows directly from what was
shown before. Now suppose that there exists (tk, xk) ∈ ∂{uk > 0} ∩ (K − U). Then
(tk, xk)→ (t̄, x̄) ∈ (K − U) ∩ {u0 = 0} as a subsequence k →∞. Assuming now that
(t̄, x̄) is an inner point of {u0 = 0} the uniform convergence of uk to u0 as well as the
nondegeneracy of uk yields a contradiction to the assumption that (tk, xk) is a free
boundary point of uk.

Let us define with respect to the parabolic metric Hausdorff measures

Hδ,parm (A) := inf


∞∑
j=1

(pardiam Sj)
m : A ⊂

∞⋃
j=1

Sj , pardiam Sj ≤ δ


and Hparm (A) := lim
δ→0
Hδ,parm (A),

where δ ∈ (0,+∞] and pardiam is the diameter in Rn+1 with respect to the

parabolic metric dist((t, y), (s, x)) := max(|x−y|, |s− t| 12 ). We need three elementary
properties of these parabolic Hausdorff measures of which the first as well as the third
can be proved exactly as in Lemmas 11.2 and 11.5 of [Giu] and a proof of the second
property (closely following Proposition 11.3 of [Giu]) is contained in the appendix:

For every A ⊂ Rn+1 the equivalence
Hparm (A) = 0 if and only if H∞,parm (A) = 0 holds.

(5.7)

For every n ≥ 1 , m > n and A ⊂ Rn+1

lim supr→0
H∞,parm (A∩Q−r (t,x))

rm ≥ 1 for Hparm -a.a. points (t, x) ∈ A.(5.8)

In the situation of Lemma 5.5 we have
H∞,parm (K ∩ ∂{u0 > 0}) ≥ lim supk→∞H∞,parm (K ∩ ∂{uk > 0}),(5.9)

where the limit superior is taken with respect to the subsequence chosen in Lemma
5.5.

Having listed the necessary tools we may now use the dimension reduction pro-
cedure. Suppose that m > n + 1 and Hparm (∂{u > 0}) > 0. Then in Hparm -a.a. points
of ∂{u > 0} we can use (5.8) as well as (5.9) to obtain a blow-up limit u0 with the
properties mentioned in Lemma 5.5, satisfying H∞,parm (∂{u0 > 0} ∩ {t ≤ 0}) > 0.
Therefore we find (by (5.7)) a point (t̄, x̄) ∈ (∂{u0 > 0} ∩ {t ≤ 0}) − {(0, 0)} in
which the density in (5.8) is estimated from below. Now any blow-up limit u00 with
respect to (t̄, x̄) (and with respect to a subsequence such that the limit superior in
(5.8) becomes a limit) again satisfies the properties of Lemma 5.5; in addition, we get
from the homogeneity of u0 as in Lemma 3.1 of [We] the following.
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If t̄ 6= 0, then u00 has to be constant in time direction and we proceed with ū :=
u00|{t=0}, which in this case is a stationary variational solution satisfyingHm−2(∂{ū >
0}) > 0 as well as the properties of Lemma 5.5.

If t̄ = 0, then, applying a rotation in space, we may assume that u00 is constant
in direction of the nth unit vector and proceed with ū := u00|{xn=0}, which is then a
variational solution in (−∞,+∞) ×Rn−1 satisfying Hparm−1(∂{ū > 0} ∩ {t ≤ 0}) > 0
as well as the properties of Lemma 5.5.

Repeating this n times either we obtain a stationary variational solution u? :
R → R which is nontrivial, homogeneous of degree 2

1−γ , has 0 as free boundary

point, and satisfies Hm−n−1(∂{u? > 0}) > 0, or we obtain a space-independent
variational solution u? : (−∞, 0) → R which is nontrivial, homogeneous of degree

1
1−γ , has 0 as a free boundary point, and satisfies Hm−n

2 (∂{u? > 0} ∩ {t ≤ 0}) > 0 .
Since both yield a contradiction if m > n+ 1 we proved the following theorem.

Theorem 5.2. Let u be either a variational solution of (5.4) in the sense of Defini-

tion 3.1 satisfying the nondegeneracy (5.5) as well as the regularity u ∈ H1, 12 ((0,∞)×
Rn) or a solution of (5.2) with respect to γ ∈ (−1

3 , 0) derived by Phillips’ approxima-
tion. Then the parabolic Hausdorff dimension of ∂{u > 0} does not exceed n+ 1.

Considering the stationary solution max(xn, 0) of (5.4) in (0,∞)×Rn it is obvious
that the parabolic dimension n+ 1 in the estimate cannot be improved.

6. Appendix.
Lemma 6.1. If ` ≥ 1 , k > `, and A is a subset of R`+1, then for Hpark -a.a. points

(t, x) ∈ A we have

lim sup
r→0

H∞,park (A ∩Q−r (t, x))

rk
≥ 1

(where Qr(t, x) is an `+ 1-dimensional cylinder).
Proof. Define ζ(S) := (pardiam(S))k and, for positive τ, δ, and ε,

B(Hδ,park , τ, ε) := {(t, x) ∈ A : Hδ,park (St− ∩A) ≤ τζ(S)

for all sets S ⊂ R`+1 such that S 3 (t, x) and pardiam(S) < ε} (here St− :=
{(s, y) ∈ S : s ≤ t}). Now suppose S ⊂ R`+1 to satisfy pardiam(S) < ε . Defin-

ing t := sup{σ :{s = σ} ∩ S ∩ B(Hδ,park , τ, ε) 6= ∅} assume first that {σ = t} ∩ S ∩
B(Hδ,park , τ, ε) = ∅, in which case we obtain for θ ∈ (0,min(ε, δ))

Hδ,park (S ∩B(Hδ,park , τ, ε)) ≤ Hδ,park (S(t−θ2)− ∩B(Hδ,park , τ, ε))

+Hδ,park ((t− θ2, t)×Bε(x)) ≤ τζ(S) + C(`) θk
( ε
θ

)`
= τζ(S) + o(1)

(as θ → 0) by the assumption k − ` > 0 .

In case there exists (t, x) ∈ S ∩ B(Hδ,park , τ, ε) we obtain by the definition of

B(Hδ,park , τ, ε) that

Hδ,park (S ∩B(Hδ,park , τ, ε)) ≤ τζ(S).

The definition of Hε,park as well as the subadditivity of Hδ,park therefore imply

Hδ,park (B(Hδ,park , τ, ε)) ≤ τHε,park (B(Hδ,park , τ, ε)).
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In particular, if δ < 1,

Hδ,park (B(Hδ,park , 1− δ, δ)) ≤ (1− δ)Hδ,park (B(Hδ,park , 1− δ, δ)) < ∞.

Hence Hδ,park (B(Hδ,park , 1− δ, δ)) = 0 and, by (5.7), Hpark (B(Hδ,park , 1− δ, δ)) = 0.
Now consider the set

C :=

{
(t, x) ∈ A : inf

ε>0
sup

{H∞,park (A ∩ St−)

ζ(S)
: S ⊂ R`+1 such that

S 3 (t, x)and pardiam(S) < ε

}
< 1

}

=

{
(t, x) ∈ A : inf

n∈N
sup

{H∞,park (A ∩ St−)

ζ(S)
: S ⊂ R`+1 such that

S 3 (t, x)and pardiam(S) <
1

n

}
< 1

}
.

If (t, x) ∈ C we must have for some n

sup

{H∞,park (A ∩ St−)

ζ(S)
: S ⊂ R`+1 such that

S 3 (t, x)and pardiam(S) <
1

n

}
< 1− 1

n
.

Hence (t, x) ∈ B(H∞,park , 1− 1
n ,

1
n )), and since the definition ofHδ,park impliesHδ,park (S̃∩

A) = H∞,park (S̃ ∩A) for any S̃ such that pardiam(S̃) < δ, we obtain

C ⊂ ⋃∞n=1B(H∞,park , 1− 1
n ,

1
n )) ⊂ ⋃∞n=1B(H 1

n ,par

k , 1− 1
n ,

1
n )). ConsequentlyHpark (C) =

0.
Finally, fixing (t, x) ∈ A , considering S 3 (t, x), and setting d := pardiam(S), we

obviously have

H∞,park (A ∩ St−)

ζ(S)
≤ H

∞,par
k (A ∩Q−d (t, x))

dk
.

Hence

sup

{H∞,park (A ∩ St−)

ζ(S)
: S ⊂ R`+1 such that

S 3 (t, x) and pardiam(S) < δ

}
≤ sup

{
H∞,park (A ∩Q−d (t, x))

dk
: d < δ

}
.

Thus the set D := {(t, x) ∈ A : lim supr→0
H∞,par
k

(A∩Q−
d

(t,x))

dk
< 1} must be contained

in C and it follows that Hpark (D) = 0.
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APPROXIMATION OF THE STOKES DIRICHLET PROBLEM IN
DOMAINS WITH CYLINDRICAL OUTLETS∗
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Abstract. Let Ω ⊂ R3 be a domain with J cylindrical outlets to infinity and u = (v, p) be
a solution of the Dirichlet problem for the Stokes system with prescibed flux Hj through the jth
outlet. Let {ΩR} be the set of bounded domains defined by cutting each cylindrical outlet at the
distance R from its origin. The problem investigated is how u can be approximated by solutions uR

of boundary problems which are defined on the bounded subdomain ΩR. On the artificial boundary
∂ΩR\∂Ω a boundary condition BuR = h has to be added. By a method similar to the Schwartz’
alternating method, the asymptotic behavior (as R tends to infinity) for u − uR is investigated
for different types of boundary conditions on the cut cross sections. The existence of solutions uR

that are regular up to the edges is shown while using a boundary operator usually related to free
boundary problems. For exponentially decaying data asymptotically precise estimates are derived for
the difference u− uR; these results hold true for inhomogeneous boundary conditions on the lateral
surface ∂Ω and nonvanishing divergence. For div v = 0 and homogeneous boundary conditions on
∂Ω the case of L2-forces also is examined.

Key words. approximation problems, Stokes system, artificial boundary conditions

AMS subject classifications. 35Q30, 35A35

PII. S0036141097325083

1. Preliminaries.

1.1. Introduction. Many problems in hydromechanics lead to the investigation
of partial differential equations in unbounded domains. One example of such situations
is the flow of a viscous fluid through a system of channels. The behavior of the velocity
field v of the fluid particles and the pressure distribution p are often described by the
nonlinear Navier–Stokes system. In this context the theory of the steady linear part,
the so-called Stokes system

−∆v +∇p = f ′, div v = fn+1 in Ω, v = g on the boundary ∂Ω,(1.1)

plays the fundamental role. Here Ω ⊂ Rn, n ≥ 2, is an unbounded domain with
several cylindrical outlets (see section 2 for the exact notations). The vector field f ′

is a given external force; fn+1 may be considered as a distribution of sources and sinks.
To obtain unique solutions u = (v, p) to the system (1.1), conditions at infinity have
to be added. One possibility, which is also physically reasonable, is to prescribe the
flux through each outlet; this condition will be used in the following. Although it is
obvious that there exist no infinite volumes of liquid, problems in unbounded domains
serve as models for practical problems. On the other hand, any sort of computational
work can only be done on finite domains. One approach for overcoming the difficulties
with unbounded domains is to truncate the domain, which leads to a problem on a
bounded part ΩR ⊂ Ω. For domains with cylindrical outlets, the easiest way to
define ΩR is to cut every outlet at the distance R from its origin. If we assume that
the original problem is preserved on ΩR and on ∂ΩR ∩ ∂Ω, at least an addititional
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boundary condition

BRuR = hR(1.2)

has to be imposed on ∂ΩR\∂Ω. Such conditions are usually called artificial bound-
ary conditions (ABCs), and we refer to the problem on the bounded domain as an
approximation problem.

During the last 20 years many efforts were made to create ABCs for various sorts
of partial differential equations; we refer here to the survey articles [12, 53]. It is clear
that the minimal requirements for the choice of ABCs are the following criteria:

(i) The approximation problem possesses a unique solution uR = (vR, pR).
(ii) On ΩR the solution uR is sufficiently close to the solution u of the original

problem.
Of course, the best ABCs with respect to the second criterion are the so-called

exact ABCs; this means (u−uR)|ΩR = 0. However, with the exception of some trivial,
i.e., 1-dimensional cases, exact ABCs are nonlocal, which means the corresponding
boundary operator is a pseudodifferential operator and can be derived in a simple form
only for some particular geometries. In practical situations these boundary conditions
also have to be approximated (see, e.g., [20, 21, 51, 16, 44] and especially the review
articles [12, 53] and the papers cited there). Throughout this paper we deal with local
ABCs. This means we investigate different types of boundary conditions in differential
form on the artificial boundary ∂ΩR\∂Ω, such that the problem on the truncated
domain is elliptic in the sense of Agmon–Douglis–Nirenberg. These conditions are
available for a very general class of data f and g not necessarily compactly supported.
Local ABCs taking into account the asymptotic behavior of the solution to the Stokes
system in an exterior 3-dimensional domain were proposed in [15, 8, 35]. For the
Stokes problem in domains with outlets to infinity, a systematic study of local ABCs
currently does not seem to exist.

Although the asymptotic behavior of u− uR is interesting by itself, independent
of convergence, at least the application to computations requires a frame where the
solution u (for the problem in the unbounded domain Ω) exists for appropriate data
and is uniquely determined. Roughly speaking, solutions of boundary value problems
in unbounded domains are not only determined by the right-hand sides of the differ-
ential equation system and the boundary values, conditions at infinity also have to be
imposed.

Since Poincaré’s inequality holds in domains with cylindrical outlets, it is clear

that for f ∈ H−1(Ω)3 (the space of all continuous linear functionals on
◦
H1(Ω)3) there

always exists a weak solution of the Stokes system (1.1) for fn+1 = 0 and g = 0.

This means there is v ∈ ◦H1(Ω)3 with (∇v,∇ϕ)Ω = (f, ϕ)Ω for all ϕ ∈ C∞0 (Ω)3 with
div ϕ = 0. However, using Gauss’ theorem in bounded parts of Ω and Hölder’s
inequality, it is easy to see that this solution has zero flux through every outlet, which
of course is physically nonrealistic. With the help of a flux carrier it is possible to
construct solutions to the Stokes system (1.1) with prescribed flux Hj through each
outlet, but with an unbounded Dirichlet integral, provided the total flux vanishes,
i.e.,

∑
Hj = 0. This technique was introduced and applied to a very large class of

domains by Ladyženskaja and Solonnikov [27].
A different approach was used by Nazarov and Pileckas in [36]. They applied the

results for general elliptic systems in cylinders to derive existence, uniqueness, and
asymptotic representations for the system (1.1) with exponentially dying data, where
the flux carrier is the Poiseuille flow for large x. In this context they developed a
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setting in which more general asymptotic conditions (than conditions on fluxes) can
be posed at infinity. We use their results for the problem with prescribed fluxes.

To approximate these solutions we define a domain ΩR by cutting the outlets at
some distance from the origin. As already mentioned, it is reasonable to demand that
the approximation problem has a unique solution converging to the solution u = (v, p)
of (1.1) with prescribed fluxes in some sense. Moreover, the approximating solution
should preserve as much as possible from regularity properties of u. For domains with
cylindrical outlets this is a problem insofar as the artificial boundary ∂ΩR\∂Ω and the
cutted boundary ∂Ω\∂ΩR meet each other, usually in an edge. Even if the boundary
of the truncated domain inherits the regularity of the boundary ∂Ω then the only
reasonable situation, where the local H l-regularity of (v, p) is preserved for arbitrary
l, is the case v|∂Ω = 0 and vR|∂ΩR\∂Ω = 0. In all other cases there normally appears a
jump in the boundary conditions while using a “smooth” cutting of Ω, or edges in the
domain ΩR when doing sharp cuts. Both methods diminish the regularity properties
of uR. We will use the second approach and cut the outlets orthogonal to the axis of
the cylinders. Then ΩR has edges with an opening angle π/2, but we bend the data
of the approximating problem smoothly to 0 before reaching the edge. We will see
that it is possible to find approximating solutions which are C∞ in the neighborhood
of the cut, if the boundary condition is chosen properly.

The main results of the present paper are the following: using the method of
matched asymptotic expansions, which is similar to the alternating method of Schwartz
(see [50, Chapter IV, section 2]), the asymptotic behavior of u− uR is calculated for
different classes of local ABCs on the artificial boundary (section 3). The existence
of unique solutions to the approximation problem, together with regularity up to the
edges, is proved for the approximation problem with an appropriate boundary con-
dition on the artificial boundary (Theorem 4.2 and 4.4). In section 5 we derive a
uniform estimate for solutions to the Stokes problem on the truncated domain. This
estimate is the main tool to obtain an asymptotically precise estimate for u|ΩR − uR
as R → ∞ in the case of exponentially decaying data (Theorem 6.1): the difference
decays exponentially in H l+1(ΩR)3×H l(ΩR). Moreover, for L2-data it can be shown
at least that ‖v − vR;H2(ΩR)3‖+ ‖∇(p− pR);L2(ΩR)3‖ → 0 as R→∞ (section 7).

1.2. Notations, characterization of the domain, basic function spaces,
auxiliary results. We recall the notations of some basic function spaces. Let G ⊂ R3

be an open set with closure G and boundary ∂G, which we assume at least to be
Lipschitz; ν denotes the exterior normal vector on ∂G. C∞0 (G) denotes the set of
all smooth functions with compact support in G. For l ∈ N, Cl(G) is the space
of l times continuously differentiable functions ϕ. We use the common multi-index
terminology for partial derivatives: Let α ∈ N3

0 with |α| =
∑3
i=1 αi, then ∂αxϕ(x) =

∂αϕ(x) = ∂α1

∂x1
· · · ∂α3

∂x3
ϕ(x). In this context we mention that the notation ∂G ∈ Cl

means: For each x0 ∈ ∂G there exists a neighborhood O(x0) and a Cl-diffeomorphism
Φ : O → O′, such that Φ(O ∩ ∂G) is an open subset in Rn−1. We indicate the L2-
scalar product on G and on ∂G by ( · , · )G and ( · , · )∂G , i.e., (u, U)G =

∫
G u(x)Ū(x) dx,

(u, U)∂G =
∫
∂G u(x)Ū(x) do, where do is the 2-dimensional surface measure on ∂G.

We extend this notation to all measurable functions (vectorfields), where the integral
is finite. We arrange the following convention: in calculations, vectors are always
columns, otherwise we use the superscript >.

We use Sobolev spaces generated by L2-norms, i.e., H l(G) is the space consisting
of all functions ϕ ∈ L2(G) with ∇mϕ ∈ L2(G); for all 0 ≤ m ≤ l, ∇m denotes the
system of all (distributional) derivatives ∂γϕ of order m. As usual, we indicate the
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Fig. 1.

closure of C∞0 (G) in H l(G) by
◦
H l(Ω), the space with zero traces on the boundary.

ϕ ∈ H l
loc(G) means ϕ|K ∈ H l(K) for any bounded open subset of G with K ⊂ G.

If G is unbounded, we define H l
loc(G) in an analogous way (H l

loc(G) = H l(G) if G is
bounded).

We characterize the underlying domain Ω with J cylindrical outlets to infinity in
the following way (see Fig. 1 for J = 3). We assume that ∂Ω is of class Cl+2 for
some l ∈ N, Ω = Ω0 ∪ Q1 ∪ · · · ∪ QJ , where Ω0 is the intersection of Ω with a ball
B(0, R0) of radius R0 and Qj ∩Qj = ∅ for i 6= j. For each outlet Qj we introduce a
system of local coordinates (yj , zj) ∈ ωj × [1,∞), where the cross section ωj ⊂ R2 is
a smoothly surrounded bounded domain. Without loss of generality we may assume
that ωj × [2,∞) ∩ Ω0 = ∅. When considering a fixed outlet we omit the index j of
the local coordinates if no confusion arises. To the cross section ωj we also assign the
cylinder Πj = ωj ×R and the semicylinder Π−j = ωj × (−∞, 0).

We recall the main results on existence and uniqueness for the problem (1.1) in the
domain Ω. For simplicity assume for the moment that the domain under consideration
is a cylinder Π ≡ ω×R, where ω ⊂ Rn−1 is a bounded domain, and that the data are
smooth and have compact support. We indicate the formal differential operator of the
system (1.1) by S, but in order to obtain a formally self-adjoint system, we change
div to −div , hence Su =

(−∆v+∇p
−div u

)
. Performing the complex Fourier transformation

Fz→λ with respect to the variable z along the axis, the problem S(∇y, ∂z)u = f ,
v|∂ω = g turns into a family of problems on the cross section ω of the form

S(∇y, iλ)U(y) = F (y), y ∈ ω; V (y) = G(y), y ∈ ∂ω.(1.3)

We denote the associated operator pencil by S(λ), i.e., S(λ) is the family of mappings
from DlH(ω) = H l+1(Ω)3×H l(ω) to Rl(ω) = H l−1(Ω)3×H l(ω)×H l+1/2(ω)3 related
to the system (1.3). Suppose for β ∈ R that the line R + iβ is free of eigenvalues
of the operator pencil S(λ), which means the problem (1.3) has a unique solution
(vλ, pλ) for each λ ∈ R + iβ. Then the inverse Fourier transformation applied to the
family (vλ, pλ) yields the solution (v, p) for the problem in the cylinder. Parseval’s
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identity provides ∫
R

e2βt|w(t)|2 dt =

∫
R+iβ

|ŵ(λ)|2 dλ.(1.4)

This relation is the motivation to formulate the problem in terms of spaces containing
functions with certain exponential weights (for details see, e.g., [33, Chapter 3]).

On Πj and Ω we define weighted Sobolev spaces in the following way.
Definition 1.1. Let l ∈ N0, β ∈ R, and Π = ω × R, where ω is a bounded

domain in R2. For u ∈ C∞0 (Π) we set

‖u;W l
β(Π)‖ := ‖ueβz;H l(Π)‖.

We define W l
β(Π) as the closure of C∞0 (Π) in this norm.

To extend this definition to the domain Ω with cylindrical outlets we introduce a
function z ∈ C∞(Ω) with z(x) = 1 for x ∈ Ω0 and z(x) = zj for x ∈ Qj and zj ≥ 2.

Definition 1.2. For l, β as above we define W l
β(Ω) as the set of all u ∈ H l

loc(Ω)
such that

‖u;W l
β(Ω)‖ = ‖u eβz;H l(Ω)‖ <∞.

For l ≥ 1, ∂Ω ∈ Cl+1, we set W
l−1/2
β (∂Ω) = {u|∂Ω : u ∈W l

β(Ω)} normed by

‖u;W
l−1/2
β (∂Ω)‖ = inf ‖ũ;W l

β(Ω)‖,

where the infimum is taken over all ũ ∈W l
β(Ω) such that ũ|∂Ω = u.

Remark. Here we have to observe that if Ω = Π is a cylinder, Definition 1.2 differs
from Definition 1.1, when the cylinder Π is regarded as a domain with two outlets.

It is clear that C∞0 (Ω) is dense in W l
β(Ω), since this is true for H l(Ω) and the

weight function eβz(x) ≥ 1 for all x ∈ Ω. We have the obvious embedding W l
β(Ω) ↪→

Wm
β̄

(Ω) for l ≥ m, β ≥ β̄ (which is not true for W l
β(Π), of course!). Moreover, for

l > m, β > β̄, this embedding is compact (see the proof of [33, Proposition 4.1.1] and
also [52, Lemma 5.4.1]).

We introduce the natural spaces for the data f = (f ′, fn+1), g and the solution
u = (v, p) of the system (1.1). For l ∈ N, let ∂Ω ∈ Cl+2, β ∈ R; we set

DlβW (Ω) = W l+1
β (Ω)3 ×W l

β(Ω),
(1.5)

RlβW (Ω, ∂Ω) = W l−1
β (Ω)3 ×W l

β(Ω)×W l+1/2
β (∂Ω)3.

The mapping

Sβ : DlβW (Ω)→ RlβW (Ω, ∂Ω)
(1.6)

u 7→ (Su, v|∂Ω) = (−∆v +∇p,−div v, v|∂Ω)

defines a continuous linear operator. Moreover, the following Green’s formula

(Su,U)Ω − (u, SU)Ω = (v,NU)∂Ω − (Nu, V )∂Ω(1.7)

is valid for u = (v, p) ∈ DlβW (Ω), U = (V, P ) ∈ Dl−βW (Ω). Here Nu is the Neumann
operator, Nu = (−∇v·ν+pν)|∂Ω, ν is the exterior normal vector on ∂Ω. The following
results are well known (see [33, Chapter 5.8], [36]).
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Lemma 1.3. Let l ∈ N and β ∈ R. Then the following hold:
(i) The mapping (1.6) defines a Fredholm operator for all β ∈ R with the exception

of a discrete countable subset I ⊂ R.
(ii) 0 ∈ I, and β /∈ I implies −β /∈ I. If β /∈ I, then ker Sβ = coker S−β (in the

sense that the necessary conditions arising by Green’s formula (1.7) are sufficient for
the solvability of the system).

We have β ∈ I iff the line Imλ = β is not free of eigenvalues of the associated
elliptic pencils S(λ)j in Πj = ωj × R, j = 1, . . . , J . This means that there exists
λ with Imλ = β, such that the homogeneous problem (1.3) (i.e., F = 0, G = 0)
has a nontrivial solution on ωj for at least one j. All eigenvalues give rise to special

solutions u
(k,m)
λ of the homogeneous Stokes system (1.1) in Πj = ωj ×R, which are

called exponential solutions of order k. We have

u
(k,m)
λ (y, z) = eiλz

k∑
q=0

1

q!
(iz)qϕ(k−q,m)(y),(1.8)

where the vectors {ϕ(l,m)(y)}kl=1 form a Jordan chain corresponding to the eigenvalue
λ, especially where ϕ(0,m) is a solution to S(λ)ϕ(0,m) = 0 in ωj . (The index m
indicates that there is more than one eigenvector and associated Jordan chain in
general.) We recall a further well-known result on the index of the operator Sβ and
the asymptotic representation of the solutions to (1.1). For this purpose we fix a
system of cut-off functions with the properties supp χj ⊂ Qj , χj(yj , zj) = χj(zj) = 1
for zj > 2 in the local coordinates of Qj .

Lemma 1.4 (see [33, Theorem 5.1.4]). Let β > γ such that both of the lines
Imλ = β and Imλ = γ are free of eigenvalues of the elliptic pencils S(λ)j, j =
1, . . . , J . Let {λ1,j , . . . , λµj ,j} be the set of eigenvalues of S(λ)j with β < Imλ < γ
and ae(λ) denote the total multiplicity of the eigenvalue λ. Then the following hold:

IndSβ − IndSγ =
J∑
j=1

µj∑
µ=1

ae(λµ,j).(1.9)

If (f, g) ∈ RlγW (Ω), and u ∈ DlβW (Ω) is a solution to (1.1), then u admits the fol-

lowing asymptotic representation as a sum of exponential solutions and ũ ∈ DlβW (Ω),

u =

J∑
j=1

χj

µj∑
µ=1

∑
m,k

Cµ,m,k(f, g)u
(k,m)
λµ,j

(yj , zj) + ũ.(1.10)

Remark 1.5. Of course, these eigenvalues in general differ from outlet to out-
let, but on the real line, λ = 0 is the only eigenvalue in every cylinder Πj with
corresponding Jordan chain of length 2 (see [36]); we repeat the calculations for the
reader’s convenience.

Let ω be one of the cross sections ωj , y = (y1, y2) ∈ ω. The system (1.3) for an
eigenvector ϕ> = (ϕ1, . . . , ϕ4) ∈ DlH(ω) reads

−∆yϕk + λ2ϕk + ∂kϕ4 = 0, k = 1, 2,(1.11)

−∆yϕ3 + λ2ϕ3 + iλϕ4 = 0,(1.12)

−∂1ϕ1 − ∂2ϕ2 − iλϕ3 = 0,(1.13)

ϕ1|∂ω = ϕ2|∂ω = ϕ3|∂ω = 0.(1.14)
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We multiply the equations (1.11) and (1.12) scalarly in L2(ω) by ϕk and ϕ3, re-
spectively. In summary, integrating by parts and exploiting (1.13) leads to 0 =∑3
k=1

∫
ω

(|∇yϕk|2+λ2|ϕk|2) dy. For any λ ∈ R this leads, together with the boundary
condition (1.14), to ϕk = 0 for k = 1, 2, 3. From (1.12) we obtain ϕ4 = 0 for λ 6= 0,
and ϕ4 = const for λ = 0. Hence λ = 0 is the only eigenvalue of S(λ) on the real line
with corresponding eigenvector ϕ(0) = (0, 0, 0, 1)>. To calculate the corresponding
Jordan chain, we recall the equation for the associated vectors:

S(0)ϕm = −
m∑
l=1

1

l!

dlS

dλl
(0)ϕ(m−l), m = 1, . . . , ae− 1,(1.15)

with ae as in Lemma 1.4. Differentiating (1.11)–(1.13) with respect to λ, substituting
λ = 0 and ϕ(0) = (0, 0, 0, 1)>, elementary calculations lead to ϕ(1) = (0, 0, i2Ψ, 0),
where Ψ is a solution to the Dirichlet problem

−∆yΨ = 2 in ω, Ψ = 0 on ∂ω.(1.16)

To see that there exists no associated vector ϕ(2) of order 2, let us assume the contrary.
By (1.15), ϕ(2) is a solution to the problem

−∆yϕ
(2)
k +

∂

∂yk
ϕ(2)24 = −ϕ(0)

k = 0, k = 1, 2,

−∆yϕ
(2)
3 = −ϕ(0)

3 + iϕ
(1)
4 = 0,

− ∂

∂y1
ϕ

(2)
1 −

∂

∂y2
ϕ

(2)
2 = iϕ

(1)
3 = −1

2
Ψ in ω,(1.17)

ϕ
(2)
k = 0 on ∂ω, k = 1, 2, 3.(1.18)

We integrate (1.17) over ω. From the Gauss theorem and ∆Ψ = −2 we obtain

0 =

∫
ω

(
∂

∂y1
ϕ

(2)
1 +

∂

∂y2
ϕ

(2)
2 ) dy =

1

2

∫
ω

Ψ dy = −1

4

∫
Ψ∆Ψ dy = −1

4

∫
ω

|∇Ψ|2 dy > 0,

which leads to a contradiction.
The eigenvector and the associated vector give rise to two polynomial (with re-

spect to z) solutions of the homogeneous Stokes system in each cylinder Πj . These
are the constant pressure solution uj0(y, z)> = (0, 0, 0, 1), and the Poiseuille flow
uj1(y, z)> = (0, 0, $jΨ

(j)(y),−2$jz), where Ψ(j) is defined as in (1.16) with ω = ωj ,
and $j ∈ R is chosen in such a way that∫

ωj

$jΨ
(j)(y) dy = 1,(1.19)

i.e., uj1 carries the unit flux through the cylinder Πj .
In the following we fix l ≥ 1 and β > 0, β∗ > 0 in such a way that the strips

0 < |Imλ| < β∗ are free of eigenvalues of the pencils S(λ)j for j = 1, . . . , J , and
0 < β < β∗. Since DlβW (Ω) ⊂ H2(Ω)3×H1(Ω), it follows from standard methods that
the kernel of Sβ is trivial, and thus, by Lemma 1.3, the operator S−β is surjective. The
index formula (1.9), Lemma 1.3, and Remark 1.5 lead to dim kerS−β+dim cokerSβ =
2dim kerS−β = 2J , hence dim kerS−β = J . Let (f, g) ∈ Rlβ . We obtain a solution

u ∈ DlβW (Ω) of the system (1.1) iff

(f, U)Ω − (g,NU)∂Ω = 0(1.20)
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for all U ∈ kerS−β . However, since RlβW (Ω, ∂Ω) ⊂ Rl−βW (Ω, ∂Ω), (1.1) always has

a solution in Dl−βW (Ω) for every (f, g) ∈ Rlβ . By (1.10) and Remark 1.5, we have
the following asymptotic representation for u (see [36]):

u(x) =

J∑
j=1

χj(x)
(

(aju
j0(x) + bju

j1(x)
)

+ ũ(x)(1.21)

with coefficients aj , bj ∈ C, ũ ∈ DlβW (Ω). Here χj , j = 1, . . . , J, are the same cut-
off functions as in Lemma 1.4. In order to simplify the presentation of calculations
we adopt the following notations from [36]. We define 4 × J−matrices U0, U1, with
columns χju

jh, h = 0, 1. For c ∈ CJ we have Uh · c =
∑
j cjχju

jh. In this notation,
(1.21) reads

u = U0 · a+ U1 · b+ ũ, a, b ∈ CJ .(1.22)

Hence we find the preimage Dl±βW (Ω) of RlβW (Ω, ∂Ω) in Dl−βW (Ω) as a space with
detached asymptotics. Here the index ±β indicates that the space is related both to
W l
β , where the data are taken from, and to W l

−β , where we look for the solutions.
Precisely, we define (see [36])

Dl±βW (Ω) = {u ∈ Dl−βW (Ω) : u fulfills (1.22)}.

The factor space Dl±βW (Ω)/DlβW (Ω) is isomorphic to C2J and Dl±βW (Ω) is a
Banach space provided with the norm

‖u;Dl±βW (Ω)‖ =
(‖ũ;DlβW (Ω)‖2 + |a|2 + |b|2)1/2 ,

where | . | means the Euclidean norm in CJ . We denote the projections of u on the
coefficients (a, b) in (1.22) by πu, i.e., πu = (a, b) =: (π0u, π1u). By definition, the
operator

S : Dl±βW (Ω) 3 u 7→ (Su, v|∂Ω) ∈ RlβW (Ω)

is surjective and kerS = kerS−β ; moreover, due to Lemma 1.3, dim ker S = J . This
means in particular that the coefficients aj , bj are not uniquely determined by the
data. Namely, to the solution we may add η ∈ kerS, where η, of course, also has
the form (1.22). Thus, to obtain unique solutions of the Stokes system in Dl±βW (Ω),
additional asymptotic conditions have to be prescribed of the form

Bu = B · (πu) = B ·
(
a

b

)
= H ∈ CJ ,(1.23)

where B is a suitable J × 2J matrix and
(
a
b

)
is the column of coefficients in the

asymptotic representation (1.21). It is self-evident that only special matrices B are
reasonable, i.e., lead to Fredholm properties of the operator

(S, B) : Dl±βW (Ω)→ RlβW (Ω)× CJ .

We restrict ourselves in the following to the case B = (O, I), where I is the J×J unit-
matrix, and O is the matrix with all entries 0. This means we prescribe b = H. In the
case g = 0, f4 = 0 this is the problem with prescribed fluxes, i.e.,

∫
ωj
v · ej dy = Hj ,



APPROXIMATION OF THE STOKES SYSTEM 653

where ej is the unit vector in direction of the cylinder axis. The homogeneous problem
(S, B) = 0 has the nontrivial solution u# = (0, 0, 0, 1) (see [33, Theorem 5.3]): If bj = 0
in (1.21) then u is a solution to the homogeneous Dirichlet problem with ∇v ∈ L2(Ω);
thus, v = 0 and p= const. Now we use the following generalized Green’s formula for
u =

(
v
p

)
, U =

(
V
P

) ∈ Dl±βW (Ω) (see [33, Section 5.8.1] and [36, Theorem 4.2]):

(Su,U)Ω − (u, SU)Ω + (Nu, V )∂Ω − (v,NU)∂Ω
(1.24)

= 〈π0u, π1U〉J − 〈π1u, π0U〉J ,

where 〈 , 〉J is the scalar product in CJ . Let u ∈ Dl±βW (Ω) be a solution to the Stokes

problem (S, B)u = (f, g,H) with prescribed fluxes. Substituting u and u# into (1.24)
and using

π1u
# = 0, π0u

# = E with E = (1, 1, . . . , 1)> ∈ CJ ,(1.25)

we obtain the necessary condition∫
Ω

f4 dx+

∫
∂Ω

g · n do = −〈π1u, π0u
#〉J = −

J∑
j=1

Hj ,(1.26)

which means that the total flux has to vanish. In [36] it is shown that this condition
is also sufficient to obtain a solution u ∈ Dl±βW (Ω), and this solution is uniquely
determined up to a constant in pressure. We summarize this in the following theorem.

Theorem 1.6 (Stokes system with prescribed fluxes). Let l ∈ N, 0 < β < β∗,
and β∗ be defined as above. Then for every (f, g,H) ∈ RlβW (Ω, ∂Ω) × CJ fulfilling

(1.26) there exists a solution u =
(
v
p

) ∈ Dl±βW (Ω) of the Stokes problem

Su = f in Ω, v = g on ∂Ω, π1u = H.(1.27)

u is uniquely determined by the condition∫
G0

p dx = c,(1.28)

where G0 ⊂ Ω is an arbitrary nonvoid bounded subdomain and c ∈ C is an arbitrary
but fixed constant. In this case u obeys the following estimate:

‖u;Dl±β(Ω)‖ ≤ C
(
|H|+ ‖(f, g);RlβW (Ω, ∂Ω)‖

)
,(1.29)

where the constant C depends on G and on the normalization constant c for the
pressure but does not depend on the data (f, g,H).

Remark 1.7. The normalization condition for the pressure is completely volun-
tary; p may be fixed by prescribing the value of any continuous linear functional Φ
on Dl±β(Ω) with Φ(u#) 6= 0. For example, for E ∈ CJ with

∑
Ej 6= 0, we can fix p

through 〈E, π0u〉J = c.
Theorem 1.6 may also be applied to (f, g) = (0, 0), which leads to a certain

characterization of kerS with prescribed fluxes. It is clear that linear independent
vectors H1, . . . , Hk ∈ CJ lead to linear independent solutions η1, . . . , ηk of

Sη = 0 in Ω, η = 0 on ∂Ω, π1η = Hj , j = 1, . . . , k,(1.30)
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provided
∑J
i=1H

j
i = 0. Let E = (1, . . . , 1)> and

P = (P1, . . . ,PJ) = I− J−1E · E>, E · E> =


1 1 . . . 1
1 1 . . . 1
. . . . . . . . . . . .
1 1 . . . 1


denote the matrix associated with the projection P on CJ with Pc = c−J−1〈c, E〉JE.
Let ηj denote the solutions of (1.30) where Hj = Pj is the jth column of the matrix
P; this means ηj carries the flux 1− 1/J through the outlet Qj and the compensating
flux is distributed equally through the other J − 1 outlets. By Theorem 1.6,

ηj = U1 · Pj + U0 · Qj + η̃j ,(1.31)

we can fix the vectors Qj by 〈Qj , E〉J = 1.
Then η1, . . . , ηJ is a basis of kerS: It is clear that rankP = dim span[P1, . . . ,Pj ] =

J−1. Moreover, due to the special form of P any J−1 columns are linear independent;
thus, any J−1 elements of {η1, . . . , ηJ} are linear independent and may be completed
by u# to a basis of kerS. On the other hand, due to the choice of Qj , j = 1, . . . , J ,

we have
∑J
j=1 ηj = u#; thus, η1, . . . , ηj also form a basis of kerS.

We call the matrix QΩ = (Q1, . . . ,QJ) the pressure distribution matrix.

2. Formulation of the approximation problem. We want to approximate
the solution of (1.27) by solutions uR of Stokes problems on bounded subdomains.
For R > R0, we cut each outlet at zj = R and name the resulting domain ΩR, i.e.,

ΩR = {x ∈ Ω0} ∪
J⋃
j=1

{x ∈ Qj : zj < R}.

For the boundary ∂ΩR we have ∂ΩR = (∂ΩR ∩ ∂Ω)∪⋃Jj=1 ωj × {R}. We call ∂Ω(R)
the intersection of ∂ΩR with ∂Ω, ΓR,j = ωj × {R} the cross section at zj = R, and

ΓR =
⋃J
j=1 ΓR,j ; thus, ∂ΩR = ∂Ω(R)∪ΓR. Furthermore, we denote the union of edges

by ∂ΓR. We define the approximation problem in the following way. We fix a system
of cut-off functions χR(x) with χR(x) = 1 on Ω0; for each outlet Qj , χR = χR(zj) in
local coordinates, and

χR(zj) = 1 for zj ≤ R− 1, χR(zj) = 0 for zj ≥ R− 1

2
.

We look for uR = (vR, pR) as a solution of

SuR = χRf in ΩR, vR = χRg on ∂Ω(R).(2.1)

Then we have SuR = 0 in a neighborhood of the edge. As we will see later, this will
help us to increase the smoothness properties of the approximating solutions. We
choose the boundary condition on the cut cross section ΓR,j in dependence of the
main asymptotic term uj1Hj , where, as before, Hj denotes the flux of the solution u
through the outlet Qj , and uj1 coincides with the Poiseuille flow for zj large enough,
i.e.,

BRuR = H(H) on ΓR.(2.2)
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In the following section we investigate the formal asymptotic behavior of u − uR

for the Dirichlet operator DuR = vR, for the Neumann boundary operator NuR =
∇vR · ν − pν, and for the operator (FuR)> = (τ>1 · TuR · ν, τ>2 · TuR · ν, vR · ν),
where T = ∇v + (∇v)> − pI is the stress tensor (I the unit matrix in R3) and τ1,
τ2 are linear independent tangential vectors on the cross section. This means in local
coordinates (yj , zj) we choose τ>1 = (1, 0, 0) and τ>2 = (0, 1, 0), while ν> = (0, 0, 1). F
is a combination of the Dirichlet operator and a certain Neumann boundary operator,
and is usually related to free boundary problems. We call this boundary operator
the mixed boundary operator. While calculating the formal asymptotics we neglect
the difficulties arising from the edge. We will prove the existence of uR in suitable
function spaces in section 4.

3. Formal asymptotics.

3.1. The general scheme. For the moment we assume that the boundary ∂Ω is
smooth, the data (f, g) are smooth with compact support, and condition (1.26) holds
forH ∈ CJ . We choose R0 large enough such that suppf ⊂ ΩR0

and supp g ⊂ ∂Ω(R0).
With the transformation ũ = u−U1 ·H we pass to the case of zero fluxes; hence, we
may assume that H = 0 and ∫

Ω

f4 dx+

∫
∂Ω

g do = 0.(3.1)

The condition at infinity changes to π1u = 0. By Theorem 1.6 we obtain a solution
u of (1.1) and π1u = 0 which is unique under the condition (1.28). By (1.10) we
attain in every fixed outlet Qj for sufficiently large z the asymptotic expansion in
exponential solutions of the homogeneous Stokes system

u(y, z) '
∑
λµ

∑
k,m

ck,mµ (f, g)u
(k,m)
λµ

(y, z),(3.2)

where the sum is taken over all eigenvalues of the S(λ), where Imλ ≥ 0, u
(k,m)
λµ

(y, z)
are the exponential solutions of order k belonging to the eigenvalue λk according to
(1.8). If we order the eigenvalues according to the size of their imaginary parts βk,
then λ0 = 0 and c1,10 = 0 due to the condition π1u = 0; moreover, c0,10 = aj according
to (1.21). Let R > R0 + 1 and uR be a solution of the approximation problem. We
suppose that uR admits an asymptotic expansion into solutions of two-limit problems.
We fix x ∈ Qj , x = (y, z) and put ξ = (y, ζ) = (y, z −R). Then

uR(x) = u(0)(x) + χj(z)U
(0)(ξ) + F (1)(R)

(
u(1)(x) + χj(z)U

(1)(ξ)
)

+ . . . ,

|F (1)(R)| = O(e(−β1R)Rqmax),(3.3)

where u(0) solves Su(0) = f in Ω, v(0)|∂Ω = g. qmax is determined by the maximal
length of all Jordan chains belonging to the eigenvalues λ with Imλ = β1. u(k),
k = 1, 2, . . . are solutions of the first limit problem

Sw = f in Ω, w′|∂Ω = 0.(3.4)

U (k) are solutions of the second limit problem

SξW (ξ) = 0 in Π−j = ωj × (−∞, 0), W ′ = 0 on ∂ωj × (0,∞)

BξW (ξ) = H for ζ = 0(3.5)
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with suitable data f, H. In both cases the superscript “ ′ ” indicates the velocity part
of the solutions, i.e., the first three components.

We explain the main idea how to fix the first terms in (3.3) for the case J = 1,
i.e., Ω has only one outlet. We choose u(0) ∈ Dl±βW (Ω) as a solution to the Dirichlet
problem (1.1) in Ω. By the transformation ξ = (y, ζ) with ζ = z − R we pass to R-
independent coordinates and calculate the main asymptotic term of Bξu

(0) = −H(0)

for ζ = 0 by means of (3.2) (where the first coefficients now need not vanish). We
remove this term by putting uR = u(0) + χ(z)U (0)(y, z − R) + · · ·, where U (0) solves
(3.5) with H = −H(0) and decays exponentially as ζ → −∞. χ(z) is a cut-off function
vanishing for z > R0.

Here we use the fact that the assertions before Theorem 1.6 also hold for the
problem (3.5) (see section 5 below). This means, in particular, that the solution of
(3.5) can always be found in a class of functions growing exponentially to infinity with
ζ → −∞. If this growth is not too fast, then (up to multiplication with constants)
there exists only one nontrivial solution to the homogeneous problem (3.5). Hence, to
find U (0) which decays exponentially as ζ → −∞, it is sufficient that H(0) fulfills one
compatibility condition arising from the corresponding Green’s formula. This can be
achieved by the correct choice of u(0).

It is clear that v(0) + χ(z)V (0)(y, z −R) = g on ∂Ω(R). We have

S(u(0)(y, z) + χ(z)U (0))(y, z −R) = f + f̃ ,

where f̃ = [S, χ]U (0) has a compact support. For U (0) we can again use the expansion

(3.2), where the coefficients for λ = 0 now vanish. Using formula (1.8) for u
(k,m)
λµ

gives

f̃(y, z) = e(iλ1R)f (1)(y, z, R) +O
(
e−(Imλ2+ε)

)
,

and f (1) has the structure f (1)(y, z, R) =
∑qmax
q=1 Rqf (1,q)(y, z). We remove these

terms by solutions u(1,q) of (3.4) with f = −f (1,q), then calculate again the leading
term of B(u(0) + χU (0) + eiλ1R

∑
q R

qu(1,q)) for z = R, and so on.

If J > 1, one has to take into account that u(k) influences all outlets, and the
eigenvalues λµ for λ 6= 0 may be different in all outlets. Important for the behavior
of u − uR is the choice of u(0) and the first step in the calculations, which can be
done simultaneously in all outlets, since the first eigenvalue, λ = 0, is the same for all
outlets.

3.2. The Dirichlet condition and the mixed boundary condition on the
artificial boundary. Let f , g, and u be as in section 3.1. For sufficiently large R
let uR = (vR, pR) be a solution to SuR = f in ΩR, vR = g on ∂Ω(R), and vR = 0
on ΓR. We outline that uR exists due to (3.1). We choose u(0) = u. To calculate
v(0)|zj=R, we use (3.2) and apply the transformation z = ζ + R to the exponential

solutions u
(k,m)
λ (y, z). With (1.8) it follows that

u
(k,m)
λ (y, z) = eiλR

k∑
q=0

1

q!
(iR)qu

(k−q,m)
λ (y, ζ).

For fixed j we obtain

v(y,R) =
∑

Imλ=β1

eiλRM(k,m)
λ (f, g,R)v

(k,m)
λ (y, 0) +O(e(−β2+ε)R).
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Here the sum is taken over all eigenvalues of S(λ) on the line Imλ = β1, β1 > 0.

Each M(k,m)
λ (f, g,R) is a polynomial in R containing also the coefficients ck,mµ (f, g)

of the representation (3.3). Each term in the sum has the form

Ce−β1R eiReλRRlvkl,mλ (y, 0) =: e−β1RRlH(1,l)(y)(3.6)

with β1 = Imλ > 0. Applying the scheme of 3.1, we see that U (0) = 0 in each
outlet. Moreover, we find solutions U (1,l) to the second limit problem with H = H(1,l)

decaying exponentially to 0 as ζ → −∞: We recall that there exists only one nontrivial
solution U =

(
V
P

)
to the homogeneous problem (3.5) with

sup
ζ→−∞

eβζU(y, ζ) <∞, 0 < β < β∗.

Then it is clear that this solution U = (0, 0, 0, 1)> = u#. Green’s formula (1.7) in Π−j
leads to the necessary condition∫

ωj

e>z ·H(1,l)(y) dy = 0,(3.7)

where ez = (0, 0, 1)> is the unit vector in z-direction. Replacing Ω in the same

formula by ωj × [0, t], u = u
(k,m)
λ , U = u# and passing with t → ∞, we see∫

ωj
e>z v

(k,m)
λ (y, 0) dy = 0 if Imλ > 0; thus (3.7) holds.

Now we proceed as in section 3.1 and obtain the formal asymptotic error estimate

|u(x)− uR(x)| = O(e−(β∗−ε)R), ε > 0 arbitrary,

if we keep in mind that β∗ is the mimimum of all imaginary parts of the nonzero
eigenvalues in all outlets.

For BuR = FuR we have to observe the following Green’s formula (Tu = ∇v +
(∇v)> − pI):∫

Π−
j

S1u · U dx+

∫ 0

−∞

∫
∂ωj

Tu · ν · V do+

∫
ωj

Fu(y, 0) · F0U(y, 0) dy

(3.8)

=

∫
Π−
j

u · S1U dx+

∫ 0

−∞

∫
∂ωj

TU · ν · v do+

∫
ωj

F0u(y, 0) · FU(y, 0) dy

with

S1u =

(−∆v −∇div v +∇p
−div v

)
, F0u = (vτ ,−ν> · Tu · ν).

The solution to the homogeneous second limit problem is again u#; thus Green’s
formula (3.8) leads to the same compatibility conditions, and we may use analogous
calculations as for the Dirichlet operator.

3.3. The Neumann condition on the artificial boundary. Now let uR =(
vR

pR

)
be a solution of

SuR = f in ΩR, vR = g on ∂Ω(R), NuR = (∇vR − pI) · ν = 0 on ΓR.
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Let j ∈ {1, . . . , J} and x = (y, z) ∈ Qj be fixed with z > R0. If we put u(0) = u, then
to apply the scheme developed above, we use the expansion (3.2) and achieve

u(x) = U0 · a+
∑

Imλ=β1

e−β1z · · ·+ · · ·(3.9)

with a = (a1, . . . , aJ) = π0u. For z = R this leads to

Nu(y,R) = ∂zv(y,R)− p(y,R)ez = aj +O(e−(β1−ε)R)

with some arbitrary small but in general positive ε. In order to remove the term aj
on ΓR,j , U

(0) = (V (1), P (1)) has to be a solution of (3.5) with

NξU
(0)(ξ) = aj(3.10)

with ξ = (y, z − R); (y, z) are the local coordinates in the outlet Qj . If we choose
U (0)(ξ) = uj0(ξ)aj in every outlet, then extending χjU

(0) by zero to x 6∈ Qj and
substituting χjU

(0) into formula (3.3), we see that u(1) has to solve (3.4) with f =∑
j S(χjU

(0)). This gives u(1) = U0 ·a and we arrive again at the second limit problem
with condition (3.10).

For this reason we have to find U (0)(ξ) in a class of functions where the velocity
part V (0) and the pressure part P (1), together with all derivatives, exponentially die
to 0 as ζ → −∞, i.e.,

sup
ζ<−1

e−βζ |∂αU (0)(y, ζ)| <∞ for 0 < β < β∗,

where β∗ has the same meaning as in 1.3. Using Green’s formula (1.7) in Π−j , we find
that this implies ∫

ωj(0)

NU (0) · V do =

∫
ωj

ajV3(y, 0) dy = 0(3.11)

for any solution U = (V, P ) of

SU = 0 in Π−j , V = 0 on ∂ωj × (−∞, 0), NU = 0 for ζ = 0(3.12)

with V ∈ H2
loc(Ω), P ∈ H1

loc(Ω), and

sup
ζ<−1

eβ
′ζ |∂αV (y, ζ)| <∞(3.13)

for some β′ < β, α ∈ N3
0. As already mentioned, up to multiplication with constants

there exists only one nontrivial solution to (3.12) and (3.13), which is the Poiseuille
flow in this case. From this result we see that only for J = 1, i.e., if the domain
has only one outlet, can (3.11) be fulfilled through the change of the normalization

condition (1.28) to a1 = 0; whereas for J ≥ 2, only
∑J
j=1 aj = 0 is possible according

to Remark 1.7. Thus we change u(0) to u(0) = u+η ·c; c = c(R) ∈ CJ has to be chosen
properly; η(x) is the 4×J−matrix with columns ηj , where ηj are the special solutions
of the homogeneous Stokes problem defined in Remark 1.7. Using the representation
(3.9) for u and (1.31) for η, we obtain

u(0) = U1 · P · c+ U0 · (a+QΩ · c) + ũ,(3.14)
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where ũ decays exponentially. To calculate the leading term of Nu(0) on ΓR, we fix
one outlet Qj and rewrite (3.14) in ξ-coordinates, ξ = (y, z −R); this gives

u(0)(ξ) =
[
uj1(ξ)(P · c)j + uj0 (aj + (QΩ · c)j − 2$jR(P · c)j)

]
+
≈
u .

The term −2$jR(P · c)j appears because uj1(y, z) = uj1(ξ)− 2$j(0, 0, 0, R). So the
main discrepancy at ξ = 0 is produced by N [. . .], and we look for U (0) as a solution
of (3.5) whereas the boundary condition (3.10) changes to

NξU
(0)(ξ) = −Nξ

[
uj1(y, 0)(P · c)j + uj0(aj + (QΩ · c)j − 2$jR(P · c)j)

]
=: Hj(1)(y).

The boundary operator annuls the first term on the right-hand side, henceNξu
(0)(ξ) =

0 if aj + (QΩ · c)j − 2$jR(P · c)j = 0. This condition has to be accomplished in every
outlet Qj , so we arrive at a linear system for c ∈ CJ :

−QΩ · c+ 2$jRP · c = a.(3.15)

To show the solvability of this system, we substitute

c = P · c+ cEE with cE = J−1〈c, E〉J , E = (1, . . . , 1)>(3.16)

into (3.15), remembering the choice of Qj ; this leads to

−QΩ · P · c− cEE + 2$jRP · c = a.(3.17)

We apply P to this system and obtain

−P · QΩ · P · c+ 2$jRP · c = Pa

because P2 = P. Since P gives the identity on PCJ , this system is uniquely solvable in
PCJ for sufficiently large R. Now we multiply (3.17) scalar by E. Using the symmetry
of QΩ together with (3.16) we calculate cE = −J−1〈a,E〉J , and thus prove the unique
solvability of (3.15).

We have

cE = const, Pc(R) = O(R−1) as R→∞.(3.18)

With this choice of c we find U (0) in each outlet such that

S
(
χj(z)U

(0)
)

(y, z −R) = O(e−β1RRq(j))

and we proceed as indicated in section 3.1. As a result, we obtain

|u(x)− uR(x)| = |η · c(R)(x)|+O(e−(β∗−ε)R) = O(1).

If the normalization condition 〈a,E〉J = 0 is chosen, then the previous calculations
lead to cE = 0 and |u− uR(x)| = O(R−1).

4. Solution of the approximation problem. The aim of the following sec-
tions is to prove the existence of solutions uR to the approximation problem and the
error estimate for u − uR which justifies the formal asymptotic estimates rigorously.
We carry out the proofs for the mixed boundary condition on the artificial bound-
ary ΓR, since this condition gives the best regularity properties of the approximating
solutions (see Theorem 4.4 below).
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For the approximation problem itself, it is possible to prove the existence of a so-
lution uR ∈ DlH(ΩR) = H l+1(ΩR)3×H l(ΩR) with comparably elementary methods.
However, to obtain an error estimate for the difference u−uR, it is necessary to prove
the existence of solutions and uniform estimates for the problem

SU = f in ΩR,(4.1)

V = g on ∂Ω(R), FU = h on ΓR,(4.2)

where (f, g, h) are general data in suitable function spaces. If we look for a solution
U ∈ H2(ΩR)3 ×H1(ΩR) at least, then f4, g, h have to fulfill the necessary condition
arising from the Gauss theorem:∫

ΩR

f4 dx+

∫
∂Ω(R)

ν> · g do+

∫
ΓR

ν> · hdo = 0.(4.3)

It is clear that if u ∈ Dl±β(Ω) is a solution to the Stokes problem with prescribed fluxes

and uR ∈ DlH(ΩR) is a solution to the approximation problem, then the difference
U = u − uR ∈ DlH(ΩR) fulfills (4.1), (4.2) with f ′ ∈ H l−1(ΩR)3, f4 ∈ H l(ΩR),
g ∈ H l+1/2(∂Ω(R))3, and h ∈ H l−1/2(ΓR)2×H l+1/2(ΓR). (The notation for hmust be
read in local coordinates of the outlet Qj .) On the other hand, it is obvious that even
for l = 1 we cannot obtain a solution U ∈ D1H(ΩR) of (4.1), (4.2) for arbitrary data
(f, g, h) ∈ R1H(ΩR, ∂Ω(R),ΓR), even if (4.3) is satisfied. In a 3-dimensional domain
the velocity part V of this solution would be continuous up to the boundary, and
hence also on the edges of ΩR, which would force additional compatibility conditions
for the data. Thus, the general problem (4.1), (4.2) has to be treated in weighted
spaces with weights ∼ ργ , where ρ(x) = dist(x, ∂ΓR) in the vicinity of ∂ΓR.

Since ∂ΓR is a disjoint union of 1-dimensional Cl+2-manifolds, we find ε0 > 0 such
that dist(x, ∂ΓR) is of class Cl+2 on Oε0(ΓR) = {x,dist(x,ΓR) < ε0}. We choose a
basic weight function ρ ∈ Cl+2(ΩR) with ρ(x) = dist(x, ∂ΓR) for x ∈ Oε0 ∩ ΩR, and
ρ(x) = 1 for x ∈ ΩR−2ε0 and introduce spaces of Kondratiev’s type on ΩR.

Definition 4.1. Let l ∈ N0, γ ∈ R, ϕ ∈ C∞0 (ΩR\∂ΓR). We set

‖ϕ;V lγ(ΩR, ∂ΓR)‖ =
∑
|α|≤l

(
‖ργ−l+|α|∂αϕ;L2(ΩR)‖2

)1/2

(4.4)

and V lγ(ΩR, ∂ΓR) the closure of C∞0 (ΩR\∂ΓR) in the norm (4.4).

By V
l−1/2
γ (∂Ω(R), ∂ΓR) and V

l−1/2
γ (ΓR, ∂ΓR) we denote the spaces of traces on

∂Ω(R) and ΓR. We define

‖ϕ;V l−1/2
γ (M,∂ΓR)‖ = inf ‖ϕ̃;V lγ(ΩR, ∂ΓR)‖

for M = ∂Ω(R) and M = ΓR, where the infimum is taken over all ϕ̃ ∈ V lγ(ΩR, ∂ΓR)
with ϕ̃|M = ϕ.

V lγ(ΩR, ∂ΓR) coincides with the space of all functions

{ϕ ∈ H l
loc(ΩR); ‖ϕ;V lγ(ΩR, ∂ΓR)‖ <∞}

and thus is a space of regular distributions on ΩR. The trace space V
l−1/2
γ (ΓR, ∂ΓR)

is the union of the traces on the J cross sections ΓR,j = ΓR ∩ Qj , where the weight
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ρ(x) = dist(x, ∂ωj × {R}) in the ε0-neighborhood of ∂ωj × {R}. Thus we denote the

trace spaces on the cross section ωj × {R} by V
l−1/2
γ (ωj(R), ∂ωj).

Analogous to the previous section we define the natural domain and range of the
problem (4.1), (4.2),

DlγV (ΩR) = V l+1
γ (ΩR, ∂ΓR)3 × V lγ(ΩR, ∂ΓR),

RlγV (ΩR) = V l−1
γ (ΩR, ∂ΓR)3 × V lγ(ΩR, ∂ΓR),

(4.5) RlγV (ΩR, ∂Ω(R),ΓR) = RlγV (ΩR)× V l+1/2
γ (∂Ω(R), ∂ΓR)3

×
J∏
j=1

V l−1/2
γ (ωj(R), ∂ωj)

2 × V l+1/2
γ (ωj(R), ∂ωj).

Then the operator

(S,D, F ) : DlγV (ΩR)→ RlγV (ΩR, ∂Ω(R),ΓR),
(4.6)

u 7→ (Su, v|∂Ω(R), Fu|ΓR,j , j = 1, . . . , J)

defines a continuous linear operator. Here the notation

Fu|ΓR,j ∈ V l−1/2
γ (ωj(R), ∂ωj(R))2 × V l+1/2

γ (ωj(R), ∂ωj(R))

has to be understood in the local coordinates of Qj :

∂yiv3 − ∂zvi ∈ V l−1/2
γ (ωj(R), ∂ωj(R)) and v3 ∈ V l+1/2

γ (ωj(R), ∂ωj(R)).

To derive Fredholm properties of the mapping (4.6) at least for γ in a certain
bounded interval, we have to combine results from the general theory of elliptic sys-
tems in domains with smooth edges with results which are already known for the
problem (4.1), (4.2).

Theorem 4.2. Let l ∈ N, ∂Ω ∈ Cl+2, γ ∈ R. The operator (S,D, F ) defined by
(4.6) is Fredholm for |γ − l| < 1. For (f, g, h) ∈ RlγV (ΩR, ∂Ω(R),ΓR) there exists a
solution to the problem (4.1), (4.2) iff∫

ΩR

f4 dx+

∫
∂Ω(R)

ν> · g do+

∫
ΓR

ν> · hdo = 0.(4.7)

The solution is unique up to a constant in pressure and thus obeys the following
estimate:

‖u;DlγV (ΩR)‖ ≤ C
(
‖(f, g, h);RlγV (ΩR, ∂Ω(R),ΓR)‖+ ‖p;L2(G0)‖

)
,(4.8)

where G0 is an arbitrary nonvoid subdomain of ΩR and C = C(R,Ω, l) is a constant.
Proof. The domain ΩR is a bounded domain with a smooth edge ∂ΓR. This means

for every x0 ∈ ∂ΓR there exists a neighborhood O(x0) and a Cl+2- diffeomorphism
Φ : O → O′(0) (O′(0) is a neighborhood of 0) such that Φ(O ∩ ΩR) = O′(0) ∩ D,
D = dπ/2×R is an infinite wedge, dπ/2 = {x = (r, θ) ∈ R2 : 0 < r <∞, 0 < θ < π/2}.
The treatise of the boundary value problem (4.1), (4.2) in ΩR is connected to the
analysis of the model problem in the wedge D which takes the following form:

Su(x) = f(x) for x ∈ D = dπ/2 ×R,(4.9)

Du(x) = v(x) = g(x2, x3) for x1 = 0,(4.10)

Fu =

(
∂v2

∂x1
+
∂v1

∂x2
,−v2,

∂v3

∂x2

)
(x) = h(x1, x3) for x2 = 0.(4.11)
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We set ΓD = {0} × R+ × R, which corresponds to the lateral surface ∂Ω(R), and
ΓF = R+ × {0} ×R, which corresponds to the artificial boundary ΓR. The union of
edges, ∂ΓR, corresponds to the infinite edge M ′ = {0} × {0} ×R.

In D let ρ(x) = (x2
1 + x2

2)1/2, i.e., for all x ∈ D, ρ(x) is the distance of x to
the edge M ′; let V lγ(D,M ′) be defined as in Definition 4.1. We introduce the natural

domain and range DlγV (D) andRlγV (D,ΓD,ΓF ) in an analogous way as in (4.5). Then

the operator (S,D, F ) : DlγV (D,M ′) → RlγV (D,ΓD,ΓF ) defines an isomorphism for
|γ − l| < 1. This was proved for 0 ≤ γ − l < 1 in [49] and [32]. For −1 < γ − l < 0 it
follows from Proposition 8.2.8 of [33] together with [49, pp. 353, 402] concerning the
eigenvalues of the associated 2-dimensional problems in the angle dπ/2.

Theorem 8.3.1 in [33] now gives the Fredholm property of the mapping (4.6) for
|γ − l| < 1. Moreover, from the proof of this theorem it follows that kernel and
cokernel of (4.6) are independent of γ and l in this interval. Since Su = f iff

S1u := (−∆v −∇div v +∇p,−div v) = (f ′ +∇f4, f4),

the same is valid for the operator

Slγ : DlγV (ΩR) 3 u→ (S1u, v|∂Ω(R), Fu|ΓR) ∈ RlγV (ΩR, ∂Ω(R),ΓR).

The operator (S1, D, F ) is formally self-adjoint with respect to Green’s formula

(S1u, U)ΩR + (v,N1U)∂Ω(R) + (Fu, F0U)ΓR
(4.12)

= (u, S1U)ΩR + (N1u, V )∂Ω(R) + (F0u, FU)ΓR ,

where N1u = Tu ·ν and, as in section 3.2, (F0u)> = (vτ ,−ν> ·N1u). (4.12) is valid for
u ∈ DlγV (ΩR) and U ∈ Dl2l−γV (ΩR). (We note that for |γ−l| < 1 also |(2l−γ)−l| < 1

holds.) Therefore, Theorem 8.3.3 in [33] leads to IndSlγ = 0, and it remains to

calculate the kernel of Slγ for one exponent γ such that |γ − l| < 1, for example,

for γ = l. We fix u = (v, p) ∈ DllV (ΩR) such that (S1, D, F )u = (S,D, F )u = 0.
In this case we have ∇v ∈ L2(ΩR) and p ∈ L2(ΩR). Since v = 0 on ∂Ω(R) we
may apply Poincaré’s inequality and obtain v ∈ H1(ΩR). Multiplying the equation
S1u = 0 scalar (in L2(ΩR)) by u, then using integration by parts and the boundary
conditions, leads to v = 0 and p = const. Since the function p ≡ 1 is contained in V lγ
for all γ with γ − l > −1, we have ker Slγ = {(0, 0, 0, c) : c ∈ R}. Now the necessity of

condition (4.7) follows from (4.12) and the sufficiency from IndSlγ = 0.
Remark 4.3. The other boundary conditions on the cut cross sections ΓR men-

tioned in section 3 can be treated exactly along the same scheme; only the admissible
intervals for the weight index γ are different.

We apply Theorem 4.2 to prove the existence of solutions to the approximation
problem.

Theorem 4.4. Let l ∈ N, ∂Ω ∈ Cl+2, let f ∈ H l−1(Ω)3×H l(Ω), g ∈ H l+1/2(∂Ω),
and H ∈ CJ be given such that

∫
Ω
|f4|dx +

∫
∂Ω
|ν · g|do < ∞, and the compatibility

condition ∫
Ω

f4 dx+

∫
∂Ω

ν> · g do+
J∑
j=1

Hj = 0(4.13)

is fulfilled. Let {χR}R>1 be a system of cut-off functions with the following properties:
χR(x) = χR(zj) in each outlet Qj, χR(x) = 1 for x ∈ Ω0 and for x = (yj , zj)
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with zj < R − 1, and χR(yj , zj) = 0 for zj > R − 1/2. Let U1 be defined as in

section 1.2, i.e., U1 =
(V1

P1

)
, V1 is the 3 × J-matrix with rows χjv

j1, j = 1, . . . , J ;

P1 = (χ1p
j1, . . . , χJp

J1), and uj1 =
(
vj1

pj1

)
indicates the Poiseuille flow in the outlet

Qj.
Then there exists a unique solution uR = (vR, pR) with vR ∈ H l+1(ΩR)3, pR ∈

H l(ΩR) to the approximation problem

SuR = χRf in ΩR(4.14)

vR = χRg on ∂Ω(R)(4.15)

FuR = F (U1 · (H +H∞)) on ΓR(4.16) ∫
G0

pR do = 0,(4.17)

where H>∞ = (H∞,1, . . . , H∞,J) ∈ CJ with

H∞,j =

∫
Qj

(1− χR)(zj)f4(yj , zj) dyj dzj +

∫
∂Qj

ν> · (1− χR)(zj)g(yj , zj) do,

and G0 ⊂ Ω0 is a nonvoid subdomain such that G0 ∩Qj = ∅ for j = 1, . . . , J .
Remark 4.5. The integrability conditions for f4 and g look artificial, but they

are fulfilled if the data meet the conditions of Theorem 1.6 or, trivially, if f4 = 0 and
g = 0. Thus we can use this result to approximate the solution u ∈ Dl±βW (Ω) for
exponentially dying data as well as for weak solutions with zero boundary values and

f =
(
f ′

0

)
.

Proof of Theorem 4.4. First of all, it is easy to see that χRf ∈ RlγV (ΩR),

χRg ∈ V l+1/2
γ (∂Ω(R)) for all γ ∈ R, since the support is separated from the edges

∂ΓR. For the boundary values on ΓR we have to use more subtle arguments, which
are collected in the following lemma.

Lemma 4.6. Suppose w ∈ H l(ΩR) and w = 0 on ∂Ω(R) ∩ O, where O is a
neighborhood of ∂ΓR. Then w ∈ V lγ(ΩR) for all γ − l ≥ −1.

Proof (see also [33, p. 31] for the 2-dimensional case). Because V lγ̄(ΩR) ⊃ V lγ(ΩR)

for γ̄ > γ, it is sufficient to prove w ∈ V ll−1(ΩR). Since w ∈ H l(ΩR) we have

‖∂αw;V 0
−1+|α|(ΩR)‖ ≤ C sup

x∈O∩ΩR

ρ(x)−1+|α|‖∂αw;L2(ΩR)‖ <∞

for all 1 ≤ |α| ≤ l. It remains to show w ∈ V 0
−1(ΩR). We choose a covering {Oµ}Nµ=1

of ΩR such that
⋃N
µ=1Oµ covers the edges ∂ΓR and Cl-diffeomorphisms Φµ, such

that Φµ(Oµ) = D ∩ Z(T ) for some T > 0. Here Z(T ) = {(x2, x2, x3);x2
1 + x2

2 <
T 2,−T < x3 < T} is a circular cylinder. Moreover, we suppose Φµ(Oµ∩∂Ω(R)) ⊂ ΓD

and Φµ(Oµ ∩ ΓR) ⊂ ΓF (see the notations in the proof of Theorem 4.2). Let χµ
be a partition of unity subordinated to the covering {Oµ}µ. Then w ∈ V 0

−1(ΩR)
is equivalent to w̃ := χµw ◦ Φ−1

µ ∈ V 0
−1(D) for every µ. We have χµw ◦ Φ−1

µ ∈
H1(D ∩ B(0, T )), moreover, χµw ◦ Φ−1

µ = 0 on ΓD. We use polar coordinates (ρ, θ)
on dπ/2, then with Friedrichs’ inequality we arrive at∫

D∩Z(T )

|∇w̃|2 dx ≥
∫ T

0

∫ T

0

∫ π/2

0

|∂θw̃|2ρ−1 dθ dρdx3

≥
∫ T

0

∫ T

0

∫ π/2

0

|w̃|2ρ−1 dθ dρdx3 =

∫
D∩Z(T )

|w̃|2ρ−2 dx,
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which proves the lemma.
Using this result, we obtain U1 · A|ΩR ∈ Dll(ΩR) for every A ∈ CJ ; thus

F (U1 · (H + H∞)) is contained in the corresponding trace space. With Theorem
4.2 we obtain a solution u ∈ DllV (ΩR) to the approximation problem; it is clear then
that it is possible to fix the constant in pressure by condition (4.17).

It remains to verify the regularity property. From the definition of DllV (ΩR)
we know already that uR ∈ H l+1(ΩR−ε)3 × H l(ΩR−ε); moreover, ∇vR ∈ L2(ΩR)
and pR ∈ L2(ΩR). It remains to treat a neighborhood ΩR\ΩR−ε of the edges ∂ΓR.
Since ∇vR ∈ L2(ΩR) and vR|∂Ω(R) = 0 in a neighborhood of the edges, we can
apply Poincaré’s inequality on the cross sections ωj and integrate with respect to
zj to see vR ∈ L2(ΩR). Since the Poiseuille flow U1 · (H + H∞) is smooth, i.e.,
U1 · (H + H∞) ∈ DlH(ΩR), we prove the regularity of U = uR − U1 · (H + H∞) in
ΩR\ΩR−ε.

We fix a single outlet Qj with the cross section ωj , together with the local coor-

dinates (y, z) and ε < 1/2. Then U =
(
V
P

)
fulfills

SU = 0 in ωj × (R− ε,R), V = 0 on ∂ωj × (R− ε,R),
(4.18)

FU = 0 for z = R.

We use the transformation z → ζ = z − R. If we observe the representation of V in
local coordinates, i.e., V = V1e1 + V2e2 + V3ez where e1, e2 are the unit vectors in y1,
y2-direction, and ez in the direction of the cylinder axis, respectively, then (4.18) is
equivalent to

SU(y, ζ) = 0 for (y, ζ) ∈ ωj × (−ε, 0),(4.19)

V (y, ζ) = 0 for (y, ζ) ∈ ∂ωj × (−ε, 0)(4.20)

together with the boundary condition on the cross section in local coordinates:

V3(y, 0) = 0,(4.21)

∂1V3(y, 0) + ∂zV1(y, 0) = ∂zV1(y, 0) = 0,

∂2V3(y, 0) + ∂zV2(y, 0) = ∂zV2(y, 0) = 0.(4.22)

Now we extend U on Qε = ωj × (−ε, ε), namely V1, V2, and P even, i.e., Ui(y, ζ) =
Ui(y,−ζ), i = 1, 2, 4, and V3 odd, i.e., V3(y, ζ) = −V3(y,−ζ). Then V (y, ζ) = 0 for
y ∈ ∂ωj , |ζ| < ε. It is clear that U ∈ L2(Qε)

4 and S(U) exists as a distribution
(on Qε), which is regular on Q−ε = ωj × (−ε, 0) and on Q+

ε = ωj × (0, ε). We see
SU = 0 on Q−ε and on Q+

ε by elementary calculations. We show that no additional
terms appear on the cross section ωj×{0}. For this purpose we choose (a real valued)
ϕ ∈ C∞0 (Qε); we denote by −〈div V, ϕ〉Qε the application of the distribution −div V
on ϕ. By definition,

−〈div V, ϕ〉Qε = (V,∇ϕ)Qε = (V,∇ϕ)Q−ε + (V,∇ϕ)Q+
ε
.

To each integral we apply the Gauss theorem. Observing that ϕ = 0 on ∂Qε and
limζ→0+ V3(y, ζ) = limζ→0− V3(y, ζ) = 0 in the trace sense, we obtain

−〈div V, ϕ〉Qε = −
∫
Q−ε

div V ϕ dx+

∫
ωj

V3(y, 0)ϕ(y, 0) dy

−
∫
Q+
ε

div V ϕ dx+

∫
ωj

lim
ζ→0+

V3(y, ζ)ϕ(y, ζ) dy = 0;
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hence div V = 0 on Qε in the distributional sense. Since div V = 0, we can write
Su = −div TU with TU = ∇U + (∇U)>−P I, where I is the unit matrix in R3. Now
we repeat the same procedure for −∆V +∇P = −div TU and Φ ∈ C∞0 (Qε)

3. Since
div TU = 0 in Q−ε and Q+

ε , the trace of TU · ez = limζ→0 TU(y, ζ) · ez exists for ζ > 0
and ζ < 0. Hence we can calculate

−〈div TU,Φ〉Qε = (TU,∇Φ)Qε

= −(div TU,Φ)Q−ε +

∫
ωj

TU(y, 0) · ez · Φ(y, 0) dy(4.23)

−(div TU,Φ)Q+
ε
−
∫
ωj

lim
ζ→0+

TU(y, ζ) · ez · Φ(y, ζ) dy.

From the definition of U(y, ζ) for ζ > 0 we obtain for the first two components of
TU · ez
∂yiV3(y, ζ) + ∂zVi(y, ζ) = −∂yiV3(y,−ζ)− ∂zVi(y,−ζ)→ 0 with ζ → 0, i = 1, 2,

by (4.21) and (4.22). For the third component we get for ζ > 0

e>z · TU(y, ζ) · ez = 2∂zV3(y, ζ)− P (y, ζ) = 2∂zV3(y,−ζ)− P (y,−ζ);

hence

lim
ζ→0+

e>z · TU(y, ζ) · ez = lim
ζ→0−

e>z · TU(y, ζ) · ez.

Therefore the
∫
ωj
. . . cancel each other in (4.23), which leads to −〈div TU,Φ〉Qε = 0.

Thus we obtain SU = 0 in Qε and V = 0 on ∂ωj × (−ε, ε). We apply the results of
[48] and [6] once more and obtain U ∈ DlH(Qε′) for all ε′ < ε, which finishes the
proof.

5. Uniform estimates for the solutions in ΩR. To derive an error estimate
for u− uR, we need uniform estimates for the solutions of the system

Su = 0 in ΩR, v = 0 on ∂Ω(R), Fu = h on ΓR(5.1)

for u ∈ DllV (ΩR). We denote the space of traces of {Fu : u ∈ DllV (ΩR)} by
RllV (ΓR, ∂ΓR). The main result of this section is the following theorem.

Theorem 5.1. Let l ∈ N and h ∈ RllV (ΓR, ∂ΓR) be given with∫
ΓR

ν> · hdo = 0.(5.2)

Let u = (v, p) ∈ DllV (ΩR) be the unique solution of (5.1) with
∫
G0
pdx = 0, where

G0 is chosen as in Theorem 4.4. Then the following holds:

‖u;DllV (ΩR)‖ ≤ C R2 ‖h;RllV (ΓR, ∂ΓR)‖,(5.3)

where C is a constant independent of R.
Main idea of the proof. The main idea of the proof is the following: Let X = {u ∈

DllV (ΩR), Su = 0 in ΩR, v = 0 on ∂Ω(R),
∫
G0
pdx = 0}. Then X is a closed linear

subspace of DllV (ΩR), and by Theorem 4.2, the operator

F : u→ Fu ∈ Y :=

{
h ∈ RllV (ΓR),

∫
GR

ν> · hdo = 0

}
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defines an isomorphism. To prove (5.3), we construct an “almost inverse operator,”
i.e., a continuous linear operator A : Y → X, such that FA = I + F , where I is the
identity on Y , F is small for large R, i.e., there exists q < 1 and R0 > 0, such that

‖F : Y → Y ‖ < q(5.4)

for all R > R0. Moreover, we prove

‖A : Y → X‖ ≤ CR2,(5.5)

where C is independent of R. Then (I + F)−1 exists as a Neumann series, and we
obtain F−1 = A(I+ F)−1. Now (5.4) and (5.5) lead to (5.3).

For the construction of A we need existence and uniqueness results for the second
limit problem in suitable function spaces. The second limit problem is the problem on
the semicylinder formulated in the following form. Let ω ⊂ R2 be a bounded domain
with ∂ω ∈ Cl+2. We set

Π− = ω × (−∞, 0), x = (y, z) for x ∈ Π−, ∂Π(−) = ∂ω × (−∞, 0).

By ω(z) and ∂ω(z) we denote the cross section and its boundary in z ≤ 0; in this
notation ∂ω(0) is the edge of the semicylinder. On Π− we consider the following
boundary value problem:

Su = f in Π−, v = g0 on ∂Π(−),(5.6)

Fu = g1 on ω × {0}, (Fu)> = (e>1 · Tu · ez, e>2 · Tu · ez, v3).(5.7)

As before, ei denote the unit vectors in yi-direction for i = 1, 2. The boundary of
Π− has two types of singularities: the edge M = ∂ω × {0} and the cylindrical outlet
to infinity. To treat the full asymptotic behavior in the vicinity of the edges and for
z → −∞ we must use weighted spaces with different weights near ∂ω(0) and at −∞.

We choose basic weight functions ρ1, ρ2 ∈ Cl+2(Π−) with the following properties:
We define ρ1 analogous to the weight ρ in section 3.2. ρ1(x) = dist(x, ∂ω(0)) for x ∈
Oε, ρ1(y, z) = 1 for z < −2ε, where ε is chosen small enough such that dist(x, ∂ω(0))
is a Cl+2-function on Oε ∩ Π− = {x ∈ Π− : dist(x, ∂ω(0)) < ε}. We set ρ2(y, z) =
ρ2(z) = ez for z < −2, ρ2(z) = 1 for −1 < z ≤ 0. For γ, β ∈ R, l ∈ N, ϕ ∈
C∞0 (Π

−\∂ω(0)) we introduce the norm

‖ϕ;Wl
γ,β(Π−)‖ =

∑
|α|≤l

(
‖(ργ−l+|α|1 ρβ2∂

αϕ;L2(Π−)‖2
)1/2

(5.8)

andWl
γ,β(Π−) as the closure of C∞0 (Π

−\∂ω(0)) in the norm (5.8). Wl
γ,β(Π−) coincides

with the space of all ϕ ∈ H l
loc(Π

−) such that ‖ϕ;Wl
γ,β(Π−)‖ < ∞. For 0 ≤ k ≤ l,

δ, δ′ ≥ 0, the space Wl
γ,β(Π−) is continuously embedded into Wl−k

γ−k+δ,β+δ′(Π
−). For

k > 0, δ, δ′ > 0 this embedding is compact (see [52] for details).
The spaces of traces are defined in a natural way. Again we divide them into

trace spaces on the lateral surface ∂Π(−) and on the cross section ω(0). We set

Wl−1/2
γ,β (∂Π(−)) = {ϕ|∂Π(−)

: ϕ ∈ Wl
γ,β(Π−)} provided with the canonical norm

‖ϕ;Wl−1/2
γ,β (∂Π(−))‖ = inf ‖ϕ̃;Wl

γ,β(Π−)‖, where the infimum is taken over all func-

tions ϕ̃ with ϕ̃|∂Π(−)
= ϕ. On the cross section ω(0) the space of traces of Wl

γ,β(Π−)
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coincides with V
l−1/2
γ (ω, ∂ω), the trace space of V lγ(Π−, ∂ω(0)) = Wl

γ,0(Π−) (where
the exponential weight is equal to 1 everywhere). We define the natural domain and
range of the problem (5.6), (5.7):

Dlγ,βW(Π−) = Wl+1
γ,β (Π−)3 ×Wl

γ,β(Π−),

Rlγ,βW(Π−) = Wl−1
γ,β (Π−)3 ×Wl

γ,β(Π−),

Rlγ,βW(Π−, ∂Π(−), ω(0)) = Rlγ,βW(Π−)×Wl+1/2
γ,β (∂Π(−))

3

×V l−1/2
γ (ω(0), ∂ω)2 × V l+1/2

γ (ω(0), ∂ω).

Then the operator

Slγ,β : Dlγ,βW(Π−)→ Rlγ,βW(Π−, ∂Π(−), ω(0))
(5.9)

u→ (Su,Du|∂Π(−)
, Fu|ω(0))

defines a continuous linear operator. From the results of the previous sections it
is evident for which exponents (5.9) can be expected to be Fredholm, namely, for
|γ − l| < 1 and for all β such that the line Imλ = β is free of eigenvalues of the
elliptic pencil belonging to the Dirichlet problem of the Stokes system in the cylinder
Π = ω ×R, where ω is one of the cross sections ωj . We formulate the special results
we need in the following lemma.

Lemma 5.2. If 0 < β < β∗, the Stokes problem (5.6), (5.7) has a solution
u ∈ Dll,βW(Π−) for all (f, g, h) ∈ Rll,−βW(Π−, ∂Π(−), ω(0)). This solution is uniquely
determined up to a constant in the pressure and admits the asymptotic representation

u = −Huj1 + au# + ũ,(5.10)

where ũ ∈ Dll,−βW(Π−) and

H =

∫
Π−

f4 dx+

∫
∂Π(−)

ν> · g do+

∫
ω

h3 dy.

The constant in pressure can be fixed, e.g., by the condition
∫
ω
p(y,−1) dy = 0. In

this case the following estimate holds

|a|+ ‖ũ;Dll,−βW(Π−)‖ ≤ C‖(f, g, h);Rll,−βW(Π−, ∂Π−)‖.(5.11)

Proof. Combining the results on the Stokes problem (1.1) in the straight cylinder
Π = ω×R with the results in domains with smooth edges gives the Fredholm property
of the mapping (5.9) if |γ − l| < 1 and the line Imλ = β is free of eigenvalues of the
pencils S(λ) associated to the Dirichlet problem (1.1) in the cylinder Π (see [33,
Theorem 3.1.1, Theorem 8.1.1, and section 4.1.2]). From the results cited above, we
obtain IndSll,β − IndSll,−β = 2 for 0 < β < β∗. Moreover, if (u∗, g∗, h∗) ∈ ker (Sll,β)∗

(= kernel of the adjoint operator), then u∗ ∈ kerSll,−β(Π−), while g∗ = N1u
∗ on

∂Π(−), h
∗ = F0u

∗ on ω(0).

If 0 < β < β∗, then the operator Sll,−β is injective. Indeed, let u ∈ Dll,−βW(Π−)

be a solution to the homogeneous problem (5.6), then u ∈ H l+1(Π−)3 × H l(Π−).
For z → −∞ this follows from the fact that the weight increases exponentially, in
the neighborhood of the edge it follows from the mirror principle, as in the proof
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of Theorem 4.4. Since Su = 0 iff S1u = 0 we can multiply the equation S1u = 0
scalar with u (in L2(Π−)4) and integrate by parts. This gives ∇v+(∇v)> = 0; hence,
v = A×x+B with constant vectors A, B ∈ C. The homogeneous boundary conditions
lead to u = 0 then. Applying the results mentioned above gives the surjectivity of
Sll,β . Now elementary calulations together with the index formula lead to

dim kerSll,β = dim cokerSll,−β = 1.

Then it is clear that kerSll,β = {cu# : c ∈ C}.
Now let u ∈ Dll,βW(Π−) be any solution to (5.6), (5.7) for given f , g, and h

as above. Formula (1.21) (now for J = 1) ensures the existence of constants H
and a, such that (5.10) holds. The cut-off function may be omitted in this case,
since by Lemma 4.6, uj1 ∈ DllV (ω × (−c0, 0), ∂ω(0)) for any c0 < 0, for u# this is
elementary. We apply the generalized Green’s formula (1.24) to u and U = u# and
obtain (observing that π0( · ), π1( · ) consist of one component now)∫

Π−
f4 dx+

∫
∂Π(−)

ν> · g do+

∫
ω

h3 dy = 〈π0u, π1u
#〉 − 〈π1u, π0u

#〉 = H.

Proof of Theorem 5.1. We recall that ΓR,j denotes the cross section at zj = R
in the outlet Qj ; we set h(j) = h|ΓR,j . We define Hj =

∫
ΓR,j

ν> · hdo, this means in

local coordinates of Qj : Hj =
∫
ωj
h(j),3(y) dy, and we obtain

|Hj | ≤ C‖h;L2(ΓR)‖ ≤ C‖h;RllV (ΓR, ∂ΓR)‖.(5.12)

Now we fix β with β < β∗ arbitrary. Let u(j) ∈ Dll,β(Π−j ) be the unique solution of
the problem

Su(j) = 0 in Π−j = ωj × (−∞, 0), v(j) = 0 on ∂ωj × (−∞, 0),(5.13)

Fu(j) = h(j) on ωj(0),

∫
ωj

p(j)(y,−1) = 0.(5.14)

According to (5.10), u(j) admits the representation u(j) = −Hju
j1 + aju

# + ũ(j)

where, as before, uj1 is the Poiseuille flow in the cylinder Πj and u# = (0, 0, 0, 1) the
constant pressure solution. The following estimate holds:

|aj |+ ‖ũ(j);Dll,−βW(Π−j )‖ ≤ C‖h(j);RllV (ωj , ∂ωj)‖.(5.15)

Let χj denote the cut-off functions of section 1. For x ∈ Qj ∩ ΩR the expression
χj(zj)u(j)(y, zj −R) is well defined and can be extended smoothly by 0 to the whole
domain ΩR. In this sense we set

uΠ =
J∑
j=1

χj(zj)u(j)(yj , zj −R).(5.16)

Recalling the notations of section 1, i.e.,

a = (a1, . . . , aJ), H = (H1, . . . , HJ), Uh = (χ1u
1h, . . . , χJu

Jh),

h = 0, 1, where uj0 is the constant pressure solution and uj1 the Poiseuille flow in the
outlet Qj , then, with $ = ($1, . . . , $J),

uΠ = −U1 ·H|ΩR + U0 · (a+ 2RH$)|ΩR +
J∑
j=1

χj(zj)ũ(j)(yj , zj −R).(5.17)
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The term 2RH$ = 2R(H1$1, . . . , HJ$J) appears from the special structure of the

Poiseuille flow. Then SuΠ has a compact support contained in
⋃J
j=1 supp∇χj ⊂ Ω0;

moreover, vΠ = 0 on ∂Ω(R) and pΠ = 0 on G0 since supp χj∩G0 = ∅ for j = 1, . . . , J .
We extend SuΠ smoothly by 0 to f∞ ∈ RlβW (Ω). The norm of f∞ can be estimated
by

‖f∞;RlβW (Ω)‖ ≤ C‖f∞;RlH(Ω0)‖
≤ C

(
|H| ‖U1;DlH(Ω0)‖+ |a+ 2H$R| ‖U0;DlH(Ω0)‖

+
J∑
j=1

‖ũ(j);DlH(ωj × (−R,−R+R0))‖
)
.

The last term can be estimated by e−β(R+R0)‖ũ(j);Dll,−βW(Π−j )‖, thus decays expo-
nentially, and with (5.12) and (5.15) it follows that

‖f∞;RlβW (Ω)‖ ≤ CR‖h;Y ‖.(5.18)

Furthermore, we have
∫

Ω
f∞,4 dx = 0: Since vΠ = 0 on ∂Ω(R) and FuΠ = h on ΓR

by construction, then Gauss’ theorem gives, with (5.2),∫
Ω

f∞,4 dx = −
∫

ΩR

div uΠ dx = −
∫
∂ΩR

ν> · vΠ do = −
∫

ΓR

ν> · hdo = 0.

Thus, by Theorem 1.6, we obtain a unique solution u∞ ∈ Dl±βW (Ω) of the problem

Su∞ = f∞ in Ω, v∞ = 0 on ∂Ω, π1u∞ = 0,
∫
G0
p∞ = 0. u∞ admits the representation

u∞ = U0 · a∗ + ũ∞,(5.19)

where

|a∗|+ ‖ũ∞;DlβW (Ω)‖ ≤ C‖f∞;RlβW (Ω)‖.(5.20)

Now we define

U = (V, P ) = A(h) = uΠ + u∞.

By construction it is clear that SU = 0 in ΩR, V = 0 on ∂Ω(R), and
∫
G0
P dx = 0.

Moreover, from Lemma 4.6 we have u∞|ΩR ∈ DllV (ΩR, ∂ΓR); hence, U ∈ X and
FU ∈ RllV (ΓR, ∂ΓR). As already mentioned in section 1, the solution u∞ carries no
flux through the outlets, which means∫

ΓR,j

ν> · v∞ do = 0

for j = 1, . . . , J ; hence
∫

ΓR
ν>·FU do = 0, which ensures FU ∈ Y . Since F (U0·a∗) = 0

on ΓR, it follows FU = FuΠ + Fũ∞ = h+ F(h).
Let Oε = {x ∈ ΩR,dist (x,ΓR) < ε} be a neighborhood of ΓR of constant size;

then the trace theorem, together with (5.18) and (5.20), gives

‖F(h);Y ‖ ≤ ‖ũ∞;DllV (Oε, ∂ΓR)‖
≤ Ce−βR‖f∞;RlβW (Ω)‖ ≤ Ce−βRR ‖h;Y ‖,
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where C is a constant independent of R. Here we have to observe that by the definition
of the norms in W l

β(Ω) and Lemma 4.6

‖ũ∞;DllV (Oε, ∂ΓR)‖ ≤ C‖ũ∞;DlH(Oε)‖ ≤ Ce−βR‖ũ∞;DlβW (Ω)‖.

We remember that β can be chosen arbitrarily in the interval (0, β∗). Now we fix
R∗ large enough, such that Ce−βR∗R∗ ≤ q < 1. Then for all R > R∗, it holds
‖F : Y → Y ‖ ≤ q, and

(I+ F)−1 =
∞∑
k=0

(−1)kFk, ‖(I+ F)−1‖ ≤ 1

1 + q
.(5.21)

To estimate U , we first estimate uΠ with the help of the representation (5.17), estimate
(5.15), and E = (1, . . . , 1)>:

‖uΠ;DllV (ΩR)‖

≤ C
(
|H|‖U1 · E;DlH(ΩR)‖+ |a+ 2H$R|‖U0 · E;DlH(ΩR)‖

+

J∑
j=1

‖ũ(j);DllV (ωj × (−R, 0))‖
)

≤ C
(
R2|H|+R|a+ 2H$R|+

J∑
j=1

‖ũ(j);Dll,−βW(Π−j )‖
)

;

hence

‖uΠ;DllV (ΩR)‖ ≤ CR2‖h;Y ‖.(5.22)

For u∞ we calculate by means of (5.19), Lemma 4.6, (5.20), and (5.18):

‖u∞;DllV (ΩR)‖ ≤ C
(
|a∗| ‖U0 · E;DllV (ΩR)‖+ ‖ũ∞;DllV (ΩR)‖

)
≤ C

(
|a∗|R ‖f∞;RlβW (Ω)‖

)
(5.23)

≤ C R ‖f∞;RlβW (Ω)‖ ≤ C R2 ‖h;Y ‖.

Inequalities (5.21)–(5.23) lead to (5.3), and the theorem is proved.
For the approximation of weak solutions with L2(Ω)-forces we need the following

corollary.
Corollary 5.3. Let l ∈ N and h ∈ RllV (ΓR, ∂ΓR) be given with∫

ΓR,j

ν> · hdo = 0 for j = 1, . . . , J.(5.24)

Let u =
(
v
p

) ∈ DllV (ΩR) be the unique solution of (5.1) with
∫
G0
pdx = 0. Then it

holds that

‖v;V l+1
l (ΩR, ∂ΓR)3‖+ ‖∇p, V l−1

l (ΩR, ∂ΓR)3‖ ≤ C‖h;RllV (ΓR, ∂ΓR)‖,(5.25)

where C is a constant independent of R.
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Proof. The corollary reflects the special case where Hj = 0, j = 1, . . . , J in the
proof of Theorem 5.1. Thus in the estimates of f∞ and uΠ, all terms with H vanish,
and we obtain

‖f∞;RllV (Ω)‖ ≤ C‖h;Y ‖(5.26)

instead of (5.18). If we observe that all terms with U0 influence only the estimates
for the pressure; and moreover, ∇U0 = 0 for zj > R0, j = 1, . . . , J , then it holds that

‖vΠ;V l+1
l (ΩR, ∂ΓR)‖+ ‖∇pΠ, V

l−1
l (Ω, ∂ΓR)‖ ≤ C‖h;Y ‖(5.27)

instead of (5.22). Similarly, for u∞ we obtain

‖v∞;V l+1
l (Ω, ∂ΓR)3‖+ ‖∇p∞;V l−1

l (ΩR, ∂ΓR)3‖ ≤ C‖h;Y ‖(5.28)

instead of (5.23). (5.25)–(5.28) lead to (5.24), which proves the assertion.

6. The error estimate. With the result of the previous section we are now able
to prove the error estimate for the approximation problem as it is defined in section
2. We recall the definition of the cut-off function χR. We assume that {χR}R is a
system of C∞-functions in Ω with the properties χR ≡ 1 on Ω0; in Qj we require
χR(x) = χR(zj) = 1 for zj < R− 1, χR(zj) = 0 for zj > R− 1/2.

Theorem 6.1. Let l ∈ N, β∗ > β > 0 meet the requirements of Theorem 1.6,
G0 ⊂ Ω0 be a nonvoid subdomain such that Go ∩ suppχj = ∅ for all j, and let
(f, g) ∈ RlβW (Ω, ∂Ω), H ∈ CJ be given such that the flux condition∫

Ω

f4 dx+

∫
∂Ω

ν> · g do+

J∑
j=1

Hj = 0(6.1)

is fulfilled. Let u ∈ Dl±βW (Ω) be the unique solution of the Stokes problem with

prescribed fluxes according to Theorem 1.6 and uR ∈ DlH(ΩR) be the unique solution
to the approximation problem

SuR = χRf in ΩR, vR = χRg on ∂Ω(R),
(6.2)

FuR = F (U1 · (H +H∞)) on ΓR,

∫
G0

pR = 0,

where H∞ ∈ CJ with

H∞,j =

∫
Qj

(1− χR)f4 dx+

∫
∂Qj

ν> · (1− χR)g do.(6.3)

Then for every ε > 0 we obtain the error estimate:

‖u− uR;DlH(ΩR−1)‖ = ‖u− uR;H l+1(ΩR−1)3 ×H l(ΩR−1)‖
≤ ‖u− uR;DllV (ΩR, ∂ΓR)‖(6.4)

≤ C e−(β−ε)R
(
|H|+ ‖(f, g);RlβW (Ω, ∂Ω)‖

)
,

where C is a constant independent of R and of the data.
Proof. From the flux condition (6.1) and the definition of H∞ we obtain∫

ΩR

χRf4 dx+

∫
∂Ω(R)

ν> · χRg do+

∫
ΓR

ν> · U1 · (H +H∞) do = 0;
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hence uR ∈ DlH(ΩR) exists due to Theorem 4.4.

According to (1.22), u has the representation

u = U1 ·H + U0 · a+ ũ,(6.5)

with ũ ∈ DlβW (Ω). Let u∞ be the solution of

Su∞ = χRf in Ω, v∞ = χRg on ∂Ω,
(6.6)

π1u∞ = H +H∞,
∫
G0

p∞ = 0.

Again, with (1.22), we have the following representation for u∞:

u∞ = U1 · (H +H∞) + U0 · a∞ + ũ∞.(6.7)

The difference U = u− u∞ is the unique solution of the problem

SU = (1− χR)f in Ω, DU = (1− χR)g on ∂Ω, π1U = −H∞,
∫
G0

P dx = 0.

Since supp (1 − χR)(f, g) ⊂ {x ∈ Ω : zj > R − 1, j = 1, . . . , J}, for every ε̄ with
β > ε̄ > 0, estimate (1.29) leads to

|a− a∞|+ ‖ũ− ũ∞;Dlε̄W (Ω)‖
≤ C

(
‖(1− χR)(f, g);Rlε̄W (Ω, ∂Ω)‖+ |H∞|

)
(6.8)

≤ C
(
e−(β−ε̄)R ‖(1− χR)(f, g);RlβW (Ω, ∂Ω)‖+ |H∞|

)
.

To estimate |H∞| we apply the Cauchy–Schwarz inequality to

|H∞,j | ≤ |
∫
Qj

(1− χR)f4 dx|+ |
∫
∂Qj

ν> · (1− χR)g do|

≤
(∫

Qj

|1− χR|2e−2βz dx
)1/2 (

‖f4e
βz;L2(Qj)‖+ ‖geβz;L2(∂Ω)‖

)
(6.9)

≤ C e−βR (‖(f, g);RlβW (Ω, ∂Ω)‖.

(6.8) and (6.9), together with Lemma 4.6, lead to

‖U ;DlH(ΩR−1)‖ ≤ ‖U ;DllV (ΩR)‖
≤ C(R2|H∞|+R|a− a∞|+ ‖ũ− ũ∞;Dlε̄W (Ω)‖)(6.10)

≤ C e−(β−ε)R ‖(f, g);RlβW (Ω, ∂Ω)‖,

where ε in dependence of ε̄ can be chosen arbitrarily small. Now we rewrite the
difference u − uR in ΩR: u − uR = u − u∞ + u∞ − uR. Then UR = u∞ − uR ∈
DllV (ΩR, ∂ΓR). Moreover, due to (6.2) and (6.7), UR solves the problem

(SUR, DUR) = (0, 0) in (ΩR, ∂Ω(R)), and FUR = Fũ∞ on ΓR,

∫
G0

PR dx = 0.
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We apply Theorem 5.1 and gain

‖UR;DlH(ΩR−1)‖ ≤ C‖UR;DllV (ΩR)‖
≤ CR2‖Fũ∞;RllV (ΓR, ∂ΓR)‖
≤ CR2‖ũ∞;DllV (Oε(ΓR), ∂ΓR)‖ ≤ Ce−βRR2‖ũ∞;DlβW (Ω)‖
≤ Ce−βRR2

(
|H +H∞|+ ‖χR(f, g);RlβW (Ω, ∂Ω)‖

)
≤ C e−(β−ε)R

(
|H|+ ‖(f, g);RlβW (Ω, ∂Ω)‖

)
,

which, together with (6.10), proves the theorem.
Remark 6.2. We outline that estimate (6.4) does not imply that ‖uR;H l+1(ΩR)3×

H l(ΩR)‖ remains bounded as R→∞, of course.
The estimate (6.4) can also be proved with small modifications for ‖u − uR;

Dl
l,β̄
W(ΩR, ∂ΓR)‖ with 0 < β̄ < β. Here the Dl

l,β̄
V (ΩR, ∂ΓR) means that the weight

ρ(x) for spaces V ll (ΩR, ∂ΓR) is multiplied by eβ̄z. In this case we obtain

‖u− uR;Dll,β̄V (ΩR, ∂ΓR)‖ ≤ Ce−(β−β̄−ε)R
(
‖(f, g);RlβW (Ω, ∂Ω)‖+ |H|

)
.

7. Approximation for L2-data. As already mentioned, it is possible to treat
the problem

−∆v +∇p = f, div v = 0 in Ω, v = 0 on ∂Ω(7.1)

within the theory of H l spaces, at least for v. Since p is unique up to a constant, we
only obtain estimates for ∇p, of course. The following result is well known (see [40,
p. 84]).

Theorem 7.1 (weak solutions with zero fluxes). Let Ω ⊂ R3 be a domain with
J cylindrical outlets as in the previous chapter and with ∂Ω of class Cl+2 for some
l ∈ N. For every f ∈ H l−1(Ω)3 there exists a unique solution (v,∇p) of (7.1) with
∇v ∈ L2(Ω). The following estimate holds true:

‖v;H l+1(Ω)3‖+ ‖∇p;H l−1(Ω)3‖ ≤ C‖f ;H l−1(Ω)3‖,(7.2)

where C is a constant independent of f .
By means of the divergence theorem, it is easy to see that the solutions of Theorem

7.1 produce no flux through the outlet Qj . With the help of the Poiseuille flow uj1 we
construct a flux carrier (a divergence-free vector field v0 with zero trace), which drives
a constant prescribed flux Hj through the outlet Qj in the following way. Suppose v0

is such a flux carrier; then for every T > 0

J∑
j=1

Hj =

∫
ΓT

ν> · v0 do =

∫
ΩT

div v0 dx = 0.

Therefore,
∑
j Hj = 0 is a necessary (and physically sensible) condition. Let χj ,

j = 1, . . . , J be the cut-off functions as in Lemma 1.4, and uj1 the Poiseuille flow
corresponding to the cylinder Πj = ωj × R. Then g0 = div

∑
j(Hjχjv

j1) =∑
Hj(∇χj)vj1 ∈

◦
H 1(ΩR0

) for a suitable R0 > 0. Moreover,∫
ΩR0

g0 dx =
∑
j

∫
ωj

e>zj · vj1(yj , R0) dyj =
J∑
j=1

Hj = 0.
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Hence, by using the result of [5] once more, we find w0 ∈
◦
H2(ΩR0)3 with div w0 = g0.

We remember the notation U1 = (χ1u
11, . . . , χJu

J1), where the columns uj1 again
denote the Poiseuille flow through the outlet Qj . If we put

u0 =

(
v0

p0

)
= U1 ·H +

(
w0

0

)
, H = (H1, . . . , HJ),

we obtain div v0 = 0 in Ω, v0 = 0 on ∂Ω, and−∆v0+∇p0 = f0 ∈ L2(Ω)3 with compact
support in ΩR0

. Moreover, from the construction of w0, the following estimate follows:

‖f0;L2(Ω)‖ ≤ C
∑
j

|Hj |.(7.3)

We find a solution u = u0 + ũ to the problem (7.1) such that u has prescribed flux
Hj through the outlet Qj . If we apply Theorem 7.1 to the problem

−∆ṽ +∇p̃ = f − f0, div ṽ = 0 in Ω, ṽ = 0 on ∂Ω,(7.4)

we can formulate the following result.

Corollary 7.2. Let Ω ⊂ R3 be as in Theorem 7.1. For every f ∈ L2(Ω)3,
H ∈ CJ with

∑
j Hj = 0 we obtain a solution u to the problem (7.1) with flux Hj

through Qj in the form u = u0 + ũ. Here ũ is uniquely determined up to a constant
in pressure and fulfills the following estimate:

‖ṽ, H2(Ω)3‖+ ‖∇p̃;L2(Ω)3‖ ≤ C
(
‖f ;L2(Ω)2‖+

J∑
j=1

|Hj |
)
.(7.5)

The last result of this treatment concerns the approximation of the solutions
obtained by Corollary 7.2.

Theorem 7.3. Let Ω ⊂ R3 be a domain with J cylindrical outlets, ∂Ω ∈ C3.
For f ∈ L2(Ω)3, H ∈ Cj with

∑J
j=1Hj = 0 let u be the solution of Corollary 7.2 to

the problem (7.1) with flux Hj through Qj. For R > R0, let uR ∈ H2(ΩR)3×H1(ΩR)
be a solution to the approximation problem

−∆vR +∇pR = f |ΩR , div vR = 0 in ΩR,(7.6)

vR = 0 on ∂Ω(R), FuR = F (U1 ·H) on ΓR.(7.7)

Then ‖v − vR;H2(ΩR−ε)3‖ + ‖∇p − ∇pR;L2(ΩR−ε)3‖ → 0 with R → ∞ for every
ε > 0.

Proof. The existence of uR, uniquely determined up to a constant in pressure, was
already proved in Theorem 4.2. Since

∑
j Hj = 0, it is not necessary now to introduce

the “artificial” flux H∞, as in Theorem 6.1. We apply Corollary 5.3 to u − uR. By
Corollary 7.2, F (u− uR) = Fũ, the proof of Theorem 7.1 yields

∫
ΓR,j

ν> · Fũ = 0 for

j = 1, . . . , J . Therefore (5.24), the trace estimates, and Lemma 4.6 lead to

‖v − vR;H2(ΩR−ε)3‖+ ‖∇p−∇pR;L2(ΩR−ε)3‖
≤ C‖Fũ;R1

1V (ΓR, ∂ΓR)‖
≤ C‖ṽ;D1

1V (ΩR\ΩR−ε)‖ ≤ ‖ṽ;H2(ΩR\ΩR−ε)3‖.
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Here we observe that the mixed boundary condition depends only on the velocity part,
not on the pressure. Since ṽ ∈ H2(ΩR)3, the right-hand side of the last inequality
tends to 0, as R→∞, which proves the theorem.

Remark 7.4. It is possible to formulate these results also inH l-spaces for arbitrary
l ∈ N. Then in the formulation of the approximation problem, f has to be replaced
by χRf , like in Theorem 6.1. However, the corresponding results of Corollary 1.2
need a more detailed and technical discussion of the solution w0 to the divergence
equation; we therefore omit this part.

As already mentioned, without more specified assumptions on the decay proper-
ties of f , it is not possible to fix the order of convergence of u−uR. But it is possible
to refine the estimates after calculating how, for example, the property fzγ ∈ L2(Ω)3,
γ > 0 influences the asymptotic behavior of u. This requires other tools than those
explained in section 1.2 and will be done in a forthcoming paper.

Acknowledgment. The author is greatly indebted to Professor Serguëı Nazarov
for many helpful discussions and advices.

REFERENCES

[1] R. A. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying boundary conditions I, Comm. Pure Appl.
Math., 12 (1959), pp. 623–727.

[2] R. A. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying boundary conditions II, Comm. Pure Appl.
Math., 17 (1964), pp. 35–92.

[3] C. J. Amick, Steady solutions of the Navier–Stokes equations in unbounded channels and pipes,
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), pp. 473–513.

[4] C. J. Amick, Properties of steady solutions of the Navier–Stokes equations for certain un-
bounded channels and pipes, Nonlinear Anal., 2 (1978), pp. 689–720.

[5] W. Borchers and H. Sohr, On the equation rot v = g and div u = f with zero boundary
conditions, Hokkaido Math. J., 19 (1993), pp. 67–87.

[6] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Sem.
Mat. Univ. Padova, 31 (1964), pp. 308–340.

[7] M. Dauge, Stationary Stokes and Navier–Stokes systems on two- or three-dimensional do-
mains with corners, Part I: Linearized equations, SIAM J. Math. Anal., 20 (1989), pp. 74–
97.

[8] P. Deuring, Finite Element methods for the Stokes system in three–dimensional exterior do-
mains, Math. Methods Appl. Sci., 20 (1997), pp. 245–269.

[9] M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964.
[10] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin,

1976.
[11] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol.

I, Springer Tracts in Natural Philosophy, Springer-Verlag, New York, 1994.
[12] D. Givoli, Non reflecting boundary conditions, J. Comput. Phys., 94 (1991), pp. 1–29.
[13] V. Girault and A. Sequeira, A well posed problem for the exterior Stokes equation in two

and three dimensions, Arch. Rational Mech. Anal., 114 (1991), pp. 313–333.
[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Program, Boston,

1985.
[15] G. H. Guirguis and M. D. Gunzberger, On the approximation of the exterior Stokes problem

in three dimensions, RAIRO Modél. Math. Anal. Numér., 21 (1987), pp. 445–464.
[16] L. Halpern and M. Schatzmann, Artificial boundary conditions for incompressible viscous

flows, SIAM J. Math. Anal., 20 (1989), pp. 308–353.
[17] L. Halpern, Spectral methods in polar coordinates for the Stokes problem. Application to

computation in unbounded domains, Math. Comput., 65 (1996), pp. 507–531.
[18] H. Han, J. Lu, and W. Bao, A discrete artificial boundary condition for steady incompressible

viscous flows in a no-slip channel using a fast iterative method, J. Comput. Physics, 114
(1994), pp. 201–208.



676 MARIA SPECOVIUS-NEUGEBAUER

[19] H. Han and W. Bao, An artificial boundary condition for the incompressible viscous flow in
a no slip channel, J. Comput. Math., 13 (1995), pp. 51–63.

[20] T. Hagstrom and H. B. Keller, Exact boundary conditions at an artificial boundary for
partial differential equations in cylinders, SIAM J. Math. Anal., 17 (1986), pp. 322–341.

[21] T. Hagstrom and H. B. Keller, Asymptotic boundary conditions and numerical methods for
nonlinear elliptic problems on unbounded domains, Math. Comp., 48 (1987), pp. 449–470

[22] J. G. Heywood, R. Rannacher, and S. Turek, Artificial boundaries and flux and pressure
conditions for the incompressible Navier-Stokes equations, Intern. J. Numer. Methods Flu-
ids, 22 (1996), pp. 325–352.

[23] L. V. Kapitanski and K. Pileckas, On spaces of solenoidal vector fields and boundary value
problems for the Navier-Stokes equations in domains with noncompact boundaries, Trudy
mat. Inst. Steklov, 159 (1983), pp. 5–36; Proc. Math. Inst. Steklov, 159, (1984), pp. 3–34
(in English).

[24] L. V. Kapitanski and K. Pileckas, Certain problems of vector analysis, Zapiski Nauchn.
Sem. LOMI, 138 (1984), pp. 65–85 (in Russian); J. Sov. Math., 32 (1986), pp. 469–483 (in
English).

[25] R. B. Kellogg and J. E. Osburn, A regularity result for the Stokes problem in a convex
polygon, J. Funct. Anal., 21 (1976), pp. 397–431.
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Abstract. For each r ∈ N, we construct a family of bivariate orthogonal wavelets with compact
support that are nonseparable and have vanishing moments of order r or less. The starting point of
the construction is a scaling function that satisfies a dilation equation with special coefficients and
a special dilation matrix M : the coefficients are aligned along two adjacent rows, and |det(M)| = 2.

We prove that if M2 = ±2I, e. g., M = ( 0 2
1 0

) or M = ( 1 1
1 −1

), then the smoothness of the wavelets

improves asymptotically by 1 − 1
2

log2 3 ≈ 0.2075 when r is incremented by 1. Hence they can be
made arbitrarily smooth by choosing r large enough.

Key words. nonseparable wavelets, smooth orthogonal scaling function, regularity
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1. Introduction. Since the introduction by Daubechies [7] of compactly sup-
ported orthogonal wavelet bases in R1 with arbitrarily high smoothness, various new
wavelet bases (often with specially tailored properties) have been constructed and ap-
plied successfully in image processing, numerical computation, statistics, etc. Many
of these applications, such as image compression, employ wavelet bases in R2. Virtu-
ally all of these bases are separable; that is, the bivariate basis functions are simply
tensor products of univariate basis functions. A separable wavelet basis is easy to
construct and simple to study, for it inherits features of the corresponding wavelet
basis in R1, such as smoothness and support size. Separable wavelet transforms are
easy to implement.

Nevertheless, separable bases have a number of drawbacks. Because they are so
special, they have very little design freedom. Furthermore, separability imposes an
unnecessary product structure on the plane, which is artificial for natural images. For
example, the zero set of a separable scaling function contains horizontal and vertical
lines. This “preferred directions” effect can create unpleasant artifacts that become
obvious at high image compression ratios. Nonseparable wavelet bases offer the hope
of a more isotropic analysis [6, 12, 15].

Despite the success in constructing univariate orthogonal and multivariate bi-
orthogonal wavelet bases with arbitrarily high smoothness, a general theory of smooth
multivariate orthogonal nonseparable wavelets is not currently available, and only a
few such constructions have been published. Gröchenig and Madych [9] constructed
several nonseparable Haar-type scaling functions in Rn, which are discontinuous in-
dicator functions of (often fractal-like) compact sets. Cohen and Daubechies [6] used
the univariate construction [7] to produce nonseparable scaling functions with higher
accuracy, which are not continuous, as proved by Villemoes [16]. Continuous nonsepa-
rable scaling functions were constructed by Kovačević and Vetterli [12], and recently
by He and Lai [10], but none of these functions is differentiable.
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In this paper we present a new family of arbitrarily smooth, orthogonal, nonsep-
arable wavelet bases in R2. Our construction follows the standard multiresolution
analysis (MRA) approach [8, 13, 14]: it focuses on a scaling function that solves
a dilation (or refinement) equation with special coefficients and a special dilation
matrix M with |det(M)| = 2. Such dilation matrices make a popular “laboratory
case,” partly because the MRA involves only one wavelet [4, 6, 12, 15]. The wavelet
is easy to construct from the scaling function and has the same smoothness, so we
deal mainly with the scaling function.

The coefficients in the dilation equation, called scaling coefficients, determine the
properties of the scaling function. To construct a scaling function usually means to
find its scaling coefficients. We characterize completely the set of two-row scaling
coefficients that produce nonseparable orthogonal scaling functions with arbitrarily
high accuracy. We show that our construction can produce scaling functions of any
desired smoothness for the special dilation matrix

(
0 2
1 0

)
.

The paper is organized as follows. In section 2 we introduce some basic notions
and assumptions and state our two main results: the first describes the scaling co-
efficients; the second determines the smoothness of the scaling function. In section
3 we formulate and solve the equations that the scaling coefficients must satisfy in
order for the scaling function to be orthogonal and accurate. In section 4 we prove
the smoothness result. In section 5 we plot some of the new scaling functions and
explain how our results can be formulated for dilation matrices other than

(
0 2
1 0

)
.

Note. After submitting this paper, the authors learned about related indepen-
dent results by Ayache [1], who recently constructed arbitrarily smooth nonseparable
orthogonal wavelets by perturbing the separable wavelets for dilation

(
2 0
0 2

)
.

2. Preliminaries and main results. Let M be an expanding 2 × 2 matrix
with integer entries such that |det(M)| = 2. The key ingredients to an MRA with
such a dilation matrix M are two functions: a scaling function φ and a wavelet ψ.
The scaling function φ : R2→R satisfies a dilation equation (refinement equation) of
the form

φ(x) = 2
∑
n∈Z2

cnφ(Mx− n), where
∑
n∈Z2

cn = 1.(2.1)

The numbers cn are the scaling coefficients (low-pass filter coefficients) of φ(x). We
assume that they are real and that cn 6= 0 for only finitely many n ∈ Z2 (ensuring that
φ(x) has compact support). A convenient way to work with the scaling coefficients
as a whole is to consider the coefficient mask (z-transform)

C(z, w) :=
∑

(m,n)∈Z2

c(m,n)z
mwn, where (z, w) ∈ C2.

Note that C(1, 1) = 1. The symbol (frequency response) of (2.1) is

m(ω1, ω2) := C(eiω1 , eiω2).

Denote MT by W . The mask is said to satisfy Cohen’s criterion [16, p. 181] if there
exists a compact fundamental domain Ω of the lattice 2πZ2 with the property

m(W−jω) 6= 0 for all j ≥ 1 and for all ω ∈ Ω.(2.2)

An important task in wavelet theory is to relate the properties of the scaling
function φ(x) to the properties of the coefficient mask C(z, w). Our goal is to find
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coefficients in (2.1) that produce a scaling function with two important properties:
orthogonality and accuracy.

A scaling function φ(x) ∈ L2(R2) is called orthogonal if the set of its lattice
translates {φ(x − k) : k ∈ Z2} is orthogonal. The following orthogonal coefficients
condition is necessary for φ(x) to be orthogonal:

2
∑
n∈Z2

cncn+Mk = δ0,k for all k ∈ Z2,(2.3)

where δm,k is the Kronecker symbol. The condition (2.3) becomes sufficient if, in
addition, the scaling coefficients satisfy Cohen’s criterion (2.2). The coefficient mask
C(z, w) is called orthogonal if (2.3) holds.

A scaling function φ(x) is said to have accuracy (regularity) r if the space of the
infinite linear combinations of {φ(x− k) : k ∈ Z2} contains all polynomials of degree
r−1 or less. In this case the coefficient mask C(z, w) is said to have accuracy r as well.
(How the accuracy of φ relates to C(z, w) is explained in the next section.) Accuracy
is a desirable property in many applications; for example, in image processing it
implies that the polynomial components of the filtered signal will not “leak” into the
high-pass band, which improves compression.

In this paper we measure the smoothness of a real bivariate function φ by its
Hölder exponent (there are alternative regularity measures, such as the Sobolev ex-
ponent). Let s = m + γ, where 0 ≤ γ < 1 and m is a nonnegative integer. Then
we say that φ(x) ∈ Cs if for each partial derivative Dαφ(x), where α = (α1, α2) and
α1 + α2 ≤ m, there is a constant c > 0 such that |Dαφ(x)−Dαφ(y)| ≤ c|x− y|γ for

all x,y ∈ R2. If the Fourier transform φ̂(ω) of φ(x) satisfies

|φ̂(ω)| ≤ c · (1 + |ω1|)−s−1−ε(1 + |ω2|)−s−1−ε

for some constants c > 0 and ε > 0, then φ(x) ∈ Cs. It is usually harder to estimate
the smoothness of a scaling function than its accuracy.

The autocorrelation (product filter) of a real polynomial F (z1, z2) is defined to be

PF (z1, z2) := F (z1, z2)F (z−1
1 , z−1

2 ).

The polynomial F is called a spectral factor of PF . Note that PF (eiω1 , eiω2) =
|F (eiω1 , eiω2)|2 and is therefore always real and nonnegative. Conversely, the Fèjer–
Riesz theorem [7] ensures that every real-valued nonnegative univariate trigonometric
polynomial P (eiω1) can be factored (nonuniquely) as |F (eiω1)|2. In most cases the
spectral factor F can only be computed numerically. (Strang and Nguyen [15, p. 157]
review several spectral factorization methods.)

Spectral factorization is a key technique in univariate orthogonal wavelet theory.
Daubechies [7] constructed orthogonal univariate wavelets of arbitrarily high accuracy
by deriving an analytic formula for the autocorrelation of the coefficient mask; the
scaling coefficients themselves must be computed numerically. Theorem 2.1 is a similar
result in a special bivariate setting.

The main difficulty in constructing bivariate nonseparable smooth wavelets is that
some key univariate techniques, such as polynomial factorization, do not generalize to
the bivariate case. The Fèjer–Riesz theorem is one of them: e.g., 2+cos(ω1)+cos(ω2)
is real and nonnegative; yet it cannot be factored as |F (eiω1 , eiω2)|2. One approach to
nonseparable orthogonal wavelets is to solve the accuracy and orthogonality conditions
for a specific arrangement of unknown scaling coefficients. Unfortunately, the resulting
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system of linear and quadratic equations can only be solved (even numerically) when
the number of coefficients is rather small. (Kovačević and Vetterli [12] placed the 8

nonzero coefficients in the
• •• • • •• • pattern; He and Lai [10] used a 4×4 mask.) Another

approach to nonseparable wavelets, which we adopt here, is to study special cases of
(2.1) and derive the scaling coefficients explicitly.

Our construction employs a special coefficient mask for a particular dilation ma-
trix (generalizations are discussed in section 5). First, we fix the dilation matrix

M =

(
0 2
1 0

)
.

The property M2 = 2I will be useful in the proof of Theorem 2.2. Next, we restrict
the placement of the nonzero scaling coefficients in (2.1) to two adjacent rows in the
first quadrant. That is, supp c := {n ∈ Z2 : cn 6= 0} ⊆ {0, . . . , N} × {0, 1} for some
N ∈ N. As a result, the coefficient mask has the form

C(z, w) = A(z) + wB(z),(2.4)

where A(z) and B(z) are polynomials of one complex variable. The theorems below
do not generalize easily to masks with more than two rows.

Observe that A(1)+B(1) = C(1, 1) = 1, so it is impossible that A(1) = B(1) = 0.
Therefore, we assume that A(1) 6= 0, for we can always achieve it by a suitable change
of variables in (2.1), as explained at the end of section 3. Furthermore, we assume that
B(0) 6= 0. Cohen and Daubechies [6] noted that if B(z) ≡ 0 (that is, if the scaling
coefficients are aligned along a single horizontal line), then the scaling function is
separable. A simple but important example of such a one-row mask is the Haar
coefficient mask

H(z) :=
1

2
(1 + z).(2.5)

The corresponding separable scaling function is the indicator of the unit square.
Our first theorem gives the necessary conditions for a two-row coefficient mask to

produce a nonseparable orthogonal scaling function of arbitrarily high accuracy. The
proof is in section 3.

Theorem 2.1. Let φ(x) satisfy the dilation equation (2.1) with dilation M =(
0 2
1 0

)
and coefficient mask C(z, w) = A(z) + wB(z), where A(1) 6= 0 and B(0) 6= 0.

Let r ∈ N and let ν be an odd integer with ν ≥ degA. If the scaling function φ(x) is
orthogonal and has accuracy r+1, then the polynomials A(z) and B(z) have the form

zνA(z−1) = Hr(z)L(z)S(z2),(2.6)

B(z) = Hr(z)L(−z)Q(z2)H2r(−z),(2.7)

where L(z), S(z), and Q(z) are any polynomials that satisfy

PS(z2) = 1−
(

1− z2

4

)r (
1− z−2

4

)r
PQ(z2),(2.8)

PL(z) =
r−1∑
j=0

(
r + j − 1

j

)(
1− u

2

)j
+ (1− u)ruR(u2), u :=

1

2
(z + z−1),(2.9)

S(1) = L(1) = 1, Q(1) = (−1)rL(−1), and L(0)Q(0) 6= 0(2.10)

and R(z) is an arbitrary polynomial.
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Remark. The converse of Theorem 2.1 holds if, in addition to (2.6)–(2.10), the
mask C(z, w) satisfies Cohen’s criterion (2.2).

Theorem 2.1 suggests the following procedure for obtaining the coefficients of
C(z, w):

(i) Choose polynomials Q and R so that the right-hand sides of (2.8)–(2.9) are
nonnegative along the unit circle |z| = 1 (thus ensuring that the next step can
be performed).

(ii) Using some spectral factorization method, make a list of all polynomials S and
L that satisfy (2.8)–(2.10). Choose a specific pair. (Observe that if R = 0, then
the polynomial L is one of the univariate orthogonal coefficients masks with
accuracy r constructed by Daubechies [7].)

(iii) Substitute L, S, and Q in (2.6)–(2.7) and expand. Choose an odd ν ≥ degA.
Note that the choices in step (ii) are not unique. Unlike the univariate case, there

is no obvious way to single out a “minimal phase” coefficient mask C(z, w).
The minimal degree of A(z) and B(z) in Theorem 2.1 is 4r− 1 and is achieved if

Q(z) = const = (−1)rL(−1), R(z) = const = 0, and ν = 4r − 1.(2.11)

There are 21+2br/2c coefficient masks C(z, w) that satisfy the conditions (2.11) and
A(0) 6= 0 in addition to the conditions in Theorem 2.1. Denote the set of those masks
by Cr+1. Every C(z, w) in Cr+1 produces a scaling function φ(x) with accuracy r+ 1.
Denote the set of those scaling functions by Φr+1.

Our second theorem states that all functions in Φr+1 are compactly supported
orthogonal nonseparable scaling functions that can be made arbitrarily smooth by
choosing the accuracy r + 1 large enough. The proof is in section 4.

Theorem 2.2. Let M =
(

0 2
1 0

)
and let φ ∈ Φr+1. Then

(i) φ is an orthogonal scaling function with accuracy r + 1;
(ii) suppφ ⊆ [0, 4r + 1]× [0, 4r];
(iii) φ is nonseparable;
(iv) if r ≥ 5, then φ ∈ Cr−µr−2, where

µr :=
1

2
log2

(
r−1∑
j=0

(
r + j − 1

j

)(3

4

)j)
.

Furthermore,

r − µr >
(

1− 1

2
log2 3

)
r +

1

2
log2 3(2.12)

and

lim
r→∞

r − µr − 2

r
= 1− 1

2
log2 3 ≈ 0.2075.(2.13)

Remark. As in the univariate case, the statements (2.12)–(2.13) guarantee the
existence of orthogonal wavelets of any desired smoothness. In particular, Φ5+1 ⊂ C0,
Φ9+1 ⊂ C1, and Φ13+1 ⊂ C2. The smoothness estimate φ ∈ Cr−µr−2 applies to all φ
in Φr+1 uniformly and is not sharp. Lemma 5.1 provides sharper smoothness estimates
for individual functions in Φr+1, involving numerical computations.

If φ(x) is an orthogonal scaling function, then its associated wavelet ψ(x) has the
form

ψ(x) = 2
∑
n∈Z2

dnφ(Mx− n).
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c ` c ` c `` c ` c ` cc ` c ` c `` c ` c ` c
c ` c ` c `c ` c ` c `c ` c ` c `c ` c ` c `

Fig. 2.1. The quincunx and the column sublattice.

Obviously, the wavelet φ has the same smoothness as the scaling function φ. It is
known that if the wavelet coefficients (high-pass filter coefficients) dn are given by

dn = (−1)n1ce−n, where n = (n1, n2) and e = (1, 0),

then the wavelet ψ(x) is orthogonal to {φ(x− k) : k ∈ Z2}, and its lattice translates
and dilates form an orthogonal basis of L2(R2) [13, 14].

Although Theorems 2.1 and 2.2 are formulated for M =
(

0 2
1 0

)
, they can be gen-

eralized [2] to other expanding matrices with integer entries and |det(M)| = 2. Each
such matrix transforms the lattice Z2 into three types of sublattices: the quincunx,
the column sublattice (see Figure 2.1), and the row sublattice (the row sublattice is
merely a transpose of the column sublattice).

The accuracy and the orthogonality conditions depend only on the sublattice type
and not on the dilation matrix, as we shall see in section 3. Therefore, Theorem 2.1 still
holds if

(
0 2
1 0

)
is replaced by any other expanding integral matrix M that generates the

column sublattice 2Z×Z, such as
(

0 −2
1 0

)
. If

(
0 2
1 0

)
is replaced by the quincunx matrix(

1 −1
1 1

)
, or any other matrix that generates the quincunx lattice, such as

(
1 1
1 −1

)
, then

A(z) + wB(z) must be replaced by A(z) + wzB(z), as we shall see at the end of
section 5.

In contrast, the smoothness of the scaling function does depend on the dilation
matrix. Theorem 2.2 can be extended to any dilation M with the properties M2 =
±2I, such as

(
0 −2
1 0

)
or
(

1 1
1 −1

)
. Although the quincunx matrix

(
1 −1
1 1

)
has often been

used in nonseparable constructions, the authors know of no scaling functions that are
both differentiable and orthogonal with respect to the quincunx matrix; it is quite
possible that

(
1 −1
1 1

)
admits no such scaling functions at all.

3. Accuracy and orthogonality conditions. In this section we prove The-
orem 2.1. First, we study how the accuracy and the orthogonality of the scaling
function restrict the scaling coefficients. Then, we derive the formulas (2.6)–(2.10).
Recall that H(z) = 1

2 (1 + z).

Accuracy. The accuracy of the scaling function φ has many equivalent formu-
lations, such as the vanishing moments condition for the wavelet (

∫
xαψ(x) dx = 0,

|α| < r) or the “sum rules” on the coefficients cn [4]. Here, we prefer to work with the
sum rules. Applied to our dilation matrix M =

(
0 2
1 0

)
, a general result by Cabrelli,

Heil, and Molter [4] states that an orthogonal scaling function φ has accuracy r if and
only if its coefficient mask C(z, w) satisfies the following accuracy condition:

∂p+q

∂zp∂wq
C(−1, 1) = 0 for all p, q ≥ 0 with p+ q < r.(3.1)

Observe that the analogous condition for a univariate polynomial C(z) implies the
factorization C(z) = (1+z)rQ(z) for some Q(z). Unfortunately, bivariate polynomials
C(z, w) cannot be described in such a simple way. (This fact is one of the main
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obstacles in studying nonseparable bivariate wavelets.) Nevertheless, the accuracy
condition (3.1) takes on a simple form for our special two-row mask C(z, w).

Lemma 3.1. Let M =
(

0 2
1 0

)
. The dilation equation (2.1) with coefficient mask

C(z, w) = A(z) + wB(z) has accuracy r + 1 if and only if

A(z) = Hr(z)A0(z), B(z) = Hr(z)B0(z),(3.2)

A0(−1) +B0(−1) = 0.(3.3)

Proof. It is easy to check that (3.2)–(3.3) imply (3.1). We now prove the converse.
By taking q = 0 in (3.1), we obtain A(p)(−1) + B(p)(−1) = 0 for all 0 ≤ p ≤ r. By
taking q = 1, we obtain B(p)(−1) = 0 for all 0 ≤ p ≤ r − 1. These conditions imply
A(p)(−1) = 0 for all 0 ≤ p ≤ r−1. Hence A(z) = Hr(z)A0(z) andB(z) = Hr(z)B0(z).
Finally, A(r)(−1) +B(r)(−1) = 0 yields A0(−1) +B0(−1) = 0.

Note that, unlike the univariate case, here accuracy r + 1 corresponds to r Haar
factors plus one extra condition (3.3).

Orthogonality. If M =
(

0 2
1 0

)
, the orthogonality condition (2.3) is equivalent to

PC(z, w) + PC(−z, w) = 1.

For the special two-row coefficient mask (2.4), this condition splits further into the
following two conditions imposed on the polynomials A and B:

PA(z) + PA(−z) + PB(z) + PB(−z) = 1,(3.4)

A(z−1)B(z) +A(−z−1)B(−z) = 0.(3.5)

Remark. The second condition means that A(z−1)B(z) contains no even powers
of z. Therefore, degA must be odd if B(0) 6= 0.

The main task in the remainder of this section is to solve (3.2)–(3.5) for the
unknown polynomials A and B. Observe that (3.2)–(3.3) are linear and that (3.4)–
(3.5) are quadratic.

First, we investigate (3.5).
Lemma 3.2. For every polynomial p(z) = z2np1(z) with p1(0) 6= 0 and n ≥ 0,

there exist polynomials q and ` such that p(z) = q(z2)`(z) and gcd(`(z), `(−z)) = 1.
Proof. Consider t(z) := gcd(p(z), p(−z)). Clearly, t(z) = t(−z) = q(z2) for some

polynomial q(z). Let `(z) := p(z)/q(z2), and observe that gcd(`(z), `(−z)) = 1.
Lemma 3.3. The following are equivalent:
(i) The polynomials A and B satisfy condition (3.5) and B(0) 6= 0.
(ii) There exist an odd integer ν ≥ degA and real polynomials s, q, and ` such

that zνA(z−1) = s(z2)`(z), B(z) = q(z2)`(−z), and gcd(`(z), `(−z)) = 1.
Proof. The implication (ii) ⇒ (i) follows from

zνs(z2)`(z)q(z2)`(−z) + (−z)νs(z2)`(−z)q(z2)`(z) = 0.

Assume that (i) holds, and fix an odd ν ≥ degA. Lemma 3.2 allows us to write
zνA(z−1) = s(z2)`(z) and B(z) = q(z2)m(z) for some polynomials s, q, `, and m.
Substituting A(z−1) and B(z) in (3.5) yields

m(z)`(z) = m(−z)`(−z).

Since gcd(m(z),m(−z)) = gcd(`(z), `(−z)) = 1, it follows that m(z) = `(−z).
Next, we take into account the accuracy of C(z, w).
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Lemma 3.4. Let A and B be polynomials with A(1) 6= 0 and B(0) 6= 0. Then the
following are equivalent:

(i) The two-row coefficient mask C(z, w) = A(z) +wB(z) satisfies (3.5) and has
accuracy r + 1.

(ii) There exists an odd integer ν ≥ degA and real polynomials S, Q, and L with
L(0)Q(0) 6= 0, S(1) = L(1) = 1, and Q(1) = (−1)rL(−1) such that

zνA(z−1) = Hr(z)L(z)S(z2),

B(z) = Hr(z)L(−z)Q(z2)H2r(−z).

Proof. The implication (ii)⇒(i) follows from Lemmas 3.1 and 3.3 by letting

s(z2) = S(z2), q(z2) = Q(z2)
(

1−z2

2

)r
, and `(z) = Hr(z)L(z). We now prove that

(i)⇒(ii). By Lemma 3.1, Hr(z) divides both A(z) and B(z). Therefore, z = −1 is a
root of multiplicity 2r of P (z) := zνA(z−1)B(z). On the other hand, P (z) = P (−z)
by (3.5); hence z = 1 is another root of multiplicity 2r of P (z). Since A(1) 6= 0 by
assumption, H2r(−z) must divide B(z). Define

A1(z) := A(z)zr/Hr(z), and B1(z) := B(z)/
(
Hr(z)H2r(−z)).

Noting that H(z−1) = z−1H(z), we rewrite

A(z−1)B(z) = H(z)2rH(−z)2rA1(z−1)B1(z)

and substitute in (3.5). Factoring out H(z)2rH(−z)2r yields the equation

A1(z−1)B1(z) +A1(−z−1)B1(−z) = 0.

Therefore, Lemma 3.2 applies to A1 and B1, and we obtain the desired factorization
in (ii). Since B(1) = 0, and therefore A(1) = 1, we can normalize L and S so that
L(1) = S(1) = 1. The only restriction on Q, that Q(1) = (−1)rL(−1), then follows
directly from the extra accuracy condition (3.3).

Finally, to prove Theorem 2.1 we need to solve the remaining equation, (3.4).
Proof of Theorem 2.1. We need only show that the polynomials S, Q and L in

Lemma 3.4 have the autocorrelations given by (2.8) and (2.9). By Lemma 3.4,

PA(z) = PrH(z)PS(z2)PL(z), and PB(z) = PrH(z)P2r
H (−z)PL(−z)PQ(z2).

Hence PA(z) + PB(−z) = PrH(z)PL(z)U(z2), where

U(z2) := PS(z2) + PrH(−z)PrH(z)PQ(z2).

Therefore, the orthogonality condition (3.4) can be factored as follows:(PrH(z)PL(z) + PrH(−z)PL(−z))U(z2) = 1.

It follows that U(z2) must be a constant. In particular, U(z2) = U(1) = PS(1) = 1,
which immediately yields (2.8). Finally, the equation

PrH(z)PL(z) + PrH(−z)PL(−z) = 1(3.6)

characterizes all univariate orthogonal masks with accuracy r and was solved by Dau-
bechies [7]. The solution to (3.6) is given by (2.9).
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Remark. Although the results in this section are formulated for M =
(

0 2
1 0

)
, the

accuracy and orthogonality conditions (2.3) and (3.1) depend only on the sublattice
MZ2 (in our case, the column sublattice), not on the particular dilation matrix.
Therefore, Theorem 2.1 and all results in this section apply to any other integer
expanding matrix M that satisfies MZ2 = 2Z × Z. Corollary 5.3 and Lemma 5.4
explain how to apply Theorem 2.1 to other dilation matrices, such as

(
1 −1
1 1

)
or
(

2 0
0 2

)
.

The statement of Theorem 2.1 contains two assumptions: B(0) 6= 0 and A(1) 6= 0.
Now we explain why these assumptions impose no loss of generality.

First, by shifting the variables in the dilation equation (2.1), one can check that
a shift of the coefficient mask by a vector s results in a shift of the scaling function by
(M − I)s. Therefore, without loss of generality, the coefficients of any mask C(z, w)
can always be shifted so that C(z, w) contains no negative powers of w, and so that
the smallest power of z in B(z) is zero. (The Laurent polynomial A(z) may contain
negative powers of z; nevertheless, Theorem 2.1 holds.)

Second, suppose that A(1) = 0 and B(1) 6= 0 (recall that A(1) + B(1) = 1).
Change the variables x 7→ −x and n 7→ −n in (2.1), and note (cf. Lemma 5.2) that
if φ(x) solves (2.1) with the coefficient mask C(z, w), then φ(−x) solves (2.1) with
the coefficient mask C̃(z, w) = C(z−1, w−1). Shift the coefficients of C̃(z, w) to the
first quadrant (that is, multiply by zNw, where N = max(degA,degB)) and observe
that zNw C̃(z, w) = Ã(z) + wB̃(z), where Ã(1) = B(1) 6= 0. The shift of φ(−x) is
orthogonal and has accuracy r if and only if φ(x) is orthogonal and has accuracy r.
So the assumption A(1) 6= 0 causes no loss of generality in Theorem 2.1.

4. Smoothness. In this section we prove Theorem 2.2. To prove the orthogo-
nality of a scaling function φ ∈ Φr+1, we check Cohen’s criterion (4.6). We establish

the smoothness of φ by estimating the decay of its Fourier transform φ̂ in a series of
lemmas. In this section, M =

(
0 2
1 0

)
and W = MT.

The symbol of the dilation equation (2.1) with coefficient mask C(z, w) is the
trigonometric polynomial m(ω1, ω2) := C(eiω1 , eiω2). Taking the Fourier transform
of (2.1) and iterating, we obtain

φ̂(ω) = φ̂(0) ·
∞∏
j=1

m(W−jω).(4.1)

Since W−2 = 1
2I, the infinite product (4.1) breaks into two parts:

∞∏
j=1

m(W−jω) =

 ∞∏
j=1

m(2−jω)

 ∞∏
j=1

m(2−jWω)

 .(4.2)

Our goal is to derive an estimate for
∏∞
j=1m(2−jω) when C(z, w) ∈ Cr+1 by using

only the first frequency ω1.
First, let C(z, w) = H(z) = 1

2 (1 + z) in (2.1). It can be checked that (2.1) is
solved by the Haar scaling function χ[0,1)2 and that

∞∏
j=1

mH(W−jω) = χ̂[0,1)(ω1) · χ̂[0,1)(ω2) =
(eiω1 − 1)

iω1
· (eiω2 − 1)

iω2
,

where mH(ω1, ω2) := H(eiω1). Therefore, there is a constant c > 0 such that∣∣∣ ∞∏
j=1

mH(W−jω)
∣∣∣ ≤ c · (1 + |ω1|

)−1(
1 + |ω2|

)−1
.(4.3)
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Next, fix r ∈ N, and consider any coefficient mask C(z, w) ∈ Cr+1, as described
in Theorem 2.1 and (2.11). The corresponding symbol has the form

m(ω1, ω2) = C(eiω1 , eiω2) = Hr(eiω1)
(
A0(eiω1) + eiω2B0(eiω1)

)
.

Define

q(ω1, ω2) := A0(eiω1) + eiω2B0(eiω1) and `(ω1) := |A0(eiω1)|+ |B0(eiω1)|.(4.4)

Clearly, |q(ω1, ω2)| ≤ `(ω1). We estimate `(ω1) in a series of lemmas. Define

Tr(y) :=

r−1∑
j=0

(
r + j − 1

j

)
yj .(4.5)

Lemma 4.1. Let L(z) satisfy (2.9). Assume r ≥ 1. Then

PrH(−eiω1)L2(−1) ≤ Tr
(

sin2 ω1

2

)
,

and equality holds only if ω1 ≡ π (mod 2π).

Proof. From (2.9) we obtain L2(−1) = PL(−1) = Tr(1) =
∑r−1
j=0

(
r+j−1
j

)
. By the

definition of H in (2.5),

PrH(−eiω1) =
(1− cosω1

2

)r
=
(

sin
ω1

2

)2r

≤
(

sin
ω1

2

)2j

for all j ≤ r.

Hence

L2(−1)PrH(−eiω1) =
r−1∑
j=0

(
r + j − 1

j

)(
sin

ω1

2

)2r

≤
r−1∑
j=0

(
r + j − 1

j

)(
sin

ω1

2

)2j

= Tr

(
sin2 ω1

2

)
.

Because the coefficients of Tr are positive, equality holds only when sin2 ω1

2 = 1, that
is, when ω1 ≡ π (mod 2π).

Corollary 4.2. There exist real polynomials S and L that satisfy (2.8)–(2.11).
Proof. We need only show that (2.8) defines a valid autocorrelation; that is,

1− PrH(z)PrH(−z)L2(−1) ≥ 0 for all |z| = 1.

Let |z| = 1. From Lemma 4.1 and (3.6) we obtain

PrH(z)PrH(−z)L2(−1) ≤ PrH(z)PL(z) = 1− PrH(−z)PL(−z) ≤ 1.

The last inequality holds because PH(z) ≥ 0 and PL(z) ≥ 0 for |z| = 1.
Lemma 4.3. |A0(eiω1)|2 ≤ Tr(sin

2 ω1

2 ) and |B0(eiω1)|2 ≤ Tr(sin
2 ω1

2 ). Each
equality holds only if ω1 ≡ π (mod 2π).

Proof. By the construction in Theorem 2.1 and (2.11) we have

PA0
(z) = PL(z)PS(z2) = PL(z)

(
1− PrH(z)PrH(−z)L2(−1)

)
,

PB0
(z) = PrH(−z)PrH(−z)PL(−z)L2(−1).
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Since PrH(eiω) ≥ 0 for all ω,

|A0(eiω1)|2 = PA0
(eiω1) ≤ PL(eiω1) · 1 = Tr(sin

2 ω1

2 ).

Observe that (3.6) yields 0 ≤ PrH(−z)PL(−z) ≤ 1 for z = eiω1 . Therefore,

|B0(eiω1)|2 = PB0
(eiω1) ≤ PrH(−eiω1) · 1 · L2(−1).

Lemma 4.1 completes the inequality for B0.
Before we proceed with the estimate of the infinite product (4.2), we recall the

following lemma (without proof) from Daubechies [8, pp. 220–226]:
Lemma 4.4 (Cohen and Conze [5]). Let µr := 1

2 log2 Tr(
3
4 ). Then

Tr
(
sin2 ω1

2

) ≤ Tr( 3
4

)
if |ω1| ≤ 2π

3 ,

Tr(sin
2 ω1)Tr

(
sin2 ω1

2

) ≤ T 2
r

(
3
4

)
if 2π

3 < |ω1| ≤ π.

Furthermore,

r − µr >
(

1− 1

2
log2 3

)
r +

1

2
log2 3,

lim
r→∞

r − µr − 2

r
= 1− 1

2
log2 3 ≈ 0.2075.

Lemma 4.5. There exist constants c > 0 and ε > 0 such that

∞∏
j=1

`(2−jω1) ≤ c · |ω1|µr+1−ε, where µr := 1
2 log2 Tr(

3
4 ).

Proof. Lemma 4.3 implies that `2(ω1) =
(|A0(eiω1)|+ |B0(eiω1)|)2 ≤ 4Tr(sin

2 ω1

2 )
and that equality holds only when ω1 ≡ π (mod 2π). By combining these statements
with Lemma 4.4, we obtain the following strict inequalities:

`2(ω1) < 4Tr
(

3
4

)
if |ω1| ≤ 2π

3 ,

`2(ω1)`2(2ω1) < 42 T 2
r

(
3
4

)
if 2π

3 < |ω1| ≤ π.

Since ` and Tr are continuous, we can preserve these inequalities even after we replace
4 by (4−δ) for some small δ > 0. By Theorem 2.3 of Cohen and Daubechies [6, p. 69],
there exists a constant c > 0 such that

∞∏
j=1

`(2−jω1) ≤ c · |ω1|b,

where b := 1
2 log2

(
(4− δ)Tr( 3

4 )
)
. Observe that b = 1− ε+ µr for some ε > 0.

Corollary 4.6. Let W = MT. There exist constants c > 0 and ε > 0 such that∣∣∣∣∣∣
∞∏
j=1

q(W−jω)

∣∣∣∣∣∣ ≤ c · |ω1|µr+1−ε |ω2|µr+1−ε,

where µr := 1
2 log2 Tr(

3
4 ), and q(ω) is defined in (4.4).
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Proof. Note that W (ω1, ω2) = (ω2, 2ω1). Therefore, (4.2) and (4.4) yield∣∣∣∣∣∣
∞∏
j=1

q(W−jω)

∣∣∣∣∣∣ =
∞∏
j=1

∣∣q(2−jω)
∣∣ ∞∏
j=1

∣∣q(2−jWω)
∣∣

≤
∞∏
j=1

`(2−jω1)
∞∏
j=1

`(2−jω2)

≤ c · |ω1|µr+1−ε |ω2|µr+1−ε.

The following lemma establishes a simple fact about the zeros of m(ω1, ω2):
Lemma 4.7. Suppose that m(ω1, ω2) = 0. Then ω1 ≡ π (mod 2π).
Proof. If m(ω1, ω2) = 0, then |A(eiω1)| = |B(eiω1)|, and therefore PA(z) = PB(z)

for some z = eiω1 . Thus, either H(z) = 0, and therefore z = −1, or PA0(z) = PB0(z);
that is, (

1− PrH(−z)PrH(z)L2(−1)
)PL(z) = P2r

H (−z)PL(−z)L2(−1),

and therefore

PL(z) = PrH(−z)PrH(z)PL(z)L2(−1) + PrH(−z)PrH(−z)PL(−z)L2(−1).

Due to (3.6),

PL(z) = PrH(−z)L2(−1).

By Lemma 4.1, this can happen only when ω1 ≡ π (mod 2π).
Proof of Theorem 2.2.
(i) Since the conditions for accuracy (3.2)–(3.3) and orthogonality (2.3) hold by

Theorem 2.1, to ensure that φ is an orthogonal scaling function, we need only verify
Cohen’s criterion by finding a compact fundamental domain Ω of the lattice 2πZ2

with the property

m(W−jω) 6= 0 for all j ≥ 1 and for all ω ∈ Ω.(4.6)

Let Ω = [−π, π]2. Clearly, Ω is a compact fundamental domain of 2πZ2. Observe
that W−1Ω = [−π2 , π2 ]× [−π, π]. Therefore, Lemma 4.7 guarantees that m(ω) 6= 0 for
ω ∈W−1Ω. Finally, W−j−1Ω ⊂W−jΩ for all j ≥ 1, which proves (4.6).

(ii) Berger and Wang [3] showed that the support of the solution to the dilation
equation (2.1) is the attractor of the iterated function system (IFS){

fn(x) := M−1(x + n) : cn 6= 0
}
.

If supp c = [0, Nx]×[0, Ny], it can be checked that suppφ ⊆ [0, Nx+2Ny]×[0, Nx+Ny].
For all φ in Φr+1, we have Nx = 4r − 1 and Ny = 1, which proves part (ii).

(iii) Definem1(ω) := m(ω)m(W−1ω). By (4.1), we have φ̂(ω) = m1(ω/2) φ̂(ω/2).

Assume that φ(x) is separable. Then φ̂(ω) and m1(ω/2) are separable. This is im-
possible, because the coefficient mask C(z, w) is nonseparable by (2.6)–(2.7).

(iv) Let µr := 1
2 log2 Tr(

3
4 ). Combining (4.1)–(4.3) with Corollary 4.6, we obtain

the following estimate for the decay of the Fourier transform of any φ in Φr+1:

|φ̂(ω)| ≤ c · (1 + |ω1|)µr+1−r−ε(1 + |ω2|)µr+1−r−ε
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for some constants c > 0 and ε > 0. As a result, φ ∈ Cr−µr−2(R2). Lemma 4.4
provides the asymptotics for r − µr.

Remark. Observe that, aside from the claim on the size of suppφ in part (ii), in
the proof of Theorem 2.2 and Corollary 4.6 we used only the following properties of
the dilation matrix M =

(
0 2
1 0

)
:

M2 = ±2I and MZ2 = 2Z× Z.(4.7)

Therefore, aside from part (ii), Theorem 2.2 holds for any dilation matrix M satisfying
(4.7), such as M =

(
0 −2
1 0

)
. Lemma 5.2 and a result by Lagarias and Wang [11] extend

Theorem 2.2 to all dilation matrices with M2 = ±2I [2].

5. Examples. In this section we consider a few of the coefficient masks in The-
orem 2.1 for r = 1, 2, and 6. We plot the corresponding scaling functions and study
their smoothness. Finally, we discuss how to modify these masks for other dilation
matrices. Additional coefficient values can be found in the appendix of [2].

Devil’s Tower. The simplest case of Theorem 2.1 is when r = 1 and (2.11)
holds. In this case L(z) = 1, and the autocorrelation

PS(z2) = 1−
(1− z2

4

)(1− z−2

4

)
has only two spectral factors, which can be computed explicitly:

S(1)(z2) =
2−√3

4
+

2 +
√

3

4
z2 and S(2)(z2) =

2 +
√

3

4
+

2−√3

4
z2.

The corresponding coefficient masks are given below. For brevity we omit the
powers of z and w; the constant term c00 is anchored at the lower-left corner:

c(1) =
1

8

[ −1 1 1 −1

2−√3 2−√3 2 +
√

3 2 +
√

3

]
,

c(2) =
1

8

[ −1 1 1 −1

2 +
√

3 2 +
√

3 2−√3 2−√3

]
.

The corresponding scaling functions φ(1) and φ(2) are supported on [0, 5] × [0, 4],
have accuracy 2, and are discontinuous. The mesh plot of φ(1) resembles the famous
Wyoming mountain, as depicted in Figure 5.1.

Continuous scaling function. In the case r = 2, four spectral factors of PS are
combined with two spectral factors of PL to produce eight coefficient masks in C2+1

(see Table A.1 in the Appendix). The second mask has the following coefficients:

c =
[

0.03697 −0.06403 −0.05678 0.13797 0.00265 −0.08384 0.01716 0.00991
0.00790 −0.01369 −0.13808 0.12118 0.54993 0.34617 0.08025 0.04633

]
.

(5.1)

The corresponding scaling function (Figure 5.2) has accuracy 2 + 1 = 3 and is con-
tinuous. The continuity does not follow from Theorem 2.2, because 2 − µ2 − 2 ≈
1.339 − 2 < 0. Instead, the continuity of the scaling function in Figure 5.2 follows
from Lemma 5.1, which is a straightforward modification of Lemma 7.1.2 by Daube-
chies [8, p. 217]; the proof is essentially the same and is therefore omitted here.
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Fig. 5.1. “Devil’s Tower”: a discontinuous scaling function with accuracy 1+1 = 2 and support
[0, 5]× [0, 4].
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Fig. 5.2. “Resting Dog”: a continuous nonseparable scaling function with accuracy 2 + 1 = 3
and support [0, 9]× [0, 8].
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Lemma 5.1. Let W = MT. Suppose that there exist p ∈ N and λ > 0 such that

sup
ω

p−1∏
j=0

∣∣q(2−jω) q(2−jW−1ω)
∣∣ < 2λp,(5.2)

where q(ω) is defined in (4.4). Then there exist constants c′ and c′′ such that

∞∏
j=1

∣∣q(W−jω)
∣∣ < c′ · (1 + |ω|)λ < c′′ · (1 + |ω1|)λ(1 + |ω2|)λ.

Hence φ ∈ Cr−1−λ.
The authors evaluated the trigonometric polynomial in (5.2) numerically for 120

values of ω within a single period and verified that the coefficient mask (??) satisfies
(5.2) for p = 4 and λ = 1. Therefore, the scaling function in Figure 5.2 is continuous.

While Theorem 2.2 claims only that Φ5+1 ⊂ C0, it can be verified numerically
that all masks in C3+1 (see Table A.3 in the Appendix) satisfy (5.2) for p = 4 and
λ = 2; hence Φ3+1 ⊂ C0.

Differentiable scaling functions. About half of the 128 coefficient masks in
C6+1 satisfy (5.2) for p = 4 and λ = 4 and therefore produce differentiable scaling
functions. To the best of the authors’ knowledge, these are the first nonseparable
orthogonal scaling functions (for a dilation matrix with |det(M)| = 2) that are dif-
ferentiable. The 2 × 24 scaling coefficients of the differentiable scaling function in
Figure 5.3 are displayed in Table A.2 in the Appendix. Numerical computations
confirm also that Φ7+1 ⊂ C1.

Other dilations. The following lemma explains what happens when we manipu-
late the coefficient mask in the dilation equation (2.1). Let J be any lattice-preserving
matrix, that is, any matrix J such that both J and J−1 have integer entries. An ex-
ample is J =

(
1 1
0 1

)
. For any function f : R2→R define its “upsampling by J” as

(J ↑f)(x) := f(J−1x). Similarly, define the “upsampled by J” scaling coefficients as
(J ↑c)n := cJ−1n.

Lemma 5.2. Let φ be a solution to the dilation equation (2.1) with coefficients c
and dilation matrix M . Then J ↑ φ is a solution to the dilation equation (2.1) with
coefficients J ↑c and dilation matrix JMJ−1.

Proof. Make the substitution x 7→ J−1y in the dilation equation.
A surprising example is J =

(−1 0
0 1

)
, the matrix of the reflection about the y-axis.

Let M =
(

0 2
1 0

)
. Then JMJ−1 = −M . Therefore, the scaling function with coefficient

mask w−1(B(z) + wA(z)) and dilation M is a reflection of the scaling function with
coefficient mask A(z) + wB(z) and dilation −M , but it is not a reflection of the
scaling function with coefficient mask A(z) + wB(z) and dilation M . The difference
is obvious in Figure 5.4, which shows the contour plots of two scaling functions with
the same dilation matrix M =

(
0 2
1 0

)
and x-reflected coefficients. (The one on the left

was plotted in Figure 5.2.)
The plots exhibit a peculiar feature: all scaling functions appear so far to be

“almost symmetric” with respect to the bisectrix x = y. This is not surprising, since
the dilation matrix

(
0 2
1 0

)
swaps the axes and stretches along x by a factor of two.

Unfortunately, the case |det(M)| = 2 is similar to the univariate case M = 2—the
only symmetric orthogonal scaling function is the Haar function.

Lemma 5.2 allows us to adapt the coefficient masks described in Theorem 2.1 to
dilation matrices that generate the quincunx sublattice in the following way.
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Fig. 5.3. A differentiable nonseparable scaling function with accuracy 6 + 1 = 7.

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

Fig. 5.4. Level sets of scaling functions with x-reflected scaling coefficients: the functions are
not similar.

Corollary 5.3. Let ν be odd. If A(z) + wB(z) is a two-row orthogonal coeffi-
cient mask with accuracy r for the column lattice, then A(z) + zνwB(z) is a two-row
orthogonal coefficient mask with accuracy r for the quincunx lattice.

Proof. Set M =
(

0 2
1 0

)
and J =

(
1 ν
0 1

)
in Lemma 5.2. Observe that the J-

upsampling of A(z) + wB(z) is A(z) + zνwB(z) and that the matrix J
(

0 2
1 0

)
J−1

generates the quincunx sublattice.
If we shift the top row of coefficients in (??) one position to the left and use the

dilation matrix
(

1 −1
1 1

)
in (2.1), then we obtain an orthogonal nonseparable quincunx

scaling function with accuracy 2 + 1 = 3, plotted in Figure 5.5 (cf. Kovačević and
Vetterli’s scaling function with accuracy 2 [12]).
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Fig. 5.5. An orthogonal nonseparable scaling function with accuracy 2+1 = 3 for the quincunx
dilation matrix.

Every 2 × 2 dilation matrix M with M2 = 2I can be factored in the form
J
(

0 2
1 0

)
J−1 [11]. Therefore, Lemma 5.2 and Theorem 2.2 provide arbitrarily smooth

nonseparable wavelet bases for such dilation matrices.
The convolution of two sets of scaling coefficients an and bn is defined by (a∗b)n :=∑

k∈Z2 ak bn−k. The following statement combines two levels of the MRA into one.
Lemma 5.4. Let φ be a solution to the dilation equation (2.1) with coefficients c

and dilation matrix M . Then φ is also a solution to the dilation equation (2.1) with
coefficients c ∗ (M ↑c) and dilation matrix M2.

Proof. Iterate the dilation equation (2.1); that is, replace each φ on the right by
the sum of its dilates.

Since
(

0 2
1 0

)2
= 2I, by Theorem 2.2 and Lemma 5.4, we obtain the following.

Corollary 5.5. Aside from the separable Daubechies MRA, there exists a bi-
variate nonseparable orthogonal MRA of any given smoothness for the dilation

(
2 0
0 2

)
.

Ayache [1] obtained this result independently by perturbing the separable Dau-
bechies basis.

6. Summary. We showed how to obtain orthogonal two-row coefficient masks
(low-pass filter coefficients) with arbitrarily high accuracy for dilation matrices M
with |det(M)| = 2, such as

(
0 2
1 0

)
or
(

1 −1
1 1

)
. We proved that if M2 = ±2I, then the

smoothness of the scaling functions corresponding to those coefficient masks increases
asymptotically with the accuracy and can be made arbitrarily high.

Appendix. Scaling coefficients. The following tables contain the coefficients
of A(z) and B(z) that satisfy the conditions (2.6)–(2.11) in Theorem 2.1, that is, the
coefficients of C(z, w) in Cr+1 for some values of r. Generally speaking, the scaling
coefficients in the beginning of each table correspond to the “least symmetric” scaling
functions; the scaling coefficients towards the end of the table correspond to the “most
symmetric” scaling functions.
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Table A.1
Scaling coefficients (first half of C2+1) of accuracy 2 + 1.

n an bn an bn

Solution 1 Solution 2

0 0.001113697631 0.036969146934 0.007903570868 0.036969146934

1 -0.001928980881 -0.064032440802 -0.013689386305 -0.064032440802

2 -0.011710875083 -0.056780853066 -0.138084015734 -0.056780853066

3 0.003658326071 0.137970734671 0.121182418797 0.137970734671

4 -0.058943362439 0.002654265329 0.549926093940 0.002654265329

5 0.169446270789 -0.083844146934 0.346172096397 -0.083844146934

6 0.569540539891 0.017157440802 0.080254350926 0.017157440802

7 0.328824384020 0.009905853066 0.046334871111 0.009905853066

Solution 3 Solution 4

0 -0.012415391296 0.036969146934 -0.088108228150 0.036969146934

1 0.021504088520 -0.064032440802 0.152607927721 -0.064032440802

2 -0.006740179593 -0.056780853066 0.565028719464 -0.056780853066

3 0.197013817950 0.137970734671 0.336639086235 0.137970734671

4 0.570245056104 0.002654265329 0.030278563342 0.002654265329

5 0.310978621572 -0.083844146934 0.014909362188 -0.083844146934

6 -0.051089485215 0.017157440802 -0.007199054655 0.017157440802

7 -0.029496528042 0.009905853066 -0.004156376143 0.009905853066

Table A.2
The scaling coefficients of the differentiable scaling function in Figure 5.3.

n an bn

0 0.000143412339 0.000082104697

1 -0.000323736348 -0.000185341617

2 -0.001920307470 -0.000431083617

3 0.003595546890 0.000549853896

4 0.008522556302 0.003143374464

5 -0.004408987885 -0.002050950686

6 -0.013081025520 -0.013941778594

7 -0.060122740069 0.012068826968

8 -0.098853166909 0.031125316212

9 0.162212221109 -0.036965110063

10 0.525503586261 -0.036331876410

11 0.406747601563 0.060643179987

12 0.037817366952 0.019734738252

13 -0.036595246129 -0.057961647081

14 0.043460344536 0.000210716144

15 0.031894654283 0.033234701933

16 -0.002789322971 -0.006059880986

17 -0.003862049736 -0.011382637768

18 0.001292258468 0.003005793635

19 0.000931477590 0.002333217232

20 -0.000121744397 -0.000582912091

21 -0.000080277824 -0.000304243713

22 0.000026042408 0.000045488295

23 0.000011536556 0.000020150912
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Table A.3
Scaling coefficients (first half of C3+1) of accuracy 3 + 1.

n an bn an bn

Solution 1 Solution 2

0 0.000062409389 -0.011623030789 0.000326746845 -0.011623030789

1 -0.000151373802 0.028191629145 -0.000792523573 0.028191629145

2 -0.000616099021 0.018801633679 -0.004873897732 0.018801633679

3 0.001728930996 -0.089291978349 0.013049802109 -0.089291978349

4 0.003825989061 0.016318478955 0.044932505092 0.016318478955

5 -0.006639890465 0.099956916164 -0.101357239374 0.099956916164

6 0.011989717589 -0.045534931049 -0.168647288127 -0.045534931049

7 -0.050002611258 -0.046035169850 0.262229312212 -0.046035169850

8 -0.071220291676 0.025023044461 0.522072641289 0.025023044461

9 0.325850800478 0.008409358878 0.283090226735 0.008409358878

10 0.555958274659 -0.002985195258 0.106189292633 -0.002985195258

11 0.229214144050 -0.001230755988 0.043780421891 -0.001230755988

Solution 3 Solution 4

0 0.004635883479 -0.011623030789 0.024271352757 -0.011623030789

1 -0.011244322602 0.028191629145 -0.058870099219 0.028191629145

2 0.005799855170 0.018801633679 -0.092072378476 0.018801633679

3 0.003357833887 -0.089291978349 0.314552501801 -0.089291978349

4 0.012240306723 0.016318478955 0.551933076802 0.016318478955

5 0.360239746045 0.099956916164 0.242555222384 0.099956916164

6 0.554047592739 -0.045534931049 0.023310939204 -0.045534931049

7 0.174496893426 -0.046035169850 0.003917651739 -0.046035169850

8 -0.084208083428 0.025023044461 -0.008872536334 0.025023044461

9 -0.029935887232 0.008409358878 -0.002744659377 0.008409358878

10 0.007484445316 -0.002985195258 0.001429546047 -0.002985195258

11 0.003085736475 -0.001230755988 0.000589382672 -0.001230755988

Note. To save space, we displayed only the first half of Cr+1. To obtain the other
half, simply take the coefficients (both an and bn) in reverse order. Recall that the
scaling functions with scaling coefficients in the second half of the family Cr+1 are
different than, and are not mere flips of, the scaling functions with scaling coefficients
in the first (tabulated) half (see the discussion after Lemma 5.2).
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Abstract. This paper studies the global uniqueness and stability questions of the inverse
conductivity problem to determine the unknown object D entering div((1 + (k − 1)χD)∇u) = 0
in Ω and ∂u

∂ν
= g on ∂Ω from the boundary measurement ΛD(g) = u|∂Ω. The results of this paper

are fourfold. We first obtain a Hölder stability estimate for disks. Second, a uniform stability estimate
for the direct problem is obtained. Third, we obtain the stability estimates |D1 \ D̄2|+ |D2 \ D̄1| ≤
C(‖ΛD1 (g)−ΛD2 (g)‖α

L∞(∂Ω)
+ ε) for some α > 0 when g satisfies some condition if D1 and D2 are

ε-perturbations of two disks. We then drop the condition on g and show that if ΛD1
(g) = ΛD2

(g)
on ∂Ω, then the two domains must be very close.

Key words. inverse conductivity problems, one measurement, uniqueness, stability
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1. Introduction. This paper studies the inverse problem to determine the un-
known object D entering the Neumann problem

P [D, g]

 div((1 + (k − 1)χD)∇u) = 0 in Ω,
∂u

∂ν
= g on ∂Ω,

∫
∂Ω

u = 0,

∫
∂Ω

g = 0, g ∈ L2(∂Ω),

from the single Cauchy data (u|∂Ω, g). By the uniqueness of the Neumann problem
P [D, g], we can define the Neumann-to-Dirichlet map ΛD by

ΛD(g) := u|∂Ω, g ∈ L2
0(∂Ω) :=

{
ψ ∈ L2(∂Ω) :

∫
∂Ω

ψ = 0

}
,

where u is the solution of the Neumann problem P [D, g]. We are interested in the
uniqueness and stability questions, which we state roughly as follows:

Uniqueness: Does ΛD1
(g) = ΛD2

(g) imply D1 = D2? (Dj ⊂ Ω)

Stability: If ‖ΛD1
(g)− ΛD2

(g)‖L∞(∂Ω) is small, is |D1∆D2| small?

Here |D1∆D2| = |D1 \D2|+ |D2 \D1| and |E| denotes the Lebesgue measure of the
set E.

This paper is concerned primarily with global uniqueness and stability within the
class of small perturbation of disks. To explain our result, let us fix the notion of
ε-perturbations of disks. Let ε be a positive number and let Ω0 be an open subset of
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Ω at some distance, say, 2δ0, from ∂Ω. A C2-domain D being an ε-perturbation of a
disk B means that there is ω ∈ C1(∂B) with ‖ω‖C1(∂B) ≤ 1 such that

∂D : x+ εω(x)ν(x), x ∈ ∂B,(1.1)

where ν(x) is the outward unit normal to ∂B at x. Let C[ε] denote the class of ε-
perturbations of all disks contained in Ω0 with the radius larger than a fixed number
d0.

The results of this paper are fourfold. The first two results are of preparatory
nature for the last two results. However, they have their own interest.

The first result is the Hölder stability estimate within the class of disks. We prove
that if the Neumann data g satisfy the conditions

(N1) there exists a positive number M such that |g′(P )| > M if |g(P )| < M ,
P ∈ ∂Ω (here, g′ means the tangential derivative on ∂Ω); and

(N2) {P ∈ ∂Ω : g(P ) > 0} and {P ∈ ∂Ω : g(P ) < 0} are nonempty connected
subsets of ∂Ω,

then

|D1∆D2| ≤ C‖ΛD1
(g)− ΛD2

(g)‖αL∞(∂Ω)(1.2)

for every disk D1, D2 contained in Ω0 and 0 < α < 1. (See Theorem 3.1.) The
conditions on the Neumann data g guarantee the existence of the lower bound of
|∇u|, which depends only on M when D ∈ C[ε] and u is the weak solution to P [D, g].
(See [KSS1].) This result is an improvement upon the previous logarithmic estimate
in [KSS1].

The second result is a uniform stability for the direct problem; namely, if Dε is an
ε-perturbation of C2-domain D (D is not necessarily a disk) and u, uε are solutions
of P [D, g], P [Dε, g], respectively, then

‖u− uε‖L∞(Ω) ≤ Cε‖g‖L2(∂Ω).

(See Theorem 4.1.) This result improves upon the L2-estimate of [BFI].
The third main result of this paper deals with global stability within the class

C[ε]. We prove that if the Neumann data g satisfy the conditions (N1) and (N2), then

|D1∆D2| ≤ C
(
‖ΛD1

(g)− ΛD2
(g)‖αL∞(∂Ω) + ε

)
(1.3)

for every D1, D2 ∈ C[ε] and for some constants C and 0 < α < 1 independent of ε.
(See Theorem 5.2.)

The last main result of this paper is concerned with the global uniqueness without
any restriction on the Neumann data g. Let D0 ∈ C[ε] and let ΛD0(g) = f . If D ∈ C[ε]
and ΛD(g) = ΛD0(g), we show that

|D0∆D| ≤ Cε,(1.4)

where the constant C depends on (f, g) not on D or ε. The estimate (1.4) means that
if the boundary measurements are the same, then the two domains must be very close.
For this reason we call this result an approximate identification. It seems that this
approximate identification of a domain is quite meaningful in a practical sense. This
result together with the local uniqueness result of Alessandrini, Isakov, and Powell
[AIP] gives the global uniqueness within C[ε] provided that ε is sufficiently small and
g satisfies a certain condition.
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The classes of domains for which the global uniqueness is proved so far are only
polygons, cylinders, and disks in the plane, convex polyhedra, and balls in three
dimensions. (See [BFS, FI, IP, KS1, KS2, S].) The log-type global stability is obtained
in [KSS1] within the class of the disks. There are local uniqueness and local stability
results in two dimensions (see [AIP] and [BFI]).

The organization of this paper is as follows; in section 2 we review the represen-
tation formula in [KS1], and some other preliminary results are reviewed or obtained.
In section 3 we prove the Hölder stability for the disks. In section 4 we obtain the
uniform stability of the solutions to the direct problem P [D, g] under perturbation of
domains. The third main result (1.3) is proved in section 5 and the last one (1.4) in
section 6.

2. Notation and preliminary definitions. Let us define the Lipschitz char-
acter.

Definition of the Lipschitz character. A bounded open connected domain D ⊂ R2

is called a Lipschitz domain with Lipschitz character (r0, L) if for each P ∈ ∂D there
is an open rectangle Z(P, r0) centered at P , with the bottom length equal to r0, whose
bottom and top sides are at a positive distance l, r0 < l < 2r0 from ∂D, such that
there is a coordinate system (t, s) ∈ R × R, with the s-axis containing the axis of Z
and a Lipschitz function φ : R→ R such that Z ∩D = {(t, s) ∈ R×R : s > φ(t)}∩Z,
Z ∩ ∂D = {(t, s) ∈ R× R : s = φ(t)} ∩ Z, and ‖φ′‖L∞(R) ≤ L.

Throughout this paper, we assume that Ω and D are simply connected bounded
Lipschitz domains in R2 with Lipschitz character (r0, L) and

D ⊂ Ω0 := {x ∈ Ω : dist(x, ∂Ω) > 2δ0},
where δ0 is a fixed positive number. We denote by Bd(a) the disk centered at a with
radius d.

Let

SΩφ(x) =
1

2π

∫
∂Ω

log |x− y|φ(y)dσy, x ∈ R2,

DΩφ(x) =
1

2π

∫
∂Ω

〈x− y, νy〉
|x− y|2 φ(y)dσy, x ∈ R2 \ ∂Ω,

KDφ(x) =
1

2π

∫
∂D

〈x− y, νy〉
|x− y|2 φ(y)dσy, x ∈ ∂D,

and let K∗D be the dual of KD. Recall the classical trace formula (see [F] or [V])

lim
t→0+

〈νP ,∇SDφ(P ± tνP )〉 =

(
±1

2
I +K∗D

)
φ(P ) almost all P ∈ ∂D.(2.1)

From [KS1] and [KSS2], the weak solution u to the Neumann problem P [D, g] can be
uniquely expressed as

u(x) = H(x) + SDϕD(x) for x ∈ Ω,(2.2)

where

H(x) = −SΩg(x) +DΩf(x), f = u|∂Ω, x ∈ R2 \ ∂Ω,(2.3)

(λI −K∗D)ϕD =
∂H

∂ν
|∂D on ∂D,(2.4)
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where λ = k+1
2(k−1) . Moreover, we have∫

∂D

ϕD = 0,(2.5)

H(x) + SDϕD(x) = 0, x ∈ R2 \ Ω.(2.6)

Let ui := u|D and ue := u|Ω\D. Then

ϕD = (k − 1)
∂ui

∂ν
=
k − 1

k

∂ue

∂ν
on ∂D

and hence

ϕD =
∂ue

∂ν
− ∂ui

∂ν
on ∂D.(2.7)

(See [KS1] and [KSS2] for proofs.)
In [EFV], it was shown that there is a positive constant C depending only on the

Lipschitz character (r0, L) of D and δ0 so that

‖(∇u)∗∗‖L2(∂D) ≤ C‖∇u‖L(Ω),(2.8)

where (∇u)∗∗(x) is the interior and exterior nontangential maximal function of ∇u
at x ∈ ∂D:

(∇u)∗∗(x) = sup{|∇u(y)| : |x− y| ≤ (2L+ 1)dist(y, ∂D), y ∈ Ω0}.
Because of the above regularity estimate (2.8), the following transmission condition
holds in the L2(∂D)-sense:

∂ue

∂ν
= k

∂ui

∂ν
on ∂D.(2.9)

Lemma 2.1. Let u be the solution of the Neumann problem P [D, g] and H be as
in (2.3). Then there is a positive constant C depending on the Lipschitz character of
Ω and δ0 (independent of D) so that∫

∂Ω

|∇u|2 +

∫
Ω

|∇u|2 + |∇H|2 ≤ C
∫
∂Ω

|g|2.(2.10)

Proof. The proof of this lemma is based on the Rellich identity. Let ~α be the
smooth vector field such that the support of ~α lies in R2 \ Ω0 and 〈~α, ν〉 > c1 > 0 on
∂Ω (here, c1 depend on the Lipschitz character of ∂Ω). If v ∈ C2(Ω), we have

div(~α|∇v|2) = 2div(∇v〈~α,∇v〉) + div~α|∇v|2 − 2〈∇~α∇v,∇v〉 − 2〈~α,∇v〉∆v
and by integrating both sides of the above identity over Ω we obtain the Rellich
identity ∫

∂Ω

〈~α, ν〉
∣∣∣∣∂v∂ν

∣∣∣∣2 =

∫
∂Ω

〈~α, ν〉
∣∣∣∣ ∂v∂T

∣∣∣∣2 − 2

∫
∂Ω

〈~α, T 〉 ∂v
∂T

∂v

∂ν
+R,(2.11)

where

R =

∫
Ω

2〈∇~α∇v,∇v〉 − div~α|∇v|2 + 2〈~α,∇v〉∆v.
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Here T (P ) is the tangent vector to ∂Ω at a point P . If we substitute v = u in the
above identity (2.11), then we obtain∫

∂Ω

∣∣∣∣ ∂u∂T
∣∣∣∣2 ≤ C (∫

∂Ω

|g|2 +

∫
Ω

|∇u|2
)
,(2.12)

where C is depending only on ‖~α‖C1(R2) and c1. Since

∫
Ω

(1 + (k − 1)χD)|∇u|2 =

∫
∂Ω

gu ≤
(∫

∂Ω

|g|2
)1/2(∫

∂Ω

|u|2
)1/2

,(2.13)

it follows from (2.12) and the Poincaré inequality on ∂Ω that∫
Ω

|∇u|2 ≤ C
∫
∂Ω

|g|2(2.14)

and therefore ∫
∂Ω

∣∣∣∣ ∂u∂T
∣∣∣∣2 ≤ C ∫

∂Ω

|g|2.(2.15)

Hence (2.10) follows from (2.3), (2.14), and (2.15). This completes the proof.

The following theorem will be used in section 6 (for the proof, see [FJR] or [V]).

Theorem 2.2. Let u be the solution to the Neumann problem: ∆u = 0 in D,
∂u

∂ν
= g on ∂D,

∫
∂D

u = 0.

Then there is a positive constant C depending only on the Lipschitz character (r0, L)
of D so that

‖(∇u)∗‖L2(∂D) ≤ C‖g‖L2(∂D),(2.16)

where

(∇u)∗(x) := sup{|∇u(y)| : |y − x| ≤ (2L+ 1)dist(y, ∂D), y ∈ D}.(2.17)

3. Stability of disks. Recall that C[0] denotes the family of all disks contained
in Ω0 with radii larger than d0. In this section we improve the logarithmic stability
obtained in [KSS1] to get a Hölder stability of the disk, which we state as follows.

Theorem 3.1. Let g be a Neumann data with the condition (N). There exist
α > 0 and C depending only on δ0 and d0 such that

|D1∆D2| ≤ C‖ΛD1
(g)− ΛD2

(g)‖αL∞(∂Ω)(3.1)

for every disk D1, D2 ∈ C[0].

To prove (3.1), we need to study the harmonic extension property of the solution
u of the Neumann problem P [D, g].
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Lemma 3.2. Let D = Bd(a) ∈ C[0]. Then the general solution to P [D, g] is given
by 

ui(x) = H(x)− 1

2λ
(H(x)−H(a)) , x ∈ D,

ue(x) = H(x)− 1

2λ

(
H

(
a+

d2(x− a)

|x− a|2
)
−H(a)

)
, x ∈ Ω \D,

(3.2)

where H is a harmonic function in Ω given in (2.2).
Proof. Let u = H(x) + SDϕD as in (2.1). Since D is a disk, K∗DϕD = 0 on ∂D

and

∂ui

∂ν
=
∂H

∂ν
− 1

2
ϕ =

(
1− 1

2λ

)
∂H

∂ν

(see [KS1]). Note that
∫
∂D
SDφD =

∫
∂D

φDSD1 = 0 because SD1 is constant on ∂D.
From the uniqueness of the Neumann problem in D, ui must be as in (3.2). Now
it is straightforward to check that the function u in (3.2) satisfies the transmission
condition (2.9) and continuity across ∂D. This completes the proof.

Using Lemma 3.2, we can derive the following lemma.
Lemma 3.3. Let D = Bd(a) ∈ C[0]. Let u be the solution of P [D, g]. Then ue

extends harmonically to Ω \ Bd−2s(a) where s = dδ0
d+2δ0

; that is, there is a harmonic

function ũe in Ω \ Bd−2s(a) so that ũe = ue in Ω \D. Moreover, there is a positive
constant C depending only on d0 and δ0 so that

sup
Ω0\Bd−s(a)

|∇ũe(x)| ≤ C‖g‖L2(∂Ω).(3.3)

Proof. It follows from (3.2) that

ue(x) = H(x)− 1

2λ

(
H

(
a+

d2(x− a)

|x− a|2
)
−H(a)

)
, x ∈ Ω \D.

Since H is harmonic in Bd+2δ0(a) ⊂ Ω, the first statement of Lemma 3.3 is easy.
Using the previous identity and Lemma 2.1, we have

sup
Ω0\Bd−s(a)

|∇ũe(x)| ≤ C sup
Ω0

|∇H| ≤ C
(∫

Ω

|∇H|2
)1/2

≤ C‖g‖L2(∂Ω).

This completes the proof.
Proposition 3.4. Let Dj ∈ C[0] and uj be the solution to P [Dj , g], j = 1, 2.

There exist constants C and α depending only on δ0 and d0 such that if ‖ΛD1
(g) −

ΛD2
(g)‖L∞(∂Ω) ≤ ε, then

sup
Ω0

|u1 − u2| ≤ Cεα,(3.4)

sup
Ω0\(D1∪D2)

|∇(ue1 − ue2)| ≤ Cεα,(3.5)

sup
D1∩D2

|∇(ui1 − ui2)| ≤ Cε.(3.6)
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Proof. Let Dj = Bdj (aj). Then dj > d0 and dist(aj , ∂Ω) > dj +2δ0 because Dj ∈
C[0] (j = 1, 2). By Lemma 3.3, uej can be harmonically extended to Ω \ Bdj−2sj (aj),

where sj =
djδ0
dj+2δ0

. We also denote the extended function by uej . Let vej be a harmonic

conjugate of uej with ve1 = ve2 on ∂Ω. (Such harmonic conjugates vej (j = 1, 2) exist
since uj is the solution of P [Dj , g] with the same Neumann data g. See [AIP].) The

function h := ue1 + ive1 − (ue2 + ive2) is holomorphic in Ω \Bdj−s1(a1) ∪Bdj−s2(a2) and
satisfies

M := sup{|∇h(x)| : x ∈ Ω0 \Bdj−s1(a1) ∪Bdj−s2(a2)} ≤ C‖g‖L2(∂Ω),

|h| ≤ ε on ∂Ω.

Hence M depends only on ‖g‖L2(∂Ω), δ0, and d0. Let ω be the solution to the Dirichlet
problem: 

∆ω = 0 in Ω \Bd1−s1(a1) ∪Bd2−s2(a2),

ω = 1 on ∂Ω,

ω = 0 on ∂(Bd1−s1(a1) ∪Bd2−s2(a2)).

Then by the maximum principle, for all x ∈ Ω \ (D1 ∪D2),

log |h(x)| ≤ ω(x) log ε+ (1− ω(x)) logM.(3.7)

From a standard argument, one can see that there is a positive constant α depending
only on δ0, d0, and Ω so that

inf
Ω\(D1∪D2)

ω ≥ α.

Therefore, we obtain

sup
Ω\(D1∪D2)

|u1 − u2| ≤ Cεα.

The rest of the proof is the same as the proof of Proposition 5.2 of [KSS1]. This
completes the proof.

Considering Proposition 3.4, Theorem 3.1 can also be proved in the exact same
way as the proof of Theorem 5.1 of [KSS1].

4. Uniform stability for the direct problem. Let Ω and Ω0 be as before. Let
D be a simply connected subdomain (not necessarily a disk) of Ω0 with C2-boundary.
Let Dε be an ε-perturbation of D; i.e., ∂Dε is C2 and

∂Dε : P + εωε(P )ν(P ), P ∈ ∂D,(4.1)

where ‖ωε‖C1(∂D) ≤ 1 and ν(P ) is the outward unit normal to ∂D at P . Let u and
uε be solutions of P [D, g] and P [Dε, g], respectively.

The main result of this section is the following uniform stability of solutions to
the direct problem.

Theorem 4.1. Let Dε be an ε-perturbation of the C2-domain D. There is a
positive constant C depending only on the C2-character of D,Ω and δ0 such that

‖u− uε‖L∞(Ω) < Cε‖g‖L2(∂Ω).(4.2)
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To prove Theorem 4.1, we need L2-stability. The L2-stability ‖u − uε‖L2(Ω) <
Cε was proven in [BF] and [BFI]. However, we will give the proof to clarify the
dependency of the constant C. The following theorem states the L2-stability.

Theorem 4.2. There is a positive constant C depending only on the Lipschitz
characters of D,Dε and δ0 such that

‖u− uε‖L2(Ω) < Cε‖g‖L2(∂Ω).(4.3)

Indeed, the above estimate is true for general Lipschitz domains D,Dε with the Haus-
dorff distance dist(D,Dε) < ε.

Proof. Put

Uε =
u− uε
ε

.

Let cε = 1
|Ω|
∫

Ω
Uε. We first show that

(4.3′) ‖Uε − cε‖L2(Ω) < C‖g‖L2(∂Ω).

By integrating by parts, we have∫
Ω

(1 + (k − 1)χDε)∇Uε∇ξ =
k − 1

ε

∫
Ω

(χDε − χD)∇u∇ξ(4.4)

for all ξ ∈W 1,2(Ω). Let wε be the solution to the problem:
∇ · ((1 + (k − 1)χDε)∇wε) = Uε − cε in Ω,

∂wε
∂ν

= 0 on ∂Ω,

∫
Ω

wε = 0.

By substituting η = wε in (4.4) as in [BFI], one obtains the following identity:∫
Ω

|Uε − cε|2 =
k − 1

ε

∫
Ω

(χDε − χD)∇u∇wε.

Hence,∫
Ω

|Uε − cε|2 ≤ |k − 1|
ε

(∫
Ω

|χDε − χD||∇u|2
)1/2(∫

Ω

|χDε − χD||∇wε|2
)1/2

.(4.5)

From (2.8) and Lemma 2.1, we obtain∫
Ω

|χDε − χD||∇u|2 ≤ Cε‖(∇u)∗∗‖2L2(∂D) ≤ Cε‖∇u‖2L2(Ω) ≤ Cε‖g‖2L2(∂Ω).

Thus, to prove (4.3′) it suffices to prove that∫
Ω

|χDε − χD||∇wε|2 ≤ Cε‖Uε − cε‖2L2(Ω).(4.6)

Let

V (x) := wε(x)− Γ(x) + SDεη(x), x ∈ Ω,



INVERSE CONDUCTIVITY PROBLEMS 707

where

Γ(x) :=
1

2π

∫
Ω

log |x− y|
(
χΩ\Dε(y) +

1

k
χDε(y)

)
(Uε(y)− cε)dy,

(λI −K∗Dε)η = −∂Γ

∂ν
on ∂Dε.(4.7)

Then one can check that V satisfies the transmission condition (2.9) as well as ∆V = 0
in Ω \ ∂Dε. Therefore, V is the solution to the Neumann problem P [Dε, g̃], where

g̃ :=
∂V

∂ν
= −∂Γ

∂ν
+

∂

∂ν
SDεη on ∂Ω.

By (2.8) and Lemma 2.1, we have

‖(∇V )∗∗‖L2(∂Dε) ≤ C‖∇V ‖L2(Ω) ≤ C‖g̃‖L2(∂Ω).(4.8)

From the Calderón and Zygmund estimate, we have

‖Γ‖W 2,2(Ω) ≤ C‖Uε − cε‖L2(Ω).(4.9)

It also follows from the singular integral estimate and (4.7) (see [V]) that
positive constant C depending only on the Lipschitz character of Dε so that

‖(∇SDεη)∗∗‖L2(∂Dε) ≤ C‖η‖L2(∂Dε) ≤ C‖∇Γ‖L2(∂Dε).(4.10)

By (4.9), (4.10), and the trace theorem,∫
∂Ω

|g̃|2 ≤ C
∫
∂Ω

∣∣∣∣∂Γ

∂ν

∣∣∣∣2 +

∣∣∣∣ ∂∂ν SDεη
∣∣∣∣2(4.11)

≤ C
(∫

∂Ω

|∇Γ|2 +

∫
∂Dε

|∇Γ|2
)

≤ C‖Γ‖2W 2,2(Ω) ≤ C‖Uε − cε‖2L2(Ω).

By (4.8) and (4.11), we obtain

(4.12)∫
Ω

|χDε − χD||∇V |2 ≤ Cε‖(∇V )∗∗‖2L2(∂Dε)
≤ Cε‖g̃‖2L2(∂Ω) ≤ Cε‖Uε − cε‖2L2(Ω).

It then follows from (4.10) and (4.12) that∫
Ω

|χDε − χD||∇wε|2 ≤ C
∫

Ω

|χDε − χD|(|∇V |2 + |∇Γ|2 + |∇SDεη|2)

≤ Cε‖Uε − cε‖2L2(Ω).

This proves (4.6) and (4.3′).
Now we prove (4.3). Let η := sign(u − uε) on ∂Ω and vη be the solution to

P [Dε, η −
∫
∂Ω
η]. Then by substituting ξ = vη in (4.4) we obtain∫

∂Ω

|Uε| = k − 1

ε

∫
Ω

(χDε − χD)∇u∇vη
≤ C|k − 1|‖(∇u)∗∗‖L2(∂D)‖(∇vη)∗∗‖L2(∂Dε).
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By Lemma 2.1,
∫
∂Dε
|(∇vη)∗∗|2 ≤ ∫

∂Dε
|η − ∫

∂Ω
η|2 ≤ C and hence we have∫

∂Ω

|Uε| ≤ C|k − 1|‖∇u‖L2(Ω) ≤ C|k − 1|‖g‖L2(∂Ω).(4.13)

Let

Γ̃(x) :=
1

2π

∫
Ω

log |x− y|
(
χΩ\Dε(y) +

1

k
χDε(y)

)
dy

as in (4.6). Then, as before,

Ṽ (x) := Γ̃(x) + SDε(λI −K∗Dε)−1

(
∂Γ̃

∂ν
|∂Dε

)
(x)

satisfies ∇ · ((1 + (k − 1)χDε)∇Ṽ ) = 1 in Ω and ‖∇Ṽ ‖L∞(∂Ω) ≤ C. By substituting

η = Ṽ in (4.4) again, we obtain∫
Ω

Uε ≤
∫
∂Ω

|Uε|
∣∣∣∣∣∂Ṽ∂ν

∣∣∣∣∣+ C
1

ε

∫
Ω

|χDε − χD||∇u||∇Ṽ |.

Hence (4.3) follows from the above estimate, (4.13), and (4.3′). This completes the
proof.

Lemma 4.3. Let Ω1 = {X ∈ Ω : dist(X, ∂Ω) < δ0}. Then

sup
X∈Ω1

|Uε(X)|+ sup
X∈Ω1

|∇Uε(X)| ≤ C‖g‖L2(∂Ω),(4.14)

where the constant C depends on δ0, the Lipschitz characters of D,Dε, and the C2-
character of Ω.

Proof. Since ∆Uε = 0 in Ω1, Uε and |∇Uε| cannot assume an interior maximum
in Ω1. Suppose X0 ∈ ∂Ω1 ∩Ω. By the mean value theorem and the standard interior
estimates of derivatives, we obtain

|Uε(X0)|+ |∇Uε(X0)| ≤ C
(

1

|Bδ0(X0)|
∫
Bδ0 (X0)

|Uε|2 + |∇Uε|2
)1/2

.

By Theorem 4.2 and the standard interior estimate, we obtain

|Uε(X0)|+ |∇Uε(X0)| < C‖g‖L2(∂Ω).(4.15)

Now suppose X0 ∈ ∂Ω. Then we first straighten a boundary portion near X0, and
using the condition ∂Uε

∂ν = 0 on ∂Ω and the Schauder estimate we obtain the estimate
(4.14) (see [GT, p. 126]). This completes the proof.

By (2.1), the solutions u and uε can be expressed uniquely as

u = H + SD(ϕD) and uε = Hε + SDε(ϕDε) in Ω,(4.16)

where H, ϕD, Hε, and ϕDε satisfy the relations (2.3) and (2.4). For notational
simplicity, we will write

ϕ = ϕD, S = SD, K∗ = K∗D, ϕε = ϕDε , Sε = SDε , K∗ε = K∗Dε .
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We first prove the stability of the harmonic part of the solution in Lemma 4.4.
Lemma 4.4. We have that

‖H −Hε‖L∞(Ω) + ‖∇(H −Hε)‖L∞(Ω) < Cε‖g‖L2(∂Ω),(4.17)

where the constant C depends on δ0, the Lipschitz characters of D,Dε, and the C2-
character of Ω.

Proof. From (2.3), we have

H −Hε

ε
= DΩ(Uε|∂Ω).

Since ∂Ω ∈ C2, | 〈P−Q,ν(Q)〉
|P−Q|2 | ≤ C for P,Q ∈ ∂Ω where C depends on the C2-character

of ∂Ω. Hence for P ∈ ∂Ω,∣∣∣∣H(P )−Hε(P )

ε

∣∣∣∣ ≤ ∫
∂Ω

∣∣∣∣ ∂∂νΓ(P −Q)

∣∣∣∣ |Uε(Q)|dσ(Q)

≤ C‖Uε‖L1(∂Ω) ≤ C‖g‖L2(∂Ω)

by Lemma 4.3. Thus by the maximum principle we have∥∥∥∥H −Hε

ε

∥∥∥∥
L∞(Ω)

≤ C‖g‖L2(∂Ω).

By the relation (4.16) and Lemma 4.3, we have∥∥∥∥Sϕ− Sεϕεε

∥∥∥∥
L∞(∂Ω)

≤
∥∥∥∥H −Hε

ε

∥∥∥∥
L∞(∂Ω)

+ ‖Uε‖L∞(∂Ω) ≤ C‖g‖L2(∂Ω).

Since ∆(Sϕ − Sεϕε) = 0 in R2 \ (∂D ∪ ∂Dε) and |Sϕ(X)| = O(|X|−1) for |X| large
(recall

∫
∂D

ϕ = 0),∥∥∥∥Sϕ− Sϕεε

∥∥∥∥
L∞(R2\Ω)

=

∥∥∥∥Sϕ− Sεϕεε

∥∥∥∥
L∞(∂Ω)

≤ C‖g‖L2(∂Ω).(4.18)

Then, for P ∈ ∂Ω,∣∣∣∣∇(Sϕ− Sεϕεε

)
(P )

∣∣∣∣
≤ C

∥∥∥∥Sϕ− Sεϕεε

∥∥∥∥
L1(Bδ0 (P ))

(by the interior estimate)

≤ C
∥∥∥∥Sϕ− Sεϕεε

∥∥∥∥
L1(Bδ0 (P )∩Ω)

+ C‖g‖L2(∂Ω) (by (4.18))

≤ C
∥∥∥∥H −Hε

ε

∥∥∥∥
L1(Bδ0 (P )∩Ω)

+ ‖Uε‖L1(Bδ0 (P )∩Ω) + C‖g‖L2(∂Ω) (by (4.16))

≤ C‖g‖L2(∂Ω).

From Lemma 4.3 and (4.16), we obtain∥∥∥∥∇(H −Hε

ε

)∥∥∥∥
L∞(Ω)

≤
∥∥∥∥∇(H −Hε

ε

)∥∥∥∥
L∞(∂Ω)

≤ ‖∇Uε‖L∞(∂Ω) +

∥∥∥∥∇(Sϕ− Sεϕεε

)∥∥∥∥
L∞(∂Ω)

≤ C‖g‖L2(∂Ω).
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This completes the proof.
We now prove the uniform stability of the single layer potential which, combined

with Lemma 4.4, proves Theorem 4.1.
We first compare K∗ε with K∗ in the uniform norm. Let Φε be the diffeomorphism

from ∂D onto ∂Dε given by Φε(P ) = P + εωε(P )ν(P ).
Lemma 4.5. There exists C depending only on the C2-character of ∂D such that

for any function f ∈ L2(∂Dε),

‖(K∗εf) ◦ Φε −K∗(f ◦ Φε)‖L2(∂D) ≤ Cε‖f‖L2(∂Dε).(4.19)

Proof. Fix P ∈ ∂D. Let

k(P,Q) =
〈P −Q, ν(P )〉
|P −Q|2 and kε(P,Q) =

〈Φε(P )− Φε(Q), ν(Φε(P ))〉
|Φε(P )− Φε(Q)|2 ,

which are integral kernels for K and Kε. Then

(K∗εf) ◦ Φε(P )−K∗(f ◦ Φε)(P )

=

∫
∂D

[kε(P,Q)jε(Q)− k(P,Q)]f ◦ Φε(Q)dσ(Q),

where jε is the Jacobian of Φε. To estimate kε(P,Q)− k(P,Q), we observe that

ν(Φε(P )) = (1 +O(ε))ν(P ) +O(ε)T (P ),(4.20)

where T (P ) is the unit tangent to ∂D at P . Note that above O(ε) depends only on
the C2-norm of ∂D. Since ∂D ∈ C2, we have

kε(P,Q)− k(P,Q) = O(ε) +O(ε)
〈P −Q,T (P )〉
|P −Q|2

and hence

|(K∗εf) ◦ Φε(P )−K∗(f ◦ Φε)(P )|
≤ O(ε)

∫
∂D

|f ◦ Φε(Q)|dσ(Q) +O(ε)|T (f ◦ Φε)(P )|,

where

T f ◦ Φε(P ) =

∫
∂D

〈P −Q,T (P )〉
|P −Q|2 f ◦ Φε(Q)dσ(Q).

It is now standard to show that

‖T f‖L2(∂D) ≤ C‖f‖L2(∂D).

This completes the proof.
Lemma 4.6. We have that

‖ϕε ◦ Φε − ϕ‖L2(∂D) ≤ Cε‖g‖L2(∂Ω),(4.21)

where the constant C depends on C2-characters of ∂D, ∂Ω, and δ0.
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Proof. Let λ = k+1
2(k−1) . Since (λI −K∗) is invertible on L2(∂D) (see [F]), we have

from Lemmas 4.4 and 4.5 that

‖ϕε ◦ Φε − ϕ‖L2(∂D)

≤ C‖(λI −K∗)(ϕε ◦ Φε − ϕ)‖L2(∂D)

≤ C‖((λI −K∗ε )ϕε) ◦ Φε − (λI −K∗)ϕ‖L2(∂D)

+C‖(K∗εϕε) ◦ Φε −K∗(ϕε ◦ Φε)‖L2(∂D)

≤ C
∥∥∥∥∂Hε

∂ν
◦ Φε − ∂H

∂ν

∥∥∥∥
L2(∂D)

+ Cε‖ϕε‖L2(∂Dε)

≤ C
∥∥∥∥∂Hε

∂ν
◦ Φε − ∂H

∂ν
◦ Φε

∥∥∥∥
L2(∂D)

+ C

∥∥∥∥∂H∂ν ◦ Φε − ∂H

∂ν

∥∥∥∥
L2(∂D)

+Cε

∥∥∥∥(λI −K∗ε )−1 ∂Hε

∂ν

∥∥∥∥
L2(∂Dε)

≤ Cε(‖H‖W 2,∞(Ω0) + ‖H‖W 2,∞(Ω0))

≤ Cε (‖H‖L2(Ω) + ‖Hε‖L2(Ω)

)
≤ Cε‖g‖L2(∂Ω).

The last inequality follows from Lemma 2.1. This completes the proof.
Lemma 4.7. We have that

‖Sϕ− Sεϕε‖L∞(Ω) ≤ Cε‖g‖L2(∂Ω),

where the constant C depends on C2-characters of ∂D, ∂Ω, and δ0.
Proof. Since Sϕ(X) = Sεϕε(X) = O(|X|−1) as |X| → ∞, by the maximum

principle, there is a P ∈ ∂D ∪ ∂Dε such that

|Sϕ(P )− Sεϕε(P )| = sup
X∈Ω
|Sϕ(X)− Sεϕε(X)|.

Suppose that P ∈ ∂D. (The case when P ∈ ∂Dε can be treated in the exact same
way by interchanging the role of ∂D and ∂Dε.) Then

Sϕ(P )− Sεϕε(P )

=
1

2π

∫
∂D

[log |P −Q|ϕ(Q)− log |P − Φε(Q)|] jε(Q)ϕε ◦ Φε(Q)dσ(Q)

=
1

2π

∫
∂D

[log |P −Q| − log |P − Φε(Q)|]ϕ(Q)dσ(Q)

+
1

2π

∫
∂D

log |P − Φε(Q)| [1− jε(Q)]ϕε ◦ Φε(Q)dσ(Q)

+
1

2π

∫
∂D

log |P − Φε(Q)| [ϕ(Q)− ϕε ◦ Φε(Q)] dσ(Q)

:= I1 + I2 + I3.

It follows from Lemma 4.6 that

|I3| ≤ Cε‖g‖L2(∂Ω).

It is easy to see that

|I2| ≤ Cε‖g‖L2(∂Ω).
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Since ∣∣∣∣∫
∂D

log |P −Q| − log |P − Φε(Q)|dσ(Q)

∣∣∣∣ ≤ Cε,
it follows from the standard argument of singular integral that

|I1| ≤ Cε‖ϕ‖C1/2(∂D) ≤ Cε‖g‖L2(∂Ω).

The last inequality follows from Lemma 2.1 and the invertibility of λI − K∗ on
Cα(∂D), 0 < α < 1. This completes the proof.

5. Perturbation of disk-error estimates. In this section, we apply the results
from sections 3 and 4 to the class of perturbation of disks. From Theorem 4.1, we
have the following theorem.

Theorem 5.1. Let D ∈ C[ε] and D be an ε-perturbation of a disk B. There is
a constant C depending on δ0 and d0, not on D or B, such that if uD and uB are
solutions to P [D, g] and P [B, g], respectively, then

‖uD − uB‖L∞(Ω) ≤ Cε.(5.1)

Theorems 5.1 and 4.1 give the following stability for C[ε].
Theorem 5.2. Suppose that D1, D2 ∈ C[ε]. Let g satisfy the condition (N). Then

there is a positive constant C independent of Dj so that

|D1∆D2| ≤ C
(
ε+ ‖ΛD1

(g)− ΛD2
(g)‖L∞(∂Ω)

)α
.(5.2)

Proof. By the definition, there are two balls B1 and B2 such that Dj is an ε-
perturbation of Bj . Let vj and uj be the solutions of the Neumann problems P [Bj , g]
and P [Dj , g], respectively. By Theorem 5.1, we have

sup
x∈Ω
|vj(x)− uj(x)| ≤ Cε.

Hence

‖v1 − v2‖L∞(∂Ω) ≤ C
(
ε+ ‖ΛD1

(g)− ΛD2
(g)‖L∞(∂Ω)

)
.

It then follows from Theorem 3.1 that

d(B1, B2) ≤ C (ε+ ‖ΛD1(g)− ΛD2(g)‖L∞(∂Ω)

)α
and hence (5.2) follows. This completes the proof.

6. Approximate identification (without restriction on g). In this section,
we consider the uniqueness question without imposing any restriction on the Neumann
data g. Let g be any given nonzero function on ∂Ω. Let D0 ∈ C[ε] and let ΛD0

(g) = f .
We obtain that if D ∈ C[ε] satisfies ΛD(g) = f , then D must be close to D0. Indeed,
we obtain the following result.

Theorem 6.1. There is a positive constant C such that if D ∈ C[ε] and ΛD(g) =
f on ∂Ω, then

|D∆D0| ≤ Cε.
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Remark. Theorem 6.1 together with the result in [AIP] gives the global uniqueness
within C[ε] for sufficiently small ε if g satisfies the following condition: ∂Ω is the union
of two disjoint arcs Γ1 and Γ2, and

g ≥ 0 on Γ1 and g ≤ 0 on Γ2.

Here ∂Ω is smooth.
Without loss of generality, we assume D0 is an ε-perturbation of a disk B0 =

Br0(0) and D is an ε-perturbation of a disk B = Br(a). For notational simplicity, we
will write

ϕ0 = ϕD0
, ϕ = ϕD; S0 = SD0

, S = SD; K∗0 = K∗D0
, K∗ = K∗D.

By (2.2), the solution u = uD can be expressed uniquely as

u = H + Sϕ in Ω,(6.1)

where H and ϕ are given in the formulas (2.3) and (2.4); that is,

ϕ = (λI −K∗)−1

(
∂H

∂ν

)
on ∂D.(6.2)

From (6.2),
∫
∂D

ϕ = 0 =
∫
∂D
K∗ϕ.

Lemma 6.2. We have that

Sϕ = − 1

2λ
H + w + c in D,(6.3)

where c is a constant and w is the solution to the Neumann problem:
∆w = 0 in D,

∂w

∂ν
|∂D =

(
1− 1

2λ

)
K∗ϕ,

∫
∂D

w = 0.
(6.4)

Proof. Since

∂

∂ν−
Sϕ|∂D =

(
−1

2
I +K∗

)
ϕ

= − 1

2λ
(λI −K∗)ϕ+

(
1− 1

2λ

)
K∗ϕ(6.5)

= − 1

2λ

∂H

∂ν

∣∣∣∣∂D +

(
1− 1

2λ

)
K∗ϕ,

(6.3) follows from the uniqueness of the Neumann problem.
Observe that if D is a disk, then K∗ϕ = 0 and hence w = 0 in D (see [KS1]).
Lemma 6.3. There exists C depending only on δ0 and d0 such that

‖K∗ϕ‖L2(∂D) ≤ Cε‖ϕ‖L2(∂D).

Proof. Let ϕB be the density function in (6.2) with D replaced by B. Then
K∗BϕB = 0. Therefore, Lemma 6.3 follows from Lemma 4.5.
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Set

U = u0 − u = S0ϕ0 − Sϕ.(6.6)

It follows from the basic regularity theory that u ∈ C1(D) ∩ C1(Ω \ D) and u0 ∈
C1(D0) ∩ C1(Ω \ D0). We will denote by ∂U#

∂ν the outer normal derivative of U on

the boundary from the region (D \D0) ∪ (D0 \D).
Lemma 6.4. Assume that Ω \D ∪D0 is connected. Then

(1) U = 0 in Ω \D ∪D0,

(2)
∂U#

∂ν
= −ϕ on ∂D \D0 and

∂U#

∂ν
= −ϕ0 on ∂D0 \D,

(3)
∂U#

∂ν
= ϕ+

∂

∂ν
(w0 − w) on ∂D ∩D0,

∂U#

∂ν
= ϕ0 +

∂

∂ν
(w0 − w) on ∂D0 ∩D.

Here w0 is the function in Lemma 6.2 for D0; i.e., S0ϕ0 = − 1
2λH + w0 + c0 in D0.

Proof. Since U = ∂U
∂ν = 0 on ∂Ω, (1) follows from the unique continuation of the

harmonic function. From (1) and the jump relation (2.1), for x ∈ ∂D0 \D,

∂U#

∂ν
(x) =

∂ui0
∂ν

(x)− ∂ue

∂ν
(x) =

∂ui0
∂ν

(x)− ∂ue

∂ν
(x)−

(
∂ue0
∂ν

(x)− ∂ue

∂ν
(x)

)
=
∂ui0
∂ν

(x)− ∂ue0
∂ν

(x) = −ϕ0(x),

which proves the second part of (2). The first part of (2) can be proved in the same
way. From Lemma 6.2 and the trace formula (2.1), we have for x ∈ ∂D ∩D0,

∂U#

∂ν
(x) =

∂ui0
∂ν

(x)− ∂ue

∂ν
(x)

=
∂ui0
∂ν

(x)− ∂ue

∂ν
(x)−

(
∂ui0
∂ν

(x)− ∂ui

∂ν
(x)

)
+

(
∂ui0
∂ν

(x)− ∂ui

∂ν
(x)

)
= ϕ(x) +

∂

∂ν
(w0 − w)(x).

This completes the proof.
Lemma 6.5. Assume that Ω \D ∪D0 is connected. Then there exists a positive

constant C depending only on the radii of B0 and B so that

1

2

(
‖ϕ0‖2L2(∂D0\E) + ‖ϕ‖2L2(∂D\E)

)
− Cε2

(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
≤
∫
∂(D\D0)

∣∣∣∣∂U#

∂ν

∣∣∣∣2 +

∫
∂(D0\D)

∣∣∣∣∂U#

∂ν

∣∣∣∣2
≤ C

(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
,

(6.7)

where E = ∂D0 ∩ ∂D.
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Proof. From Lemma 6.4, we have∫
∂D0\D

∣∣∣∣∂U#

∂ν

∣∣∣∣2 =

∫
∂D0\D

|ϕ0|2.

We also obtain∫
∂D∩D0

∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≥ 1

2

∫
∂D∩D0

|ϕ|2 −
∫
∂D∩D0

∣∣∣∣∂w0

∂ν
− ∂w

∂ν

∣∣∣∣2 .
Thus by Theorem 2.2 and Lemmas 6.2 and 6.3, we have∫

∂D∩D0

∣∣∣∣∂w0

∂ν
− ∂w

∂ν

∣∣∣∣2 ≤ 2

∫
∂D0

|(∇w0)∗|2 + 2

∫
∂D

|(∇w)∗|2

≤ C
(∫

∂D0

∣∣∣∣∂w0

∂ν

∣∣∣∣2 +

∫
∂D

∣∣∣∣∂w∂ν
∣∣∣∣2
)

= C

(∫
∂D0

|K∗0ϕ0|2 +

∫
∂D

|K∗ϕ|2
)

≤ Cε2
(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.

The other inequalities can be obtained in the same way. Thus we have the first
inequality in (6.7).

The second inequality in (6.7) follows from the singular integral estimates

‖(∇Sϕ)∗∗‖L2(∂D) ≤ C‖ϕ‖L2(∂D) and ‖(∇S0ϕ0)∗∗‖L2(∂D) ≤ C‖ϕ0‖L2(∂D),

where C is a positive constant depending only on the Lipschitz characters of D and
D0. This completes the proof.

We are now ready to prove Theorem 6.1.
Proof of Theorem 6.1. If ΛD0

(g) = ΛD(g) on ∂Ω, it is known that D ∩ D0 6= ∅
and one domain cannot be contained in the other (see [FI].) Hence it must be

∂D ∩ ∂D0 6= ∅.
Assume first that Ω \ D ∪D0 is connected. Let M be a fixed number to be chosen
later. Take a function η ∈ C2(R2) so that η = 1 in R2 \Br+2Mε(a), η = 0 in Br+ε(a),
and ‖∇η‖L∞ ≤ 1

Mε . Let ~α(x) = xη(x). If we apply the Rellich identity as in (2.11)

with U = u0 − u over the region D0 \D, then

(6.8)∫
∂(D0\D)

〈~α, ν〉
∣∣∣∣∂U#

∂ν

∣∣∣∣2 =

∫
∂(D0\D)

〈~α, ν〉
∣∣∣∣∂U∂T

∣∣∣∣2 − 2

∫
∂(D0\D)

〈~α, T 〉∂U
∂T

∂U#

∂ν
+R,

where

R =

∫
D0\D

2〈∇~α∇U,∇U〉 − div~α|∇U |2.

Here ∂U
∂T denotes the tangential derivative on the boundary. Since U = 0 in Ω\D0 ∪D,

∂U
∂T = 0 along ∂D0 \D and ∂D \D0. And ~α = 0 on ∂D∩D0. Therefore, the first and
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second terms of the right side of the equality in (6.8) vanish. Moreover, we have

|R| ≤ C‖∇~α‖L∞(R2)

∫
D0\D

|∇U |2

≤ C
(

1

Mε
+ 1

)∫
∂(D0\D)

∂U#

∂ν
U(6.9)

≤ C
(

1

Mε
+ 1

)(∫
∂(D0\D)

∣∣∣∣∂U#

∂ν

∣∣∣∣2
)1/2(∫

∂(D0\D)

|U |2
)1/2

.

From Lemma 6.5, we obtain

|R| ≤ C
(

1

Mε
+ 1

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)1/2
(∫

∂(D0\D)

|U |2
)1/2

.(6.10)

It follows from Lemma 6.2 that∫
∂(D0\D)

|U |2 =

∫
D0∩∂D

|U |2

=

∫
D0∩∂D

|w0 − c0 − (w − c)|2

≤ C(‖w‖2L∞(D) + ‖w‖2L∞(D) + |c− c0|2).

We now show that

‖w‖2L∞(D) + ‖w‖2L∞(D) + |c− c0|2 ≤ Cε2
(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.(6.11)

There exists ψ ∈ L2(∂D) with
∫
∂D

ψ = 0 so that (− 1
2I +K∗)ψ = (1− 1

2λ )K∗ϕ on ∂D
(see [F]). Thus

w(x) =
1

2π

∫
∂D

log |x− y|ψ(y)dσ(y) for x ∈ D,

‖ψ‖L2(∂D) ≤ C
∥∥∥∥(1− 1

2λ

)
K∗ϕ

∥∥∥∥
L2(∂D)

≤ Cε‖ϕ‖L2(∂D).

From the Schwartz inequality, we obtain

‖w‖L∞(D) ≤
(∫

∂D

| log |x− y||2
)1/2(∫

∂D

|ψ|2
)1/2

≤ Cε‖ϕ‖L2(∂D).

Suppose that ∂(D0 ∪D)∩∂(D0∩D) 6= ∅. At a point P ∈ ∂(D0 ∪D)∩∂(D0∩D),
U(P ) = 0 = S0ϕ0(P )− Sϕ(P ). It follows from the above estimate that

|c0 − c| = |w0(P )− w(P )|
≤ ‖w0‖L∞(D0) + ‖w‖L∞(D)

≤ Cε (‖ϕ0‖L2(∂D0) + ‖ϕ‖L2(∂D)

)
.

This proves the estimate (6.11).
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It then follows from (6.8)–(6.11) that∫
∂(D0\D)

〈~α, ν〉
∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≤ C ( 1

M
+ ε

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.(6.12)

As before, we apply the Rellich identity (6.8) with the vector field ~β(x) = (η(x)−
1)(x− a) over the domain D0 \D and obtain∫

∂(D0\D)

〈~β, ν〉
∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≤ C ( 1

M
+ ε

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
+ |J |,(6.13)

where

J =

∫
∂(D\D0)

〈~β, ν〉
∣∣∣∣∂U∂T

∣∣∣∣2 − 2

∫
∂(D\D0)

〈~β, T 〉∂U
∂T

∂U#

∂ν
.

Since ∂U
∂T = 0 on ∂D \D0,

|J | ≤ C
∫
∂D0∩D

∣∣∣∣∂U∂T
∣∣∣∣2 +

∣∣∣∣∂U∂T
∣∣∣∣ ∣∣∣∣∂U#

∂ν

∣∣∣∣ .(6.14)

Note that

∂U

∂T
=

∂

∂T
(w0 − w) on ∂D0 ∩D.

By Lemmas 6.3 and 6.5 and (6.14), we obtain

|J | ≤ Cε
(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.

It then follows from (6.13) that∫
∂(D0\D)

〈~β, ν〉
∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≤ C ( 1

M
+ ε

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.(6.15)

Let γε0 = (∂D0 \D) ∩Br+2Mε(a). Observe that 〈~α, ν〉 ≥ r0 − ε on (∂D0 \D) \ γε0
and 〈~β, ν〉 ≥ r − ε on ∂D ∩D0. It follows from (6.12) and (6.15) that

(6.16)∫
∂(D0\D)

∣∣∣∣∂U#

∂ν

∣∣∣∣2 − C ∫
γε0

∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≤ C ( 1

M
+ ε

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.

If we put γε = (∂D \D0) ∩Br+2Mε(0), we have in the same way that

(6.17)∫
∂(D\D0)

∣∣∣∣∂U#

∂ν

∣∣∣∣2 − C ∫
γε

∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≤ C ( 1

M
+ ε

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
.

In (6.16) and (6.17), the constant C depends only on the radii of B0 and B. Recall

that ∂U#

∂ν = ϕ on γε and ∂U#

∂ν = ϕ0 on γε0 (see Lemma 6.4). From (6.7), (6.16), and
(6.17), we obtain that

‖ϕ0‖2L2(∂D0\E) + ‖ϕ‖2L2(∂D\E) ≤
(
Cε+

C

M

)(
‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D)

)
(6.18)

+ C
(
‖ϕ0‖2L2(γε0) + ‖ϕ‖2L2(γε)

)
.
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Now let us choose M so that C
M < 1

4 . It then follows from (6.18) that

‖ϕ0‖2L2(∂D0) + ‖ϕ‖2L2(∂D) ≤ C
(
‖ϕ0‖2L2(γε0∪E) + ‖ϕ‖2L2(γε∪E)

)
(6.19)

provided that ε is small enough so that Cε ≤ 1
4 . By (6.2) and Lemma 6.3, we have

|λ|‖ϕ‖L2(γε∪E) ≤ ‖K∗ϕ‖L2(γε∪E) + ‖(λI −K∗)ϕ‖L2(γε∪E)

≤ Cε‖ϕ‖L2(∂D) +

∥∥∥∥∂H∂ν
∥∥∥∥
L2(γε∪E)

.

Therefore we have from (6.2) and (6.19) that∥∥∥∥∂H∂ν
∥∥∥∥2

L2(∂D0)

+

∥∥∥∥∂H∂ν
∥∥∥∥2

L2(∂D)

≤ C
(∥∥∥∥∂H∂ν

∥∥∥∥2

L2(γε0∪E)

+

∥∥∥∥∂H∂ν
∥∥∥∥2

L2(γε∪E)

)
.(6.20)

By the interior estimate of harmonic functions, one can easily see that∥∥∥∥∂H∂ν
∥∥∥∥2

L2(γε∪E)

+

∥∥∥∥∂H∂ν
∥∥∥∥2

L2(γε0∪E)

≤ C(l(γε0 ∪ E) + l(γε ∪ E))

∫
Ω

|∇H|2,

and hence we have from (6.20) that∥∥∥∥∂H∂ν
∥∥∥∥2

L2(∂D0)

+

∥∥∥∥∂H∂ν
∥∥∥∥2

L2(∂D)

≤ C(l(γε0 ∪ E) + l(γε ∪ E))

∫
Ω

|∇H|2,(6.21)

where l(γε0) and l(γε) denote the length of γε0 and γε.
Let Ω1 = {x ∈ Ω|dist(x, ∂Ω) > δ0}. Since ∇H is harmonic, one can apply the

same argument of the harmonic measure used in the proof of Proposition 3.4 and the
standard interior estimate to see that there exist C > 0 and 0 < α < 1 such that for
every x ∈ Ω0,

|∇H(x)|2 ≤ C sup
y∈Br0/2(0)

|∇H(y)|2α sup
y∈Ω1

|∇H(y)|2(1−α)

≤ C
(∫

D0

|∇H(y)|2
)α(∫

Ω

|∇H(y)|2
)1−α

.

By integrating the left-hand side of the above inequality over Ω0, we obtain

C

(∫
Ω0
|∇H(y)|2

)1/α

(∫
Ω
|∇H(y)|2)1/α−1

≤
∫
D0

|∇H(y)|2 ≤ C
∥∥∥∥∂H∂ν

∥∥∥∥2

L2(∂D0)

.

It then follows from (6.21) that

l(γε0 ∪ E) + l(γε ∪ E) ≥ CA, A :=

(∫
Ω0
|∇H(y)|2∫

Ω
|∇H(y)|2

)1/α

.(6.22)

By the definition of the ε-perturbation of a disk, there is a positive constant C so that

l({x ∈ ∂Br(a) : x ∈ Br0+ε(0) \Br0−ε(0)})
+l({x ∈ ∂Br0(0) : x ∈ Br+ε(a) \Br−ε(a)}) ≥ CA.
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From the elementary geometry of two circles, there is a positive constant C depending
only on r, r0, A so that

|Br0(0) \Br(a)|+ |Br(a) \Br0(0)| ≤ Cε.
It follows from the definition of the ε-perturbation of a disk that

|D0 \D|+ |D \D0| ≤ Cε.
Now let us consider the remaining two cases:

(1) Ω \D0 ∪D is connected and ∂(D0 ∪D) ∩ ∂(D0 ∩D) = ∅;
(2) Ω \D0 ∪D is not connected.

From elementary geometry, it is not difficult to see that the above two cases occur
when

|a| = r0 + r +O(ε).(6.23)

Indeed, in case (1) there is a point P ∈ ∂D ∩ ∂D0 so that the outer normal vector of
∂D at P is in the opposite direction of the normal vector of ∂D0 at P . Then (6.23)
follows from the property of two circles and the ε-perturbation of a disk. In case (2),
there is a point Q = (Q1, Q2) which lies in a bounded component of R2 \ D ∪D0.
Assume Q2 ≥ 0. The upper half vertical line L := {(x1, x2) : x1 = Q1 and x2 > Q2}
starting from Q cuts or intersects one of the domains D and D0. Assume that the
vertical line L cuts D. It follows from Rolle’s theorem that there is a point P ∈ ∂D
with Q2 ≤ P2 such that the normal vector ν(P ) at ∂D is parallel to the x1-axis. Then
0 ≤ Q2 < P2 = O(ε), because ∂D is an ε-perturbation of a disk. This gives (6.23)
because |Q| > r0 − ε and |Q− a| > r − ε.

Let I0 := ∂D0 ∩Br+ε(a) and I := ∂D ∩Br0+ε(0). Then it is easy to see that

l(I0 ∪ I) ≤ C√ε.(6.24)

As in (6.8), we apply the Rellich identity with vector field x and we obtain∫
∂(D0\D)

〈x, ν〉
∣∣∣∣∂U#

∂ν

∣∣∣∣2 =

∫
∂(D0\D)

〈x, ν〉
∣∣∣∣∂U∂T

∣∣∣∣2 − 2

∫
∂(D0\D)

〈x, T 〉∂U
∂T

∂U#

∂ν
.(6.25)

(Note that R = 0 with the vector field x.) Similarly, we obtain

(6.26)∫
∂(D\D0)

〈x− a, ν〉
∣∣∣∣∂U#

∂ν

∣∣∣∣2 =

∫
∂(D\D0)

〈x− a, ν〉
∣∣∣∣∂U∂T

∣∣∣∣2 − 2

∫
∂(D\D0)

〈x− a, T 〉∂U
∂T

∂U#

∂ν
.

Since ∂U
∂T = 0 on (∂D ∪ ∂D0) \ (I ∪ I0), it follows from (6.25) and (6.26) that∫

(∂D∪∂D0)\(I0∪I)

∣∣∣∣∂U#

∂ν

∣∣∣∣2 ≤ C ∫
I0∪I

∣∣∇U#
∣∣2 .

From Lemma 6.4 and the above estimate, we obtain as before that

‖ϕ0‖L2(∂D0) + ‖ϕ‖L2(∂D) ≤ C
(‖ϕ0‖L2(I0) + ‖ϕ‖L2(I)

)
,

which is similar to (6.19). We repeat the argument as before and obtain l(I ∪ I0) > C
as in (6.22). This is not possible for small ε because of (6.24). This completes the
proof.
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Abstract. We study properties of Ginzburg–Landau functionals IεU (·), defined for functions

u ∈W 1,n(U ;Rn), where U ⊂ Rn. In particular, we establish lower bounds relating the energy IεU (u)
to the Brouwer degree of u, and we prove under additional hypotheses that the energy concentrates
on a small number of small sets. As a consequence we deduce some compactness theorems. Such
estimates are useful in studying Ginzburg–Landau-type PDEs associated with the functional IεU .

Key words. Ginzburg–Landau functional, lower bounds, energy concentration, compactness

AMS subject classifications. 35J50, 35Q80

PII. S0036141097300581

1. Introduction. We study Ginzburg–Landau functionals of the form

Iε(u) :=

∫
U

Eε[u]dx,

where U is a bounded open subset of Rn, u ∈W 1,n(U ;Rn), and

Eε[u] :=
1

n
|∇u|n +

1

4ε2
(1− |u|2)2.

Our results apply also to the functional with magnetic potential,

Iεmag(u,A) :=

∫
U

Eεmag[u,A]dx,

where U is a bounded open subset of R2 and

Eεmag[u,A] :=
1

2
|∇Au|2 +

1

2
|∇ ×A|2 +

1

4ε2
(1− |u|2)2.

The notation is explained below.
When there is no possibility of confusion, we will typically write Eε and Eεmag,

suppressing the dependence on u and A.
It is known that if the trace of u on ∂U is a fixed function of nonzero Brouwer

degree, then Iε(u) > C ln(1
ε ), for ε small, and similarly for Iεmag(u,A). We give a new

proof of lower bounds of this form, and we show that under additional hypotheses the
unbounded part of the energy is concentrated on a small number of small sets. As
a consequence we establish new results on the weak compactness of functions with
nonzero degree.

In the magnetic case, we further show that if the energy of a pair (u,A) is within
O(1) of the appropriate lower bound, then the term

∫ |∇×A|2 is bounded independent
of ε.
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The first results of this character were proven by Bethuel, Brezis, and Hélein [2],
using lower bounds established by Brezis, Merle, and Rivière [4]. Other important
contributions include papers of Struwe [11], Bethuel and Rivière [3], Han and Li [6],
and Hong [7]. Most of these results deal only with sequences of energy-minimizers,
and provide detailed information about their asymptotic behavior. A paper of Lin
[8] establishes compactness results under weaker assumptions which are naturally
satisfied by solutions of parabolic equations.

Our techniques are substantially new, and for many purposes they are more pre-
cise and flexible than earlier arguments. In particular, they require no a priori control
on the modulus of continuity of a function u. We thus do not need to use any regularity
theory—we instead rely entirely on elementary arguments.

In particular, our results show that the compactness of energy-minimizing se-
quences does not in any way depend on the fact that they solve some PDE; instead, it
is merely an outcome of the real variable structure of the Ginzburg–Landau functional.

After completing this paper, we have become aware of several related works,
including a recent paper of Almeida and Bethuel [1] and preprints of Lin [9] and
Sandier [10]. These papers deal mainly with the case n = 2; as far as we know, our
compactness results are the only ones valid in higher dimensions. The main focus of
[1] is on topological methods, but their work can be used to deduce the compactness
of nonminimizing, though appropriately bounded, sequences. Lin [9] and Sandier [10]
both establish results similar to ours. Sandier uses estimates on annuli, rather similar
to ours, together with an elegant application of the coarea formula. Lin’s arguments
are different; he uses a regularization to reduce the general case (with no control on the
modulus of continuity) to a situation he studied earlier in [8]. Lin further applies this
result to the study of asymptotic vortex dynamics in solutions of a Ginzburg–Landau
wave equation.

In general, results of the sort we establish are very useful in studying vortex dy-
namics for evolutionary equations of Ginzburg–Landau-type, especially in situations
where there is only weak control over the modulus of continuity.

Ginzburg–Landau-type functionals in n-dimensions. Suppose that ∂U is
smooth, and let g : ∂U → Sn−1 be smooth, with

|deg(g; ∂U)| = d.

We are interested in the case d 6= 0, and given this, we assume for convenience that
deg(g; ∂U) > 0.

Let

W 1,n
g (U ;Rn) := {u ∈W 1,n(U ;Rn) |u = g on ∂U}.(1.1)

We define a constant

κn =
1

n
(n− 1)n/2|∂B1|.(1.2)

The following result is proven in Han and Li [6] and Hong [7], who obtain it
by analyzing energy-minimizing sequences. These authors obtain also much more
detailed information about the limiting behavior of minimizers.

Theorem 1.1. If u ∈W 1,n
g (U ;Rn), then∫
U

Eεdx ≥ dκn ln

(
1

ε

)
− C.(1.3)
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The constant here depends on the domain U and the data g.
We will show that a matching upper bound implies energy concentration. In fact,

the following result states that energy concentrates around at most d points.
Theorem 1.2. Suppose that u ∈ W 1,n

g (U ;Rn). There exists a number σ0 > 0
(depending only on the domain U) such that, for any σ ∈ (0, σ0], if∫

U

Eεdx ≤ dκn ln

(
1

ε

)
+ C(1.4)

and ε is sufficiently small, i.e., ε ≤ ε0(C, σ), then there are points {x1, . . . , xm} and
positive integers {d1, . . . , dm} such that∑

i

di = d,

and ∫
∪iBdiσ(xi)∩U

Eεdx ≥ dκn ln
(σ
ε

)
− C.

Note that Theorem 1.2 implies Theorem 1.1. Indeed, if u ∈W 1,n
g (U ;Rn) satisfies

(1.4), then (1.3) follows by Theorem 1.2, and if (1.4) does not hold, then (1.3) follows
trivially.

A compactness result follows as an easy consequence of Theorem 1.2
Theorem 1.3. Suppose uε is a collection of functions in W 1,n

g (U ;Rn) and that
uε satisfies ∫

U

Eεdx ≤ dκn ln

(
1

ε

)
+ C

for every ε > 0. Then there exist points x1, . . . , xm ∈ Ū , with m ≤ d, a subsequence
εk → 0, and a function u ∈W 1,n

loc (U \ {x1, . . . , xm};Sn−1) such that

uεk ⇀ u weakly in W 1,n
loc (U \ {x1, . . . , xm};Rn).

Also, there are integers di > 0 for i = 1, . . . ,m such that
∑
di = d and

µε := | ln ε|−1Eε dx→ κn

m∑
i=1

diδxi

weakly as measures.
Remarks. 1. It is straightforward to construct examples of functions satisfying

the hypotheses of Theorem 1.3, so the theorem is not vacuous. Such constructions
are standard and may be found in [2] and [7], for example. In particular, Theorem
1.3 implies the compactness of a sequence of energy-minimizers.

2. In Lin [9] it is shown that m = d and that all points xi lie in the interior of U .
These results are almost certainly true in higher dimensions as well, but we do not
prove them here.

3. Although we do not assume continuity in the statements of the above theorems,
in many of our proofs we work with continuous functions. The general results as stated
here will follow from regularization arguments.
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The gauge-invariant Ginzburg–Landau functional. Consider the gauge-
invariant functional

Iεmag(u;A) :=

∫
U

1

2
|∇Au|2 +

1

2
|∇ ×A|2 +

1

4ε2
(1− |u|2)2dx.

Here U ⊂ R2 is assumed open and bounded, with smooth boundary. We now think
of u as taking values in the complex plane C, and A = A1dx1 +A2dx2 is a 1-form with
coefficients Ai ∈ H1(U). We will identify A with the function (A1, A2) ∈ H1(U ;R2).
We define ∇×A := A2,x1 −A1,x2 and ∇Au := (∇− iA)u, where i =

√−1.
A thorough description of asymptotic behavior of minimizers, subject to gauge-

invariant Dirichlet conditions, has been carried out by Bethuel and Rivière [3], who
in particular determine a renormalized energy which governs the location of limiting
singular points.

We will prove the following.
Theorem 1.4. Suppose that u ∈ H1

g (U ; C) and A ∈ H1(U ;R2). There exists a
number σ0 > 0 (depending only on the domain U) such that, for any σ ∈ (0, σ0], if∫

U

Eεmagdx ≤ dπ ln

(
1

ε

)
+ C

and ε ≤ ε0(C, σ), then ∫
U

|∇ ×A|2dx ≤ C,(1.5)

and there are points {x1, . . . , xm} and positive integers {d1, . . . , dm} such that∑
i

di = d,

and ∫
∪iBdiσ(xi)∩U

Eεmagdx ≥ dκn ln
(σ
ε

)
− C.

Note in particular the upper bound (1.5).
This immediately yields a lower bound, analogous to Theorem 1.1. We obtain

also a compactness result along the lines of Theorem 1.3.

Notation, and preliminary remarks about degree. We let Br(x) denote
the closed ball {y ∈ Rn | |x− y| ≤ r}.

Let ωn be the volume of the unit ball in Rn.
We recall some facts about degree. A good general reference for this and related

material is Brezis and Nirenberg [5].
When we refer to degree deg(u; ∂V ), we always mean the degree of u around the

origin. Informally, this counts the number of points in u−1(0) ∩ V , with multiplicity.
In two dimensions, deg(u; ∂V ) is just the winding number of ∂V around the origin.

More precisely, let u ∈ W 1,n(U ;Rn), and suppose that V ⊂ U and that V is
bounded, with smooth boundary. If ess inf∂V |u| > 0, then the Brouwer degree of u is
defined by

deg(u; ∂V ) =

∫
V

η(u) detDu dx,(1.6)
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where η ∈ C∞(Rn) satisfies∫
η = 1, η ≥ 0, spt η ⊂ {y ∈ Rn : |y| < ess inf∂V |u|}.

The degree is an integer, and it is independent of the specific choice of η and thus
well defined. It can also be defined by the formula

deg(u; ∂V ) =
1

|∂B1|
∫
∂V

det∇τvdHn−1.(1.7)

Here v := u
|u| |∂V is a map ∂V → ∂B1. The differential of v is a linear map Tx∂V →

Tv(x)∂B1, and as such it can be expressed as an (n − 1) × (n − 1) matrix, in terms
of orthonormal bases for Tx∂V and Tv(x)∂B1, which inherit natural orientations from
the ambient spaces. This matrix is denoted ∇τv. The right-hand side of (1.7) is well
defined, since det∇τv is independent of the specific choice of bases. Also, it follows
from the trace theorem that, under the stated assumptions, v ∈W 1,n−1(∂V ; ∂B1), so
the integration makes sense.

We will use the fact that

det∇τv ≤ (n− 1)−
n−1

2 |∇τv|n−1,(1.8)

which follows immediately from the inequality of arithmetic and geometric means.
It will be convenient for our purposes to use an approximation to the degree,

which will enable us to ignore “inessential” components of the zero set of u. We will
define this approximation only for u ∈ C ∩W 1,n(U ;Rn). Before giving the definition,
we introduce some notation.

We let S denote the set on which |u| is small,

S := {x ∈ U | |u(x)| ≤ 1/2}.(1.9)

If we assume that u is continuous, then the connected components of S are closed,
and each component Si of S has a well-defined degree, given by the definition (1.6).
This degree is an integer even when ∂Si is not smooth, as may be seen by approxi-
mating Si by smooth sets.

For u ∈ C ∩W 1,n(U ;Rn) we may thus define the essential part of S,

SE := ∪{components Si of S|deg(u; ∂Si) 6= 0}(1.10)

and the negligible part of S,

SN := ∪{components Si of S|deg(u; ∂Si) = 0}
= S \ SE .(1.11)

For any subset V ⊂ U such that ∂V ∩ SE 6= ∅, we define the approximate degree

dg(u; ∂V ) :=
∑
{deg(u; ∂Si) | components Si of SE such that Si ⊂⊂ V } .(1.12)

The advantage of using the approximate degree dg is that it allows us to conduct
our analysis as if every component of S has nonzero degree, which is useful in one or
two places. Note that dg agrees with the ordinary degree on sets for which both are
defined. Indeed, for many purposes the distinction between the two can be ignored
with very little loss of understanding.
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2. An estimate on spheres. In this section we establish an estimate on spheres.
A similar estimate is proven by Han and Li [6] and Hong [7], who establish a lower
bound for ||Du||Ln on an annulus, under the assumption that

∫
(1− |u|2)2dx is small.

Both of these proofs use a good deal of machinery from elliptic regularity theory.
We use the following.
Notation. Recall that we have defined the constant κn = 1

n (n− 1)n/2|∂B1|. We
also define

λε(r; d) = min
m∈[0,1]

[
mnκn|d|

n
n−1

r
+

1

Cε
(1−m)N

]
,(2.1)

where C,N > 0 will be specified below and will depend only on the dimension n.
The main result of this section is the following theorem.
Theorem 2.1. λε has the following properties: First,

λε(r; d) ≥ κn|d| n
n−1

1

r

(
1− C(d)

εα

rα

)
(2.2)

for α = 1
N−1 > 0.

Second, if r > ε, u ∈W 1,n(∂Br;B1), and |deg(u; ∂Br)| = d > 0, then∫
∂Br

Eε dHn−1 ≥ λε(r; d).(2.3)

We assume several lemmas, and use them to prove the following theorem.
Proof. 1. We first prove (2.3). Given u as stated, we define

ρ := |u|, v := u/ρ, m := 1 ∧ min
x∈∂Br

ρ(x).(2.4)

Since n ≥ 2, we see that

|∇τu|n ≥ |∇τρ|n + ρn|∇τv|n
≥ |∇τρ|n +mn|∇τv|n.

Thus ∫
∂Br

Eε ≥
∫
∂Br

mn

n
|∇τv|n +

1

n
|∇τρ|n +

1

εn
(1− ρ2)2

≥ mnκn|d|
n
n−1

r
+

1

Cε
|1−m|N

by Lemmas 2.3 and 2.4 below. This last inequality and the definition of λε directly
imply (2.3).

2. Next, for n,N as above, m ∈ [0, 1], and any fixed constant K > 0, we estimate

1−mn ≤ n(1−m)

=
(

(KN)1/N (1−m)
) n

(KN)1/N

≤ K(1−m)N +
N − 1

N

(
n

(KN)1/N

)N/(N−1)

= K(1−m)N + CK−1/(N−1)
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using Young’s inequality. Thus

max
m∈[0,1]

[
(1−mn)−K(1−m)N

] ≤ CK−1/(N−1)(2.5)

for any K > 0.
It follows that for any A,B > 0

min
m∈[0,1]

[
mnA+ (1−m)NB

]
= A−A max

m∈[0,1]

[
(1−mn)− B

A
(1−m)N

]
≥ A

(
1− C

(
A

B

)1/(1−N)
)
.

This immediately gives (2.2).
We now fill in the proofs of the lemmas used above. We continue to assume the

hypotheses of Theorem 2.1, so that, for example, u ∈W 1,n(∂Br; ∂B1). We first recall
the following estimate of Morrey.

Lemma 2.2. ρ is Hölder continuous on ∂Br, and in fact

|ρ(x)− ρ(y)| ≤ C||∇τρ||Ln |x− y|1/n

for some constant C independent of r.
Proof. The stated estimate is invariant under rescalings, so it suffices to prove it

on the unit sphere. This, however, follows easily from the standard Morrey inequality
on Rn−1.

Lemma 2.3. If r ≥ ε, then∫
∂Br

1

n
|∇τρ|n +

1

εn
(1− ρ2)2dHn−1 ≥ 1

Cε
|1−m|N

for some C,N > 0.
Remark. It is clear from the proof that this lemma does not depend on the exact

form of W (ρ) := (1− ρ2)2.
Proof. Let

γ :=

∫
∂Br

1

n
|∇τρ|ndHn−1,

and let xmin ∈ ∂Br be a point at which ρ(xmin) = m.
Lemma 2.2 implies that

ρ(x) ≤ m+ Cγ1/n|xmin − x|1/n

≤ 1 +m

2
whenever |x− xmin| ≤ |1−m|

n

Cγ
.(2.6)

Since r ≥ ε and xmin ∈ ∂Br,
Hn−1 (∂Br ∩Bσ(xmin)) ≥ C−1(σn−1 ∧ εn−1)(2.7)

for any σ > 0. Since (1 − ρ2)2 ≥ C−1|1 −m|2 whenever ρ ≤ (1 + m)/2, we deduce
from (2.6) and (2.7) that∫

∂Br

(1− ρ2)2dHn−1 ≥ C−1|1−m|2
(
εn−1 ∧ |1−m|

n(n−1)

γn−1

)
.
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It follows that∫
∂Br

1

n
|∇τρ|n +

1

εn
(1− ρ2)2dHn−1 ≥ γ +

1

Cεn
|1−m|2

(
εn−1 ∧ |1−m|

n(n−1)

γn−1

)
.

The conclusion of the lemma is obvious if εn−1 ≤ |1 − m|n(n−1)γ1−n. If the
other inequality holds, the desired estimate follows by using calculus to minimize over
γ > 0.

Our next assertion seems to be quite well known; it appears without proof in Han
and Li [6], who remark that it is elementary. Nevertheless, we provide a proof for the
reader’s convenience.

Lemma 2.4. Suppose that v ∈W 1,n(∂Br, ∂B1) for some r > 0 and that

deg(v; ∂Br) = d.

Then ∫
∂Br

1

n
|∇τv|ndHn−1 ≥ κn

r
|d| n

n−1 .

Proof. We compute, using (1.8) in the second line below,

deg(v; ∂Br) =
1

|∂B1|
∫
∂Br

det∇τv dHn−1

≤ 1

|∂B1| (n− 1)−
n−1

2

∫
∂Br

|∇τv|n−1dHn−1

≤ (n− 1)−
n−1

2

|∂B1|

(∫
|∂Br|

|∇τv|ndHn−1

)n−1
n

|∂Br| 1n .

After some rearranging, this becomes the conclusion of the lemma.

Finally, we record a technical refinement of Lemma 2.3 which will be needed later.

Lemma 2.5. Suppose that U ⊂ Rn is a bounded open subset with a smooth
boundary. Then there exists r̂ > 0 such that for every r ∈ [ε, r̂) and every y ∈ U we
have ∫

∂Br(y)∩U
|∇τρ|n +

1

εn
(1− ρ2)2dHn−1 ≥ 1

Cε
|1−m|N ,

where C depends on the smoothness of the boundary and on the dimension n.

Proof. The proof follows that of Lemma 2.3, except that in place of (2.7) we
substitute

Hn−1 (∂Br(y) ∩ U ∩Bσ(xmin)) ≥ C−1(σn−1 ∧ rn−1)(2.8)

for y ∈ U, xmin ∈ ∂Br(y)∩U . Since r > ε by hypothesis, this is enough to extend the
earlier argument to the present case.

We deduce (2.8) as a consequence of the smoothness of ∂U . Indeed, (2.8) is clear
if U is the half-space {x ∈ Rn : xn > 0}. The general case follows by flattening out
the boundary.
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3. Properties of Λε. In this section we define a function Λε, which provides
a convenient way of keeping track of lower bounds on balls, and we record several
properties of Λε.

We define

Λε(s) :=

∫ s

0

λε(r; 1) ∧ c0
ε
dr,(3.1)

where c0 is a constant to be selected below, depending only on the dimension n.
We first note some elementary properties of Λε.
Proposition 3.1. Λε(·) is increasing, and moreover,

Λε(r + s) ≤ Λε(r) + Λε(s) ∀ r, s ≥ 0,(3.2)

s 7→ 1

s
Λε(s) is nonincreasing, and(3.3)

Λε(r) ≥ κn ln
(r
ε

)
− C(n) ∀ r ≥ 0.(3.4)

Proof. From the definition (2.1) of λε, it is clear that λε > 0 and that r 7→ λε(r; 1)
is nonincreasing. The first of these facts implies that Λε is increasing; from the two
facts together it is easy to see that (3.2) holds.

Next, (3.3) is clear, since 1
sΛε(s) is just the average over the interval [0, s] of the

nonincreasing function r 7→ λε(r; 1) ∧ c0
ε .

To prove the lower bound (3.4), recall first from Theorem 2.1 that

λε(r, 1) ≥ κn
(

1

r
− Cεα

r1+α

)
.

As a result, λε ∧ c0
ε ≥ κn( 1

r − Cεα

r1+α ) whenever r ≥ c1ε for some c1 > 0. Thus

Λε(r) ≥
∫ r

c1ε

κn

(
1

s
− Cεα

s1+α

)
ds

≥ κn ln

(
r

c1ε

)
− Cεα

∫ ∞
c1ε

s−1−α ds

≥ κn ln
(r
ε

)
− C.

We next restate the lower bounds of the previous sections in terms of Λε.
Proposition 3.2. Let u ∈ C ∩ W 1,n(U ;Rn), ε ≤ r0 ≤ r1, and suppose that

|dg (u; ∂Bρ)| = d > 0 ∀ ρ ∈ [r0, r1], then∫
Br1\Br0

Eεdx ≥ d
[
Λε
(r1

d

)
− Λε

(r0

d

)]
.(3.5)

Remark. Recall that dg is defined in (1.12). Stating this estimate in terms of dg
allows us to ignore the “negligible” set SN in our later arguments.
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Proof

1. We first claim that if |dg(u; ∂Br)| = d > 0, then∫
∂Br

Eε dHn−1 ≥ λε(r; d) ∧ c0
ε

for some c0(n).

To see this, observe that the definition of dg implies that either deg(u; ∂Br) = d,
in which case the claim follows immediately from (2.3), or ∂Br ∩ SN 6= ∅, which
implies that m ≤ 1

2 , in the notation (2.4). Lemma 2.3 then implies that∫
∂Br

EεdHn−1 ≥ c0
ε

if c0 is small enough.

2. From the definition (2.1) of λε it is clear that λε(r; d) ≥ λε( rd ; 1) ∀ r > 0, d ≥ 1.
We use this fact and step 1 to compute∫

Br1\Br0
Eεdx =

∫ r1

r0

∫
∂Br

EεdHn−1dr

≥
∫ r1

r0

λε
( r
d

; 1
)
∧ c0
ε
dr

= d

∫ r1
d

r0
d

λε(r; 1) ∧ c0
ε
dr = d

[
Λε
(r1

d

)
− Λε

(r0

d

)]
.

The final property of Λ that we will need is the following.

Proposition 3.3. Suppose that u ∈ W 1,n(U ;Rn) and that u is continuous. If
SE ⊂⊂ U , then there is a collection of closed, pairwise disjoint balls {Bi}ki=1 with
radii ri such that

SE ⊂ ∪ki=1Bi,(3.6)

ri ≥ ε ∀ i;(3.7)

Bi ∩ SE 6= ∅ for each i,(3.8)

∫
Bi∩U

Eεdx ≥ c0
ε
ri ≥ Λε(ri).(3.9)

Remarks. 1. It is not true in general that the entire zero set of u can be covered
by balls satisfying a lower bound of the form (3.9). This is the reason we need to
decompose the set S into SE and SN (see (1.10) and (1.11)) and to introduce the
approximate degree dg.

2. The technical assumption SE ⊂⊂ U is satisfied if |u| > 1/2 on ∂U .

We start by proving several lemmas. The first is a trivial observation which we
will use repeatedly.
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Lemma 3.1. Given any finite collection of closed balls in Rk, say {Bi}Ni=1, we

can find a collection {B̃i}Ñi=1 of pairwise disjoint balls such that

N⋃
i=1

Bi ⊂
Ñ⋃
i=1

B̃i,

∑
Bj⊂B̃i

diamBj = diamB̃i,(3.10)

Ñ ≤ N, with strict inequality unless {Bi}Ni=1 is pairwise disjoint.

Proof. Replace pairs of intersecting balls Bi, Bj by larger single balls B̃ such that

Bi ∪ Bj ⊂ B̃ and diam B̃ = diam Bi + diam Bj , continuing until a pairwise disjoint
collection is reached. This collection has the stated properties.

Lemma 3.2. Let Si be a connected component of SE, and assume that Si ⊂⊂ U .
Then ∫

Si

|Du|ndx ≥ C−1|deg(u; ∂Si)|.(3.11)

Proof. Fix a nonnegative function η ∈ C∞(Rn) such that
∫
η = 1 and spt η ⊂

B1/4. Then, by the definition (1.6) of degree,

|deg(u; ∂Si)| =
∣∣∣∣∫
Si

η(u) detDu dx

∣∣∣∣
≤ C

∫
Si

|detDu| dx

≤ C
∫
Si

|Du|ndx.

In the last line we have used the inequality of arithmetic and geometric means.
Lemma 3.3. Suppose that u ∈W 1,n(U ;Rn) and that u is continuous. If SE ⊂⊂

U , then there is a collection of closed, pairwise disjoint sets {Ci}ki=1 such that

SE ⊂ ∪ki=1Ci,(3.12)

∫
Ci∩U

Eεdx ≥ c0
ε

(diam Ci ∨ ε).(3.13)

Proof. 1. First note that Lemma 3.2 implies that SE has a finite number of
components, and clearly each component has nonempty interior.

For each component Si ⊂ SE , select a point xi ∈ Si and define

ρi := sup{r > 0|∂Bs(xi) ∩ SE 6= ∅ ∀ s ∈ (0, r)}.(3.14)

Clearly Si ⊂ Bρi(xi), so SE ⊂ ∪iBρi(xi). We assert also that if c1 = c1(n,U) is
sufficiently small, then ∫

Bρi (xi)∩U
Eεdx ≥ 1

ε
c1ρi.(3.15)
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This follows from Lemma 3.2 if ρi ≤ 2ε. If ρi > 2ε, then Lemma 2.5 implies that∫
Bρi (xi)∩U

Eεdx ≥
∫ ρi∧r̂

ε

∫
∂Br∩U

EεdHn−1dr

≥ 1

Cε
((ρi ∧ r̂)− ε).

Recall that r̂ is some constant depending only on the geometry of U . If 2ε ≤ ρi ≤ r̂,
then ρi−ε ≥ 1

2ρi and (3.15) follows. If 2ε ≤ r̂ < ρi, then ((ρi ∧ r̂)− ε) ≥ r̂
2 . Moreover,

ρi ≤ diamU ≤ Cr̂, for some C depending on the geometry of U ; thus (3.15) holds for
appropriately small c1.

2. Next, if x1 ∈ Bρj (xj) for some j 6= 1, the choice of ρj implies that S1 ⊂ Bρj (xj).
If this holds, we may drop the ball Bρ1

(x1) from the collection, and the remaining
balls will still cover SE . Proceeding in this fashion and relabelling as necessary, we
obtain a collection {Bρi(xi)}ki=1 covering SE , each satisfying (3.15) and such that

xi 6∈ Bρj (xj) whenever i 6= j.(3.16)

3. Let Ci, i = 1, . . . , k̃ be the connected components of ∪ki=1Bρi(xi). We will
complete the proof by showing that these sets satisfy (3.13).

Fix some i and define

B := {Bρj (xj) |Bρj (xj) ⊂ Ci}.

According to the Besicovitch covering lemma, we may find subcollections B1, . . . ,BN
such that the balls within each subcollection are pairwise disjoint, and the set of
centers of balls in the original collection B is contained in the union of all the balls in
all the subcollections. The latter fact, together with (3.16), implies that

B = ∪Nl=1Bl.

Here N is an absolute constant depending only on the dimension n. So

N

∫
Ci∩U

Eedx ≥
N∑
l=1

∫
(∪BlBρj (xj))∩U

Eεdx

=
∑
B

∫
Bρj (xj)∩U

Eεdx

≥
∑
B

1

ε
c1ρj

≥ c1
ε

diam Ci.

Also, each set Ci contains at least one component Si of SE by construction, so it is
clear from Lemma 3.2 that ∫

Ci∩U
Eedx ≥ C−1

for each i. The proof of (3.13) is concluded by selecting c0 sufficiently small.
We can now easily complete the proof of Proposition 3.3.
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Proof. 1. For each of the sets Ci found above, fix xi ∈ Ci and let

ρi := sup{r > 0|∂Bs(xi) ∩ Ci 6= ∅ ∀ s ∈ (0, r)} ≤ diamCi;

σi := ε ∨ ρi ≤ ε ∨ diamCi.

Let {Bnew
i }ki=1 be the collection of pairwise disjoint balls formed by combining

the balls {Bσi(xi)} following the algorithm of Lemma 3.1, and let rnew
i be the radius

of Bnew
i . Clearly this collection of balls satisfies (3.6), (3.7), and (3.8). Moreover,

since the sets Cj from Lemma 3.3 are pairwise disjoint,∫
Bnew
i
∩U
Eεdx ≥

∑
{j:Bσj (xj)⊂Bnew

i
}

∫
Cj∩U

Eεdx

≥
∑

{j:Bσj (xj)⊂Bnew
i
}

c0
ε

(ε ∨ diamCj)

≥ c0
ε

∑
{j:Bσj (xj)⊂Bnew

i
}
σj

=
c0r

new
i

ε
.

We have used (3.13) and (3.10) in the above estimates.
Finally, it is immediate from the definition (3.1) of Λε that c0r

ε ≥ Λε(r).

4. Lower bounds and concentration. In this section we prove Theorem 1.2.
We assume that U is a bounded, open subset of Rn. We will in fact establish

that the conclusion of Theorem 1.2 is valid under somewhat more general boundary
conditions than are stated in the introduction. Throughout this section we will assume
that u ∈W 1,n(U) satisfies

|u(x)| ≥ 1

2
in {x ∈ U |dist(x, ∂U) ≤ r},(4.1)

|deg(u; ∂U)| = d > 0,(4.2)

and ∫
U

Eε[u]dx ≤ dκn ln

(
1

ε

)
+ C(4.3)

for some ε > 0.
Our first lemma shows that (4.1)–(4.2) are in fact more general than the boundary

conditions stated in the introduction. This construction is standard.
Lemma 4.1. Let u ∈ W 1,n

g (U ;Rn), where g is a smooth function of nonzero
degree and W 1,n

g is as defined in (1.1). Then u can be extended to a function ũ,

defined on a set Ũ ⊃ U and satisfying (4.1)–(4.2) above. Also, if u satisfies (4.3),
then so does its extension ũ.

Proof. To see this, let Ũ := {x ∈ Rn|dist(x;U) ≤ r} for some r > 0. We assume
that r is small enough that each point in Ũ \U has a unique closest point in ∂U and
that U and Ũ have the same topology. We define ũ(x) = u(x) for x ∈ U , and

ũ(x) = g(y) for the unique y ∈ ∂U such that dist(x, ∂U) = |x− y|
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if x ∈ Ũ \ U . One then immediately sees that ũ satsifies (4.1) and (4.2) on Ũ . Also,∫
Ũ\U
Eε(ũ) dx ≤ C,

which yields the final assertion of the lemma.
Theorem 1.2 will follow directly from the next proposition and the above lemma.
Proposition 4.1. Assume that u is continuous and satisfies (4.1)–(4.3). Then,

given any σ ∈ (0, r4d ), there exists some ε0(σ) > 0 such that, for each ε ∈ (0, ε0), we
can find a collection of closed balls {Bi}mi=1 of radius ri and degree di such that

the interiors of the balls are pairwise disjoint,(4.4)

∫
Bi∩U

Eε[u]dx ≥ ri
s

Λε(s), for every i, where s := min
j
rj/|dj |,(4.5)

SE ⊂⊂
m⋃
i=1

Bi, and Bi ∩ SE 6= ∅ for every i.(4.6)

Moreover,

s ∈
[σ

2
, σ
]

(4.7)

di ≥ 0 ∀ i.(4.8)

Proof. 1. We first claim that if ε is sufficiently small and {Bi} is a collection of
balls satisfying (4.4)–(4.7), then (4.8) holds.

Noting that

ri
s
≥ |di| ∀ i,(4.9)

we use (4.4), (4.5), and (3.4) to compute∫
U

Eεdx ≥
∑
i

∫
Bi∩U

Eεdx

≥
∑
i

ri
s

Λε(s)

≥
∑
i

|di|Λε(s)

≥
[
κn ln

(s
ε

)
− C

]∑
i

|di|.(4.10)

If di < 0 for some i, then
∑ |di| ≥ d+ 2, in which case (4.3) and (4.7) yield

κnd ln

(
1

ε

)
+ C ≥ (d+ 2)

[
κn ln

( σ
2ε

)
− C

]
.
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This is impossible for ε sufficiently small.
It therefore suffices to find a collection satisfying (4.4)–(4.7).
2. Next, if {Bi} is a collection of balls satisfying (4.4), (4.5), (4.6), and if

s := min
i

ri
|di| ≤ σ,

then Bi ∩ ∂U = ∅ for each i.
Suppose, toward a contradiction, that Bi ∩ ∂U 6= ∅ for some i. From (4.6) we

deduce that Bi contains a zero of u. With (4.1) this implies that Bi has radius
ri ≥ r/2 ≥ 2dσ. Then ∫

Bi∩U
Eεdx ≥ ri

s
Λε(s)

≥ ri
σ

Λε(σ)

≥ 2d
[
κn ln

(σ
ε

)
− C

]
(4.11)

by (4.5), (3.3), and (3.4). If ε is sufficiently small, this contradicts (4.3).
3. Let {Bi} be the collection of balls found in Proposition 3.3. This collection

satisfies (4.4), (4.5), and (4.6) by construction.
We now claim that, for this particular collection of balls, s ≤ σ/2 if ε is sufficiently

small. To see this, use (4.3), (3.9), and (4.9) to estimate

dκn ln

(
1

ε

)
+ C ≥

∑
i

∫
Bi∩U

Eεdx

≥ 1

ε
c0
∑
i

ri

≥ 1

ε
c0s
∑
i

|di|.

Thus in fact s = O(ε|lnε|), which certainly implies our claim.
We now successively modify these balls in such a way that (4.4), (4.5), and (4.6)

remain true, and eventually (4.7) is satisfied.
At each step some balls are changed. We use the notation Bold

i and Bnew
i to

distinguish the ith ball, before and after it is modified, and similarly rold
i , rnew

i , etc.
When there is no possibility of confusion, we omit the superscripts.

4. Expansion: Note that the collection of balls obtained above is disjoint by
construction. We modify these balls as follows.

(i) Identify the subcollection of balls Bi satisfying

ri
|di| = min

j

rj
|dj | = s.

We refer to these as minimizing balls. The other balls are called nonminimizing balls.
(ii) Expand the minimizing balls uniformly by leaving the centers fixed and

letting the radii grow. This is done in such a way that the ratio s = ri/|di| is always
uniform for the minimizing balls. Thus one may think of the expansion as simply
increasing the parameter s. Leave the nonminimizing balls unchanged.
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More precisely, for s ≥ sold define

Bsi :=

{
Bold
i if Bold

i is nonminimizing,
B
s|dold

i
|(x

old
i ) if Bold

i is minimizing.

(iii) Define

snew := sup{s ≥ sold| conditions (4.12)–(4.14) below are all satisfied.}
The conditions alluded to are

s <
σ

2
,(4.12)

s <
rold
j

|dold
j |

for all nonminimizing balls Bold
j ,(4.13)

Bsi ∩Bsj = ∅ whenever i 6= j,(4.14)

where Bsi , B
s
j are the expanded balls.

(iv) Let Bnew
i := Bs

new

i .
(v) Note that, by step 2, Bnew

i ∩ ∂U = ∅ ∀ i, because snew ≤ σ, by (4.12).
(vi) We will verify in step 5 below that (4.4)–(4.6) hold for this new collection.
(vii) It must be the case that snew violates one of (4.12), (4.13), or (4.14).
(viii) If (4.12) does not hold, then snew = σ/2 and we are finished.
(ix) If (4.13) does not hold, then snew = rold

j /|dold
j | for some j such that Bold

j was
nonminimizing. In this case we add all such balls Bj to the collection of minimizing
balls and then start another expansion step.

(x) If (4.14) does not hold, we proceed with an “amalgamation step,” as de-
scribed in step 6 below.

Note that each time an expansion step terminates with (4.13) being satisfied, the
number of nonminimizing balls decreases. As the total number of balls is finite, this
can happen only finitely many times in succession. Thus a series of expansion steps
must lead always to either (4.12) or (4.14) being satisfied.

5. It is clear that the collection of balls produced by the above expansion algorithm
satisfies (4.6). Moreover, (4.4) holds as a consequence of the stopping criterion (4.14).
So we need only to verify (4.5).

First, consider some i such that Bold
i was nonminimizing, which implies that

Bnew
i = Bold

i . Then∫
Bnew
i

Eεdx =

∫
Bold
i

Eεdx ≥ ri
sold

Λε(sold) ≥ ri
snew

Λε(snew).

We have used (3.3) and the fact that snew ≥ sold, which is clear from the expansion
procedure.

Next, suppose that Bold
i was minimizing. We temporarily drop the subscripts i.

The expansion procedure is carried out in such a way that Bnew \Bold is an annulus
with center x, inner radius rold, and outer radius rnew; moreover

[Brnew(x) \Brold(x)] ∩ SE = ∅.
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This last fact follows from (4.6) and the stopping criterion (4.14). This implies that
dold = dnew = dg(u; ∂Br) ∀ r ∈ [rold, rnew]. Proposition 3.2 thus allows us to estimate∫

Bnew
Eεdx =

∫
Bnew\Bold

Eεdx+

∫
Bold
Eεdx

≥ |dnew|
[
Λε
(
rnew

|dnew|
)
− Λε

(
rold

|dold|
)]

+
rold

sold
Λε(sold)

= |dnew|Λε
(
rnew

|dnew|
)

=
rnew

snew
Λε(snew).

In the above computation, we have repeatedly used the fact that s = r/|d| for mini-
mizing balls.

6. Amalgamation: Suppose now that we have a collection of balls {Bi}i satisfying
(4.4)–(4.6), such that (4.7) does not hold and thatBi∩Bj 6= ∅ for some i 6= j. Combine
the balls following the procedure of Lemma 3.1 to obtain a new collection of pairwise
disjoint balls {Bnew

j }j . It is clear that this collection satisfies (4.4) and (4.6). We now
verify that (4.5) also holds.

First, for any Bnew
j , we have

rnew
j =

∑
Bold
i
⊂Bnew

j

rold
i , dnew

j =
∑

Bold
i
⊂Bnew

j

dold
i .

It is thus clear that

snew = min
j

rnew
j

|dnew
j | ≥ s

old.(4.15)

Also, for each j, ∫
Bnew
j

Eεdx ≥
∑

Bold
i
⊂Bnew

j

∫
Bold
i

Eεdx

≥ 1

sold
Λε(sold)

∑
Bold
i
⊂Bnew

j

rold
i

≥ rnew
j

snew
Λε(snew)

by (3.10), (3.3), and (4.15).
7. We next show that snew ≤ σ. Recall that we have assumed that sold ≤ σ/2.

This implies that ∑
i

∫
Bold
i

Eεdx ≥
∑
i

rold
i

sold
Λε(sold)

≥
∑
i

rold
i

σ/2
Λε
(σ

2

)
≥ 2

σ

(
κn ln

( σ
2ε

)
− C

)∑
i

rold
i .
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With (4.3) this shows that ∑
i

rold
i ≤ dσ

if ε is sufficiently small. Note also from the construction of Lemma 3.1 that

dσ ≥
∑
i

rold
i

=
∑
j

rnew
j

≥
∑
j

|dnew
j |snew

≥ dsnew.

8. Thus an amalgamation step yields a collection of balls which satisfy (4.4)–(4.6),
with s ≤ σ. If s ∈ [σ/2, σ], then we are finished. If not, because the balls are pairwise
disjoint, we modify them again using the expansion procedure of steps 4 and 5 above.
We continue in this fashion, expanding and combining balls, until (4.7) is satisfied.

This must happen eventually, for the following reasons: each amalgamation step
decreases the number of balls, and each expansion step leaves the total number of
balls unchanged. Thus there can be only finitely many amalgamations. Also, as
remarked above, there can only be finitely many expansions. It is therefore clear that
the process must eventually terminate. By construction this can happen only when
s ∈ [σ/2, σ].

We now complete the proof of Theorem 1.2:
Proof. We may assume that (4.1)–(4.3) hold, if necessary by extending u in a

neighborhood of ∂U , as in Lemma 4.1.
By a standard approximation argument, we may assume that u is continuous.
We may thus construct balls as in Proposition 4.1. By an obvious modification

of Proposition 4.1, we may prescribe that s := min ri/|di| ∈ [σ/4, σ/2].
Let {x1, . . . , xm} be the centers of the balls which have nonzero degree, and let

{d1, . . . , dm} be the corresponding degrees. In view of (4.8) it is clear that di > 0 for
all i. From (4.6), (4.2), and the definition of SE , we deduce that

∑
di = d.

Finally, from (4.3), (4.4), (4.5), and (3.4) we deduce that
∑
i(ri/s) ≤ d+ 1 for ε

small. Since di ≤ ri/s, this implies that ri ≤ 2dis ≤ diσ ∀ i. Thus

Bi ⊂ Bdiσ,(4.16)

and so we can use familiar properties of Λε to estimate∫
∪iBdiσ(x)∩U

Eε dx ≥
∫
∪iBi∩U

Eε dx

≥
∑
i

ri
s

Λε(s)

≥
∑
i

diΛ
ε(s)

≥ dΛε
(σ

4

)
≥ dκn ln

(σ
ε

)
− C.
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5. Compactness. Theorem 1.2 implies a compactness result in a straightfor-
ward way. The point is that, given a sequence of functions, we can find a subsequence
along which the energy is uniformly bounded away from a collection of at most d
limiting singular points.

In this section we will prove the following proposition.
Proposition 5.1. Suppose uε is a collection of functions and that for each ε, uε

satisfies (4.1), (4.2), and ∫
U

Eεdx ≤ dκn ln

(
1

ε

)
+ C.

Then there exist points x1, . . . , xm ∈ Ū , with m ≤ d, a subsequence εk → 0, and a
function u ∈W 1,n

loc (U \ {x1, . . . , xm};Sn−1) such that

uεk ⇀ u weakly in W 1,n
loc (U \ {x1, . . . , xm};Rn).

Finally, there are integers di > 0 for i = 1, . . . ,m such that
∑
di = d and

µεk := | ln εk|−1Eεkdx→ κn

m∑
i=1

diδxi

weakly as measures.
Remark. Theorem 1.3 follows immediately from this proposition and Lemma 4.1.
Proof. 1. Fix σ1 ∈ (0, r/4d), and for every ε < ε0(σ), apply Proposition 4.1 to the

function uε. This yields a collection of balls {Bεi }Mi=1. Let Bεi have center xεi , and let
dεi := dg(uε; ∂Bεi ). Discard all balls for which dεi = 0. Then at most d balls remain,
the balls are disjoint, and each ball satisfies∫

Bε
i

Eεdx ≥ dεiΛε
(σ1

2

)
≥ dεi

[
κn ln

(σ1

ε

)
− C

]
(5.1)

by construction. Arguing as in (4.16), we see that

Bεi ⊂ B2dε
i
σ1(xεi).(5.2)

We may easily find positive integers d1
i , points x1

i , and a subsequence εj → 0 such
that

d
εj
i → d1

i ,
∑
i

d1
i = d,

and for each i,

x
εj
i → x1

i

as j →∞.
Define B1

i := B4d1
i
σ1

(x1
i ), and

U1 := U \ (∪iB1
i ).

From (5.2) we see that B
εj
i ⊂ B1

i for all sufficiently large j. Thus (4.3) and (5.1)
imply that

lim inf
j

∫
B1
i

Eεjdx− d1
iκn ln

(σ1

ε

)
≥ −C,(5.3)
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lim sup
j

∫
U1

Eεjdx ≤ dκn ln

(
1

σ1

)
+ C.(5.4)

2. Now repeat the above process for σ2 = 1
2σ1 to find positive integers d2

i , points
x2
i , and a further subsequence, which we still write as εj , such that (5.3) and (5.4)

hold with σ1 replaced with σ2, where B2
i and U2 are defined as before.

Note that for any j,

B1
j ∩ (∪iB2

i ) 6= ∅ and B2
j ∩ (∪iB1

i ) 6= ∅.
If this is not the case, then, for example,

B2
j ⊂ U1,

which would lead to a contradiction between (5.4) and (5.1).
It follows that

dist
({x1

i }i , {x2
i }i
) ≤ σ1 + σ2,(5.5)

where dist here denotes the Hausdorff distance between two sets,

dist(A,B) = max{max
x∈A

min
y∈B
|x− y| , max

y∈B
min
x∈A
|x− y|}.

3. We now repeat the same procedure for each k, with σk = 2−k+1σ1, each
time passing to subsequences and finding points xki and positive integers dki such that∑
i d
k
i = d,

lim inf
j

∫
Bk
i

Eεjdx− dki κn ln
(σk
ε

)
≥ −C,(5.6)

and

lim sup
j

∫
Uk
Eεjdx ≤ dκn ln

(
1

σk

)
+ C(5.7)

for balls Bki and Uk defined as in step 1.
By a diagonal argument we may extract a subsequence, still denoted εj , such that

(5.6) and (5.7) hold for every k. Moreover it is clear from (5.5) that the sets {xki }i
must converge in the Hausdorff metric to some limiting set {x1, . . . , xm} as k → ∞.
Any compact subset of U \ {x1, . . . , xm} is contained in some Uk for k sufficiently
large. Thus {uεj} is weakly precompact in W 1,n

loc (U \ {x1, . . . , xm};Rn).
The other conclusion of the theorem follows similarly from (5.6) and (5.7).

6. The gauge-invariant functional. The above framework can be modified to
give estimates for the gauge-invariant functional Iεmag(u,A).

Let γ := ||∇ ×A||L2(U) and

Fεmag[u,A] :=
1

2
|∇Au|2 +

1

4ε2
(1− |u|2)2,

so that Iεmag(u,A) = 1
2γ

2 +
∫
U
Fεmag[u,A] dx.

We also define

λεγ(r; d) := min
m∈[0,1]

{
1

Cε
|1−m|N +

m2

r

[(√
πd− rγ

2

)+
]2
}
.(6.1)
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We will regard γ as fixed and establish lower bounds for Fεmag in which γ appears
as a parameter. These bounds have exactly the same structure as our earlier bounds,
so that the covering arguments from earlier sections may by employed almost without
change to find global lower bounds for Fεmag which depend on the parameter γ. We
then obtain estimates for the full energy Iεmag by minimizing over γ > 0.

Lemma 6.1. λεγ has the following properties. First,

λεγ(r; d) ≥ π

r

[(
d− rγ

2
√
π

)+
]2 [

1− C ε
α

rα

]
.(6.2)

Second, if r ≥ ε, Br ⊂ U , u ∈ H1(∂Br, C), and |deg(u; ∂Br)| = d, then∫
∂Br

Fεmag[u,A] dH1 ≥ λεγ(r; d).(6.3)

Proof. 1. We omit the proof of (6.2), as it is exactly like the proof of (2.2).
2. We may assume without loss that d > 0. We write u = ρeiφ, where φ is

multivalued. A calculation shows that

|∇Au|2 = |Dρ|2 + ρ2|Dφ−A|2.
Thus ∫

∂Br

Fεmag dH
1 = I1 + I2,

for

I1 :=

∫
∂Br

1

2
|Dρ|2 +

1

4ε2
(1− ρ2)2,

I2 :=

∫
∂Br

1

2
ρ2|Dφ−A|2.

Define m := inf∂Br ρ. Exactly as in Lemma 2.3 we see that

I1 ≥ 1

Cε
|1−m|N

for some C,N > 0. It is at this stage that we use the assumption r ≥ ε.
3. For x := (x1, x2) ∈ ∂Br, let τ(x) := 1

|x| (−x2, x1) denote the oriented tangent
at x.

Because u has degree d, ∫
∂Br

Dφ · τdH1 = 2πd.

Also, by Stokes’ theorem,∫
∂Br

A · τdH1 =

∫
Br

∇×A

≤ (πr2)1/2

(∫
Br

|∇ ×A|2
)1/2

≤ √πrγ.
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Thus

2πd−√πrγ ≤
∫
∂Br

(Dφ−A) · τ,

and therefore

(2πd−√πrγ)+ ≤
√

2πr

(∫
∂Br

|Dφ−A|2
)1/2

.

Here s+ := max{s, 0} for s ∈ R, as usual. Rearranging and using the definition of m,
we obtain

I2 ≥ m2

r

[(√
πd− rγ

2

)+
]2

With step 2 this immediately gives the conclusion of the lemma.
Next we define

Λεγ(r) :=

∫ r

0

λεγ(s; 1) ∧ c0
ε
ds(6.4)

for some appropriately small c0. We continue to assume that γ = ||∇×A||L2 is some
known, finite number.

Λεγ has the following properties.
Proposition 6.1. Λεγ(·) is increasing; moreover,

Λεγ(r + s) ≤ Λεγ(r) + Λεγ(s) ∀ r, s ≥ 0;(6.5)

s 7→ 1

s
Λεγ(s) is nonincreasing; and(6.6)

Λεγ(r) ≥ π log

(
1

ε

)
+ log(r ∧ γ−1)− C.(6.7)

Proof. The lower estimate (6.7) follows by integrating the lower bound (6.2)
for λεγ . The other claims are proven by exactly the arguments used in the proof of
Proposition 3.1.

The next proposition follows from (6.3) by exactly the arguments of Proposition
3.2.

Proposition 6.2. Let u ∈ H1(U ; C) be continuous. If |dg (u; ∂Bρ)| = d > 0 for
all ρ ∈ [r0, r1] and ε ≤ r0 ≤ r1, then∫

Br1\Br0
Fεmag[u,A] dx ≥ d

[
Λεγ

(r1

d

)
− Λεγ

(r0

d

)]
.(6.8)

Also, ∫
Br1\Br0

Fεmag [u,A] dx ≥ Λεγ(r1)− Λεγ(r0).(6.9)
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The final property of Λ that we will need is the following. For this we assume
that u ∈ C ∩H1(U ; C), and we define SE as in (1.10).

Proposition 6.3. Suppose that u ∈ C ∩ H1,2(U ; C) and that A ∈ H1(U ;R2),
with γ := ||∇ × A||L2 ≤ Cε−1/2. If SE ⊂⊂ U , then there is a collection of closed,
pairwise disjoint balls {Bi}ki=1 such that

SE ⊂ ∪ki=1Bi,∫
Bi∩U

Fεmagdx ≥ Λεγ(ri),

ri ≥ ε ∀ i,

Bi ∩ SE 6= ∅ for each i.

Proof. The proof follows exactly that of Proposition 3.3, which uses only Lemmas
2.5, 3.1, and 3.2. In this context, the first two of these are still valid, and in place of
Lemma 3.2, we have Lemma 6.2 below, so the desired result is a consequence of our
earlier arguments.

Lemma 6.2. Let Si be a connected component of SE, and assume that Si ⊂⊂ U .
Assume also that γ ≤ Cε−1/2. Then there exists some constant C such that, for all
sufficiently small ε, ∫

Si

Fε[u,A]dx ≥ C−1.

Proof. 1. We may assume by an approximation argument that u is C∞. As above
we write u := ρeiφ.

Let f := 1
2ρ

2. We will use the coarea formula,∫
Si

g Jf dx =

∫ ∞
0

(∫
Si∩f−1(s)

gdHn−1

)
ds,(6.10)

where Jf is the Jacobian of f , which in this case is given by

Jf = |Df | = ρ|Dρ|.
Thus

|∇Au|2 = |Dρ|2 + ρ2|Dφ−A|2

= Jf

( |Dρ|
ρ

+
ρ

|Dρ| |Dφ−A|
2

)
≥ Jf |Dφ−A|.

The coarea formula thus gives∫
Si

|∇Au|2 ≥
∫ ∞

0

(∫
f−1(s)∩Si

|Dφ−A|dH1

)
ds

≥
∫ ∞

0

∣∣∣∣∣
∫
f−1(s)∩Si

(Dφ−A) · τdH1

∣∣∣∣∣ ds.
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2. For s ∈ [0, 1], f−1(s) ∩ Si is nonempty, since u is continuous and must have a
zero in each component of SE . Moreover, for Lebesgue (almost everywhere) such s,
f−1(s) ∩ Si is a smooth compact manifold, by Sard’s theorem. Fix some s for which
this is the case. The definition of degree (1.6) easily implies that

deg(uε; f−1(s) ∩ Si) = deg(uε; ∂Si) := d.

It follows that ∫
f−1(s)∩Si

Dφ · τ = d.

Also, ∫
f−1(s)∩Si

A · τ dH1 =

∫
{ 1

2ρ
2≤s}∩Si

∇×A dx

≤ |Si|1/2
(∫

Si

|∇ ×A|2 dx
)1/2

≤ |Si|1/2γ.
Putting these together, we find that∫

f−1(s)∩Si
(Dφ−A) · τdH1 ≥ d− |Si|1/2γ.

3. Combining steps 1 and 2 and using the fact that (1− |u|2)2 ≥ C−1 on Si, we
obtain ∫

Si

Fmagdx ≥ d− |Si|1/2γ + |Si| 1

Cε2
.

Since we have assumed that γ ≤ Cε−1/2, the conclusion follows by calculus.
Using Propositions 6.1, 6.2, and 6.3, we can repeat the proofs of Proposition 4.1

and Theorem 1.2 with only minor modifications. We indicate how this is done.
Proposition 6.4. Assume that u is continuous and satisfies (4.1)–(4.2) and that∫

Eεmag[u,A] dx ≤ πd ln

(
1

ε

)
+ C.(6.11)

Then ∫
U

|∇ ×A|2 dx ≤ C.(6.12)

Moreover, given any σ ∈ (0, r4d ), there exists some ε0(σ) > 0 such that, for each
ε ∈ (0, ε0), we can find a collection of closed balls {Bi}Mi=1 of radius ri and degree di
such that

the interiors of the balls are pairwise disjoint,(6.13)

∫
Bi∩U

Fεmag[u,A] dx ≥ ri
s

Λε(s), for s := min
j
rj/|dj |,(6.14)
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SE ⊂⊂
M⋃
i=1

Bi, and Bi ∩ SE 6= ∅ for every i.(6.15)

Moreover,

s ∈
[σ

2
, σ
]
,(6.16)

di ≥ 0 ∀i.(6.17)

Proof. 1. Fix some σ ∈ (0, r4d ). Following step 1 of the proof of Proposition 4.1,
we show that it suffices to find a collection of balls satisfying (6.13)–(6.16).

Suppose that we have found such a collection; we need to show that (6.12) and
(6.17) necessarily hold. Following (4.10),∫

U

Eεmag dx ≥
1

2
γ2 +

∑
i

∫
Bi

Fεmag dx

≥ 1

2
γ2 + Λεγ

(σ
2

)∑
|di|

≥ 1

2
γ2 + π

[
ln

(
1

ε

)
+ ln

(
σ

2
∧ 1

γ

)]∑
|di|.(6.18)

If di < 0 for some i, then
∑ |di| ≥ d+ 2. If this holds, then (6.18) and (6.11) yield

πd ln

(
1

ε

)
+ C ≥ 1

2
γ2 + (d+ 2)π

[
ln

(
1

ε

)
+ ln

(
σ

2
∧ 1

γ

)]
.

By minimizing the right-hand side over γ > 0, we obtain a contradiction if ε is
sufficiently small. This proves that di ≥ 0 ∀ i.

Once we know that
∑ |di| = d, by comparing (6.18) and (6.11) we obtain

1

2
γ2 + dπ ln

(
σ

2
∧ 1

γ

)
≤ C.

This clearly implies that γ ≤ C, which is (6.12).
2. As in step 2 of the proof of Proposition 4.1, we next show that if a collection

of balls satisfies (6.13)–(6.15), and if s ≤ σ, then Bi ∩ ∂U = ∅ for every ball in the
collection.

Suppose, toward a contradiction, that Bi ∩ ∂U 6= ∅ for some i. By following
exactly the argument that leads to (4.11), we see that∫

U

Eεmag dx ≥
1

2
γ2 +

∫
Bi

Fεmag dx

≥ 1

2
γ2 +

ri
σ

Λεγ(σ)

≥ 1

2
γ2 + 2dπ

[
ln

(
1

ε

)
+ ln

(
σ

2
∧ 1

γ

)]
.

This leads to a contradiction with (6.11) for sufficiently small ε, again by minimizing
over γ ≥ 0.

3. Steps 3 through 6 and step 8 of the proof of Proposition 4.1 may be repeated
without change. Step 7 requires some small modifications, which can be carried out
along the lines already indicated above.
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Abstract. In this paper, we show that if a flow ϕt has a hyperbolic chain recurrent set either
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New York, 1977] and Robinson [C. Robinson, J. Differential Equations, 22 (1976), pp. 28–73]. The
result is an extension of our previous work [M.-C. Li, Proc. Amer. Math. Soc., 127 (1999), pp.
289–295].
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1. Introduction. How much confidence can we have in computer simulation?
For example, suppose we use a numerical method to approximate the general solution
of a differential equation. Does the numerical approximation exhibit the same global
geometry and dynamics as the exact solution? There have been theorems showing that
the answer to this question is yes for several cases. Before going into these theorems,
we give an introduction on how the global qualitative theory in dynamical systems
applies to numerical analysis.

Numerical methods and dynamical systems are deeply connected. As is well
known, general solutions of differential equations are considered continuous-time dy-
namical systems. On the other hand, numerical methods frequently involve iterative
processes, and so they are discrete-time dynamical systems. Suppose we use a nu-
merical method to approximate the general solution of a differential equation. The
numerical method can be interpreted as a small perturbation of the solution flow.
The natural question is whether the numerical approximation accurately reflects the
dynamics of the original flow. In the terminology of global stabilities, this is the
same as asking whether certain flows are structurally stable with respect to numerical
methods.

There are many classical stability theorems in dynamical systems. Local stability
results include the Hartman–Grobman theorem, the stable manifold theorem, and the
normally hyperbolic stability theorem. For global results, we have the Ω-stability the-
orem and the structural stability theorem. The structural stability theorem states that
a continuous/discrete-time dynamical system preserves its global geometric structure
under small C1 perturbations. Here, we have to point out that results about struc-
tural stability cannot be applied directly to our situation: a flow is approximated
by a numerical method which is a discrete-time system, not a continuous system. In
order to show structural stability of flows for numerical methods, we need to make

∗Received by the editors June 2, 1997; accepted for publication (in revised form) July 23, 1998;
published electronically May 7, 1999.
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†Department of Mathematics, National Changhua University of Education, Changhua 500, Tai-
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explicit estimations by going through the mathematical techniques in the proof of the
structural stability theorem.

Historically, the structural stability theorem was attacked for several special cases
before the general proof was given. First, the case of Anosov systems when the whole
manifold has a hyperbolic structure was proved by Anosov [1] and Moser [21]. Next,
the case of Morse–Smale systems when the nonwandering set is a finite number of
hyperbolic closed orbits was proved by Palis and Smale [22]. Finally, the case of
Axiom A systems when the nonwandering set is the union of finitely many basic sets
was proved by Robbin [25] for C2 diffeomorphisms, by Robinson [26] for C2 vector
fields, and again by Robinson for C1 diffeomorphisms [28] and C1 flows [27].

Suppose that we have a flow ϕt on a compact manifold M which is approximated
by a numerical method N in the following sense: the numerical method of stepsize h
and order p, Nh, is O(hp+1)-close to the time-h map of the flow, ϕh. Under certain
differentiability conditions on ϕ and N , one can show that Nh is O(hp)-close to ϕh

in the C1 topology (see Lemma 1). We want to match the trajectories of ϕt with the
orbits of Nh by constructing a homeomorphism Hh, depending on h, to conjugate Nh

to ϕ. In terms of dynamical systems, Hh is usually called a topological conjugacy, if
there is no reparametrization on ϕt, or a topological equivalence otherwise. If such a
homeomorphism Hh exists, we say that the flow ϕt is structurally stable with respect
to the numerical method N .

Global stability under numerical approximation is analogous to the structural
stability theorem. Two analytic approaches were used by Robinson in [28] to prove
the structural stability theorem. One involves solving a functional equation by means
of the implicit function theorem. The other involves using compatible families of stable
and unstable disks by the method of graph transforms.

Certain flows are structurally stable with respect to numerical methods. The case
of Morse–Smale gradient-like flows, i.e., Morse–Smale flows without closed orbits, was
proved by Garay [12]. See also [18] for a slightly better result. The case of Axiom A
flows with the strong transversality condition was shown in [17]. The proof of these
theorems is essentially based on the first approach in [28]: solve a functional equation
to construct a conjugacy Hh and use the dϕ-Lipschitz metric, due to Robbin [25], to
prove Hh is one to one. These theorems work well for numerical methods of order
p ≥ 2. If we consider the Euler method of order p = 1, then we get that Hh is a
semiconjugacy but cannot prove it is one to one.

The challenge for the Euler method led us to consider the second approach in
[28] using the graph transforms. In [19], we assumed ϕt has a hyperbolic attractor
Aϕ. Relying on the abstract invariant manifold theorems in [28] and the idea of
laminations given by Hirsch, Pugh, and Shub [16], we showed that the restriction of
the flow ϕt to the basin of attraction, B(Aϕ), is structurally stable with respect to
numerical methods of order p ≥ 1. Earlier, Garay [13] showed that the restriction of
ϕt to B(Aϕ)\Aϕ, ϕt|B(Aϕ)\Aϕ, is structurally stable under discretizations.

In this paper, we extend our previous result [19] to the case when the flow ϕt has
a hyperbolic chain recurrent set but no fixed points. By using compatible families of
stable and unstable disks due to Robinson [28], we are able to construct a topological
equivalence and prove that ϕt is structurally stable with respect to numerical methods,
including the Euler method. The proof is even simpler for the case when the chain
recurrent set has only fixed points.

It is not clear whether we can use this method to prove that ϕt with hyperbolic
fixed and periodic points simultaneously is structurally stable with respect to the Eu-
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ler method. Proving the structural stability theorem for flows, Robinson [28] put a
reparametrization on the perturbed flow and successfully made a transition from no
reparametrization near fixed points to a reparametrization away from fixed points.
Here, we cannot parametrize the numerical method since it is discrete. Recently, Pi-
lyugin [23] showed a shadowing result for structurally stable flows by dealing with
different hyperbolic structures near fixed points and near periodic points.

Although not emphasized here, the persistence of local properties under approxi-
mation has been widely studied. See [4], [10] for hyperbolic equilibria, [3], [6], [8], [9],
[24] for hyperbolic closed orbits, and [7], [11], [14], [20], [24] for normally hyperbolic
invariant manifolds. Most of such results are discussed in a survey by Stuart [36] (see
also [37]).

2. Statement of theorems. First, we introduce notations and basic definitions.
Let M be a smooth complete Riemannian manifold with a distance d arising

from the Riemannian metric and Diff(M) be the set of diffeomorphisms on M with
the strong topology and distance dC1 . A flow is a map ϕ : R×M →M that satisfies
the group property ϕ(s, ϕ(t, x)) = ϕ(s+ t, x). We write ϕ(t, x) = ϕt(x).

A compact invariant set Λ for a C1 flow ϕt on M is hyperbolic if the restriction of
the tangent bundle TM of M to Λ splits into three continuous subbundles, TM |Λ =
Eu⊕Es⊕Span(X), invariant under the derivative of ϕt, Dϕt, such that Dϕt expands
Eu and Dϕt contracts Es for all t ≥ t0, where X is the vector field induced by the flow
ϕt. The stable manifold of x ∈ M is the set of all points in M whose forward orbits
under ϕt tend to x. The unstable manifold of x ∈M is the set of all points in M whose
backward orbits under ϕt tend to x. The flow ϕt satisfies the strong transversality
condition if all the stable manifolds of orbits of ϕt transversally intersect the unstable
manifolds of orbits of ϕt. See [30] for a more complete explanation of these definitions.

Chain recurrent sets for flows are defined as follows.
Definition 1. A pair of sets (A,A∗) is called the attractor-repeller pair for the

flow ϕt if there exists a neighborhood U of A such that ϕT (cl(U)) ⊂ int(U) for some
T > 0, A = ∩t≥0ϕ

t(U), and A∗ =
⋂
t≤0 ϕ

t(M\U). The chain recurrent set <ϕ for ϕt

is the set <ϕ = ∩i∈I(Ai ∪ A∗i), the intersection of all attractor-repeller pairs.
One can define the chain recurrent set to be the points x such that there is a

periodic ε-chain through x for all ε > 0. These two definitions are equivalent; see [30]
for the proof. In our previous results on structural stability for numerical methods,
we assumed hyperbolicity on the nonwandering set Ωϕ in [17] and on an attractor Aϕ
in [19]. In the present paper, the hyperbolicity will be assumed on the chain recurrent
set <ϕ ⊃ Ωϕ ⊃ Aϕ.

We use a general definition of numerical methods on manifolds.
Definition 2. Let ϕt be a flow on M . For p ≥ 1, a Cp+1 function N : R×M →

M is called a numerical method of order p for ϕt if there are positive constants K
and h0 such that d(ϕh(x), Nh(x)) ≤ Khp+1, for all h ∈ [0, h0] and x ∈ M . Here h
stands for a stepsize of N . We denote the ith iterate of Nh(x) by (Nh)i(x).

The definition is related to standard numerical analysis. For example, the explicit
Euler method in Euclidean spaces corresponds to Nh(x) = x+hϕh(x) and is of order
p = 1. Both the improved Euler method and the three term Taylor series method are
of order 2. The usual Runge–Kutta methods are of order p ≥ 4. See [2] and [5]. The
pth-order multiderivative method is another example satisfying the above conditions
(see [15]).

The distance between ϕh and Nh in the C1-topology is estimated in the following
lemma.
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Lemma 1 (see [11]). Let N be a numerical method of order p for a Cp+1 flow ϕt on
a compact manifold M . Then there is a positive constant K1 such that dC1(ϕh, Nh) ≤
K1h

p for all sufficiently small h. Moreover, given T > 0, there is a positive constant
K2 such that dC1(ϕT , (N

T
n )n) ≤ K2n

1−p for all large n ∈ N.
For convenience, we give the theorem for the general numerical methods first

and state those for the Euler method later. The proof of the following theorem is
postponed until section 4.

Theorem 1. Let M be a compact manifold and ϕt be a C1 flow on M such that (i)
ϕt has no fixed point, (ii) the chain recurrent set <ϕ is hyperbolic, and (iii) ϕt satisfies
the strong transversality condition. Let p ≥ 1, T > 0, and N be a numerical method of
order p for ϕt satisfying dC1(ϕT , (N

T
n )n) ≤ Kn−1 for all large n ∈ N, where K is a

positive constant. Then for all sufficiently large n, there is a homeomorphism Hn on
M and a continuous function τn : M → R such that for all x ∈M, Hn ◦ ϕτn(x)(x) =

(N
T
n )n ◦Hn(x) and d(Hn(x), x)→ 0 as n→∞.
The applicability of Theorem 1 to the Euler method follows from the following

result of Shub [31].
Lemma 2. Let X be a C2 bounded vector field on M, ϕt be the flow of the

differential equation ẋ = X(x), and E be the Euler method for ϕt. Then for all
sufficiently small h, there is a positive constant K1 such that dC1(ϕh, Eh) ≤ K1h

2.

Moreover, given T > 0, there is a positive constant K2 such that dC1(ϕT , (E
T
n )n) ≤

K2n
−1 for all large n ∈ N.
Now we can use Theorem 1 to get the following result for the Euler method.
Theorem 2. Let X be a C2 vector field on a compact manifold M without zeros

such that the differential equation ẋ = X(x) induces a flow ϕt such that (i) the chain
recurrent set <ϕ is hyperbolic and (ii) ϕt satisfies the strong transversality condition.
Let Eh be the Euler method of stepsize h for ϕt and let T > 0 be given. Then for all
sufficiently large n, there is a homeomorphism Hn on M and a continuous function τn
: M → R such that for all x ∈M, Hn◦ϕτn(x)(x) = (E

T
n )n◦Hn(x) and d(Hn(x), x)→

0 as n→∞.
We can also consider Morse–Smale gradient-like systems for the Euler method

which was not done in [12] and [18].
Theorem 3. Let X be a C2 vector field on a compact manifold M such that the

differential equation ẋ = X(x) induces a flow ϕt satisfying (i) the chain recurrent
set <ϕ is the union of a finite number of hyperbolic fixed points and (ii) the stable
and unstable manifolds of fixed points meet transversally. Let Eh be the Euler method
of stepsize h for ϕt and T > 0 be given. Then for all sufficiently large n, there is a
homeomorphism Hn on M and a continuous function τn : M → R such that for all
x ∈M, Hn ◦ ϕT (x) = (E

T
n )n ◦Hn(x) and d(Hn(x), x)→ 0 as n→∞.

Note that there is no reparametrization needed for the Morse-Smale gradient-like
flows. This fits well with the result in [18]. For the proof of Theorem 3, see the remark
at the end of section 4.

All theorems above are still true for the case when M has boundary under the
additional assumption that ϕt flows into M along the boundary. These can be done
by making an adaptation of the proof in [29] (see also [18]).

3. Application. This application to the zero-finding problem is due to Shub
[31].

Given a nonconstant complex polynomial p : C→ C, we then can ask to find the
zeros of p, i.e., those z in C for which p(z) = 0. There are two usual approaches to
turn this problem into an algorithm. One is to define the Newton differential equation
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ż = − p(z)
p′(z) , where p′ is the (complex) derivative of p. Then consider the Euler approxi-

mation to the solution of the Newton differential equation, that is, for h a positive real,

EhN (z) = z−h p(z)
p′(z) . When h = 1, this is the Newton method. The other is to consider

the Euler approximation to the gradient differential equation ż = −1
2grad|p|2.

There is an intimately close relationship between the Newton differential equation

ż = − p(z)
p′(z) and the gradient differential equation ż = −1

2grad|p|2. It was explained by

Smale [35].

Lemma 3. − 1
2grad|p|2 = ρ(z)(− p(z)

p′(z) ), where ρ : C → R is the positive scalar

function ρ(z) = p′(z)p′(z) and p′(z) denotes the complex conjugate of p′(z).
Proof. Let p = u + iv on C. Then |p|2 = u2 + v2. Represent gradf = fx + ify,

where fx and fy are the partial derivatives of f(x, y) with respect to x and y. We have
that grad|p|2 = (2uux + 2vvx) + i(2uuy + 2vvy). On the other hand, differentiating
along the real axis, we get p′ = ux + ivx and so p′p = (ux − ivx)(u + iv) = (uux +
vvx) + i(−uvx + vux).

Because p is a polynomial, it satisfies the Cauchy–Riemann equations, ux = vx
and uy = −vy. Therefore, − 1

2grad|p|2 = −p′p and we are done.
This lemma says that the Newton and gradient differential equations have the

same solution curves. Therefore, up to changes of the stepsize ρ, the Euler schemes of
the Newton and gradient differential equations are the same.

Let r be large enough so that the disk Dr = {z ∈ C; |z| ≤ r} contains all the
zeros of p. The following proposition is given by Shub and Smale [32].

Proposition 1. The trajectories of the gradient differential equation point in-
ward transversally to the boundary of Dr.

If all zeros of p and p′ are simple, then |p(z)|2 is a Morse function and −1
2grad|p|2

is transversal to the boundary of the disk. Therefore, there is a C1 approximation
Y with Y = − 1

2grad|p|2 in a neighbor of the zeros; see [33]. We say −1
2grad|p|2

is generically a Morse–Smale vector field. This fact, together with Theorem 3 for
M = Dr, which is a manifold with a boundary, gives us an explanation of why the
Newton method is convergent near the zeros of the polynomial p.

4. Proof of Theorem 1. We divide the proof into several steps.
Step 1 (preliminary setup). Because <ϕ is hyperbolic, the tangent bundle of M

along <ϕ splits as the sum of three bundles TM |<ϕ = Eu ⊕ Es ⊕ Span(X), where

X(x) = dϕt

dt (x)|t=0 is the tangent vector field for ϕt. Let V0 be a small neighborhood
of <ϕ. We want the normal bundle η of ϕt to be smooth. It is no loss of generality
to make a convenient choice of η : Let ηu and ηs be smooth subbundles of TM |V0

approximating Eu and Es so that TM |V0 = ηu ⊕ ηs ⊕ Span(X), and choose η =
ηu ⊕ ηs. For δ = u, s, let ηδ(r) = {v ∈ ηδ : |v| ≤ r} be the r disk bundles and
η(r) = ηu(r)⊕ ηs(r).

To get an idea of the space of sections, we need to define a section’s slope. If
σ : ηu(r)→ η is a section, then the slope of σ at vx ∈ ηu(r) is

lim sup
vy→vx

|s(vx)− s(vy)|s
du(vx, vy)

,

where σ(vx) = (vx, s(vx)) ∈ ηu × ηs, | · |s is the norm on ηs, and du is the metric on
ηu. Let Σ(1, r) ={section σ : ηu(r) → η(r) such that slope(σ) ≤ 1}. Putting the C0

sup norm on Σ(1, r) makes it a complete metric space as usual. Let πu : η → ηu be
a projection along ηs and πs : η → ηs be a projection along ηu.



752 MING-CHIA LI

In order to prove the conjugacy is one to one, we will need the dϕ metrics
on M and TM , due to Robbin [25]. First we define the dϕ topology on M by
dϕ(x, y) = sup{d(ϕt(x), ϕt(y)) : t ∈ R}. Then we isometrically embed M in Rm
for some Euclidean space. The embedding trivializes ηu ⊂ TM ⊂ M × Rm and
ηs ⊂ TM ⊂M×Rm. Put the dϕ metric on TM by dϕ(vx, wy) = max{dϕ(x, y), |πuv−
πuw|, |πsv − πsw|}, where we can subtract πσv and πσw since they both are in Rm.

Step 2 (definition of bundle map). We use the concept of laminations in [16]
to define a bundle map F on η. For f near ϕT in the C1 topology, let Θ(τ, vx, f) =
exp−1

y ◦f ◦exp vx where y = ϕτ (x). There is a neighborhood V1 ⊂ V0 of <ϕ, a constant

r1 > 0, a neighborhood U of ϕT in Diff(M), and a continuous function τ : η(r1)|V1
×

U → R such that for all x ∈ V1, vx ∈ ηx(r1), and f ∈ U ,

Θ(τ(vx, f), vx, f) ∈ ηϕτ(vx,f)(x)(r1).

Here τ stands for a reparametrization of ϕt. See [27] and also page 95 of [16]. Define
a bundle map F by

F (vx) ≡ Θ(τ(vx, ϕ
T ), vx, ϕ

T ) = exp−1
ϕτ (x) ◦ϕT ◦ exp vx.

Then F is a C1 bundle map on η(r1).

Step 3 (existence of compatible families of unstable disks). As in [34] (see also
[30]), the chain recurrent set <ϕ satisfying the hyperbolicity condition has a spectral
decomposition <ϕ = Λ1 ∪ · · · ∪Λm, where the Λi’s are pairwise disjoint and each Λi is
closed, invariant, and topologically transitive. Since ϕt satisfies the strong transver-
sality condition, there is a partial ordering among these sets defined by Λi ≤ Λj if and
only if Wu(Λi)∩W s(Λj) 6= ø. We can extend this partial ordering to a total ordering
and reindex the sets such that if Wu(Λi) ∩W s(Λj) 6= ø, then i ≤ j.

Now, we use the method of Robinson [28] to construct compatible families of
unstable disks.

Lemma 4. There are neighborhoods Ui of Λi and families {Zuϕix : x ∈ O(Ui)},
where each Zuϕix is a C1 disk in η of dimension equal dimension ηu|Λi such that

1. F (Zuϕi ) ⊃ Zuϕi .
2. If x ∈Wu(Λi, ϕ

T ), then expZuϕix is a local unstable manifold of x.
3. {Zuϕix : x ∈ Ui} can be written as the image of σuϕ : ηu(r2)→ η and the slope

of σuϕ is uniformly bounded, where r2 > 0 is a constant.
4. If i ≤ j and x ∈ O(Ui) ∩O(Uj), then Zuϕi ⊃ Zuϕj .
5. Given the dϕ metrics on M and TM , σuϕ is Lipschitz with a uniform Lips-

chitz constant as a map from ηu(r2) to η and the Lipschitz jet on the whole
bundle varies uniformly continuously along fibers as explained in [28].

Proof. We construct the families of unstable disks for F as in section 5 of [28] (see
also [27]). By induction, assume that they are constructed for i = 1, . . . , k − 1 and
then construct them for a neighborhood of Λk. Let U ⊂ V1 be a small neighborhood
of Λk. Let Bsk ⊂ W s(Λk) be a fundamental domain of ϕT . Take the sets Piq so

that P iq =
⋃k−1
p=i Ppq is a closed neighborhood of Bsk ∩

⋃k−1
p=i W

u(Λp). The section

σ0 : ηu(r)|P 11 → η is constructed to be compatible with {Zuϕi (x) : x ∈ O(Ui)} for
1 ≤ i ≤ k − 1 and to be dϕ-Lipschitz. Let Uk = (Wu(Λk) ∩ U) ∪ O+(P 11, U), where
O+(P 11, U) = {ϕs(x) : x ∈ P 11 and ϕs(x) ∈ U for 0 ≤ s ≤ t}. We extend σ0 to Uk
using F as follows. Let Σ(1, r, σ0) = {section σ : ηu(r)|Uk → η(r) such that σ = σ0

on the domain of σ0 and slope(σx) ≤ 1 for x ∈ Uk}. Define F#(σ) to be the graph
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transform of σ by F extended back over P 11 using σ0,{
F (image(σϕ−T (x))) ⊃ image(F#(σ)x) if ϕ−T (x), x ∈ Uk,
F#(σx) = σ0x if x ∈ P 11.

Using Theorems 3.1 and 3.2 of [28], we get that F# is a contraction on the space
of sections Σ(1, r2, σ0) for some sufficiently small constant r2 > 0 and so has a unique
fixed point σuϕ which is dϕ-Lipschitz. Let Zuϕix = image(σuϕx ) for x ∈ Ui. In this
way, we complete the induction step to construct compatible families of unstable
disks.

Step 4 (construction of conjugacy and reparametrization). In order to prove struc-

tural stability, we do the same construction for (N
T
n )n. Because (N

T
n )n → ϕT in the

C1 topology as n → ∞, we can take n sufficiently large so that (N
T
n )n ∈ U , the

neighborhood of ϕT in Diff(M) where Θ is defined. Let

Gn(vx) ≡ Θ(τ(vx, (N
T
n )n), vx, (N

T
n )n) = exp−1

ϕτ (x) ◦(N
T
n )n ◦ exp vx.

Then Gn is a C1 bundle map on η(r1) and C1 close to F . By the permanence results
in Theorem 3.1 of [28] and Theorem 6.1 of [16], we can construct compatible families
of unstable disks for Gn over the O(Ui), {ZuNix : x ∈ O(Ui)}. Since G−1

n is a fiber
contraction on the bundle {ZuNix : x ∈ O(Ui)}, by induction on i (i = m,m−1, . . . , 1),
we can construct a section vn : M → η(r2) such that Gn◦vn(x) = vn◦ϕτ (x). Also vn is
continuous and uniformly dϕ-Lipschitz. Moreover, as n tends to infinity, vn converges
to the zero section in the C0 and dϕ-Lipschitz senses.

We now define the conjugacy and the reparametrization. Let Hn(x) = exp vn(x)

and τn(x) = τ(vn(x), (N
T
n )n) for all x ∈M . Then bothHn : M →M and τn : M → R

are continuous, and Hn converges to the identity in the C0 sense as n→∞. Since vn
is invariant by Gn#, we get that vn ◦ϕτn(x)(x) = exp−1

ϕτn(x)(x)
◦(N T

n )n ◦ exp vn(x) and

so Hn ◦ ϕτn(x)(x) = (N
T
n )n ◦Hn(x). Because Hn is homotopic to the identity, Hn is

onto on M . Last, we prove that Hn is one to one in the following lemma and hence
complete the proof of Theorem 1.

Lemma 5. For all n sufficiently large, Hn is one to one.

Proof. Let τn(1, x) = τn(x) and τn(i + 1, x) = τn(1, ϕτn(i,x)(x)) for i ≥ 1. If
Hn(x) = Hn(y), then d(x, y) ≤ d(x,Hn(x))+d(Hn(y), y) ≤ 2r2 and Hn(ϕτn(i,x)(x)) =

((N
T
n )n)i(Hn(x)) = ((N

T
n )n)i(Hn(y)) = Hn(ϕτn(i,y)(y)) for all i ∈ N. As Robinson

pointed out in the proof of Theorem 2.3 of [27], there exist i0 and B > 0 such that
dϕ(p, q) ≤ 2Bd(p, q), where p = ϕτn(i0,x)(x) and q = ϕτn(i0,y)(y). By Lemma 2.3 of
[25], there is a constant α > 0 such that

αd(p, q)− |vn(p)− vn(q)| ≤ d(exp(vn(p)), exp(vn(q))).

Thus

0 = d(Hn(p), Hn(q))

≥ αd(p, q)− |vn(p)− vn(q)|
≥ αd(p, q)− Λ(vn)dϕ(p, q)

≥ αd(p, q)− Λ(vn)2Bd(p, q)

≥ (α− Λ(vn)2B)d(p, q).
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Because Λ(vn)→ 0 as n→∞, we can take n large enough so that α−Λ(vn)2B > 0.
Then d(p, q) = 0 and p = q. Therefore x and y are on the same orbit of ϕt. Exponen-
tiating η(r2)|O(x) forms transversal disks along the orbit O(x). But transversal disks
are disjoint for two nearby points on the same orbit. Thus x = y. This shows that Hn

is one to one.

Remark. It is not difficult to use the above argument to prove Theorem 3. Note
that, in this case, the space of the vector field restricted to the chain recurrent set is
the zero space, i.e., Span(X)|Rϕ = {0}, and so reparametrization is not necessary.
We can simply define our bundle maps F and Gn by F (vx) = exp−1

ϕT (x)
◦ϕT ◦ exp vx

and Gn(vx) = exp−1
ϕT (x)

◦(N T
n )n ◦ exp vx, then go through the same argument.
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THE CRYSTALLINE VERSION OF THE MODIFIED STEFAN
PROBLEM IN THE PLANE AND ITS PROPERTIES∗

PIOTR RYBKA†

SIAM J. MATH. ANAL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 756–786

Abstract. We study the modified Stefan problem in the plane for polygonal interfacial curves.
Uniqueness of local in time solutions is shown while existence of local in time solutions has been
proved in an earlier work of the author [P. Rybka, Advances in Differential Equations, 3 (1998),
pp. 687–713]. Geometric properties of the flow are studied if the Wulff shape is a regular N -sided
polygon and the initial interface has sufficiently small perimeter. Namely, if the isoperimetric quotient
of the initial interface does not differ much from the isoperimetric quotient of the Wulff shape, then
the interface shrinks to a point in finite time and the isoperimetric quotient decreases.

Key words. free boundary, Stefan problem, Gibbs–Thomson law, crystalline anisotropy
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PII. S0036141097325435

1. Introduction. We study a version of the modified Stefan problem in the
plane. The special feature of our approach is that we assume that the interfacial
curve is a polygon. We stress that admitting nonsmooth interfaces is natural from
the viewpoint of modelling crystal evolution. We shall pursue this direction.

Describing the process of melting or growing a crystal requires setting the problem
in the framework of two-phase thermodynamics. This is done in the book of Gurtin
[Gu]. The author of the book pays special attention to the evolution of nonsmooth
interfaces (see Section 12 in [Gu]). Developing this theory Gurtin and Matias proposed
in their paper [GM] the particular problem we study here. The setting is the following:
a crystal Ω1(t) is in a bounded container Ω filled with melt Ω2(t), i.e., Ω2(t) = Ω\Ω1(t)
(the notation shall be explained in detail in the next section). The heat transport is
described by the equation

(1.1) eiut = −div q in
⋃

0<t<T

Ωi(t), i = 1, 2,

which is complemented by the Fourier law

(1.2) q = −ki∇u, i = 1, 2.

The temperature u is continuous across the interface s = ∂Ω1 ∩ ∂Ω2 being a polygon
with facets si, s =

⋃N
i=1 si. We assume the number of facets is constant. We are fully

aware that this assumption can be the subject of discussion. (We will make some
comments on this issue in section 5.) We claim, however, that in the case of small
perimeter of s(t) the stabilizing forces of surface tension prevail over destabilizing
bulk forces and as a consequence s(t) shrinks to a point. We will prove this in the
last section.
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Continuing the description of our problem we denote by Vi the velocity of si in
the direction of the outer normal νi. This velocity satisfies the equation

(1.3) [[q]]νj = Vj , j = 1, . . . , N.

Finally, we need a condition that the temperature u must satisfy on the interface.
The approximation to the balance of capillary forces yields

(1.4)

∫
sj(t)

u = Γj − βjLj(t)Vj(t), j = 1, . . . , N.

We remark here that the above problem was formulated by Herring in the metallurgi-
cal literature in the 1950s; see [Hr]. Later, it was independently rediscovered by Ben
Amar–Pomeau [BP] and Gurtin–Matias [GMl].

One might expect here a version of Gibbs–Thomson law (with or without kinetic
undercooling). This law states that the temperature on the interface is proportional
to the curvature of the interface. In our consideration u is a normalized temperature,
so u is zero at melting temperature on a flat interface. Indeed, (1.4) is a version of the
Gibbs–Thomson law, where because of lack of smoothness the definition of curvature
is adjusted so that it is well defined for polygons. As a matter of fact Γi/Li is the
“weighted crystalline curvature” of the edge si, i = 1, . . . , N (Γi is an appropriate
constant).

We note here that the modified Stefan problem for smooth interfaces (without
kinetic undercooling) has already been studied. The first paper is by Luckhaus [L],
who considered weak solutions and C1-interfaces. Almgren and Wang [AW] studied
this problem in a more general setting allowing for anisotropic surface energy densities.

The presence of nonzero kinetic undercooling makes the analysis somewhat sim-
pler. The modified Stefan problem with kinetic undercooling was studied in particular
by Chen and Reitich (see [CR]). They showed local in time existence and uniqueness
of smooth temperature u (away from the interface) as well as smooth interface. Inde-
pendently, Radkevich [Ra] studied the same problem. The advantage of [Ra] is that
the author allows a slightly more general form of the heat equation. These results
were extended by Soner [So]. He showed global in time existence of weak solutions
(his interface is just (n− 1)-rectifiable). He constructs them as limits of solutions to
a phase field model.

For the sake of simplicity we work assuming that the bulk specific heats ei are
equal e1 = e2 = ε > 0, and similarly we set the coefficients of conductivity ki, i = 1, 2,
to be 1. Existence of weak solutions to (1.1)–(1.4) with these simplifications and
augmented with initial and boundary conditions has already been established by the
author in [Ry2]. However, the method of proof does not yield uniqueness. On the
other hand uniqueness holds for the smooth counterpart of our problem. We show
that it is also true here. We do this in a way similar to that employed in [Ry1] to show
uniqueness for the quasi-steady approximation of (1.1)–(1.4), i.e., for e1 = e2 = 0.
Namely, we derive more or less explicit representation of solutions enabling us to
reduce the problem to a uniqueness question for an integral equation. We also point
out that unlike the case e1 = e2 = 0 we crucially depend on all β’s being positive, not
just nonnegative.

Thus, we touched the question of how (1.1)–(1.4) is related to its quasi-steady
approximation. In particular, the problem of convergence of solutions uε of (1.1)–(1.4)
as ε goes to zero is open. We leave this for further investigations.
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For convenience of the reader we recall in the next section the weak formulation of
the problem (1.1)–(1.4) augmented with initial and boundary conditions. In section 3
we derive the representation of solutions which permits us to reduce the problem to a
simpler question regarding integral equations. We subsequently prove uniqueness of
solutions constructed in [Ry2]. We stress that in any case we have no ground to claim
that solutions are global in time. To the contrary, we anticipate that geometry may
change during the evolution. In particular for small s0 we expect finite extinction
time.

Apart from showing uniqueness we will present some properties of the flow. The
aim of section 4 is to prepare some geometric background needed in the last section.
We show in particular that if the isoperimetric ratio L2/A is only slightly bigger than
that of the Wulff shape then the quotient

maxi=1,...,N Li
mini=1,...,N Li

remains bounded. Thus, we can improve the qualitative results of [Ry1] for the quasi-
steady flow; see section 5.

In order to derive properties of the flow (1.1)–(1.4) we compare it to the system
of motion by crystalline curvature

(1.5) Γi = βiLiVi,

which may be seen as the “zero-temperature-limit” of (1.1)–(1.4). Interestingly, both
flows behave similarly if the initial interface has small perimeter.

The system (1.5) was first studied by J. Taylor [T]. Estimates for solutions are
particularly easy if the initial polygon is the Wulff shape. But our indispensable tool
is a comparison principle of [GG] for solutions of (1.5). We will also use the results of
Stancu [St], who derived properties of (1.5) analogous to that for the smooth motion
by curvature.

In section 5 we investigate properties of solutions if an initial interface has small
perimeter and isoperimetric ratio not much bigger than for the Wulff shape. If the
initial temperature distribution is negative and small in an appropriate sense, then
the interface shrinks to a point in finite time. We have proved a weaker version of this
result in [Ry2, Theorem 4.1], where we assumed that the initial interface is a scaled
Wulff shape. Finally, we prove an a priori bound for temperature in the L∞(Ω)
norm. This means that no matter how small s(t) is, nor how fast its facets move, the
temperature may not drop too much.

2. Weak formulation. Before stating the problem (1.1)–(1.4) in the weak form
let us explain the setting and our basic assumptions. We shall consider only admissible
polygonal interfaces, where the edges si and vertices vi are numbered counterclock-
wise. Admissibility means here that the outer normals νi to the facets si belong to the
set S of normals of a given Wulff shape W (cf. Sections 7 and 12 in [Gu]). Moreover,
we require that normals to successive facets in s must be neighboring normals to W .
For the sake of present analysis we may think of W as being a given, convex polygon
with M edges numbered counterclockwise. Let us note that N ≥M and the equality
holds if s is convex.

The length of facet si determined by its vertices vi, vi+1 is denoted by Li, Li =

|vi − vi+1|. The perimeter L of s is equal to
∑N
i=1 Li. The velocity of Vi of the edge
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si in the direction of the outer normal νi is defined by

Vi(t) =
d

dt
zi(t),

where

(2.1) zi(t) =

{
dist (li(t), li(0)) if (vi(t)− vi(0)) · νi > 0,
−dist (li(t), li(0)) if (vi(t)− vi(0)) · νi < 0,

and li(t) is the line containing si(t). The definition of Vi in (1.3) involves the jump
[[·]] across s(t). This quantity is given by

[[φ]](x0) = lim
Ω2(t)3x→x0

φ(x)− lim
Ω1(t)3x→x0

φ(x), x0 ∈ s(t) = ∂Ω1(t) ∩ ∂Ω2(t).

We assume that the sets Ω, Ω1(t), Ω2(t) are regions in R2, where Ω1(t) ⊂⊂ Ω and
Ω = Ω1(t) ∪ s(t) ∪ Ω2(t). At last we assume that the boundary ∂Ω of Ω is smooth
and Ω is bounded.

The kinetic coefficients βj > 0 are constants, so are Γj , j = 1, . . . , N , and they
are defined depending on s as follows (see Section 12.5 in [Gu]):

Γj =

{−`j if s is locally convex near both vertices vi, vi+1,
`j if s is locally concave near both vertices vi, vi+1,
0 otherwise,

where `j is the length of the edge of the Wulff shape with normal νj .
Interestingly, Γj/Lj is weighted crystalline curvature of sj . The relevant defini-

tion, which does not need any differential structure of s is given in [T]. We will recall it
in a simple setting. But let us first remark that Γj is closely related to the underlying
interface energy density f (which is basically defined on the unit circle). This is due
to the fact that f enters the definition of the Wulff shape W (see Section 7 of [Gu]
and especially Section 7.5). It follows from this definition that if di is the distance
from the origin to the ith edge of W , then

di = f(νi),

where νi is the outer normal to the ith edge of W . These relations have no implication
for existence theory as well as for the uniqueness result presented here in section 3. On
the other hand they are quite important for our geometrical considerations. For the
sake of simplicity of exposition we carry out our analysis in sections 4 and 5 assuming
that W is a regular polygon, i.e., di = d, i = 1, . . . ,M ; hence f(ν) has the same value
for all ν ∈ S. Of course f must not be constant on {|ν| = 1}.

Let us now recall the definition of crystalline curvature (see [T, p. 423]). If zi is as
defined above and z = (z1, . . . , zN ), i.e., s(z) is a polygon resulting from s by moving
entire facet si by zi in the direction of the normal νi, A(z) is the area surrounded by
s(z), and L(z) is the perimeter of s(z), then the crystalline curvature Ki of si is

Ki = − lim
∆zi→0

L(z + ei∆zi)− L(z)

A(z + ei∆zi)−A(z)
,

where ei, i = 1, . . . , N , are the standard unit vectors of the coordinate axis in RN .
This limit may be evaluated with the aid of the lemma below whose proof we leave
to the reader (cf. also [Ry1]).
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Lemma 2.1. Let us suppose we are given a polygon s with its edges si numbered
counterclockwise, i = 1, . . . , N . If Li is the length of edge si and θi is the (oriented)
angle between normals νi−1 and νi to si−1 and si, respectively, then

∆Li : = Li(z + ∆z)− Li(z)

= −∆zi(ctan θi + ctan θi+1) +
∆zi−1

sin θi
+

∆zi+1

sin θi+1
,(2.2)

where ∆z = (∆z1, . . . ,∆zN ). If we further assume that s is a convex polygon, the
origin belongs to the region bounded by s and di is the distance from the origin to si,
then

Li = −di(ctan θi + ctan θi+1) +
di−1

sin θi
+

di+1

sin θi+1
.

Here, by convention sN+1 = s1, etc.
We note that for convex polygons Lemma 2.1 implies that

Ki =
κi
Li

< 0, i = 1, . . . , N = M,

where

(2.3) κi = −(ctanθi + ctanθi+1) +
1

sin θi
+

1

sin θi+1
< 0.

In the case of convex, admissible polygon s and the Wulff shape W being a regular
N -gon formula (2.3) reduces to

(2.4) κi = κ = 2ctanθ − 2

sin θ
= −2 tan

π

N
,

because θi = θ = 2π
N , i = 1, . . . , N . In the special case of s being the Wulff shape we

have

(2.5) `i = |κ|d, i = 1, . . . , N.

In order to obtain a closed system we augment (1.1)–(1.4) with initial and bound-
ary data. We consider here only homogeneous Dirichlet boundary data:

(2.6) u(0, x) = u0(x), s(0) = s0, u|∂Ω = 0 for t ≥ 0.

This choice gives us some technical advantages. We shall not consider the Neumann
condition, which is physically relevant, because our tools do not apply directly to it.

The process of multiplication (1.1) by a test function, then integration by parts
using (1.3) leads to the following definition: a pair (z, u), where z is as in (2.1), is
called a weak solution to (1.1)–(1.4) and (2.6) on [0, T ); if z ∈ C1([0, T );RN ), z(0) = 0,
u ∈ Cα([0, T ), H1

0 (Ω)) with u(0) = u0, ut ∈ L∞loc([0, T ), H−1(Ω)), where H−1(Ω) is
the dual of H1

0 (Ω), and the identities
(2.7a)

ε〈ut, h〉 = −
∫

Ω

∇u(t, x) · ∇h(x)dx+
N∑
j=1

∫
sj(t)

Vj(t)h(x)dl for all h ∈ H1
0 (Ω),



CRYSTALLINE MODIFIED STEFAN PROBLEM 761

(2.7b)

∫
sj(t)

u dl = Γj − βjLj(t)Vj(t), j = 1, . . . , N,

hold, where 〈·, ·〉 is the pairing between H−1(Ω) and H1
0 (Ω).

Existence of a weak solution (z, u) on a maximal interval of existence [0, Tmax)
has been shown in [Ry2]. Here, in section 3 we show uniqueness. We stress that a
global existence result cannot be expected, especially if we fix the number of edges,
because topological catastrophes like self-intersection, collapsing of a facet to a point,
bumping into the boundary are imminent. In the last section we study some qualita-
tive properties of solutions in the case where the Wulff shape is a regular polygon.

Notation. Throughout the paper vector quantities are set in bold, e.g., z =
(z1, . . . , zN ), the inner product in Rk is denoted by dot: a · b =

∑k
i=1 aibi, |a| is

the Euclidean norm |a|2 = a · a, and finally (f, g) is the inner product in H1
0 (Ω),

i.e., (f, g) =
∫

Ω
∇f(x) · ∇g(x) dx and ‖f‖2 = (f, f). Occasionally, in order to avoid

confusion we will write (f, g)H1
0 (Ω) for (f, g).

3. Uniqueness of solutions. In this section we show that solutions to (2.7),
which we constructed in [Ry2], are unique. We apply a method similar to that used
in [Ry1] for the quasi-steady approximation. Namely, we derive a representation of
solutions in terms of a Green function (here for the heat operator). Historically, the
construction of an appropriate Green function led to existence theorems; see [LSU].
However, we use here results of [LSU] to prove properties of the Green function. We
recall that if u is a sufficiently smooth solution of

ut = ∆u, u|∂Ω = 0,

u(0, x) = u0(x),

then u may be represented as

u(t, x) =

∫
Ω

G(x, y, t)u0(y) dy,

where G satisfies (∂t − ∆x)G(x, y, t) = δy, i.e., G is the Green function. Some ex-
pressions become more handy if we use the above formula for solutions to the heat
equations. In particular, we will need the representation in case u0 is a measure.

We need to introduce some background for transforming (2.7a) into a more
appropriate form. We first rewrite (2.7a) in a unified form. Let us recall that
if g ∈ H−1(Ω)(= (H1

0 (Ω))′), then there exists gi ∈ L2(Ω), i = 1, 2 such that

g =
∑2
i=1

∂gi
∂xi

, i.e., the pairing 〈g, h〉 is given by

(3.1) 〈g, h〉 = −
∫

Ω

2∑
i=1

gi
∂h

∂xi
.

Let us also recall that the mapping

H1
0 (Ω) 3 f 7→ −∆f ∈ H−1(Ω)

is an isomorphism of Hilbert spaces. If we now set for any g ∈ H−1(Ω)

F = −∆−1g,
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then we can rewrite (3.1) as

〈g, h〉 = 〈−∆F, h〉 = 〈−div∇F, h〉 =

∫
Ω

∇F (x) · ∇h(x) dx = (F, h).

Let us now look at the right-hand side of (2.7a). We note that the mapping

H1
0 (Ω) 3 h 7→

∫
si

h dl =: δsi(h) ∈ R

is a continuous functional over H1
0 (Ω). Thus we can now define elements fi, i =

1, . . . , N , as follows:

(3.2) fi = −∆−1δsi .

Thus, by (3.2) we obtain ∫
si

h dl = −〈∆fi, h〉 = (fi, h).

In the following, since s is defined by z we will write s(z) as well as f(z) in order to
stress this dependence.

Thus, after taking into account the above remarks and after setting

U = −∆−1u,

we obtain that U ∈ H3(Ω) ∩H1
0 (Ω), Ut ∈ H1

0 (Ω). We can rewrite (2.7a) as

ε(Ut, h) = (∆U, h) +
N∑
j=1

Vj (fj(z), h) for all h ∈ H1
0 (Ω).

Therefore, (2.7a) is equivalent to

(3.3a) εUt = ∆U +

N∑
j=1

Vjfj(z), U(0) = U0

and (2.7b) becomes

(3.3 b)
dzi
dt

=
Γi + (∆U, fi(z))

βiLi
, zi(0) = 0, i = 1, . . . , N.

We may now recall the following proposition.
Proposition 3.1 (see [Ry2, Theorem 3.1]). Let us suppose that βi > 0, Γi,

i = 1, . . . , N are as in section 2, fi(z) is defined by (3.2), and ε > 0. We also assume
that s0 is an admissible polygon, U0 = −∆−1u0 is compatible with the problem (3.3),
i.e., u0 ∈ H1

0 (Ω) and

(3.4) u0 −
N∑
j=1

fj(0)Vj(0) ∈ H2(Ω) ∩H1
0 (Ω),

where Vi(0) is given by (3.3 b),

Vi(0) =
Γi −

∫
si(0)

u0 dl

βiLi(0)
.
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Then, there exists Tmax > 0 and z, U solutions of (3.3) such that

U ∈ Cα([0, Tmax), H3(Ω)), Ut ∈ Cα([0, Tmax), H1
0 (Ω)),

zi ∈ C1,α([0, Tmax)), i = 1, . . . , N,

for any 1
2 > α > 0.

This proposition immediately yields the following corollary.
Corollary 3.2 (see [Ry2, Proposition 3.2]). If Γi, βi, ε, u0, and s0 are as in

the previous proposition, then the pair (u, z), where u = −∆U is a weak solution to
(2.7) on the interval [0, Tmax) and

u ∈ Cα([0, Tmax), H1
0 (Ω)), zi ∈ C1,α([0, Tmax)), i = 1, . . . , N.

Remark. The condition (3.4) is necessary to obtain claimed smoothness of solu-
tions in time.

It is apparent that the transformed system (3.3) is a parabolic equation coupled
to an ODE. We will look at (3.3a) not only from the viewpoint of [LSU] but also from
the abstract standpoint of semigroup theory. For this matter our basic reference is
[Hn] with the changes made in the Russian translation of the book. Having this in
mind we define an operator A : D(A) ⊂ L2(Ω)→ L2(Ω), by

Au = −∆u,

where D(A) = H2(Ω) ∩H1
0 (Ω). Then we have the following result whose proof may

be found in [Hn, Section 1.6].
Lemma 3.3. A is self-adjoint; moreover A is positive definite and hence it is a

sectorial operator.
It follows that the fractional powers Xα of X = L2(Ω) are well defined. In

particular, it is a well-known fact (see Theorems 1.15.3 and 4.3.3 in [Tr]) that

(3.5) X1/2 = H1
0 (Ω).

We want to apply to (3.3a) the variation of constant formula [Hn, Theorem 3.2.2].
In order to apply this theorem we need to know that the source term is Hölder
continuous in time into L2(Ω). We showed in [Ry2] (see Lemmas 3.3, 3.4, and 3.5) that
z→ fi(z) is Hölder continuous with exponent α ∈ (0, 1

2 ) into Xσ, where σ+ 1
2α < 3/4.

Proposition 3.1 yields z ∈ C1,α(Ω,RN ) so that we can write

(3.6) U(t) = e∆t/εU0 +
1

ε

∫ t

0

e∆(t−τ)/ε
N∑
i=1

fi(τ)Vi(τ) dτ.

We can insert this into (3.3b) to obtain

dzi
dt

(t) =
Γi
βiLi

− 1

βiLi

e∆t/εu0 +
1

ε

∫ t

0

∆e∆(t−τ)/ε
N∑
j=1

Vj(τ)fj(τ) dτ, fi(t)


H1

0 (Ω)

=
Γi
βiLi

− 1

βiLi

∫
si

e∆t/εu0 +
1

ε

∫
si

∫ t

0

∆e∆(t−τ)/ε
N∑
j=1

Vj(τ)fj(τ) dτ

 .(3.7)

The integral on the right-hand side is well defined but it is not quite convenient to
deal with if we want to prove that it is Lipschitz continuous in z. We cannot simply
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interchange the order of operations in the last integrand because −∆fj = δsj is a
measure. We find it is more convenient to work with Green functions.

Existence of the Green function and parts (a) and (b) of the lemma below are well
established (see [LSU]). Essentially, part (c) is also a well-known fact. It is apparent
from the eigenfunction representation of G as in [TS, Chapter VI, Sections 1, 2].
However, we present an independent and more general proof, which does not refer to
eigenfunctions of Laplace operator.

Lemma 3.4. Let us suppose that ∂Ω is smooth, g ∈ Lp(Ω), p ∈ [2,∞). Then,
there exists a function G(x, y, t) such that LG(x, y, t) := (∂t −∆x)G(x, y, t) = δy and
for t ≥ 0, and

e∆tg(x) =

∫
Ω

G(x, y, t)g(y) dy.

Moreover, G(x, y, t) = Kt(x− y) +H(x, y, t), where
(a) Kt(ξ) = 4−1π−1t−1 exp(−|ξ|2/4t) for t > 0; K0(ξ) = 0;
(b) H ∈ C∞(Ω̄× Ω× R+) and

∂H

∂t
−∆xH = 0 in Ω;

H(x, y, t) = −Kt(x− y) for x ∈ ∂Ω, y ∈ Ω;

H(x, y, 0) = 0 for x ∈ Ω̄, y ∈ Ω;

(c) H(x, y, t) = H(y, x, t) for (x, y) ∈ Ω× Ω, t > 0.
Proof. Existence and smoothness of H will follow from the classical theory of

parabolic equation after we check that the compatibility conditions hold. It is the
case since

∂k

∂tk
Kt(x− y) = 0, k = 0, 1, 2, . . . ,

for t > 0, and x ∈ ∂Ω, y ∈ Ω. We may now invoke Theorem 5.2 of [LSU, Chapter IV]
to finish the proof of (b).

Let us now set

w(x, t) =

∫
Ω

[Kt(x− y) +H(x, y, t)]g(y) dy.

It is not difficult to check that Lw = 0, w(x, 0) = g(x), w|∂Ω = 0, so by uniqueness of
solutions to the heat equations we have

e∆tg(x) =

∫
Ω

G(x, y, t)g(y) dy.

We still need to prove (c). It is well known that if A is a self-adjoint positive operator
then e−At is self-adjoint too (e.g., this follows from the representation for e−At given
in [Hn, Theorem 1.3.4]). Now, if T : L2(Ω)→ L2(Ω) is given by

(Tf)(x) =

∫
Ω

G(x, y)f(y) dy,

where G ∈ L2(Ω× Ω) then it is also well known that

(Tf)∗(x) =

∫
Ω

Ḡ(y, x)f(y) dy.
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Thus it follows that∫
Ω

[Kt(x− y)+H(x, y, t)]g(y) dy = e∆tg(x)

= ((e∆t)∗g)(x) =

∫
Ω

[K̄t(y − x) + H̄(y, x, t)]g(y) dy.

Since Kt(ξ) and H(x, y, t) are real and Kt(−ξ) = Kt(ξ) it follows that∫
Ω

H(x, y, t)g(y) dy =

∫
Ω

H(y, x, t)g(y) dy

and finally

H(x, y, t) = H(y, x, t),

as desired.
The above lemma much simplifies the form of the RHS of (3.7). We have the

following lemma.
Lemma 3.5. We assume that fi is as before, t > 0, si ⊂⊂ Ω, then

∆e∆tfi(x) = −
∫
si

[Kt(x− y) +H(x, y, t)] dy.

Proof. Let us take the inner product of the LHS with an arbitrary g ∈ C(Ω).
Because e∆t is smoothing for t > 0 and self-adjoint we see that∫

Ω

∆e∆tfi(x)g(x) dx =

∫
Ω

∆e∆t/2e∆t/2fi(x)g(x) dx

=

∫
Ω

∆e∆t/2fi(x)e∆t/2g(x) dx =

∫
Ω

e∆t/2fi(x)∆e∆t/2g(x) dx

=

∫
Ω

fi(x)∆e∆tg(x) dx = −
∫
si

e∆tg(x) dl(x)

= −
∫
si

∫
Ω

[Kt(x− y) +H(x, y, t)]g(y) dydl(x),

where we used also the definition of fi. By part (c) of the previous lemma we have∫
Ω

∆e∆tfi(x)g(x) dx = −
∫

Ω

∫
si

[Kt(x− y) +H(x, y, t)] dl(y)g(x) dx

for all g ∈ C(Ω). The lemma follows.
We immediately apply this result to transform (3.7) further

dzi
dt

(t) =
Γi
βiLi

− 1

βiLi

∫
si(t)

∫
Ω

G(x, y, t/ε)u0(y) dydl(x)

+
1

εβiLi

N∑
j=1

∫ t

0

∫
si(t)

∫
sj(τ)

G(x, y, (t− τ)/ε)Vj(τ) dl(x) dl(y)dτ.

We note that the last integrand is well defined for τ 6= t and

‖H‖L∞(Ωη×Ωη) ≤ C(η),
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where

Ωη = {x ∈ Ω : dist (x, ∂Ω) ≥ η > 0}.

Let us now state our main theorem of the section.
Theorem 3.6. There exists exactly one weak solution of (2.7).
We recall that we have already shown existence of at least one solution [Ry2,

Theorem 3.1]. We will prove here that there is no more than one solution and the
above representation suggests the idea of proof. We will show that the difference of
velocities V and V′ corresponding to two solutions satisfies an integral equation. We
will be able to conclude our result if we know that the function

Mij(z1, z2, t) :=

∫
si(z1)

∫
sj(z2)

G(x, y, t) dl(y)dl(x)

is Lipschitz continuous. It turns out that the Lipschitz constant blows up, but at an
integrable (in time) rate. Therefore, we have the following lemma.

Lemma 3.7. If ζ > 0, dist (s(zk), ∂Ω) > η > 0, k = 1, 2, then there exists a
neighborhood of (z1, z2) ∈ RN ×RN such that for all (z′1, z

′
2) in this neighborhood we

have

|Mij(z1, z2, ζ)−Mij(z
′
1, z
′
2, ζ)| ≤ C√

ζ
(|z1 − z′1|+ |z2 − z′2|),

where the constant C = C(η, z1, z2) is independent of ζ.
Proof. We will proceed in a few steps. Since G(x, y, ζ) = Kζ(x− y) +H(x, y, ζ),

where Kζ(x−y) is singular and away from ∂Ω the function H(x, y, ζ) is bounded with
its derivative, then we will first look at

M ′ij(z1, z2, ζ) =

∫
si(z1)

∫
sj(z2)

Kζ(x− y) dl(y)dl(x).

(a) si(z1) and sj(z2) are not parallel. If it is so, then the lines containing si(z1)
and sj(z2) intersect at point p. Hence, we can choose a neighborhood of (z1, z2) in
RN×RN such that the lines containing si(z

′
1) and sj(z

′
2) intersect at point p′ which is

close to p. We will describe these segments precisely in order to facilitate our analysis.
According to the notation convention of section 2 vi and vi+1 are vertices of si. We
define wi = (vi+1 − vi)/|vi+1 − vi| and analogously wj = (vj+1 − vj)/|vj+1 − vj |,
furthermore we set

ai =

{ |vi − p| if wi · (vi − p) ≥ 0,
−|vi − p| if wi · (vi − p) < 0.

We adopt the analogous definitions for aj , a
′
i, and a′j . Hence, we have

si(z1) = {p+ tiwi : ti ∈ [ai, ai + Li]}, sj(z2) = {p+ tjwj : tj ∈ [aj , aj + Lj ]},
si(z

′
1) = {p′ + tiwi : ti ∈ [a′i, a

′
i + L′i]}, sj(z

′
2) = {p′ + tjwj : tj ∈ [a′j , a

′
j + L′j ]}.

Having this in mind, if x ∈ si(z′1), y ∈ sj(z′2) (possibly z′1 = z1, z′2 = z2), then we
calculate

(3.8) |x− y|2 = |tiwi − tjwj |2 = t2i + t2j − 2wi ·wjtitj ≥ (t2i + t2j )(1− cos θ) > 0,
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because the angle between wi and wj is no less than θ. We may now estimate the
difference |M ′ij(z1, z2, ζ)−M ′ij(z′1, z′2, ζ)| =: I using the definition of Kζ(x− y)

I ≤ 1

πζ

∣∣∣∣∣
∫ ai+Li

ai

∫ aj+Lj

aj

e−
|tiwi−tjwj |2

4ζ dtidtj −
∫ a′i+L

′
i

a′
i

∫ a′j+L
′
j

a′
j

e−
|tiwi−tjwj |2

4ζ dtidtj

∣∣∣∣∣ .
Let us set

Q = [ai, ai + Li]× [aj , aj + Lj ], Q′ = [a′i, a
′
i + L′i]× [a′j , a

′
j + L′j ].

It is now clear that there is no contribution from the integrals over Q ∩ Q′ to the
difference. Therefore we have to estimate the contribution from the symmetric differ-
ence Q4Q′ =

⋃4
k=1Rk; see Figure 1. Lemma 2.1 provides us with the estimates for

the lengths of edges of Rk, k = 1, 2, 3, 4. The list of estimates goes as follows:

R1 : |aj − a′j | and Li + C|z1 − z′1|;
R2 : |ai − a′i| and Lj + C|z2 − z′2|;
R3 : |ai − a′i|+ C|z1 − z′1| and Lj + C|z2 − z′2|;
R4 : |aj − a′j |+ C|z2 − z′2| and Li + C|z1 − z′1|;

for some constant C if (z′1, z
′
2) is sufficiently close to (z1, z2). We now estimate |aj−a′j |

as well as |aj−a′j |. Restricting if necessary the neighborhood of (z1, z2) we are working
in we may assume that

aia
′
i ≥ 0 and aja

′
j ≥ 0.

Let us set

p = p′ − p, ui = v′i − vi, uj = v′j − vj ,
then we see

p = νi(z
′
1i − z1i) + νj(z

′
2j − z2j),

ui = νi(z
′
1i − z1i) + νi−1(z′1(i−1) − z1(i−1)),

uj = νj(z
′
2j − z2j) + νj−1(z′2(j−1) − z2(j−1)),(3.9)

where νk is the outer normal to sk, k = i, j (see section 2).
It is easy to observe that if a, b are real and ab ≥ 0, then |a− b| = ||a| − |b||. This

observation and the triangle inequality yield

|ai − a′i| = ||vi − p| − |v′i − p′|| ≤ |ui − p|.
By (3.9) we arrive at

|ai − a′i| ≤ c(N)|z1 − z′1|+ |z2 − z′2|),
where c(N) depends only on N .

Combining these estimates with (3.8) we may estimate the integral over R1

1

πζ

∫
R1

e−|tiwi−tjwj |2/4ζ dtidtj ≤ 1

πζ

∫
R1

e−
1−cos θ

4ζ (t2i+t
2
j ) dtidtj

≤ C |ai − a
′
i|

πζ

∫ +∞

−∞
e−

(1−cos θ)
4ζ t2j dtj =

C|ai − a′i|√
πζ
√

1− cos θ

≤ C√
ζ

(|z1 − z′1|+ |z2 − z′2|).
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Similar calculations lead us to

1

πζ

∫
Rk

e−|tiwi−tjwj |2/4ζ dtidtj ≤ C√
ζ

(|z1 − z′1|+ |z2 − z′2|)

for k = 2, 3, 4. It follows that

|M ′ij(z1, z2, ζ)−M ′ij(z′1, z′2, ζ)| ≤ C 1√
(1− cos θ)πζ

(|z1 − z′1|+ |z2 − z′2|).

(b) si(z1) and sj(z2) are parallel, possibly on the same line. Thus we may write

si(z1) = {x : x = wti+v̄i, ti ∈ [0, Li]}, sj(z2) = {y : y = −wtj+v̄j , tj ∈ [0, Lj ]},
where w = ±(vi+1 − vi)/|vi+1 − vi| and v̄k ∈ {vk+1, vk}, k = i, j. We can choose w,
v̄i, and v̄j in a such a way that

(3.10) w · (v̄i − v̄j) > 0.

We leave to the reader a proof of this simple geometric fact. We note that after
replacing v̄k with v̄′k, k = i, j inequality (3.10) holds for (z′1, z

′
2) sufficiently close to

(z1, z2). Taking (3.10) into account we obtain for x ∈ si(z
′
1), y ∈ sj(z

′
2) (possibly

z′1 = z1, z′2 = z2)

|x− y|2 = |tiw + v̄′i + tjw − v̄′j |2 = |(ti + tj)w + (v̄′i − v̄′j)|2
= (ti + tj)

2 + |v̄′i − v̄′j |2 + 2(ti + tj)w · (v̄′i − v̄′j) ≥ (t2i + t2j ).(3.11)
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We may now argue as in step (a) using (3.11) in place of (3.8) that

|M ′ij(z1, z2, ζ)−M ′ij(z′1, z′2, ζ)| ≤ C 1√
(1− cos θ)πζ

(|z1 − z′1|+ |z2 − z′2|).

(c) It remains to show that∣∣∣∣∣
∫
si(z1)

∫
sj(z2)

H(x, y, ζ) dl(y)dl(x) −
∫
si(z′1)

∫
sj(z′2)

H(x, y, ζ) dl(y)dl(x)

∣∣∣∣∣
≤ C(|z1 − z′1|+ |z2 − z′2|).

This part is now easy and we leave it to the reader.
There is one more term in the integral equation for V whose Lipschitz continuity

has to be investigated.
Lemma 3.8. Let us suppose that ζ > 0, u0 ∈ H1

0 (Ω), and dist (si(z), ∂Ω) > η > 0
then the map

z 7→
∫
si(z)

e∆ζu0 dl(y)

is locally Lipschitz continuous with the Lipschitz constant independent of ζ.
Proof. We note∫

si(z)

e∆ζu0 dl(x)−
∫
si(z′)

e∆ζu0 dl(y)

=

∫
si(z)

∫
Ω

Kζ(x− y)u0(y) dydl(x)−
∫
si(z′)

∫
Ω

Kζ(x− y)u0(y) dydl(x)

+

∫
si(z)

∫
Ω

H(x, y, ζ)u0(y) dydl(x)−
∫
si(z′)

∫
Ω

H(x, y, ζ)u0(y) dydl(x)

= I1 + I2.

We now estimate I1. We may extend u0 by zero to the entire plane, so u0 ∈ H1(R2).
We also set v = (z′i − zi)νi

I1 =

∫
si(z)

∫
R2

Kζ(x− y)u0(y) dydl(x)−
∫
si(z′)

∫
R2

Kζ(x− y)u0(y) dydl(x)

=

∫
si(z)

∫
R2

Kζ(x− y)u0(y) dydl(x)−
∫
si(z′)−v

∫
R2

Kζ(x+ v − y)u0(y) dydl(x)

=

∫
si(z)∩(si(z′)−v)

∫
R2

Kζ(x− y)(u0(y)− u0(y − v)) dydl(x)

+

∫
si(z)4(si(z′)−v)

∫
R2

(χ(x)Kζ(x− y)− (1− χ(x))Kζ(x+ v − y))u0(y) dydl(x)

= I3 + I4,

where

χ(x) =

{
1 if x ∈ si(z) \ (si(z

′)− v);
0 if x ∈ (si(z

′)− v) \ si(z).
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Schwarz inequality and
∫
R2 K

2
ζ (x) dx = 1 lead us to

|I3| ≤
∫
si(z)∩(si(z′)−v)

‖Kζ(x− ·)‖L2(Ω)‖∇u0‖L2(Ω) dl(x)|v|

≤ |z− z′||si(z)|‖∇u0‖L2(Ω).

Similar calculations and |si(z)4(si(z
′)− v)| ≤ C|z− z′| imply that

|I4| ≤ C|z− z′|‖u0‖L2(Ω).

Combining estimates for I3, I4 we obtain

|I1| ≤ C|z− z′|(‖∇u0‖L2(Ω) + ‖u0‖L2(Ω)),

where the constant C is independent of ζ > 0.
We now estimate I2. We note

|I2| ≤
∫
si(z)∩(si(z′)−v)

∫
R2

|H(x, y, ζ)−H(x+ v, y, ζ)||u0(y)| dydl(x)

+

∫
si(z)4(si(z′)−v)

∫
R2

|H(x, y, ζ)−H(x+ v, y, ζ)||u0(y)| dydl(x) = I5 + I6.

Since dist (si(z), ∂Ω), dist (si(z
′), ∂Ω) > η, then

|H(x, y, ζ)−H(x+ v, y, ζ)| ≤ ‖DxH‖L∞(Ωη×Ω×[0,ζ])|v|.

We claim that ‖DxH‖L∞(Ωη×Ω×[0,ζ]) is independent of ζ. In order to see this we
consider the equation defining H (see Lemma 3.4(b)) when x ∈ Ω̄ and y ∈ Ωη. We
may differentiate this equation as well as the boundary conditions with respect to yk,
k = 1, 2. We apply the maximum principle to the resulting heat equation. This yields

max
(x,t)∈Ω×[0,ζ]

|DykH(x, y, t)| ≤ max
(x,t)∈∂Ω×[0,ζ]

∣∣∣∣xk − yk2t
Kt(x− y)

∣∣∣∣
≤ max

(x,t)∈∂Ω×[0,ζ]
Ct−3/2e−

|x−y|2
8t

for some C independent of ζ. Since y ∈ Ωη we infer that

max
(x,t)∈Ω×[0,ζ]

|DykH(x, y, t)| ≤ C max
t∈[0,ζ]

t−3/2e−η
2/8t ≤ A <∞.

Hence by Lemma 3.4(c)

‖DxH‖L∞(Ωη×Ω×[0,ζ]) = ‖DyH‖L∞(Ω×Ωη×[0,ζ]) ≤ A.

Let us also note that this argument shows that

(3.12) ‖H‖L∞(Ωη×Ω×[0,ζ]) = ‖H‖L∞(Ω×Ωη×[0,ζ]) ≤ A.

Thus, we easily see that

I5 ≤ A|v||Ω|1/2‖u0‖L2(Ω) ≤ C|z− z′|‖u0‖L2(Ω).
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The estimate for I6 is even simpler:

I6 ≤ |si(z)4(si(z
′)− v)|max

x

∫
R2

|H(x, y, ζ)−H(x+ v, y, ζ)||u0(y)| dydl(x)

≤ 2C|z− z′|‖H‖L∞(Ωη×Ω×[0,ζ])|Ω|1/2‖u0‖L2(Ω) ≤ C ′|z− z′|‖u0‖L2(Ω),

where C ′ is independent from ζ. The lemma follows after we combine the estimates
for I1 and I2.

We remark that it is important to assume that ζ > 0; without this assumption
the lemma is false.

We are now in a position to complete the proof of Theorem 3.6. We have

Vi =
Γi
βiLi

− 1

βiLi

∫
si(t)

∫
Ω

G(x, y, t)u0(y) dydl(x)dτ

+
1

εβiLi

N∑
j=1

∫ t

0

Mij(z(t), z(τ), (t− τ)/ε)Vj(τ) dτ(3.13)

for i = 1, . . . , N . This identity is valid for any weak solution. Suppose now we have
two of them, (z′, u′) and (z, u). We take the difference Vi − V ′i . By (3.13), for t > 0
we have

Vi − V ′i =

(
1

βiLi
− 1

βiL′i

)(
Γi +

∫
si(t)

∫
Ω

G(x, y, t)u0(y) dydl(x)

)

+

(
1

εβiLi
− 1

εβiL′i

) N∑
j=1

∫ t

0

Mij

(
z(t), z(τ),

t− τ
ε

)
Vj(τ) dτ

+
1

βiL′i

(∫
s′
i
(t)

∫
Ω

G(x, y, t)u0(y) dydl(x)−
∫
si(t)

∫
Ω

G(x, y, t)u0(y) dydl(x)

)

+
1

εβiL′i

N∑
j=1

∫ t

0

Mij

(
z(t), z(τ),

t− τ
ε

)
(Vj(τ)− V ′j (τ)) dt

+
1

εβiL′i

N∑
j=1

∫ t

0

(
Mij

(
z(t), z(τ),

t− τ
ε

)
−Mij

(
z′(t), z′(τ),

t− τ
ε

))
V ′j (τ) dτ.

We may now apply Lemmas 3.7 and 3.8 for sufficiently small t > 0. We thus obtain

|Vi − V ′i |(t) ≤ C|z− z′|(t)

+ C

(∫ t

0

|Vi − V ′i |(τ) dτ +

∫ t

0

(t− τ)−1/2(|z− z′|(t) + |z− z′|(τ)) dτ

)
.

But |zi − z′i|(t) = | ∫ t
0
(Vi − V ′i )(τ) dτ |, so having this in mind we arrive at

|V−V′|(t) ≤ C
(

2(1 +
√
t)

∫ t

0

|V −V′|(τ) dτ +

∫ t

0

(t− τ)−1/2

∫ τ

0

|V −V′|(σ) dσ

)
.

Changing the order of integration in the double integral yields

|V −V′|(t) ≤ C ′
∫ t

0

|V −V′|(τ) dτ.
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Now, by Grönwall’s inequality we obtain that

V(τ) = V′(τ)

for all τ ∈ [0, t], as desired.
We remark that the above representation of V does not yield an improved regu-

larity solution.

4. Geometric estimates. We gather here some estimates which are necessary
for the next section but they may be of independent interest. We first state the
underlying assumption for the rest of the paper, namely,

(W) the Wulff shape W is a regular polygon with N sides, and the distance from
the center of symmetry to its facets is d > 0.

It is clear that if we fix the inner angle of a polygon, then if the quantity

(4.1)
maxi=1,...,N Li
mini=1,...,N Li

is bounded, then the isoperimetric ratio L2/A is finite. But in general the converse
is not true. One can devise a sequence of polygons {γn}∞n=1 for which the quotients
(Ln)2/An remain bounded but (4.1) explodes. On the other hand we depend on
boundedness of (4.1); see the next section or [Ry1, Theorem 10]. Here we prove that
the needed estimate holds but only for polygons with L2/A only slightly bigger than
for the regular polygon.

We also recall the estimates for the extinction time for regular polygons moving
by crystalline curvature

(4.2) Vi =
Γi
βiLi

.

Such a bound combined with the comparison principle of Giga and Gurtin [GG]
will provide estimates for maximal existence times of solution to (4.2) for any initial
polygon.

We now introduce some simplifying notation. We also recall that S is the set of
outer normals to W . Let us suppose that γ is a convex polygon. We denote by Dγ the
region bounded by γ, |Dγ | is its Lebesgue measure, n(γ) is the number of (nonzero)
facets, and |γ| is the perimeter of γ; θ = 2π/N . We set Q(γ) to be the isoperimetric
quotient of γ, i.e.,

Q(γ) =
|γ|2
|Dγ | .

We restrict our attention to polygons which may be obtained from W by moving its
sides in normal directions, where we do not exclude the possibility that some of the
facets get lost. By definition, P is the set of all planar polygons γ such that

(a) Dγ is convex;
(b) n(γ) ≤ N ;
(c) the outer normals to the edges to γ belong to S.
We will show this in the following theorem.
Theorem 4.1. There exist positive numbers λ1 > Q(W ) and Λ1 such that if

γ ∈ P and Q(γ) ≤ λ1, then

maxi=1,...,N Li(γ)

mini=1,...,N Li(γ)
≤ Λ1.
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Remark. This theorem is trivial for N = 4; we leave to the reader to work out
the formula expressing max{a, b}/min{a, b} in terms of the isoperimetric quotient of
rectangle with sides a and b. We will consider only N ≥ 5. In this case the bound on
λ1 is constructive while that for Λ1 is not.

The proof of this theorem requires a lemma.
Lemma 4.2. There exists α > 0 such that for any γ ∈ P having less than N sides

the following inequality holds:

Q(γ) ≥ ωN + α,

where ωN := 1
4Q(W ) = N tan π

N .
Proof. In what follows we use the notation convention of section 2. Let us set

s0 = W . Thus, by the very definition of P, if γ ∈ P, then γ = s(z), where z ∈ RN
is defined as in (2.1) (to be precise we have to substitute the line li containing the
ith facet of γ for li(t)). We recall that Lemma 2.1 guarantees that the mapping
P 3 γ 7→ Q(γ) is continuous, because γ = s(z).

Our argument is organized in several steps. We claim that the general case may
be reduced to n(γ) = N − 1.

(a) We will first show that if n(γ) < N , then there exists nearby γ′ ∈ P such
that n(γ′) = n(γ) + 1 and Q(γ′) < Q(γ). Let us suppose that n(γ) = N −m, m ≥ 1,
and at vertex vi the edges si+1, . . . , si+j−1 are missing, i.e., {vi+1} = si ∩ si+j , j > 1,
and m ≥ j − 1. The angle between the normal to si and the normal to si+j is jθ.
We will construct a new polygon γ′ by moving facet si+1 of zero length by h into the
direction of νi+1 (hence, ∆z = hei), where h < 0, i.e., we move it inward. We also
assume that |h| and |h|/L are small, where L = |γ| is the perimeter of γ. We note
that by the definition of P the angle between νi and νi+1 is θ and the angle between
νi+1 and νi+j is kθ, where k = j − 1 > 0. By Lemma 2.1 we have

∆Li = h/ sin θ,

∆Li+1 = −h(ctanθ + ctankθ),

∆Li+j = h/ sin kθ;

then

∆L =

(
tan

θ

2
+ tan k

θ

2

)
h < 0.

The change in the area ∆A is also negative and

∆A =
1

2
h|∆Li| = −1

2
h2(ctanθ + ctankθ) =: −h2c(θ).

Now,

Q(γ′) =
(L+ ∆L)2

A+ ∆A
.

We note that Taylor’s expansion yields

1

A+ ∆A
=

1

A
· 1

1 + ∆A/A
=

1

A

(
1− ∆A

A
+

(
∆A

A

)2 ∫ 1

0

2(1− s)
(1 + s∆A/A)3

ds

)

≤ 1

A

(
1− ∆A

A
+ 8

(
∆A

A

)2
)
,
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provided that

(4.3)

∣∣∣∣hL
∣∣∣∣ ≤

√
2A

L2c(θ)
.

By simple algebra we arrive at

Q(γ′) ≤ L2

A

(
1 +

4h

L

(
tan

θ

2
+ tan k

θ

2

)
+

(
h

L

)2
(

4

(
tan

θ

2
+ tan k

θ

2

)2

+ c(θ)
L2

A

))
,

provided that

(4.4)

∣∣∣∣hL
∣∣∣∣ ≤ tan θ

2 + tan k θ2
(tan θ

2 + tan k θ2 )2 + 2c(θ)Q(γ)

and

(4.5)

∣∣∣∣hL
∣∣∣∣ ≤ 1

tan θ
2 + tan k θ2

.

We note that (4.4) is more restrictive than (4.3) and (4.5). But neither of them takes
into account the length of neighboring facets si, si+j . We have to restrict the size of
|h| again in order to guarantee that n(γ′) = n(γ) + 1. Finally,

Q(γ′) ≤ Q(γ)

(
1 +

2h

L

(
tan

θ

2
+ tan k

θ

2

))
< Q(γ),

provided that h/L is sufficiently small.
(b) If n(γ) = N − m, m > 1, then by step (a) we may construct polygons γk,

k = 1, . . . ,m− 1, which are all close to γ and

n(γk) = N −m+ k, Q(γk−1) > Q(γk), k = 1, . . . ,m− 1,

where γ0 := γ. It follows that

Q(γ) > Q(γm−1), n(γm−1) = N − 1.

(c) The general case has been now reduced to n(γ) = N − 1. Obviously we have

Q(γ) ≥ min{Q(γ1) : γ1 ∈ P, n(γ1) = N − 1}.
We claim that this minimum is attained. As a matter of fact this follows from the
Hausdorff selection theorem but we prefer to prove it directly. Let us suppose that
{γn}∞n=1 ⊂ P is a minimizing sequence. After rescaling we may assume that |Dγn | = 1.
Then,

|s(zn)|2 ≤ 1 + min{Q(γ1) : γ1 ∈ P, n(γ1) = N − 1} =: A

for sufficiently large n. After shifting the polygons we may assume that they all lay in
a ball B(0, A1/2). Hence the sequence {zn}∞n=1 ⊂ RN defining them (i.e., γn = s(zn))
is bounded. We may extract a convergent subsequence, still denoted {zn}∞n=1, and
zn → z∞. It follows from Lemma 2.1 that

Q(γn)→ Q(s(z∞)) = min{Q(γ1) : γ1 ∈ P, n(γ1) = N − 1}.
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(d) By the argument in (a) there exists a polygon γ′ ∈ P, which is close to s(z∞),
n(γ′) = N and which satisfies

Q(γ′) < Q(s(z∞)) ≤ Q(γ).

Of course,

Q(γ′) ≥ min{Q(γ1) : γ1 ∈ P, n(γ1) = N} = Q(W ).

The compactness argument in (c) shows that the minimum is attained. For the sake
of completeness we should show that indeed the minimum is equal to Q(W ). As a
matter of fact a more general result is true. Stancu proved (see [St, Theorem 4.2])
that for any γ ∈ P with N sides the following inequality holds:

(4.6) BW (ρ) := ρ|γ| − |Dγ | − ωNρ2 ≥ 0

for all ρ ∈ [ρin, ρout]. For the moment the specific definitions of 0 < ρin < ρout are
not important. We will present them later. We note that (4.6) is equivalent to(

ωNρ− |γ|
2
√
ωN

)2

≤ |γ|
2 − 4ωN |Dγ |

4ωN
,

hence

Q(γ) =
|γ|2
|Dγ | ≥ 4ωN = Q(W ).

Combining these estimates we conclude that

Q(γ) ≥ min
{γ1∈P:n(γ1)=N−1}

Q(γ1) = Q(W ) + α,

where

α = min
{γ∈P:n(γ)=N−1}

Q(γ)− min
{γ∈P:n(γ)=N}

Q(γ) > 0.

We are now ready for the proof.
Proof of Theorem 4.1. We take λ1 = ωN +α/2, but let us suppose that the desired

number Λ1 does not exist, i.e., there is a sequence of polygons {γn}∞n=1 ⊂ P such that

(4.7)
maxLni
minLni

→∞ as n→∞,

and

Q(γn) ≤ λ1.

All the polygons γn, n = 1, 2, . . . , have N sides, so there exists at least one pair of
indices (l, j) such that maxk L

n
k = Lnl and mink L

n
k = Lnj for infinitely many n’s. After

choosing an appropriate subsequence of {γn}∞n=1, which is denoted again by {γn}∞n=1

condition (4.7) implies that

Lnl /L
n
j →∞
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as n goes to infinity.
Possibly after scaling the polygons, we may assume that |Dγn | = 1. Subsequently,

we apply the compactness argument as in step (c) in the proof of Lemma 4.2. Hence,
we may assume zn → z∞, where γn = s(zn). In particular we have Lni → L∞i ,
i = 1, . . . , N .

By (4.7) for any δ > 0 there exists n0 such that

Lnl /L
n
j > 1/δ

for n ≥ n0, or

1

2
δ
√
λ1 ≥ δLnl > Lnj .

This implies that Lnj converges to zero. But, γ∞ is not a point since the area of Dγ∞

is one. Hence, n(γ∞) < N and this implies that

λ1 ≥ Q(γn)→ Q(γ∞) ≥ ωN + α > λ1.

We reached a contradiction, and our theorem follows.
We now gather estimates for solutions of (4.2). We start with a definition

ρout = inf{µ : ∃p ∈ R2, µW + p ⊃ Dγ},
ρin = sup{µ : ∃p ∈ R2, µW + p ⊂ Dγ}.

The next lemma applies to admissible polygons. Let us recall that admissibility was
defined at the beginning of section 2.

Lemma 4.3. Suppose γ is an admissible convex polygon, then

(a) ρout ≤ L+

√
L2 − 4ωNA

2ωN
,

(b) 2A/L ≥ ρin ≥ A/L.

Proof. (a) Stancu proved (see [St, Theorem 4.2]) that

BW (ρ) := ρL−A− ωNρ2 ≥ 0

for all ρ ∈ [ρin, ρout]. Thus solving the equation BW (ρ) = 0 provides an upper bound
for ρout.

(b) We note

A =
1

2

N∑
i=1

diLi ≥ 1

2

N∑
i=1

ρinLi =
1

2
ρinL.

On the other hand BW (ρin) ≥ 0 implies that

ρinL ≥ A+ ωNρ
2
in ≥ A.

Part (b) follows.
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This lemma tells us how much we have to scale the Wulff shape so that it contains
(or is contained) after scaling and translation a given (respectively, in a given) admis-
sible convex polygon. We find it useful for the estimating of the times of extinction
for solutions of (4.2). We recall the lemma below.

Lemma 4.4 (see [Ry2, Lemma 4.3]). Let us assume that s0 = σW + p and it
evolves according to (4.2); then

L(t) = cw(Tmax − t)1/2,

where

cw = N

(
2κΓ

β

)1/2

, Tmax =

(
L(0)

cw

)2

=
L2(0)β

2N2κΓ
.

This lemma gives also the estimates for extinction time of the flow (4.2) for
arbitrary convex initial polygon s0. If s0 is given then Lemma 4.3 yields γ̄, γ such
that

Dγ̄ ⊃ Ds0 ⊃ Dγ ,

where γ̄ = ρoutW + p1, γ = ρinW + p2. The first comparison principle of Giga and
Gurtin [GG, Section 4] implies that

(4.8) Dγ̄(t) ⊃ Ds(t) ⊃ Dγ(t)

if all polygons evolve according to (4.2), for as long as the solutions exist. Let us
denote by T (s0) the maximal time of existence of solution to (4.2) for a given s0. We
are now in a position to estimate T (s0) in terms of s0. The starting point is inclusion
(4.8), which shows that

T (γ) ≤ T (s0) ≤ T (γ̄).

Lemma 4.4 permits us to estimate T (γ̄) as well as T (γ). We carry out the calculations
for T (γ̄). It is easy to find out |γ̄| knowing ρout; hence by definition of Γi’s, (2.4) and
(2.5) we come to

T (γ̄) ≤ 4βN2 tan2 θ
2ρ

2
out

2N2κΓ
=

β

2d
ρ2
out.

Lemma 4.3 now yields

(4.9) T (γ̄) ≤ β|s0|2
2d

(
1 +

√
1−Q(W )/Q(s0)

ωN

)2

.

Similar calculations lead us to

(4.10) T (γ) =
β

2d
ρ2
in ≥

β|s0|2
2dQ2(s0)

.

We finally recall the following lemma.
Lemma 4.5. If Vi < 0, κ is defined by (2.4), then

L′ = −
N∑
i=1

Viκ < 0.

This follows immediately from Lemma 2.1.
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5. Properties of solutions if the perimeter of s0 is small. We would like to
exhibit in this section some geometric properties of weak solutions in case of convex
s0. We keep the basic assumption (W) of the previous section. Thus, it follows
immediately that Γi = Γ < 0, i = 1, . . . , N . We also assume that all βi are equal to
β > 0.

We first show that if perimeter L0 is sufficiently small, and Q(s0) is close to Q(W )
and u0 ≤ 0 then the interface s(t) shrinks to a point and Q(s(t)) is a decreasing
function of time, moreover the temperature remains negative. Of course L0 must be
in some balance with the size of initial distribution of temperature u0. We may say
that for small s0 the surface tension prevails over the destabilizing bulk forces.

Let us point out a possible interpretation of our result. Since during the evolu-
tion the isoperimetric quotient decreases, it seems there is no need for creating new
facets during the evolution provided L0 is already small, as this would increase the
isoperimetric quotient. A similar point of view on the problem of whether or not to
split a facet is provided by M.-H. Giga and Y. Giga in [Gi]. Their setting, however,
is different from ours; they consider curve moving by crystalline curvature under the
driving force. Their results are not directly applicable. Nonetheless, we would like
to point to [Gi, Lemma 5]. This lemma states that small facets of polygons evolving
by crystalline curvature do not split. Obviously, this does not settle the matter here.
More work should be done.

After making these remarks let us return to the topic of this section. The main
method we use here is based on a priori estimates for

N∑
i=1

∣∣∣∣∫
si

u dl

∣∣∣∣ ,
and it aims at showing that the time derivative of Q(s(t)) is nonpositive. This is the
place where the estimates of section 4 come into play. We compare s(t) to evolution
of s0 under the flow of

(5.1) Vi =
Γ

β′Li
,

where β′ > 0 is chosen appropriately. Here we exploit the comparison principle of
Giga and Gurtin [GG].

The last result of this section is concerned with behavior of temperature u as
t → Tmax. Because at that instance facets move very fast it is not clear whether or
not u blows up. It turns out that we are able to show a bound in the L∞(Ω) norm
for u in terms of initial data.

We also note a by-product of Theorem 4.1. Namely, we are able to improve
Theorem 10 of [Ry1]; we can now show the corollary.

Corollary 5.1. If (z, u) is a unique weak solution of the quasi-steady approxi-
mation of (2.7), i.e., (z, u) is a solution of

0 = −
∫

Ω

∇u(x) · ∇h(x)dx+
N∑
j=1

∫
sj(t)

Vj(t)h(x)dl for all h ∈ H1
0 (Ω),∫

sj(t)

u dl = Γj − βjLj(t)Vj(t), j = 1, . . . , N,(5.2)

where s0 is convex and such that
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(a) L0 is sufficiently small (see Theorem 10 in [Ry1]),
(b) Q(s0) ≤ λ1,

then

d

dt
Q(s(t)) ≤ 0.

Proof. We proved in [Ry1, Theorem 10] that Q(s(t))′ ≤ 0 provided that

maxLi/minLi ≤ Λ1

remains bounded independent of time. Theorem 4.1 provides such a bound if Q(s0) ≤
λ1. Thus the set P ∩{γ : |γ| is small, Q(γ) ≤ λ1} is invariant under the flow of (5.2)
and the corollary follows.

Suppose now we are given an arbitrary convex, an admissible polygon s0, and a
number δ, δ ∈ (0, 1). Let us now define s̄(t) (respectively, s(t)) as unique solutions to
(5.1) with β′ = β/(1 − δ), (respectively, β′ = β/(1 + δ)) and s(0) = s0 (respectively,
s̄(0) = s0). By (4.9) we have the estimates for TU the extinction time of s̄(t)

(5.3a) TU = T (γ̄) ≤ β|s0|2
2(1− δ)d

(
1 +

√
1−Q(W )/Q(s0)

ωN

)2

.

Similarly, we have a bound on TL the extinction time of s(t). The formula (4.10)
yields

(5.3b) TL = T (γ) ≥ β|s0|2
2(1 + δ)dQ2(s0)

.

We will compare the flows generated by (5.1) and (2.7), and from the properties of
solutions to (5.1) we will infer the behavior of solutions to (2.7). For instance TU and
TL defined by (5.3) provide upper and lower estimates for Tmax.

Here is our main result. It is a strengthened version of [Ry2, Theorem 4.1] which
was established only for s0 being a scaled Wulff shape.

Theorem 5.2. Let us suppose that 0 < δ < 1 is fixed, s0 is a given convex,
admissible polygon, and u0 satisfies the condition (3.4). The numbers λ1 and Λ1 are
given by Theorem 4.1. We assume that (z, u) is the unique weak solution with initial
conditions s0 and u0. Let us finally suppose that the data fulfill

(i) u0 ≤ 0;
(ii) Q(s0) ≤ λ1;

(iii)
∑N
i=1 |

∫
s0i
u0 dl| ≤ exp(C1TU )(CRL

1/2
0 ‖u0‖H1

0 (Ω) + C2TU ) ≤ δ|Γ|,
where CR is defined in (5.9) below,

C1 = N3/2Λ
1/2
1 β−1C0, C2 = N5/2Λ

1/2
1 |Γ|β−1C0,

TL and TU are given by (5.3), and C0 is defined in (5.7) below. Then the solution
(z, u) satisfies

(a)
∑N
i=1 |

∫
si(t)

u dl| ≤ exp(C1t)(CRL
1/2
0 ‖u0‖H1

0 (Ω) + C2t), t ∈ [0, Tmax);

(b) Vi(t) < 0, i = 1, . . . , N for all t ∈ (0, Tmax), TL ≤ Tmax ≤ TU ;
(c) u(t, x) < 0 for all t ∈ (0, Tmax), x ∈ Ω;
(d) Q(s(t)) is a decreasing function of time;
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(e) s(t) shrinks to a point as t→ Tmax.
Proof. We first show that if (a) holds for t ∈ [0, τ ], where τ ∈ (0, Tmax), then

(b)–(d) are satisfied on this interval.
We begin with proving (b). If (a) holds, then∣∣∣∣∣

∫
si(t)

u dl

∣∣∣∣∣ ≤
N∑
i=1

∣∣∣∣∣
∫
si(t)

u dl

∣∣∣∣∣ ≤ δ|Γ|
and

(5.4)
(1 + δ)Γ

βiLi
< Vi <

(1− δ)Γ
βiLi

< 0, i = 1, . . . , N.

We have already defined s̄(t) and s(t). We immediately obtain from the second
comparison theorem of Giga and Gurtin [GG, Section 4] that Ds(t) ⊂ Ds̄(t) for all t
such that s(t) is defined. We would be able to estimate Tmax above and below only
after establishing that

Ds(t) ⊂ Ds(t) for t ≤ min{τ, TL},
Ds(t) ⊂ Ds̄(t) for t ≤ min{τ, TU}.(5.5)

We cannot use the comparison principles of [GG] because they apply only to solutions
of an ODE generalizing (5.1). We will show (5.5) directly.

Let us set

E = {t ∈ [0, τ ] : Ds(ζ) ⊂ Ds̄(ζ) for all ζ ∈ [0, t]};
of course E 6= ∅ since 0 ∈ E. We now set t1 = supE. We claim that t1 = τ . Let
us suppose the contrary, i.e., t1 < τ . Hence, by the very definition of t1 as well as
continuity of motion of s(ζ) and s̄(ζ) we infer that s(t1) must touch s̄(t1). It follows
that for some i ∈ {1, . . . , N}

si(t1) ∩ s̄i(t1) 6= ∅.
Let us denote by I the set of i with the above property, and I ′ = {1, . . . , N} \ I. If
i ∈ I, then because of Ds(t1) ⊂ Ds̄(t1) we have |si(t1)| ≤ |s̄i(t1)|. Inequality (5.4) now
yields

Vi(t1) <
(1− δ)Γ
βLi(t1)

=
(1− δ)Γ
|si(t1)| ≤

(1− δ)Γ
|s̄i(t1)| < 0.

We thus conclude that for i ∈ I si(t) moves inward faster than s̄i(t) for t ∈ [t1, t1 +η),
η. On the other hand, if i ∈ I ′, then si(t1) ∩ s̄i(t1) = ∅. Hence by the continuity of
motion, si(t) and s̄i(t) will be separated for t ∈ [t1, t1 +η1), η1 > 0. We now conclude
that Ds(ζ) ⊂ Ds̄(ζ) for ζ ∈ [t1, t1 + min{η, η1}). This contradicts the definition of t1;
hence the second inclusion of (5.5) follows and

τ ≤ TU .
A similar argument proves the first inclusion of (5.5).

In order to prove that (a) implies (c) we use the variation of constants formula
(3.6) and u = −∆U , and we obtain

u(t) = e∆t/εu0 − 1

ε

N∑
i=1

∫ t

0

∆e∆(t−σ)/εfi(z(σ))Vi(σ) dσ.
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We showed in [Ry2, Lemma 4.5] that ∆e∆t/εfi ≤ 0 for t > 0, so since Vi < 0 we infer
that the above integral is nonpositive. By the maximum principle e∆t/εu0 < 0, and
(c) follows.

(d) We may now calculate the derivative of the isoperimetric quotient Q(s(t)).
Since u(t) < 0 for t ∈ (0, τ) we apply the reasoning as in the proof of Theorem 10 in
[Ry1], and we come to

d

dt
Q(s(t)) ≤ − L

Aβ

 N∑
j=1

κ2

Lj
+

1

2

L

A
Nκ

d− 1

κN

N∑
j=1

∫
sj

u dl

 ,

where d = |Γ/κ| (see the definition of Γi’s and (2.5)). By Lemmas 11 and 12 of [Ry1]
it follows that

N∑
j=1

κ2

Lj
+

1

2

L

A
Nκ ≥ 0.

On the other hand since (a) and (b) hold, then

d− 1

Nκ

∫
s(t)

u dl =
1

Nκ

N∑
i=1

(
Γ−

∫
si(t)

u dl

)
≥ 0.

Thus,

d

dt
Q(s(t)) ≤ 0 on [0, τ)

(see also proof of Theorem 4.1 in [Ry2]).
We will prove now that (a) holds for t ∈ [0, Tmax). Let us set

E =

{
t ∈ [0, Tmax) :

N∑
i=1

∣∣∣∣∣
∫
si(τ)

u dl

∣∣∣∣∣ ≤ exp(C1τ)(CRL
1/2
0 ‖u0‖H1

0 (Ω) + C2τ)∀τ ∈ [0, t)

}
.

Of course E 6= ∅ because our assumptions imply that 0 ∈ E. Let us set ω = supE.
We shall show that ω = Tmax. Let us suppose that ω < Tmax; then by definition of
ω and (iii)

N∑
i=1

∣∣∣∣∣
∫
si(ω)

u dl

∣∣∣∣∣ ≤ exp(C1ω)(CRL
1/2
0 ‖u0‖H1

0 (Ω) + C2ω) < δ|Γ|.

Thus, there exists η > 0 such that for τ ∈ [ω, ω + η) we have

N∑
i=1

∣∣∣∣∣
∫
si(τ)

u dl

∣∣∣∣∣ < δ|Γ|.

Let us note that by (2.7b) and Lemma 3.5, (5.6) takes the form

u(t) = e∆t/εu0 − 1

ε

N∑
i=1

∫ t

0

e∆(t−τ)/ε

∫
si(τ)

G(x, y, (t− τ)/ε) dy
Γ− ∫

si(τ)
u dl

βLi(τ)
dτ.
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Hence,∣∣∣∣∣
∫
sj(t)

u dl

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣
+

N∑
i=1

∣∣∣∣∣
∫ t

0

∫
sj(t)

∫
si(τ)

1

ε
G(x, y, (t− τ)/ε) dydl(x)

Γ− ∫
si(τ)

u dl

βLi(τ)
dτ

∣∣∣∣∣ .
We note that since all Vi are negative, then s(t) for t ∈ [0, ω) are contained in Ds0and

(5.7)

∫
si(t)

∫
sj(τ)

G2(x, y, (t− τ)/ε) dydx ≤ C0 <∞,

where C0 is independent of time. Hence, the Schwarz inequality implies∣∣∣∣∣
∫
sj(t)

u dl

∣∣∣∣∣
≤
∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣+ C0β
−1

N∑
i=1

∫ t

0

L
1/2
j (t)L

−1/2
i (τ)

(
|Γ|+

∣∣∣∣∣
∫
si(τ)

u dl

∣∣∣∣∣
)
dτ

≤
∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣+ C0β
−1

N∑
i=1

∫ t

0

L1/2(t)

minL
−1/2
k (τ)

(
|Γ|+

∣∣∣∣∣
∫
si(τ)

u dl

∣∣∣∣∣
)
dτ.

In order to estimate it further we recall that by Theorem 4.1 minLi ≥ Λ−1
1 maxLi

and N maxLi ≥ L. Thus, we arrive at∣∣∣∣∣
∫
sj(t)

u dl

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣
+ C0β

−1Λ
1/2
1 N1/2

∫ t

0

L1/2(t)L−1/2(τ)

(
N |Γ|+

N∑
i=1

∣∣∣∣∣
∫
si(τ)

u dl

∣∣∣∣∣
)
dτ.

By Corollary 4.5 L(t) < L(τ) if τ < t. Therefore, the summing up of the estimates
for | ∫

sj(t)
u dl| yields

N∑
j=1

∣∣∣∣∣
∫
sj(t)

u dl

∣∣∣∣∣ ≤
N∑
j=1

∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣
+ C0β

−1Λ
1/2
1 N3/2

∫ t

0

N |Γ|+ N∑
j=1

∣∣∣∣∣
∫
sj(τ)

u dl

∣∣∣∣∣
 dτ.(5.8)

We are almost in a position to apply Grönwall’s inequality, but before doing so we
note that

N∑
j=1

∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣ ≤
N∑
j=1

L
1/2
j (t)

∥∥∥∥∥
∫
sj(t)

e∆t/εu0

∥∥∥∥∥
L2(sj(t))

≤ L1/2(t)N1/2cr‖e∆t/εu0‖H1
0 (Ω)

≤ L1/2(0)N1/2cr‖e∆t/εu0‖H1
0 (Ω)
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and cr is the constant in the inequality

‖u‖L2(l∩Ω) ≤ cr‖u‖H1
0 (Ω);

l is any line in R2.
We now need to estimate ‖e∆t/εu0‖H1

0 (Ω). This can be done with the help of (3.5)

and the properties of fractional powers of −∆ (see [He, Sections 1.3 and 1.4]). One
can see that

‖e∆t/εu0‖H1
0 (Ω) ≤ B‖(−∆)1/2e∆t/εu0‖L2(Ω) ≤ BM‖u0‖X1/2 ≤ B2M‖u0‖H1

0 (Ω).

Combining these estimates we come to

N∑
j=1

∣∣∣∣∣
∫
sj(t)

e∆t/εu0 dl

∣∣∣∣∣ ≤ CRL1/2(0)‖u0‖H1
0 (Ω),

where

(5.9) CR = crN
1/2B2M.

By Grönwall’s inequality applied to (5.8) we obtain

N∑
j=1

∣∣∣∣∣
∫
sj(t)

u dl

∣∣∣∣∣ ≤ eC1t(C2t+ CRL
1/2
0 ‖u0‖L2(Ω)),

so (a) holds on [0, ω + η] too, contrary to the maximality of ω.
Now, after we established that (a) holds for all t < Tmax, the first inclusion of

(5.5) implies the lower bound on Tmax, and the second inclusion of (5.5) implies the
upper bound, i.e.,

TU ≥ Tmax ≥ TL.

(e) Since all the velocities Vi’s are negative and Q(s(t)) decreases in time, then
the only possibility of extinction is that s(t) shrinks to a point.

We showed that integrals of u over s(t) remain bounded throughout the evolution.
We shall prove a stronger result, namely that u itself remains bounded.

Theorem 5.3. Under the assumptions of the previous theorem, we have

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + C(L0).

Proof. We claim that the compatibility condition (3.4) implies that ‖u0‖L∞(Ω) is
finite for

u0 −
N∑
j=1

fj(0)Vj(0) = h ∈ H2(Ω) ∩H1
0 (Ω).

On the other hand by [Ry2, Lemma 3.3], fi(0) may be decomposed in the following
way:

fi(0) = ϕgi + ri,
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where ϕ ∈ C∞0 (Ω), gi ∈ Hσ(R2) (σ ∈ (1, 3/2) is arbitrary), and ri ∈ H2(Ω) ∩H1
0 (Ω).

Our claim now follows from the Sobolev embedding theorem.
We use the variation of constants formula (3.6). Next, we apply −∆ to both sides.

After setting u = −∆U we obtain

u(t) = e∆t/εu0 − 1

ε

∫ t

0

∆e∆(t−τ)/ε
N∑
i=1

fi(τ)Vi(τ) dτ.

By the maximum principle ‖e∆t/εu0‖L∞(Ω) ≤ ‖u0‖L∞(Ω). Let us pick α ∈ (1
2 , 1),

then by the embedding theorem (see [Hn, Theorem 1.6.1]) Xα ⊂ C0,µ(Ω), where
0 ≤ µ < 2α− 1. Hence we have

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +
1

ε

∥∥∥∥∥
∫ t

0

∆e∆(t−τ)/ε
N∑
i=1

fi(τ)Vi(τ) dτ

∥∥∥∥∥
Xα

≤ ‖u0‖L∞(Ω) +
1

ε
lim
η→0+

∫ t−η

0

∥∥∥∥∥(−∆)1+αe∆(t−τ)/ε
N∑
i=1

fi(τ)Vi(τ)

∥∥∥∥∥
L2(Ω)

dτ

≤ ‖u0‖L∞(Ω)

+
1

ε
lim
η→0+

∫ t−η

0

∥∥∥∥∥(−∆)αe∆
(t−τ)

2ε ∆e∆
(t−τ)

2ε

N∑
i=1

fi(τ)Vi(τ)

∥∥∥∥∥
L2(Ω)

dτ

= ‖u0‖L∞(Ω) + J.

We estimate J using Lemma 3.5 and [He, Theorem 1.4.3]. This yields

J ≤ Cα lim
η→0+

∫ t−η

0

(2ε)α

(t− τ)α

N∑
i=1

∥∥∥∥∥
∫
si(τ)

G(x, y,
t− τ

2ε
) dl(y)

∥∥∥∥∥
L2(Ω)

|Vi(τ)| dτ.

The problem now is to bound the integral involving the Green function. It is a
simple task using the Schwarz inequality, (3.12), and an inequality t−2 exp(−|ξ|2/t) ≤
At−1 exp(−|ξ|2/(2t)),∫

Ω

(∫
si(τ)

G(x, y, ζ) dl(y)

)2

dx ≤
∫

Ω

|si(τ)|
∫
si(τ)

G2(x, y, ζ) dl(y)dx

≤ 2Li(τ)

∫
si(τ)

∫
Ω

(K2
ζ (x− y) +H2(x, y, ζ)) dxdl(y)

≤ 2Li(τ)

∫
si(τ)

(A+ ‖H‖2L∞(Ω×Ωh×[0,Tmax])) dl(y)

≤ A′L2
i (τ),

where h = dist (s0, ∂Ω), ζ = (t− τ)/(2ε), and A′ is independent of Tmax. Combining
the above inequality with (5.4) yields

J ≤ Cαεα
∫ t

0

(t− τ)−α
N∑
i=1

Li(τ)(1 + δ)

βLi(τ)
dτ.

Finally,

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + J ≤ ‖u0‖L∞(Ω) + C ′T (1−α)
U .
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Since TU can be bounded in terms of L(0) our theorem follows.
We close by stating a simple estimate for perimeter of s(t).
Corollary 5.4. Under the assumptions of Theorem 5.2, we have

L(t) ≥ C(Tmax − t)1/2.

Proof. To see this we differentiate L(t)

L′(t) = −
N∑
i=1

Viκ = −κβ−1
N∑
i=1

(
Γ−

∫
si

u dl

)
L−1
i (t) ≤ −Γ(1− δ)κβ−1

N∑
i=1

L−1
i (t).

Since Li ≥ minLi ≥ Λ−1
1 maxLi ≥ Λ−1

1 N−1L we obtain for Cu = Γ(1− δ)κΛ1Nβ
−1

L′(t) ≤ −CuL−1.

Our result follows immediately from this differential inequality.
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Abstract. Using the matrix Riemann–Hilbert factorization approach for nonlinear evolution
systems which take the form of Lax-pair isospectral deformations and whose corresponding Lax
operators contain both discrete and continuous spectra, we obtain the leading-order asymptotics as
t→±∞ of the solution to the Cauchy problem for the modified nonlinear Schrödinger equation, i∂tu+
1
2
∂2
xu+ |u|2u+ is∂x(|u|2u)=0, s∈R>0, which is a model for nonlinear pulse propagation in optical

fibers in the subpicosecond time scale. Also derived are analogous results for two gauge-equivalent
nonlinear evolution equations—in particular, the derivative nonlinear Schrödinger equation i∂tq+
∂2
xq−i∂x(|q|2q) = 0. As an application of these asymptotic results, explicit expressions for position

and phase shifts of solitons in the presence of the continuous spectrum are calculated.
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1. Introduction. With the current emphasis on the utilization of optical fibers,
capable of supporting solitons, as the communication channel in the practical realiza-
tion and implementation of all-optical (lightwave), ultrahigh-bit-rate, long-distance
communication systems using the return-to-zero (RZ) format for generating the opti-
cal bit stream, design issues requiring the consideration of several factors, e.g., soliton
widths and intersoliton spacings, are intimately related to the study of the funda-
mental dynamical processes associated with the propagation of high-power ultrashort
pulses in optical fibers (at the present stage of technology, these systems can at best
still only be called near-soliton(ic)-based) [1, 2, 3]. The standard, classical mathe-
matical model for nonlinear pulse propagation in the picosecond time scale in the
anomalous dispersion regime in an isotropic, homogeneous, lossless, nonamplifying,
polarization-preserving single-mode optical fiber is the nonlinear Schrödinger equation
(NLSE) [1, 2, 3, 4]. However, experiments and theories on the propagation of high-
power ultrashort pulses in the subpicosecond-femtosecond time scale in monomode
optical fibers have shown that the NLSE is no longer a valid model and that addi-
tional nonlinear terms (dispersive and dissipative) and higher-order linear dispersion
must be taken into account: in this case, pulse-like propagation is described (in dimen-
sionless and normalized form) by the following nonlinear evolution equation (NLEE)
[1, 2, 3]:

i∂zu+
1

2
∂2
τu+ |u|2u+ is∂τ (|u|2u) = −iΓ̃u+ iδ̆∂3

τu+
τ̃n
τ̃0
u∂τ (|u|2),(1)

where u is the slowly varying amplitude of the complex field envelope, z is the propa-
gation distance along the fiber length, τ is the time measured in a frame of reference

∗Received by the editors January 5, 1998; accepted for publication July 24, 1998; published
electronically May 7, 1999. This research was supported by the Alexander von Humboldt Foundation
and partially supported by the Russian Academy of Sciences.

http://www.siam.org/journals/sima/30-4/33201.html
†Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191011, Russia (kitaev@pdmi.

ras.ru, arthur@pdmi.ras.ru).

787



788 A. V. KITAEV AND A. H. VARTANIAN

moving with the pulse at the group velocity, s ∈R>0 governs the effects due to the
intensity dependence of the group velocity (self-steepening), Γ̃ is the intrinsic fiber

loss, δ̆ governs the effects of the third-order linear dispersion, and τ̃n/τ̃0 governs the
soliton self-frequency shift effect.

Since, under typical operating conditions, Γ̃, δ̆, and τ̃n/τ̃0 are small parameters
[1, 2, 3], a strategy to study the solutions of (1), for which the nonlinear effects
dominate the higher-order linear dispersive effect, is to set the right-hand side equal
to zero, thus obtaining the following NLEE (integrable in the sense of the inverse
scattering method (ISM) [5, 6, 7]):

i∂tu+
1

2
∂2
xu+ |u|2u+ is∂x(|u|2u) = 0,(2)

which hereafter is called the modified nonlinear Schrödinger equation (MNLSE) (the
physical variables z and τ have been mapped isomorphically onto the mathematical
t and x variables, which are standard in the ISM context) and to treat (1) as a non-
integrable perturbation of the MNLSE. From the above discussion, it is clear that
perturbations of multisoliton solutions of the MNLSE can be very important in the
physical context, related to optical fibers [1, 2, 3]. Since practical lasers excite not
only the soliton(ic) mode(s) but also an entire continuum of linear-like dispersive (ra-
diative) waves, to have physically meaningful and practically representative results,
it is necessary to investigate solutions of the MNLSE under general initial (launching,
in the optical fiber literature [1, 2, 3]) conditions, without any artificial restrictions
and/or constraints, which have both soliton(ic) and nonsoliton(ic) (continuum) com-
ponents: it is towards such a solution that the initial pulse launched into an optical
fiber is evolving asymptotically [8]. In physical terms, the pulse adjusts its width as
it propagates along the optical fiber to evolve into a (multi)soliton, and a part of the
pulse energy is shed in the form of dispersive waves in the process: normally, these
dispersive waves form a low-level broadband background radiation that accompanies
the (multi)soliton [1, 2, 3, 8]. From the physical point of view, therefore, it is im-
portant to understand how the continuum and the (near)soliton(s) interact and to
be able to derive an explicit functional form for this process. Since (2) is integrable
via the ISM, we can use one of the techniques developed in the framework of this
approach to solve the aforementioned problem; in particular, in this paper the matrix
Riemann–Hilbert (RH) factorization method is applied.

For several soliton-bearing equations, e.g., KdV, Landau–Lifshitz, NLS, sine-
Gordon and MKdV, it is known that the dominant (O(1)) asymptotic (t → ±∞)
effect of the continuous spectra on the multisoliton solutions is a shift in phase and
position of their constituent solitons [9, 10, 11, 12]: as will be shown in this paper,
an analogous, though analytically more complicated, situation takes place for the
MNLSE (the additional complexification occurs due to the nonstandard normaliza-
tion of the associated RH problem). While the abovementioned works deal only with
the leading-order (O(1)) asymptotic term, in this paper, for the MNLSE, not only
the leading-order, but the next-to-leading-order (O(t−1/2)) term as well is derived;
in particular, besides inducing an O(1) position and phase shift on the multisoliton
solution, this O(t−1/2) term represents the evolution of the continuum component
(dispersive wavetrain [1, 2, 3]) as well as the nontrivial interaction (overlap) of the
soliton and continuum components of the solution. It is worth mentioning that, even
though there have been several papers [13, 14] devoted to studying the soliton solutions
of the MNLSE, to the best of our knowledge, very little, if anything, was known about
its solution(s) for the class of nonreflectionless initial data until very recently [15]. In
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the framework of the ISM, an asymptotic analysis of the aforementioned solution for
the MNLSE can be divided into two stages: (1) the investigation of the continuum
(solitonless) component of the solution [16, 17, 18, 19, 20, 21]; and (2) the inclusion of
the (multi)soliton component via the application of a “dressing” procedure [22, 23] to
the continuum background. In this paper, the abovementioned asymptotic paradigm
is carried out systematically for the MNLSE: the results obtained in this paper are
formulated as Theorems 2.1–2.3.

This paper is organized as follows. In section 2, a matrix RH problem for the
solution of an NLEE gauge-equivalent to equation (2) is stated, and the results of this
paper are summarized as Theorems 2.1–2.3. In section 3, an extended RH problem
is formulated and shown to be equivalent to the original one stated in section 2, and
as t → +∞, it is shown that the solution of the extended RH problem converges,
modulo exponentially decreasing terms, to the solution of a model RH problem. In
section 4, the Beals–Coifman [24, 25] formulation for the solution of an RH problem on
an oriented contour is succinctly recapitulated, and the model RH problem is solved
asymptotically as t→+∞ for the Schwartz class of nonreflectionless generic potentials.
In section 5, a phase integral which is associated with the nonstandard normalization
of the abovementioned RH problem is evaluated asymptotically as t→+∞. Finally,
in section 6 the asymptotic analysis as t→−∞ is presented.

2. The RH problem and summary of results. In this section, the matrix RH
problem is stated, and the main results of the paper are formulated as Theorems 2.1–
2.3. Before doing so, however, it is necessary to introduce some notation and definitions
which are used throughout the paper.

Notational conventions.
(1) eαβ , α, β∈{1, 2}, denote 2×2 matrices with entry 1 in (αβ), (eαβ)ij :=δαiδβj ,

i, j∈{1, 2}, where δij is the Kronecker delta;
(2) I :=e11+e22 =diag(1, 1) denotes the 2×2 identity matrix;
(3) σ3 :=e11−e22 =diag(1,−1), σ− :=e21, σ+ :=e12, and σ1 :=σ−+σ+;
(4) for a scalar $ and a 2×2 matrix Υ, $ad(σ3)Υ:=$σ3Υ$−σ3 ;
(5) (•) denotes complex conjugation of (•);
(6) M2(C) denotes the 2× 2 complex matrix algebra with the following inner

product ((·,·):M2(C)×M2(C)→C), ∀ a, b ∈M2(C), (a, b) := tr(ba), and (for
a∈M2(C)) the norm on M2(C) is defined as |a| :=√(a,a);

(7) Lp(D;M2(C)) := {f ; f :D →M2(C), ||f ||Lp(D;M2(C)) := (
∫
D
|f(%)|p|d%|)1/p <

∞, p∈{1, 2}};
(8) L∞(D;M2(C)) := {g; g:D → M2(C), ||g||L∞(D;M2(C)) := max1≤i,j≤2 sup%∈D
|gij(%)|<∞};

(9) for D an unbounded domain of R∪iR, let S(D;C) (resp., S(D;M2(C))) denote
the Schwartz class on D, i.e., the class of smooth C-valued (resp., M2(C)-
valued ) functions f(x):D→C (resp., F (x):D→M2(C)) which together with
all derivatives tend to zero faster than any positive power of |x|−1 as |x|→∞.

In this paper, as in [15], along with the MNLSE, the following NLEEs are studied:

i∂tQ+ ∂2
xQ+ iQ2∂xQ+

1

2
Q|Q|4 = 0,(3)

with initial condition Q(x,0)∈S(R;C), and the derivative nonlinear Schrödinger equa-
tion (DNLSE),

i∂tq + ∂2
xq − i∂x(|q|2q) = 0,(4)
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with initial condition q(x,0)∈S(R;C). To recall the relations between the solutions of
these NLEEs, the following propositions are formulated.

Proposition 2.1 (see [26]). The necessary and sufficient condition for the com-
patibility of the following system of linear ODEs (the Lax pair ) for arbitrary λ∈C :

∂xΨ(x, t;λ) = U(x, t;λ)Ψ(x, t;λ), ∂tΨ(x, t;λ) = V (x, t;λ)Ψ(x, t;λ),(5)

where

U(x, t;λ)=−iλ2σ3+λ(Qσ−+Qσ+)− i
2
|Q|2σ3,

V (x, t;λ) = 2λ2U(x, t;λ)−iλ((∂xQ)σ−−(∂xQ)σ+)+

(
i

4
|Q|4+

1

2
(Q∂xQ−Q∂xQ)

)
σ3,

is that Q(x, t) satisfies (3).
Proof. Equation (3) is the Frobenius compatibility condition for system (5).
Proposition 2.2. Let Q(x, t) be a solution of (3).Then there exists a correspond-

ing solution of system (5) such that Ψ(x, t; 0) is a diagonal matrix.

Proof. For given Q(x, t), let Ψ̂(x, t;λ) be a solution of system (5) which exists in

accordance with Proposition 2.1. Setting λ=0 in system (5), one gets that Ψ̂(x, t; 0)=

exp{− iσ3

2

∫ x
x0
|Q(%, t)|2d%}K̂(λ), for some x0∈R and nondegenerate matrix K̂(λ) which

is independent of x and t. The function Ψ(x, t;λ) :=Ψ̂(x, t;λ)(K̂(λ))−1 is the solution
of system (5) which is diagonal at λ=0.

Proposition 2.3 (see [27]). Let Q(x, t ) be a solution of (3) and Ψ(x, t;λ) the cor-
responding solution of system (5) given in Proposition 2.2. Set Ψq(x, t;λ) :=Ψ−1(x, t; 0)
Ψ(x, t;λ). Then

∂xΨq(x, t;λ) = Uq(x, t;λ)Ψq(x, t;λ), ∂tΨq(x, t;λ) = Vq(x, t;λ)Ψq(x, t;λ),(6)

where

Uq(x, t;λ) = −iλ2σ3 + λ(qσ− + qσ+),(7)

Vq(x, t;λ) =

( −2iλ4 − iλ2|q|2 2λ3q + iλ∂xq + λ|q|2q
2λ3q − iλ∂xq + λ|q|2q 2iλ4 + iλ2|q|2

)
,(8)

with q(x, t ) defined by

q(x, t) := Q(x, t)((Ψ−1(x, t; 0))11)2(9)

being the “Kaup–Newell” [28] Lax pair for the DNLSE.
Proof. Differentiating Ψq(x, t;λ) := Ψ−1(x, t; 0)Ψ(x, t;λ) with respect to x and t

and using the fact that Ψ(x, t; 0) = exp{− iσ3

2

∫ x
x0
|Q(%, t)|2d%}, for some x0 ∈ R, and

Ψ(x, t;λ) satisfy system (5) for λ= 0 and λ∈C\{0}, resp., defining q(x, t) as in (9),
one gets that Ψq(x, t;λ) satisfies system (6), where Uq(x, t;λ) and Vq(x, t;λ) are given
by (7) and (8): (4) is the Frobenius compatibility condition for system (6).

Proposition 2.4. If q(x, t ) is a solution of the DNLSE such that q(x,0)∈S(R;
C), then

u(x, t) :=
1√
2s

exp

{
i

s

(
x− t

2s

)}
q

(
t

s
− x, t

2

)
(10)
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Fig. 1. Continuous spectrum Γ̂.

satisfies the MNLSE with initial condition u(x,0)∈S(R;C).
Proof. The proof is by direct substitution.
Remark 2.1. A convention is now adopted which is adhered to strictly throughout

the paper: for each segment of an oriented contour, according to the given orientation,
the “+” side is to the left and the “−” side is to the right as one traverses the contour in
the direction of the orientation; hence, (•)+ and (•)− denote, resp., the nontangential
limits (boundary values) of (•) on an oriented contour from the “+” (left) and “−”
(right) sides.

Before stating the matrix RH problem which is investigated asymptotically (as
t→±∞) in this paper (see Lemma 2.1), it will be convenient to introduce the following

notation: let Zd :=∪Ni=1({±λi}∪{±λi}) and Γ̂ := {λ; =(λ2) = 0} (oriented as in Fig-
ure 1) denote, resp., the discrete and continuous spectra of the operator ∂x−U(x, t;λ),

and σ£ :=Spec(∂x−U)=Zd∪Γ̂ (Zd∩Γ̂=∅).
Lemma 2.1. Let Q(x, t ), as a function of x,∈S(R;C). Set

m(x, t;λ) :=Ψ(x, t;λ) exp{i(λ2x+2λ4t)σ3}.

Then (1) the bounded discrete set Zd is finite (card(Zd)<∞); (2) the poles of m(x, t;λ)
are simple; (3) the first (resp., second ) column of m(x, t;λ) has poles at {±λi}Ni=1

(resp., {±λi}Ni=1); and (4) for all t∈R the function m(x, t;λ):C\(Zd∪Γ̂)→ SL(2,C)
solves the following RH problem:

a. m(x, t;λ) is meromorphic for all λ∈C\Γ̂;
b. m(x, t;λ) satisfies the following jump conditions:

m+(x, t;λ) = m−(x, t;λ)v(x, t;λ), λ∈ Γ̂,

where

v(x, t;λ) := exp{−i(λ2x+2λ4t)ad(σ3)}
(

1− r(λ)r(λ) r(λ)

−r(λ) 1

)
,

r(λ), the reflection coefficient associated with the direct scattering problem for

the operator ∂x−U(x, t;λ), satisfies r(−λ)=−r(λ), and r(λ)∈S(Γ̂;C);
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c. for the simple poles of m(x, t;λ) at {±λj}Nj=1 and {±λj}Nj=1, there exist nilpo-

tent matrices {vj(x, t)σ−}Nj=1 and {vj(x, t)σ+}Nj=1, resp., such that the resi-
dues, for 1≤j≤N, satisfy the (Beals–Coifman [24, 25]) polar conditions

res(m(x, t;λ);λj) = lim
λ→λj

m(x, t;λ)vj(x, t)σ−,

res(m(x, t;λ);−λj) = −σ3res(m(x, t;λ);λj)σ3,

res(m(x, t;λ);λj ) = lim
λ→λj

m(x, t;λ)vj(x, t)σ+,

res(m(x, t;λ);−λj ) = −σ3res(m(x, t;λ);λj )σ3,

where vj(x, t ) :=Cj exp{2i(λ2
jx+2λ4

j t)}, and Cj are complex constants asso-
ciated with the direct scattering problem for the operator ∂x−U(x, t;λ);

d. as λ→∞, λ∈C\(Zd∪Γ̂),

m(x, t;λ) = I +O(λ−1).

Proof. Conditions (1)–(4) follow from the results given in [15, 24, 29, 30].
Lemma 2.2. Let ||r||L∞(R;C) := supλ∈R |r(λ)|< 1. Then (1) the RH problem for-

mulated in Lemma 2.1 is uniquely solvable; (2) Ψ(x, t;λ) = m(x, t;λ) exp{−i(λ2x+
2λ4t)σ3} is the solution of system (5) with

Q(x, t) := 2i lim
λ→∞

(λm(x, t;λ))12;(11)

(3) the function Q(x, t) defined by (11) satisfies equation (3), and

q(x, t) := Q(x, t)((m−1(x, t; 0))11)2(12)

satisfies the DNLSE; and (4) m(x, t;λ) possesses the following symmetry reductions:

m(x, t;λ)=σ3m(x, t;−λ)σ3 and m(x, t;λ)=σ1m(x, t;λ)σ1.

If r(λ)∈ S(Γ̂;C), then, for any t∈R, Q(x, t) (resp., q(x, t)), as a function of x,
∈S(R;C).

Proof. The solvability of the RH problem (formulated in Lemma 2.1) is a con-

sequence of Theorem 9.3 in [31] and the vanishing winding number of 1−r(λ)r(λ),∫
Γ̂
d(arg(1−r(λ)r(λ))) =

∑
l∈{><}s(l)n(l) = 0, where s(>) = −s(<) = 1, and n(>< ) :=

card({λj ; =(λ2
j )
>
<0}); items (2) and (4) can be verified through straightforward cal-

culations, and the fact that q(x, t ) (equation (12)) satisfies the DNLSE follows from
Proposition 2.3 and the definition of m(x, t;λ).

Remark 2.2. In fact, in this paper, the solvability of the RH problem for ||r||L∞(R;C)

< 1 is proved for all sufficiently large |t|: the solvability of the RH problem for
||r||L∞(Γ̂)

< 1 in the solitonless sector, Zd≡∅, for all sufficiently large |t| was proved

in [15]. Note: the condition ||r||L∞(Γ̂)
<1, which appears in [15], is restrictive and can

be replaced by the weaker condition ||r||L∞(R;C)<1.
Before summarizing the main results of this paper, namely, Theorems 2.1–2.3,

some further preamble is required: (1) the Kaup–Newell parametrization [28] is adopted
for the discrete eigenvalues, λj :=∆j exp{ i2 (π−γj)}, ∆j>0, γj ∈(0, π), 1≤j≤N, and
λ2
j :=ξj+iηj , where ξj=−∆2

j cos γj and ηj=∆2
j sin γj (note that, with this parametriza-

tion, {±λi}Ni=1 (resp., {±λi}Ni=1) lie in the 1st and 3rd quadrants (resp., 2nd and 4th
quadrants ) of the complex plane of the auxiliary spectral parameter, λ); and (2) it is
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supposed throughout that ξi 6=ξj , 1≤ i 6=j≤N, so that it is convenient to choose the fol-
lowing enumeration for the points of the discrete spectrum (ordering of the solitons),
ξ1> · · ·>ξn> · · ·>ξN .

Remark 2.3. Even though the “symbol” (“notation”) C(z) appearing in the
various final error estimations is not the same and should be properly denoted as C1(z),
C2(z), etc., the simplified “notation” C(z) is retained throughout since the principal
concern here is not its explicit functional z-dependence but rather the functional
class(es) to which it belongs. Throughout the paper, M ∈R>0 is a fixed constant.

Remark 2.4. In Theorems 2.1–2.3 (see below), one should keep the upper signs
as t→+∞ and the lower signs as t→−∞ everywhere.

Theorem 2.1. Let m(x, t;λ) be the solution of the RH problem formulated in
Lemma 2.1 with the condition ||r||L∞(R;C) < 1 and Q(x, t) be defined by (11). Then

as t→±∞ and x→∓∞ such that λ0 := 1
2

√−xt >M and (x, t) ∈ Ωn := {(x, t); x−
4t∆2

n cos γn := ln(t)=O(1)}, for those γn∈(π2 , π),

Q(x, t) = Q±as(x, t) +O
(
C(λ0) ln |t|

t

)
,(13)

where

Q±as(x, t) := QS±(x, t) +QC±(x, t) +QSC± (x, t),(14)

with

QS±(x, t) =
2i∆n sin(γn) exp{ iγn2 } exp{2i(∆2

n(2t∆2
n + ln(t) cos γn) + φ̂±n )}

cosh( iγn2 + 2∆2
n sin(γn)ln(t)− x̂±n )

,(15)

φ̂±n = −1

2
argCn + arg δ±(λn;λ0) +

∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
,(16)

x̂±n = − ln(∆n sin γn) + ln|Cn| − 2 ln|δ±(λn;λ0)|

+ 2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)
,(17)

δ+(λ;z) = exp

{∫ z

0

% ln(1− |r(%)|2)

(%2 − λ2)

d%

πi
−
∫ ∞

0

% ln(1 + |r(i%)|2)

(%2 + λ2)

d%

πi

}
,(18)

δ−(λ;z) = exp

{∫ ∞
z

% ln(1− |r(%)|2)

(%2 − λ2)

d%

πi

}
,(19)

QC±(x, t) =

√
±ν(λ0)

2λ2
0t

exp

{
i

(
φ±(λ0) + Φ̂±(λ0; t) +

π

2

)}
,(20)

ν(z) = − 1

2π
ln(1− |r(z)|2),(21)
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φ+(z) =
1

π

∫ z

0

ln|%2 − z2|d ln(1− |r(%)|2)

− 1

π

∫ ∞
0

ln|%2 + z2|d ln(1 + |r(i%)|2),(22)

φ−(z) =
1

π

∫ ∞
z

ln|%2 − z2|d ln(1− |r(%)|2),(23)

Φ̂±(λ0; t) = 4λ4
0t∓ ν(λ0) ln|t| ± arg Γ(iν(λ0)) + arg r(λ0)∓ 3ν(λ0) ln 2

+ (2± 1)
π

4
+ 2

∑
l∈L±

arg

(
(λ0 − λl)(λ0 + λl)

(λ0 − λl)(λ0 + λl)

)
,(24)

QSC± (x, t) = −4(Ξ±)2g±n |g±n |
ηn

√
±ν(λ0)

2λ2
0t
{exp(iϕ±n (λ0; t))

+ 2i cot(γn) cos(ϕ±n (λ0; t))},(25)

g±n := |g±n | exp{i arg g±n },

|g±n | = |Cn||δ±(λn;λ0)|−2 exp{−2∆2
n sin(γn)ln(t)}

· exp

{
2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)}
,(26)

arg g±n = argCn − 2 arg δ±(λn;λ0) + 2
∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
− 2∆2

n(2t∆2
n + ln(t) cos γn),(27)

Ξ± =
exp{ iγn2 } exp{2∆2

n sin(γn)ln(t)− x̂±n }
2 cosh( iγn2 + 2∆2

n sin(γn)ln(t)− x̂±n )
,(28)

ϕ±n (λ0; t) := arg g±n + φ±(λ0) + Φ̂±(λ0; t),(29)∑
l∈L+

:=
∑N
l=n+1,

∑
l∈L− :=

∑n−1
l=1 ,Γ(·) is the gamma function [32], and C(λ0) ∈

S(R>M ;C), and, as t→±∞ and x→±∞ such that µ0 := 1
2

√
x
t >M and (x, t)∈fn :=

{(x, t); −x+4t∆2
n cos γn :=−ln(t)=O(1)}, for those γn∈(0, π2 ),

Q(x, t) = Q±′as (x, t) +O
(
C(µ0) ln |t|

t

)
,(30)

where

Q±′as (x, t) := QS ′± (x, t) +QC ′± (x, t) +QSC ′± (x, t),(31)

with

QS ′± (x, t) =
2∆n sin(γn) exp{− iγn2 } exp{2i(∆2

n(2t∆2
n + ln(t) cos γn) + φ̂±′n )}

sinh( iγn2 + 2∆2
n sin(γn)ln(t) + x̂±′n )

,(32)
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φ̂±′n = −1

2
argCn + arg δ±[ (λn;µ0)−

∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
,(33)

x̂±′n = − ln(∆n sin γn) + ln|Cn| − 2 ln|δ±[ (λn;µ0)|

+ 2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)
,(34)

δ+
[ (λ;z) = exp

{∫ z

0

% ln(1 + |r(i%)|2)

(%2 − λ2)

d%

πi
−
∫ ∞

0

% ln(1− |r(%)|2)

(%2 + λ2)

d%

πi

}
,(35)

δ−[ (λ;z) = exp

{∫ ∞
z

% ln(1 + |r(i%)|2)

(%2 − λ2)

d%

πi

}
,(36)

QC ′± (x, t) =

√
∓ν(iµ0)

2µ2
0t

exp{i(φ±′(µ0) + Φ̂±′(µ0; t) + π)},(37)

ν(iz) = − 1

2π
ln(1 + |r(iz)|2),(38)

φ+′(z) =
1

π

∫ z

0

ln|%2 − z2|d ln(1 + |r(i%)|2)

− 1

π

∫ ∞
0

ln|%2 + z2|d ln(1− |r(%)|2),(39)

φ−′(z) =
1

π

∫ ∞
z

ln|%2 − z2|d ln(1 + |r(i%)|2),(40)

Φ̂±′(µ0; t) = 4µ4
0t∓ ν(iµ0) ln|t| ± arg Γ(iν(iµ0)) + arg r(iµ0)∓ 3ν(iµ0) ln 2

− (2∓ 1)
π

4
− 2

∑
l∈L±

arg

(
(µ0 − λl)(µ0 + λl)

(µ0 − λl)(µ0 + λl)

)
,(41)

QSC ′± (x, t)= −4i(Ξ±′)2g±′n |g±′n |
ηn

√
∓ν(iµ0)

2µ2
0t
{exp(iϕ±′n (µ0; t))

−2i cot(γn) cos(ϕ±′n (µ0; t))},(42)

g±′n := |g±′n | exp{i arg g±′n },

|g±′n | = |Cn||δ±[ (λn;µ0)|−2 exp{2∆2
n sin(γn)ln(t)}

· exp

{
2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)}
,(43)
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arg g±′n = argCn − 2 arg δ±[ (λn;µ0)− 2
∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
− 2∆2

n(2t∆2
n + ln(t) cos γn),(44)

Ξ±′ = −exp{− iγn2 } exp{−2∆2
n sin(γn)ln(t)− x̂±′n }

2 sinh( iγn2 + 2∆2
n sin(γn)ln(t) + x̂±′n )

,(45)

ϕ±′n (µ0; t) := arg g±′n + φ±′(µ0) + Φ̂±′(µ0; t),(46)

and C(µ0)∈S(R>M ;C).
Theorem 2.2. Let m(x, t;λ) be the solution of the RH problem formulated in

Lemma 2.1 with the condition ||r||L∞(R;C)<1 and q(x, t), the solution of the DNLSE
(equation (4)) be defined by (12) in terms of the function Q(x, t) given in Theorem 2.1.
Then as t → ±∞ and x → ∓∞ such that λ0 := 1

2

√−xt > M and (x, t) ∈ Ωn :=
{(x, t); x−4t∆2

n cos γn := ln(t)=O(1)}, for those γn∈(π2 , π),

q(x, t) = Q±as(x, t) exp{i arg q±as(x, t)}+O
(
C(λ0)(ln |t|)2

t

)
,(47)

where Q±as(x, t) are given in Theorem 2.1, (14)–(29),

arg q±as(x, t) = −4
∑
l∈L±

γl + 4 arctan(ηn|g±n |−2 + cot γn) + Y±(λ0)

+ 4

√
±ν(λ0)

2λ2
0t

|g±n | sin(γn)(|g±n |2 cos(ϕ±n (λ0; t)− γn)− ηn sin(γn) cos(ϕ±n (λ0; t)))

((ηn sin γn + |g±n |2 cos γn)2 + |g±n |4 sin2γn)

−
√
±2

t

∫ ∞
λ0

√
ν(µ)

µ2

(
<{R±(0)} cos(Θ̂±(µ; t)) + ={R±(0)} sin(Θ̂±(µ; t))

)dµ
π
,(48)

Y+(z) =
2

π

∫ z

0

ln(1− |r(%)|2)

%
d%− 2

π

∫ ∞
0

ln(1 + |r(i%)|2)

%
d%,

Y−(z) =
2

π

∫ ∞
z

ln(1− |r(%)|2)

%
d%,(49)

R±(0) :=

(
d(r(z)|z∈R)

dz

∣∣∣∣
z=0

− d(r(z)|z∈iR)

dz

∣∣∣∣
z=0

)
exp

{
4i
∑
l∈L±

γl

}
,(50)

Θ̂±(λ0; t) := Φ̂±(λ0; t) + φ±(λ0) + Y±(λ0),(51)

with C(λ0)∈S(R>M ;C), and, as t→±∞ and x→±∞ such that µ0 := 1
2

√
x
t >M and

(x, t)∈fn :={(x, t); −x+4t∆2
n cos γn :=−ln(t)=O(1)}, for those γn∈(0, π2 ),

q(x, t) = Q±′as (x, t) exp{i arg q±′as (x, t)}+O
(
C(µ0)(ln |t|)2

t

)
,(52)

where Q±′as (x, t) are given in Theorem 2.1, (31)–(46),
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arg q±′as (x, t) = 4
∑
l∈L±

γl + 4 arctan(ηn|g±′n |−2 − cot γn) + Y ′±(µ0)

− 4

√
∓ν(iµ0)

2µ2
0t

|g±′n | sin(γn)(|g±′n |2 cos(ϕ±′n (µ0; t) + γn) + ηn sin(γn) cos(ϕ±′n (µ0; t)))

((ηn sin γn − |g±′n |2 cos γn)2 + |g±′n |4 sin2γn)

−
√
±2

t

∫ ∞
µ0

√−ν(iµ)

µ2

·
(
<{R±′(0)} cos(Θ̂±′(µ; t)) + ={R±′(0)} sin(Θ̂±′(µ; t))

)dµ
π
,(53)

Y ′+(z) =
2

π

∫ z

0

ln(1 + |r(i%)|2)

%
d%− 2

π

∫ ∞
0

ln(1− |r(%)|2)

%
d%,

Y ′−(z) =
2

π

∫ ∞
z

ln(1 + |r(i%)|2)

%
d%,(54)

R±′(0) :=

(
d(r(z)|z∈R)

dz

∣∣∣∣
z=0

− d(r(z)|z∈iR)

dz

∣∣∣∣
z=0

)
exp

{
− 4i

∑
l∈L±

γl

}
,(55)

Θ̂±′(µ0; t) := Φ̂±′(µ0; t) + φ±′(µ0) + Y ′±(µ0),(56)

and C(µ0)∈S(R>M ;C).

Theorem 2.3. Let m(x, t;λ) be the solution of the RH problem formulated in
Lemma 2.1 with the condition ||r||L∞(R;C)<1 and u(x, t), the solution of the MNLSE
(equation (2)), be defined by (10) in terms of the function q(x, t) given in Theorem 2.2.

Then as t→±∞ and x→±∞ such that λ̂0 :=
√

1
2 (xt − 1

s )>M, xt >
1
s , s∈R>0, and

(x, t)∈ Ω̃n :={(x, t); −x+ t( 1
s−2∆2

n cos γn) := l̂n(t)=O(1)}, for those γn∈(π2 , π),

u(x, t) = v±as(x, t)w
±
as(x, t) +O

(
C(λ̂0)(ln |t|)2

t

)
,(57)

where

v±as(x, t) := vS±(x, t) + vC±(x, t) + vSC± (x, t),(58)

with

vS±(x, t) =

√
2i∆n sin(γn) exp{ iγn2 } exp{2i(∆2

n(t∆2
n + l̂n(t) cos γn) + φ̃±n )}

√
s cosh( iγn2 + 2∆2

n sin(γn)l̂n(t)− x̃±n )
,(59)

φ̃±n = −1

2
argCn + arg δ±(λn; λ̂0) +

∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
,(60)
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x̃±n = − ln(∆n sin γn) + ln|Cn| − 2 ln|δ±(λn; λ̂0)|

+ 2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)
,(61)

vC±(x, t) =

√
±ν(λ̂0)

2λ̂2
0st

exp
{
i
(
φ±(λ̂0) + Φ̃±(λ̂0; t) +

π

2

)}
,(62)

Φ̃±(λ̂0; t) = 2λ̂4
0t∓ ν(λ̂0) ln|t| ± arg Γ(iν(λ̂0)) + arg r(λ̂0)∓ 2ν(λ̂0) ln 2

+ (2± 1)
π

4
+ 2

∑
l∈L±

arg

(
(λ̂0 − λl)(λ̂0 + λl)

(λ̂0 − λl)(λ̂0 + λl)

)
,(63)

vSC± (x, t) = −4(Ξ̃±)2g̃±n |g̃±n |
ηn

√
±ν(λ̂0)

2λ̂2
0st
{exp(iϕ̃±n (λ̂0; t))

+ 2i cot(γn) cos(ϕ̃±n (λ̂0; t))},(64)

g̃±n := |g̃±n | exp{i arg g̃±n },
|g̃±n | = |Cn||δ±(λn; λ̂0)|−2 exp{−2∆2

n sin(γn)l̂n(t)}

· exp

{
2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)}
,(65)

arg g̃±n = argCn − 2 arg δ±(λn; λ̂0) + 2
∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
− 2∆2

n(t∆2
n + l̂n(t) cos γn),(66)

Ξ̃± =
exp{ iγn2 } exp{2∆2

n sin(γn)l̂n(t)− x̃±n }
2 cosh( iγn2 + 2∆2

n sin(γn)l̂n(t)− x̃±n )
,(67)

ϕ̃±n (λ̂0; t) := arg g̃±n + φ±(λ̂0) + Φ̃±(λ̂0; t),(68)

w±as(x, t)

:= exp

{
i

(
− 4

∑
l∈L±

γl + 4 arctan(ηn|g̃±n |−2 + cot γn) + Y±(λ̂0) +
t

2s2
(4λ̂2

0s+ 1)

+ 4

√
±ν(λ̂0)

λ̂2
0t

|g̃±n | sin(γn)(|g̃±n |2 cos(ϕ̃±n (λ̂0; t)− γn)− ηn sin(γn) cos(ϕ̃±n (λ̂0; t)))

((ηn sin γn + |g̃±n |2 cos γn)2 + |g̃±n |4 sin2γn)

− 2√±t
∫ ∞
λ̂0

√
ν(µ)

µ2

(
<{R±(0)} cos(Θ̃±(µ; t)) + ={R±(0)} sin(Θ̃±(µ; t))

)dµ
π

)}
,(69)

Θ̃±(λ̂0; t) := Φ̃±(λ̂0; t) + φ±(λ̂0) + Y±(λ̂0),(70)
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and C(λ̂0) ∈ S(R>M ;C), and, as t → ±∞ and x → ∓∞ or ±∞ such that µ̂0 :=√
1
2 ( 1
s− x

t ) >M, x
t <

1
s , s ∈ R>0, and (x, t) ∈ f̃n := {(x, t); x − t( 1

s −2∆2
n cos γn) :=

−l̂n(t)=O(1)}, for those γn∈(0, π2 ),

u(x, t) = v±′as (x, t)w±′as (x, t) +O
(
C(µ̂0)(ln |t|)2

t

)
,(71)

where

v±′as (x, t) := vS ′± (x, t) + vC ′± (x, t) + vSC ′± (x, t),(72)

with

vS ′± (x, t) =

√
2∆n sin(γn) exp{− iγn2 } exp{2i(∆2

n(t∆2
n + l̂n(t) cos γn) + φ̃±′n )}

√
s sinh( iγn2 + 2∆2

n sin(γn)l̂n(t) + x̃±′n )
,(73)

φ̃±′n = −1

2
argCn + arg δ±[ (λn; µ̂0)−

∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
,(74)

x̃± ′n = − ln(∆n sin γn) + ln|Cn| − 2 ln|δ±[ (λn; µ̂0)|

+ 2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)
,(75)

vC ′± (x, t) =

√
∓ν(iµ̂0)

2µ̂2
0st

exp{i(φ±′(µ̂0) + Φ̃±′(µ̂0; t) + π)},(76)

Φ̃±′(µ̂0; t) = 2µ̂4
0t∓ ν(iµ̂0) ln|t| ± arg Γ(iν(iµ̂0)) + arg r(iµ̂0)∓ 2ν(iµ̂0) ln 2

− (2∓ 1)
π

4
− 2

∑
l∈L±

arg

(
(µ̂0 − λl)(µ̂0 + λl)

(µ̂0 − λl)(µ̂0 + λl)

)
,(77)

vSC ′± (x, t)=−4i(Ξ̃±′)2g̃±′n |g̃±′n |
ηn

√
∓ν(iµ̂0)

2µ̂2
0st
{exp(iϕ̃±′n (µ̂0; t))

− 2i cot(γn) cos(ϕ̃±′n (µ̂0; t))},(78)

g̃±′n := |g̃±′n | exp{i arg g̃±′n },
|g̃±′n | = |Cn||δ±[ (λn; µ̂0)|−2 exp{2∆2

n sin(γn)l̂n(t)}

· exp

{
2
∑
l∈L±

ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)}
,(79)

arg g̃±′n = argCn − 2 arg δ±[ (λn; µ̂0)− 2
∑
l∈L±

arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
− 2∆2

n(t∆2
n + l̂n(t) cos γn),(80)

Ξ̃±′ = −exp{− iγn2 } exp{−2∆2
n sin(γn)l̂n(t)− x̃±′n }

2 sinh( iγn2 + 2∆2
n sin(γn)l̂n(t) + x̃±′n )

,(81)
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ϕ̃±′n (µ̂0; t) := arg g̃±′n + φ±′(µ̂0) + Φ̃±′(µ̂0; t),(82)

w±′as (x, t)

:= exp

{
i

(
4
∑
l∈L±

γl + 4 arctan(ηn|g̃±′n |−2 − cot γn) + Y ′±(µ̂0) +
t

2s2
(−4µ̂2

0s+ 1)

−4

√
∓ν(iµ̂0)

µ̂2
0t

|g̃±′n | sin(γn)(|g̃±′n |2 cos(ϕ̃±′n (µ̂0; t) + γn) + ηn sin(γn) cos(ϕ̃±′n (µ̂0; t)))

((ηn sin γn − |g̃±′n |2 cos γn)2 + |g̃±′n |4 sin2γn)

− 2√±t
∫ ∞
µ̂0

√−ν(iµ)

µ2

(
<{R±′(0)} cos(Θ̃±′(µ; t))

+={R±′(0)} sin(Θ̃±′(µ; t))
)dµ
π

)}
,(83)

Θ̃±′(µ̂0; t) := Φ̃±′(µ̂0; t) + φ±′(µ̂0) + Y ′±(µ̂0),(84)

and C(µ̂0)∈S(R>M ;C).
One possible application of the asymptotic results obtained in Theorems 2.1–

2.3 is associated with the so-called “soliton scattering,” namely, the calculation of
the position and phase shifts of the nth soliton (1≤ n≤N) for Q(x, t), q(x, t), and
u(x, t) in the presence of the continuous spectrum: other physical applications of these
asymptotic results include, for example, the calculation of the temporal and spectral
intensities for the solutions of the DNLSE and MNLSE.

Corollary 2.1.
(A) Q(x, t) :

∆xQ
S

n := (2ηn)−1(x̂+
n − x̂−n )

= η−1
n


N∑
l=1
6=n

sgn(l − n) ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)
−ln

(|δ+(λn;λ0)|
|δ−(λn;λ0)|

),
∆φQ

S
n := 2(φ̂+

n − φ̂−n )

= 2


N∑
l=1
6=n

sgn(l − n) arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
+arg

(
δ+(λn;λ0)

δ−(λn;λ0)

),
∆xQ

S ′
n := (2ηn)−1(x̂+′

n − x̂−′n )

= η−1
n


N∑
l=1
6=n

sgn(l − n) ln

(|λn − λl||λn + λl|
|λn − λl||λn + λl|

)
−ln

(
|δ+
[ (λn;µ0)|
|δ−[ (λn;µ0)|

),
∆φQ

S ′
n := 2(φ̂+′

n − φ̂−′n )

= −2


N∑
l=1
6=n

sgn(l − n) arg

(
(λn − λl)(λn + λl)

(λn − λl)(λn + λl)

)
−arg

(
δ+
[ (λn;µ0)

δ−[ (λn;µ0)

);
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(B) q(x, t) (DNLSE):

∆xq
S
n = ∆xQ

S
n ,

∆φq
S
n = ∆φQ

S
n − 4

N∑
l=1
6=n

sgn(l − n)γl + Y+(λ0)− Y−(λ0),

∆xq
S ′
n = ∆xQ

S ′
n ,

∆φq
S ′
n = ∆φQ

S ′
n + 4

N∑
l=1
6=n

sgn(l − n)γl + Y ′+(µ0)− Y ′−(µ0);

(C) u(x, t) (MNLSE):

∆xu
S
n = ∆xQ

S
n |λ0→λ̂0

,

∆φu
S
n = ∆φq

S
n |λ0→λ̂0

,

∆xu
S ′
n = ∆xQ

S ′
n |

µ0→µ̂0
,

∆φu
S ′
n = ∆φq

S ′
n |µ0→µ̂0

.

Proof. The proof follows from the definition of soliton position and phase shifts
given in [4] and Theorems 2.1–2.3, equations (16), (17), (33), (34), (48), (53), (60),
(61), (69), (74), (75), and (83).

Remark 2.5. The expressions for the soliton phase shifts given in Corollary 2.1,

namely, ∆φQ
S

n , ∆φQ
S ′

n , ∆φq
S
n , ∆φq

S ′
n , ∆φu

S
n , and ∆φu

S ′
n , 1≤n≤N, are to be under-

stood mod(2π).

Remark 2.6. For the asymptotics of the C-valued functions Q(x, t), q(x, t), and
u(x, t), one must actually consider four different cases, depending, resp., on the
quadrant of the (x, t)-plane. In this paper, the proof of the asymptotic expansions
for Q(x, t) and q(x, t) (resp., u(x, t)) is presented for the cases (x, t)→ (∓∞,±∞)

(resp., (x, t)→ (±∞,±∞)) such that λ0 > M and (x, t) ∈ Ωn (resp., λ̂0 > M and

(x, t)∈ Ω̃n) for those γn ∈ (π2 ,π) : the results for the remaining domains of the (x, t)-
plane are obtained analogously. If the conditions on γn stated in Theorems 2.1–2.3 are
violated, then (x, t)∈{R2 \Ωn,R2 \ Ω̃n,R2 \fn,R2 \ f̃n}, but the asymptotic results
stated still remain valid although the second terms on the right-hand sides of the
asymptotic expansions become the leading-order terms of the corresponding asymp-
totic expansions, while the remaining terms are exponentially small and negligible
with respect to the given error estimations.

3. The model RH problem. In order to simplify the asymptotic analysis of
the original RH problem formulated in Lemma 2.1, a simpler, model RH problem (see
Lemma 3.3) is derived in this section. As an intermediate step towards the formulation
of the model RH problem, it will be convenient to derive an “extended” RH problem
(see Lemma 3.2): the general idea pertaining to the transformations from the original
RH problem to the model one is elucidated in the paragraph following Lemma 3.1
(see below).
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Proposition 3.1 (see [15]). In the solitonless sector (Zd ≡ ∅), as t→+∞ and
x→−∞ such that λ0 := 1

2

√−xt >M,

m(x, t;λ) = ∆(λ) +O
(
C(λ0)√

t

)
,

where ∆(λ) :=(δ+(λ;λ0))σ3 ,

δ+(λ;λ0) =

((
λ− λ0

λ

)(
λ+ λ0

λ

))iν
exp

 ∑
l∈{±}

(ρl(λ) + ρ̂l(λ))

 ,

ρ±(λ) =
1

2πi

∫ ±λ0

0

ln

(
1− |r(ς)|2

1− |r(λ0)|2
)

dς

(ς − λ)
, ρ̂±(λ) =

∫ i0

±i∞

ln(1− r(ς)r(ς))
(ς − λ)

dς

2πi
,

ν := ν(λ0) is given by (21), ||(δ+(·;λ0))±1||L∞(C;C) := supλ∈C |(δ+(λ;λ0))±1| < ∞,
(δ+(±λ;λ0))−1 = δ+(λ;λ0), the principal branch of the logarithmic function is taken,
ln(µ−λ) :=ln|µ−λ|+i arg(µ−λ), arg(µ−λ)∈(−π, π), and C(λ0)∈S(R>M ;M2(C)).

Remark 3.1. For notational convenience, until the end of section 5, all explicit
x, t dependencies are suppressed, except where absolutely necessary, and δ+(λ;λ0) :=
δ(λ).

Lemma 3.1. There exists a unique solution m∆(λ):C\(Zd∪Γ̂)→SL(2,C) of the
following RH problem:

1. m∆(λ) is meromorphic for all λ∈C\Γ̂,
2.

m∆
+(λ) = m∆

−(λ)v∆(λ), λ ∈ Γ̂,

where

v∆(λ) = e−iθ(λ)ad(σ3)

(
(1− r(λ)r(λ))δ−(λ)(δ+(λ))−1 r(λ)δ−(λ)δ+(λ)

−r(λ)(δ−(λ))−1(δ+(λ))−1 (δ−(λ))−1δ+(λ)

)
,

and θ(λ) :=λ2x+2λ4t,
3. m∆(λ) has simple poles at {±λi,±λi}Ni=1 with (1≤ i≤N),

res(m∆(λ);λi) = lim
λ→λi

m∆(λ)vi(δ(λi))
−2σ−,

res(m∆(λ);−λi) = −σ3res(m∆(λ);λi)σ3,

res(m∆(λ);λi ) = lim
λ→λi

m∆(λ)vi(δ(λi))
2σ+,

res(m∆(λ);−λi ) = −σ3res(m∆(λ);λi )σ3,

4. as λ→∞, λ∈C\(Zd∪Γ̂),

m∆(λ) = I +O(λ−1);

moreover, Q(x, t)=2ilimλ→∞(λm∆(x, t;λ))12 is equal to Q(x, t) in Lemma 2.2, (11).
Proof. Let m(λ) be the solution of the RH problem formulated in Lemma 2.1.

Define m∆(λ) :=m(λ)(∆(λ))−1.
In order to motivate Proposition 3.2 and Lemma 3.2 (see below), consider the

trajectory of the nth soliton with γn ∈ (π2 ,π) in the (x, t)-plane which belongs to
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the set Ωn := {(x, t); x−4t∆2
n cos γn = O(1)}, and note from Lemma 2.1 and the

soliton ordering in section 2 that, as t→ +∞ and x→−∞ such that λ0 >M and
(x, t) ∈ Ωn : (1) <(vi|Ωn)∼O(exp{−8tηi(ξi−ξn)})→ 0∀ i < n (i ∈ {1, 2, . . . , n−1});
(2) <(vi|Ωn)→∞∀ i>n (i∈{n+1, n+2, . . . , N}); and (3) <(vi|Ωn)∼O(1) for i=n.
Thus, along the trajectory of the arbitrarily fixed nth soliton, there are exponentially
growing polar conditions for solitons i with n+1≤ i≤N . One must effectively deal
with such growing polar conditions in a self-consistent manner. In a recent paper
[33] devoted to the asymptotics of the Toda rarefaction problem, Deift et al. showed
how this could be done: they noticed that it is possible to replace the poles with the
exponentially growing polar conditions by jump matrices on small, mutually disjoint
(and disjoint with respect to Γ̂) circles such that these jump matrices behave like
I + exponentially decreasing terms as t → +∞. Thus, instead of the original RH
problem, one gets a new, “extended” RH problem with 4(N −n) fewer poles, and
4(N−n) additional circles with jump conditions stated on them. Finally, by removing
the added circles from the specification of the extended RH problem, one arrives at
the model RH problem: the estimation of the “difference” between the extended and
model RH problems shows that the solution of the model RH problem approximates
the solution of the original one modulo terms which are decaying exponentially as
t→+∞.

Proposition 3.2. Introduce arbitrarily small, clockwise and counterclockwise-
oriented, mutually disjoint (and disjoint with respect to Γ̂ ) circles K±j and L±j , n+1≤
j≤N, around the eigenvalues {±λj}Nj=n+1 and {±λj}Nj=n+1, resp., and define

m[(λ) :=


m∆(λ), λ ∈ C \

(
Γ̂ ∪

(
N⋃

i=n+1

(K±i ∪ L±i )

))
,

m∆(λ)
(

I− vi(δ(±λi))−2

(λ∓λi) σ−
)
, λ ∈ intK±i , n+ 1 ≤ i ≤ N,

m∆(λ)
(

I + vi(δ(±λi))2

(λ∓λi) σ+

)
, λ ∈ intL±i , n+ 1 ≤ i ≤ N.

(85)

Then m[(λ) solves a RH problem on (σ£\∪Ni=n+1({±λi}∪{±λi}))∪(∪Ni=n+1(K±i ∪L±i ))

with the same jumps as m∆(λ) on Γ̂, m[
+(λ)=m[

−(λ)v∆(λ), and

m[
+(λ) =


m[
−(λ)

(
I + vi(δ(±λi))−2

(λ∓λi) σ−
)
, λ ∈ K±i , n+ 1 ≤ i ≤ N,

m[
−(λ)

(
I + vi(δ(±λi))2

(λ∓λi) σ+

)
, λ ∈ L±i , n+ 1 ≤ i ≤ N.

Proof. The proof follows from Lemma 3.1 and the definition of m[(λ).

Remark 3.2. The superscripts ± on {K±i }Ni=n+1 and {L±i }Ni=n+1, which are related

to {±λi}Ni=n+1 and {±λi}Ni=n+1, resp., should not be confused with the subscripts ±
appearing in the various RH problems in sections 3–5, namely, m±(λ), m∆

±(λ), m[
±(λ),

m]
±(λ), χ±(λ), E±(λ), and χc±(λ).

Remark 3.3. Even though the exponentially growing polar (residue) conditions
have been replaced by jump matrices, it should be noted that, along the trajectory
of soliton n, these jump matrices are also exponentially growing as t→+∞. These
lower/upper diagonal, exponentially growing jump matrices are now replaced, through
a sequence of N−n similar transformations, by upper/lower diagonal jump matrices
which converge, along the trajectory of soliton n, to I as t→+∞.
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Lemma 3.2. Set

(86)

m](λ) :=



m[(λ)
N∏

l=n+1

(dl+(λ))−σ3 , λ ∈ C \
(

Γ̂ ∪
(

N⋃
i=n+1

(K±i ∪ L±i )

))
,

m[(λ)(JK±
i

(λ))−1
N∏

l=n+1

(dl−(λ))−σ3 , λ ∈ intK±i , n+ 1 ≤ i ≤ N,

m[(λ)(JL±
i

(λ))−1
N∏

l=n+1

(dl−(λ))−σ3 , λ ∈ intL±i , n+ 1 ≤ i ≤ N,

where

dl+(λ) := (λ−λl)(λ+λl)
(λ−λl)(λ+λl)

, λ ∈ C \
(

N⋃
i=n+1

(K±i ∪ L±i )

)
, n+ 1 ≤ l ≤ N,

dl−(λ) :=


(λ−λl)(λ+λl)

(λ±λl) , λ ∈
N⋃

i=n+1

intK±i , n+ 1 ≤ l ≤ N,
(λ±λl)

(λ−λl)(λ+λl)
, λ ∈

N⋃
i=n+1

intL±i , n+ 1 ≤ l ≤ N,

(87)

and the SL(2,C)-valued, holomorphic in intK±i and intL±i , resp., functions JK±
i

(λ)

and JL±
i

(λ), n+1≤ i≤N, are given by

JK±
i

(λ) =



N∏
l=n+1
6=i

d
−1
l−

(λ)

d
−1
l+

(λ)
− vi(δ(±λi))−2C

]
i

(di− (λ))2

N∏
l=n+1
6=i

d
−1
l−

(λ)

dl+
(λ)

(λ∓λi) ,
C]
i

(di− (λ))2

N∏
l=n+1
6=i

d−1
l− (λ)

dl+ (λ)

−vi(δ(±λi))−2
N∏

l=n+1
6=i

dl− (λ)

dl+ (λ) , (λ∓ λi)
N∏

l=n+1
6=i

dl− (λ)

dl+ (λ)


,

JL±
i

(λ) =


(λ∓ λi)

N∏
l=n+1
6=i

d−1
l− (λ)

d−1
l+

(λ)
, vi(δ(±λi))2

N∏
l=n+1
6=i

d−1
l− (λ)

d−1
l+

(λ)

− C]
i

(di− (λ))−2

N∏
l=n+1
6=i

dl− (λ)

d−1
l+

(λ)
,

N∏
l=n+1
6=i

dl− (λ)

dl+
(λ)
− vi(δ(±λi))2C]i

(di− (λ))−2

N∏
l=n+1
6=i

dl− (λ)

d
−1
l+

(λ)

(λ∓λi)


,

with

C]i =(vi)
−1(δ(±λi))2(di−(±λi))2

N∏
l=n+1
6=i

(dl+(±λi))2, n+ 1 ≤ i ≤ N.(88)

Then m](λ):C\((Zd\∪Ni=n+1({±λi}∪{±λi}))∪(Γ̂∪(∪Ni=n+1(K±i ∪L±i ))))→SL(2,C) solves

the following, extended RH problem on (σ£\∪Ni=n+1({±λi}∪{±λi}))∪(∪Ni=n+1(K±i ∪
L±i )) :

m]
+(λ) = m]

−(λ)e−iθ(λ)ad(σ3)v](λ),
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where

v](λ)|
Γ̂

=

 (1− r(λ)r(λ)) δ−(λ)
δ+(λ) ,

r(λ)
(δ−(λ)δ+(λ))−1

N∏
l=n+1

(
(λ−λl)(λ+λl)
(λ−λl)(λ+λl)

)2

− r(λ)
δ−(λ)δ+(λ)

N∏
l=n+1

(
(λ−λl)(λ+λl)
(λ−λl)(λ+λl)

)−2

, δ+(λ)
δ−(λ)

,

v](λ)=


I + (vi)

−1(δ(±λi))2

(λ∓λi)

(
λ2
i−λi

2

2λi

)2 N∏
l=n+1
6=i

(
λl

2−λ2
i

λ2
l
−λ2

i

)2

σ+, λ ∈
N⋃

i=n+1

K±i ,

I + (vi)
−1(δ(±λi))−2

(λ∓λi)

(
λ2
i−λi

2

2λi

)2 N∏
l=n+1
6=i

(
λ2
l−λi

2

λl
2−λi2

)2

σ−, λ ∈
N⋃

i=n+1

L±i ,
(89)

with polar (residue) conditions,

res(m](λ);λi)= lim
λ→λi

m](λ)vi(δ(λi))
−2

N∏
l=n+1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ−, 1 ≤ i ≤ n,

res(m](λ);−λi)=−σ3res(m](λ);λi)σ3, 1 ≤ i ≤ n,

res(m](λ);λi )= lim
λ→λi

m](λ)vi(δ(λi))
2

N∏
l=n+1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ+, 1 ≤ i ≤ n,

res(m](λ);−λi )=−σ3res(m](λ);λi )σ3, 1 ≤ i ≤ n,

and, as λ→∞, λ∈C\((Zd\∪Ni=n+1({±λi}∪{±λi})) ∪ (Γ̂∪(∪Ni=n+1(K±i ∪L±i )))),

m](λ) = I +O(λ−1);

moreover, Q(x, t)=2i limλ→∞(λm](x, t;λ))12 is equal to Q(x, t) in Lemma 2.2, (11).
Proof. The proof is presented for the eigenvalues {λi}Ni=n+1, around which are

defined the small, clockwise-oriented, mutually disjoint circles {K+
i }Ni=n+1: the proof

for the eigenvalues {−λi}Ni=n+1 and {±λi}Ni=n+1 follows in an analogous manner. From

the definition of m](λ) and Proposition 3.2, one sees that, on {K+
i }Ni=n+1, m](λ) solves

the following RH problem (λ∈∪Ni=n+1K
+
i ):

m]
+(λ)=m]

−(λ)
N∏

l=n+1

(dl−(λ))σ3JK+
i

(λ)

(
I +

vi(δ(λi))
−2

(λ− λi) σ−

) N∏
l=n+1

(dl+(λ))−σ3

︸ ︷︷ ︸
jump matrix

.

Demanding that the above “jump matrix” be equal to the following upper triangular

form, I+
C]
i

(λ−λi)σ+, n+1≤ i≤N , one shows that

JK+
i

(λ)=


di+ (λ)

di− (λ)

N∏
l=n+1
6=i

dl+ (λ)

dl− (λ) −
vi(δ(λi))

−2C]
i

N∏
l=n+1
6=i

d
−1
l−

(λ)

dl+
(λ)

(λ−λi)2di− (λ)di+ (λ) ,
C]
i

(λ−λi)

N∏
l=n+1
6=i

d
−1
l−

(λ)

dl+
(λ)

di− (λ)di+ (λ)

−vi(δ(λi))−2

(λ−λi),
di− (λ)

di+ (λ)

N∏
l=n+1
6=i

dl− (λ)

dl+ (λ) ,
di− (λ)

di+ (λ)

N∏
l=n+1
6=i

dl− (λ)

dl+ (λ)


.
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Note that det(JK+
i

(λ))=1 (n+1≤ i≤N). Defining, for n+1≤ l≤N , dl+(λ) and dl−(λ)

as in (87), and choosing C]i , n+1≤ i≤N , as in (88) (with+λi), one gets the expression
for JK+

i
(λ) (which is holomorphic for all λ∈∪Ni=n+1intK+

i ) given in the lemma; also,

because of the symmetry properties of δ(λ) (Proposition 3.1), C]i =(vi)
−1(δ(±λi))−2

· (di−(±λi))−2
∏N

l=n+1
6=i

(dl+(±λi))−2. The remainder of the proof is a consequence of

Lemma 3.1, Proposition 3.2, and the definition of m](λ).
Remark 3.4. Even though, along the trajectory of soliton n, all the initial, ex-

ponentially growing nilpotent residue matrices have been replaced by jump matrices
which tend to I as t → +∞, i.e., ∃ ε ∈ R>0 such that ∀ i ∈ {n+ 1, n+ 2, . . . , N}
|(vi|Ωn)−1|∼O(exp{−εt}), it does not necessarily follow that elements in the solution
of the extended RH problem for m](λ) cannot grow exponentially; for example, note
that the (2 1)-elements of JK±

i
(λ) and the (1 2)-elements of JL±

i
(λ), n+1≤ i≤N , grow

exponentially.
By estimating the error, along the trajectory of soliton n (1≤n≤N), when the

jump matrices on {K±i , L±i }Ni=n+1 are removed from the specification of the RH prob-
lem for m](λ), one gets the following—asymptotically solvable—model RH problem.

Lemma 3.3. Let χ(λ) solve the following RH problem on σ£\∪Ni=n+1({±λi}∪
{±λi}):

χ+(λ) = χ−(λ)e−iθ(λ)ad(σ3)v](λ)|
Γ̂
, λ ∈ Γ̂,

with polar (residue) conditions

res(χ(λ);λi) = lim
λ→λi

χ(λ)vi(δ(λi))
−2

N∏
l=n+1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ−, 1 ≤ i ≤ n,

res(χ(λ);−λi) = −σ3res(χ(λ);λi)σ3, 1 ≤ i ≤ n,

res(χ(λ);λi ) = lim
λ→λi

χ(λ)vi(δ(λi))
2

N∏
l=n+1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ+, 1 ≤ i ≤ n,

res(χ(λ);−λi ) = −σ3res(χ(λ);λi )σ3, 1 ≤ i ≤ n,
and, as λ→∞, λ∈C\(∪ni=1({±λi}∪{±λi})∪Γ̂),

χ(λ) = I +O(λ−1).

Then as t → +∞ and x → −∞ such that λ0 > M, and (x, t) ∈ Ωn, the function
E(λ) :=m](λ)(χ(λ))−1 has the following asymptotics:

E(λ) = I +O(F (λ;λ0) exp{−abt}),(90)

where ||F (·;λ0)||L∞(C;M2(C)) <∞, ||F (λ; ·)||L∞(R>M ;M2(C)) <∞, F (λ;λ0)∼O
(
C(λ0)
λ

)
as λ→∞ with C(λ0)∈L∞(R>M ;M2(C)), a :=8 min{ηi}Ni=n+1 (>0), and b :=min{|ξn−
ξi|}Ni=n+1.

Proof. Writing, for n+1≤ i≤N , (89) in the following form:

v](λ) :=


I + (vi)

−1W̃K±
i

(λ)σ+, λ ∈
N⋃

i=n+1

K±i ,

I + (vi)
−1W̃L±

i
(λ)σ−, λ ∈

N⋃
i=n+1

L±i ,
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consider the “error function” E(λ) defined in the lemma. One notes that (1) det(E(λ))
= 1; (2) E(λ) has no poles; and (3) E(λ) solves the following RH problem on the
oriented contour ΣE :=∪Ni=n+1(K+

i ∪K−i ∪L+
i ∪L−i ) :

E+(λ)=E−(λ)

(
I + (vi)

−1W̃K±
i

(λ)

(−χ11(λ)χ21(λ) (χ11(λ))2

−(χ21(λ))2 χ11(λ)χ21(λ)

))
, λ ∈ K±i ,

E+(λ)=E−(λ)

(
I + (vi)

−1W̃L±
i

(λ)

(
χ12(λ)χ22(λ) −(χ12(λ))2

(χ22(λ))2 −χ12(λ)χ22(λ)

))
, λ ∈ L±i ,

n+1≤ i≤N , and, as λ→∞, λ ∈ C\ΣE , E(λ) = I+O(λ−1). Now, writing the RH
problem for E(λ) on the oriented contour ΣE in terms of an equivalent system of
linear singular integral equations, using the explicit asymptotic solution of the model
RH problem for χ(λ) given in section 4, recalling that, as t→+∞ and x→−∞ such
that λ0 >M and (x, t) ∈Ωn, (vi|Ωn)−1 ∼O(exp{−8tηi|ξn−ξi|}), n+1≤ i≤N , and
proceeding as in the proof of Lemma 3.3 in [33], one deduces the estimate in
(90).

4. Asymptotic solution of the model RH problem. In this section, the
asymptotic (as t→+∞ and x/t∼O(1)) solution of the model RH problem (Lemma 3.3)

for the Schwartz class of nonreflectionless generic potentials (r(λ) ∈ S(Γ̂;C)) is pre-
sented. Before doing so, however, recall the following well-known fact from the matrix
RH theory [22, 24].

Proposition 4.1. The solution of the model RH problem (Lemma 3.3 ), χ(λ):C\
(Γ̂∪(∪ni=1({±λi}∪{±λi})))→SL(2,C), has the following representation:

χ(λ) = χd(λ) +

∫
Γ̂

χ−(%)(v](%)|
Γ̂
− I)

(%− λ)

d%

2πi
,(91)

where

χd(λ) = I +
n∑
i=1

(
res(χ(λ);λi)

(λ− λi) − σ3res(χ(λ);λi)σ3

(λ+ λi)

+
res(χ(λ);λi)

(λ− λi)
− σ3res(χ(λ);λi)σ3

(λ+ λi)

)
.(92)

The solution of (91) can be written as the following ordered product:

χ(λ) = χd(λ)χc(λ),(93)

where χd(λ) is given by (92), and χc(λ) solves the following RH problem: (1) χc(λ) is

piecewise holomorphic for all λ∈C\Γ̂; (2) χc+(λ)=χc−(λ) exp{−iθ(λ)ad(σ3)}(v](λ)|
Γ̂
),

λ∈ Γ̂; and (3) as λ→∞, λ∈C\Γ̂, χc(λ)=I+O(λ−1).
Remark 4.1. From Proposition 4.1, (93), it is seen that, in order to solve the model

RH problem, explicit knowledge of χd(λ) and χc(λ) is necessary. The determination
of χc(λ) is technically the more complicated of the two: actually, the determination
of χd(λ) depends on the explicit knowledge of χc(λ) (see Proposition 4.2); hence, the
asymptotic solution of χc(λ) is presented first (see Lemma 4.1).

In order to more fully comprehend certain elements of the proof of Lemma 4.1
given below, the Beals–Coifman [24, 25] formulation for the solution of a (matrix)
RH problem on an oriented contour is requisite: a self-contained synopsis of this
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formulation as it applies to the solution of the RH problem for χc(λ) stated in Propo-
sition 4.1 now follows. Writing the jump matrix in the following factorized form:
v](λ)|

Γ̂
:=(I−w−x,t(λ))−1(I+w+

x,t(λ)), λ∈ Γ̂, where w±x,t(λ)∈∩k∈{2,∞}Lk(Γ̂;M2(C)) (with

||w±x,t(·)||∩k∈{2,∞}Lk(Γ̂;M2(C))
:=
∑
k∈{2,∞} ||w±x,t(·)||Lk(Γ̂;M2(C))

), resp., are nilpotent off-

diagonal upper/lower triangular matrices, define wx,t(λ) := w−x,t(λ) + w+
x,t(λ), and

introduce the operator Cwx,t on L2(Γ̂;M2(C)) as Cwx,tf :=C+(f w−x,t) + C−(f w+
x,t),

where f ∈ L2(Γ̂;M2(C)), and C±:L2(Γ̂;M2(C))→ L2(Γ̂;M2(C)) denote the Cauchy
operators

(C±f)(λ) := lim
λ′→λ

λ′∈± side of Γ̂

∫
Γ̂

f(%)

(%− λ′)
d%

2πi
.

Theorem 4.1 (see [24]). If µc(λ)∈ I ⊕ L2(Γ̂;M2(C)) solves the following linear
singular integral equation:

(Id− Cwx,t)µc = I,

where Id is the identity operator on I⊕L2(Γ̂;M2(C)), then the solution of the RH
problem for χc(λ) is

χc(λ) = I +

∫
Γ̂

µc(%)wx,t(%)

(%− λ)

d%

2πi
, λ ∈ C\Γ̂,

where µc(λ)=χc+(λ)(I+w+
x,t(λ))−1 =χc−(λ)(I−w−x,t(λ))−1.

Lemma 4.1. Let ε0 denote an arbitrarily fixed, sufficiently small positive real
number. For ℵ ∈ {0,±λ0}, set N (ℵ;ε0) := {λ; |λ−ℵ| ≤ ε0}. Then as t → +∞ and
x→−∞ such that λ0 >M and λ ∈ C\∪ℵ∈{0,±λ0}N (ℵ;ε0), χc(λ) has the following
asymptotic expansion:

χc(λ) = I +
1

4

√
ν(λ0)

2λ2
0t

(
1

λ− λ0
+

1

λ+ λ0

)(
exp{−i(φ+(λ0) + Φ̂+(λ0; t))}σ−

+ exp{i(φ+(λ0) + Φ̂+(λ0; t))}σ+

)
+O

(
G(λ;λ0) ln t

t

)
,

where ν(λ0), φ+(λ0), and Φ̂+(λ0; t) are given in Theorem 2.1, equations (21), (22), and
(24), ||G(·;λ0)||L∞(C\∪ℵ∈{0,±λ0}N (ℵ;ε0);M2(C))<∞, G(λ; ·)∈S(R>M ;M2(C)), G(λ;λ0)∼
O(C(λ0)

λ ) as λ→∞ with C(λ0) ∈ S(R>M ;M2(C)), and satisfies the following involu-

tions: χc(−λ)=σ3χ
c(λ)σ3 and χc(λ)=σ1χc(λ)σ1.

Proof. In sections 5 and 6 of [15], it was shown that, for λ∈C\∪ℵ∈{0,±λ0}N (ℵ;ε0),
as t→+∞ and x→−∞ such that λ0>M, for arbitrary l′∈Z≥1,

χc(λ) = I +
∑
~m3∈M3

au(~m3)∫
al(~m3)

m3µ
c(ς)|sgn(m3)(δ(ς))

2m3e−2im3tθ(ς)R~m3(ς)σsgn(m3)

(ς − λ)

dς

2πi

+
∑
~m2∈M2

b(~m2)∫
0

m2µ
c(ς)|sgn(m2)(δ(ς))

2m2e−2im2tθ(ς)R~m2(ς)σsgn(m2)

(ς − λ)

dς

2πi

+O
(
c(λ0)

(λ2
0t)

l′

)
,
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where (1) ~mk∈Mk denotes the set of vectors with k components, each of which take
the values ±1 (card(Mk)=2k); (2) al(~m3)=m1λ0+m2ε exp{− iπm3

4 }, au(~m3)=m1λ0,

and b(~m2) = m1ε exp{ iπm2

4 }, where ε is an arbitrarily fixed, sufficiently small pos-
itive real number; (3) µc(ς)|+ := µc(ς)|L′ , µc(ς)|− := µc(ς)|L′ , with L′ = {λ; λ =
û exp{ iπ4 }, û ∈ (−ε, ε)}∪(∪l∈{±1}{λ; λ = lλ0 + û exp{− iπ4 }, û ∈ (−ε, ε)}), and where
µc(·) is the solution of the Beals–Coifman [24] linear singular integral equation (Theo-
rem 4.1); (4) θ(ς)=2ς2(ς2−2λ2

0); (5) δ(ς)=(( ς−λ0

ς )( ς+λ0

ς ))iν exp{∑l∈{±}(ρl(ς)+ρ̂l(ς))},
ν := ν(λ0), ρ±(ς) = 1

2πi

∫ ±λ0

0
ln
(

1−|r(%)|2
1−|r(λ0)|2

)
d%

(%−ς) , and ρ̂±(ς) =
∫ i0
±i∞

ln(1−r(%)r(%))
(%−ς)

d%
2πi ;

(6) R−1,−1,1(ς) = R1,1,1(ς) = −r(ς)P(ς), R−1,1,1 (ς) = R1,−1,1(ς) = r(ς)P(ς)

(1−r(ς)r(ς)) ,

R−1,−1,−1(ς) = R1,1,−1(ς) = (R1,1,1(ς))∗, and R−1,1,−1(ς) = R1,−1,−1(ς) = (R1,−1,1

(ς))∗, where P(z) :=
∏N
l=n+1

(
(z−λl)(z+λl)
(z−λl)(z+λl)

)2

, and α(·)=(β(·))∗ means that α(·) is the

same piecewise-rational function as β(·) except with the complex conjugated coeffi-

cients; (7) R1,1(ς) =R−1,1(ς) = r(ς)P(ς)
(1−|r(ς)|2) − r(iς)P(iς)

(1+|r(iς)|2) and R1,−1(ς) =R−1,−1(ς) =

−(R1,1(ς))∗; and (8) c(λ0) ∈ L∞(R>M ;M2(C)). Since, in the above expression for
χc(λ), the estimation of all the integrals is analogous, without loss of generality, the
following integral is considered:

I0 :=

λ0∫
λ0+εe−

iπ
4

A0(ς)B0(ς)
dς

2πi
,

where A0(ς) := µc(ς)|L′ , and B0(ς) := − δ2(ς) exp{−2itθ(ς)}r(ς)P(ς)
(ς−λ) σ+. Begin by esti-

mating B0(ς) dς2πi : (1) expand B0(ς) in a Taylor series about λ0; (2) make the fol-

lowing change of variable [15]: ς := ς(w̃) = λ0 + w̃(16λ2
0t)
−1/2, and express the ex-

pansion obtained in (1) above in terms of w̃; and (3) use the following identity:
ab=(a− 1)(b− 1)+(a− 1)+(b− 1)+ 1. Carrying out steps (1)–(3), one gets that

B0(ς)
dς

2πi
|
ς(w̃)

= − (w̃)2iνλ−4iν
0 t−iν2−2iνe2s(λ0)e4iλ4

0te−iw̃
2

dw̃σ+

(λ− λ0)(2πi)
√

16λ2
0t

{
R(λ0)

+

(
R′(λ0)− 3iνR(λ0)

λ0

)
w̃√

16λ2
0t

} ∑
~l4∈L4

4∏
k=1

(pk(w̃))lk

− (w̃)2iν+1λ−4iν
0 t−iν2−2iνe2s(λ0)e4iλ4

0te−iw̃
2

dw̃σ+

(λ− λ0)2(2πi)(16λ2
0t)

×R(λ0)
∑
~l4∈L4

4∏
k=1

(pk(w̃))lk +O
({

C[1(λ0)

(λ− λ0)
+

C[2(λ0)

(λ− λ0)2

}
e4iλ4

0tw̃2iν+2e−iw̃
2

dw̃σ+

t3/2+iν

)
,

where ~lk∈Lk denotes the set of vectors with k components, each of which take the val-
ues 0 and 1 (card(Lk)=2k), s(λ0) :=

∑
l∈{±}(ρl(λ0)+ρ̂l(λ0)), R(λ0) :=−r(λ0)P(λ0),

R′(λ0) = −r′(λ0)P(λ0)− r(λ0)P(λ0)
∑N
k=n+1{ 4i sin(arg(λ0−λk))

|λ0−λk| + 4i sin(arg(λ0+λk))
|λ0+λk| },

(•)′(λ0) := d(•)(z)
dz |z=λ0 ,

pk(w̃) := exp

{
2∆̃k

(
λ0 +

w̃√
16λ2

0t

)}
− 1, k ∈ {1, 2},
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p3(w̃) := exp

{
− iw̃3

λ0

√
16λ2

0t

}
− 1, p4(w̃) := exp

{
− iw̃4

43λ4
0t

}
− 1,

∆̃1

(
λ0 +

w̃√
16λ2

0t

)
=
∑
l∈{±}

(
ρl

(
λ0 +

w̃√
16λ2

0t

)
− ρl(λ0)

)
,

∆̃2

(
λ0 +

w̃√
16λ2

0t

)
=
∑
l∈{±}

(
ρ̂l

(
λ0 +

w̃√
16λ2

0t

)
− ρ̂l(λ0)

)
,

and C[i (λ0) ∈ S(R>M ;C), i ∈ {1, 2}. Now, proceed to estimate µc(ς)|L′ for ς ∈
(λ0, λ0+ε exp{− iπ4 }): for this, the Beals–Coifman [24] formulation for the solution of a
RH problem on an oriented contour is necessary (Theorem 4.1 and the paragraph pre-
ceding it for discussion and notation); in particular, one has to estimate the functions
w±x,t(ς) on L′ ∪ L′. In section 5 of [15], it was shown that, on (λ0, λ0 + ε exp{− iπ4 }),
w+
x,t(ς) = −(δ(ς))ad(σ3) exp{−itθ(ς)ad(σ3)}r(ς)P(ς)σ+ and w−x,t(ς) = 0; hence, from

the Beals–Coifman [24] formulation, for any f ∈L2(L′;M2(C)), Cwx,tf =C−(f w+
x,t).

To estimate w+
x,t(ς), one proceeds as follows: (1) recalling that r(ς) ∈ S(Γ̂;C) and

||r||L∞(R;C)<1, expand (δ(ς))ad(σ3), for ς∈(λ0, λ0+ε exp{− iπ4 }), via an integration by
parts argument; (2) expand exp{−itθ(ς)ad(σ3)}r(ς)P(ς) in a Taylor series about λ0;
and (3) change variables [15], ς := ς(w̃). Carrying out steps (1)–(3), one shows that

w+
x,t(ς)|ς(w̃)

= ei{4λ
4
0t−w̃2+2ν ln(w̃/2)−ν ln t+2φ(λ0)}

(
v00(w̃;λ0) +

v10(w̃;λ0) + v11(w̃;λ0) ln t√
t

)
+ O

(
v22(w̃;λ0)(ln t)2

t

)
,

where φ(λ0) = 2ν lnλ0 + 1
2π

∫ λ0

0
ln|z2−λ2

0|d ln(1−|r(z)|2)− 1
2π

∫∞
0

ln|z2 + λ2
0|d ln(1 +

|r(iz)|2), v00(w̃;λ0) :=R(λ0), v10(w̃;λ0), v11(w̃;λ0), and v22(w̃;λ0) are nilpotent matrix
polynomials whose elements are sums of products of terms of the type w̃j and (lnw̃)k,
j∈Z≥1, k∈Z≥0, with λ0-dependent coefficients, and, for 0≤j≤2, 0≤k≤j,

|| exp{−i(·)2} exp{2iν ln(·)}vjk(·;λ0)||∩l∈{1,2,∞}Ll(L′s\{0};C) <∞,
with ||(·)||∩l∈{1,2,∞}Ll(L′s\{0};C) :=

∑
l∈{1,2,∞} ||(·)||Ll(L′s\{0};C), where L′s\{0} denotes

the scaled and shifted version of L′\{λ0}. Hence, for any f ∈Ll(L′s;M2(C)), l∈{2,∞},

(Cwx,tf)(w̃;λ0) =
1∑
j=0

j∑
k=0

(ln t)k

tj/2
(C\jkf)(w̃;λ0) +O

(
(ln t)2

t
(C\22f)(w̃;λ0)

)
,

where

exp{2iν ln 2}
exp{2iφ(λ0)} (C\jkf)(w̃;λ0) := lim

λ′→w̃
λ′∈− side of L′s

∫
L′s

f(z) exp{−iz2}z2iνvjk(z;λ0)

(z − λ′)
dz

2πi
,

0≤j≤2, 0≤k≤j,
and ||C\jk(·;λ0)||M(L′s\{0};M2(C))≤K\1(λ0)<∞, with M(•;M2(C)) denoting the space

of bounded linear operators acting from Ll(•;M2(C)) into L2(•;M2(C)), l ∈ {2,∞}.
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According to Theorem 4.1, µc(·) satisfies the following linear singular integral equa-
tion on L′∪L′, (Id − Cwx,t)µ

c = I; hence, µc = (Id − Cwx,t)
−1I. It was shown in

[15] that, as t → +∞ and x → −∞ such that λ0 > M , ker(Id − Cwx,t) = ∅ and

||(Id − C\00(·;λ0))−1||M(L′s\{0};M2(C)) ≤K\2(λ0)<∞. Using the method of successive
approximations, one shows that, as t→+∞ and x→−∞ such that λ0>M , µc(·) can
be expanded in the following Neumann-type series (see also Part II of [23], and [34]):

A0(ς)|
ς(w̃)

= µc(w̃)|L′s\{0} = µc00(w̃;λ0) +
µc10(w̃;λ0) + µc11(w̃;λ0) ln t√

t

+O
(
µc22(w̃;λ0)(ln t)2

t

)
,

where µc00(w̃;λ0) := (Id − C\00(w̃;λ0))−1I, ||(Id − C\00(·;λ0))−1I||L2(L′s\{0};M2(C)) <∞,
and ||µcjk(·;λ0)||L2(L′s\{0};M2(C)) <∞, 1≤ j ≤ 2, 0≤ k ≤ j: an explicit expression for

(Id−C\00(w̃;λ0))−1I in terms of parabolic-cylinder functions was given in section 7 of
[15] (see below). Making one more change of variable, %=

√
2w̃ exp{ iπ4 }, and recalling

the definition of I0, one shows that

I0 − I1/2 = I0,a + I0,b + I0,c + I0,d + Er,
where

I1/2 := Ya(λ,λ0; t)

∫ α̂

0

µc00

(
%e−

iπ
4√

2
;λ0

)
%2iνe−%

2/2σ+d%,

I0,a := Ya(λ,λ0; t)
′∑

~l4∈L4

∫ α̂

0

µc00

(
%e−

iπ
4√

2
;λ0

)
4∏
k=1

(
pk

(
%e−

iπ
4√

2

))lk
%2iνe−%

2/2σ+d%,

I0,b := Yb(λ,λ0; t)
∑
~l4∈L4

∫ α̂

0

µc00

(
%e−

iπ
4√

2
;λ0

)
4∏
k=1

(
pk

(
%e−

iπ
4√

2

))lk
%2iν+1e−%

2/2σ+d%,

I0,c := Yc(λ,λ0; t)
∑
~l4∈L4

∫ α̂

0

{
µc10

(
%e−

iπ
4√

2
;λ0

)
+ µc11

(
%e−

iπ
4√

2
;λ0

)
ln t

}

×
4∏
k=1

(
pk

(
%e−

iπ
4√

2

))lk
%2iνe−%

2/2σ+d%,

I0,d := Yd(λ,λ0; t)
∑
~l4∈L4

∫ α̂

0

µc00

(
%e−

iπ
4√

2
;λ0

)
4∏
k=1

(
pk

(
%e−

iπ
4√

2

))lk
%2iν+1e−%

2/2σ+d%,

Er := O
(
y(λ0; t)

λ3
0t

3/2

{
2∑
k=1

C]k(λ0)

(λ− λ0)k

}∫ α̂

0

µc00

(
%e−

iπ
4√

2
;λ0

)
%2iν+2e−%

2/2σ+d%

)

+ O
(
y(λ0; t)

λ2
0t

3/2

{
2∑
k=1

C]k+2(λ0)

(λ− λ0)k

}∫ α̂

0

{
µc10

(
%e−

iπ
4√

2
;λ0

)

+µc11

(
%e−

iπ
4√

2
;λ0

)
ln t

}
%2iν+1e−%

2/2σ+d%

)
,
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α̂ := (32ε2λ2
0t)

1/2, the prime on the summation in the expression for I0,a means that
the term corresponding to (l1, l2, l3, l4)=(0, 0, 0, 0) is omitted from the sum,

Ya(λ,λ0; t) =
y(λ0; t)e−

iπ
4 R(λ0)

(λ− λ0)
√

32λ2
0t

, Yb(λ,λ0; t) =
iy(λ0; t){3iνR(λ0)− λ0R′(λ0)}

(λ− λ0)(32λ3
0t)

,

Yc(λ,λ0; t) =
y(λ0; t)e−

iπ
4 R(λ0)

(λ− λ0)
√

32λ2
0t

, Yd(λ,λ0; t) = − iy(λ0; t)R(λ0)

(λ− λ0)2(32λ2
0t)

,

y(λ0; t) := e
πν
2 e2s(λ0)e

4iλ4
0
t

(2πi)λ4iν
0 23iνtiν

, and C]i (λ0) ∈ S(R>M ;C), 1 ≤ i ≤ 4. As will be shown

below, I1/2 gives rise to the leading-order (O(t−1/2)) term: towards the proof of
this statement, one proceeds by estimating the difference, I0−I1/2. Recall first the

following inequality: |exp{(·)} − 1|≤ |(·)| sups∈[0,1] |exp{s(·)}|; hence, |exp{∆̃[
i}−1|≤

|∆̃[
i | sups∈[0,1] |exp{s∆̃[

i}|, where

∆̃[
i :=2∆̃i

(
λ0 +

% exp{− iπ4 }√
32λ2

0t

)
, i∈{1, 2}.

Since, as shown in [15], ||(δ(·))±1||L∞(C;C)<∞, from the definitions of ρ±(λ0), ρ̂±(λ0),

and ∆̃[
i , i ∈ {1, 2}, it follows that sups∈[0,1] |exp{s∆̃[

i}|<∞; furthermore, using the

Lipschitz property of ln
(

1−|r(λ)|2
1−|r(λ0)|2

)
, |λ| < λ0, and the fact that r(λ) ∈ S(Γ̂;C) and

||r||L∞(R;C)<1, via an integration by parts argument, one deduces that

|∆̃[
1| ≤

K[
1(λ0)%+K[

2(λ0)% ln %+K[
3(λ0)% ln t√

λ2
0t

, |∆̃[
2| ≤

K[
4(λ0)%√
λ2

0t
,

with K[
i (λ0)∈L∞(R>M ;R>0), i∈{1, 4}. Similarly, one gets that∣∣∣∣∣exp

{
− i%3 exp(− 3πi

4 )

8
√

2λ2
0

√
t

}
− 1

∣∣∣∣∣ ≤ %3

8
√

2λ2
0

√
t

sup
s∈[0,1]

∣∣∣∣∣exp

{
−s(1− i)%3

16λ2
0

√
t

}∣∣∣∣∣︸ ︷︷ ︸
<∞

:=
K̃1(λ0)%3√

λ2
0t

,

∣∣∣∣∣exp

{
i%4

44λ4
0t

}
− 1

∣∣∣∣∣ ≤ %4

44λ4
0t

sup
s∈[0,1]

∣∣∣∣∣exp

{
is%4

44λ4
0t

}∣∣∣∣∣︸ ︷︷ ︸
<∞

:=
K̃2(λ0)%4

λ2
0t

,

with K̃i(λ0)∈L∞(R>M ;R>0), i∈ {1, 2}. Although the expression for the difference,
I0−I1/2, contains many terms, estimations for the respective terms are analogous.
Consider, say, the bound for the term corresponding to (l1, l2, l3, l4) = (1, 0, 0, 0) in
I0,a, which is denoted by I1

0,a:

I1
0,a := Ya(λ,λ0; t)

∫ α̂

0

µc00

(
%e−

iπ
4√

2
;λ0

)
p1

(
%e−

iπ
4√

2

)
%2iνe−%

2/2σ+d%.

Using the fact that 0 < ν ≤ νmax := − 1
2π ln(1− supλ∈R |r(λ)|2) < ∞, and recalling

the definitions of s(λ0) and R(λ0), one gets that, for λ∈C\N (λ0;ε0), |Ya(λ,λ0; t)|≤
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exp{πνmax
2 }|r(λ0)|

2π|λ−λ0|
√

32λ2
0t

; hence, letting the upper limit of integration tend to +∞ (for brevity,

the following notation is used: for matrices A and B, the inequality |A|≤ |B| means
that |Aij |≤|Bij | ∀ i, j),

|I1
0,a| ≤

exp{πνmax

2 }|r(λ0)|
2π|λ− λ0|

√
32λ2

0t

∫ ∞
0

∣∣∣∣∣µc00

(
%e−

iπ
4√

2
;λ0

)∣∣∣∣∣
∣∣∣∣∣p1

(
%e−

iπ
4√

2

)∣∣∣∣∣e−%2/2σ+d%.

In [15], it was shown that

Uc00 :=

∣∣∣∣∣
∣∣∣∣∣µc00

(
(·)e− iπ4√

2
;λ0

)∣∣∣∣∣
∣∣∣∣∣
L2(R≥0;M2(C))

<∞;

hence, from this estimate and the Cauchy–Schwarz inequality for integrals,

|I1
0,a| ≤

exp{πνmax

2 }|r(λ0)| Uc00σ+

2π|λ− λ0|
√

32λ2
0t

∣∣∣∣∣
∣∣∣∣∣p1

(
(·)e− iπ4√

2

)
exp{−(·)2/2}

∣∣∣∣∣
∣∣∣∣∣
L2(R≥0;C)

.

Recalling the estimate for |exp{∆̃[
1}−1|, one shows that∣∣∣∣∣

∣∣∣∣∣p1

(
(·)e− iπ4√

2

)
exp{−(·)2/2}

∣∣∣∣∣
∣∣∣∣∣
L2(R≥0;C)

≤ K̃[(λ0) ln t√
λ2

0t
,

where K̃[(λ0)∈L∞(R>M ;R>0); hence, uniformly for λ∈C\N (λ0;ε0),

|I1
0,a| ≤

K̃]
1(λ0) ln t

|λ− λ0|λ2
0t
,

with K̃]
1(λ0)∈S(R>M ;M2(R>0)). Similarly, recalling the estimates for∣∣∣∣∣exp

{
− i%3 exp(− 3πi

4 )

8
√

2λ2
0

√
t

}
− 1

∣∣∣∣∣,
∣∣∣∣∣exp

{
i%4

44λ4
0t

}
− 1

∣∣∣∣∣, and |exp{∆̃[
2}−1|,

and using the triangle inequality for L2-norms, one shows that the remaining terms
for I0,a are of the type O(t−

m
2 ) and O(t−

n
2 lnt), 2≤m≤5, 3≤n≤6. Estimating the

remaining terms of I0−I1/2 analogously, one shows that, as t→ +∞ and x→−∞
such that λ0>M , uniformly for λ∈C\N (λ0;ε0),

|I0 − I1/2| ≤ K̃]
2(λ;λ0) ln t

λ2
0t

,

where ||K̃]
2(·;λ0)||L∞(C\N (λ0;ε0);M2(R>0)) <∞, K̃]

2(λ; ·) ∈ S(R>M ;M2(R>0)), and, as

λ→∞, K̃]
2(λ;λ0) ∼O(k̃]2(λ0)|λ|−1), with k̃]2(λ0)∈S(R>M ;M2(R>0)).

Repeating the whole of the above analysis mutatis mutandis for each term on the
right-hand side of the original integral expression for χc(λ) which appears at the very
beginning of the proof, one shows that, as t→+∞ and x→−∞ such that λ0 >M ,
uniformly for λ∈C\∪ℵ∈{0,±λ0}N (ℵ;ε0),

|χc(λ)− χc1/2(λ)| ≤ (h+
1 (λ;λ0) + h+

2 (λ;λ0)) ln t

λ2
0t

,
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where h+
1 (λ;λ0) :=

∑
l′∈{0,i0}e

+
l′ (λ;λ0)|r(l′)|, h+

2 (λ;λ0) :=
∑
l∈{±λ0}e

+
l (λ;λ0), and the

functions e+
l′ (λ;λ0) and e+

l (λ;λ0) have the following property as λ→∞:

h+
1 (λ;λ0)+h+

2 (λ;λ0)∼O
({ ∑

l′∈{0,i0}
e]l′(λ0)|r(l′)|+

∑
l∈{±λ0}

e]l (λ0)

}
|λ|−1

)
,

e]l′(λ0)∈L∞(R>M ;M2(R>0)),

l′∈{0, i0}, and e]l (λ0)∈S(R>M ;M2(R>0)), l∈{±λ0}; moreover,

||h+
1 (·;λ0)||L∞(C\N (0;ε0);M2(R>0))<∞,

||h+
2 (·;λ0)||L∞(C\∪ℵ∈{±λ0}N (ℵ;ε0);M2(R>0))<∞, h+

1 (λ; ·)∈L∞(R>M ;M2(R>0)),

h+
2 (λ; ·)∈S(R>M ;M2(R>0)),

and χc1/2(λ) represents the sum over all I1/2-like terms in which the upper limits of

integration tend to +∞. One can write χc1/2(λ) in the following form,

χc1/2(λ) = I +
(Λ̃0)ad(σ3)√

16λ2
0t
XΣr (λ) +

(Λ̂0
C)

ad(σ3)√
8λ2

0t
XΣC (λ),

where

Λ̃0 =
exp{2iλ4

0t}
(16λ4

0t)
iν
2

exp

{ ∑
l∈{±}

(ρl(λ0) + ρ̂l(λ0))

}
,

ρ±(λ0) =
1

2πi

∫ ±λ0

0

ln

(
1− |r(ς)|2

1− |r(λ0)|2
)

dς

(ς − λ0)
, ρ̂±(λ0) =

∫ i0

±i∞

ln(1− r(ς)r(ς))
(ς − λ0)

dς

2πi
,

XΣr
11 (λ) =

rB(λ0)

22iν

∫ ε1

0

XΣB,r
+,12 (ς)ς−2iνeiς

2

(λ− λ0)

dς

2πi
− rB(λ0)e2πν

22iν

∫ ε2

0

XΣB,r
−,12 (ς)ς−2iνeiς

2

(λ− λ0)

dς

2πi

+
rB(λ0)

22iν

∫ ε1

0

XΣA,r
+,12 (ς)ς−2iνeiς

2

(λ+ λ0)

dς

2πi
− rB(λ0)e2πν

22iν

∫ ε2

0

XΣA,r
−,12 (ς)ς−2iνeiς

2

(λ+ λ0)

dς

2πi
,

XΣr
12 (λ) = −rB(λ0)

2−2iν

∫ ε1

0

XΣB,r
−,11 (ς)ς2iνe−iς

2

(λ− λ0)

dς

2πi
+
rB(λ0)e2πν

2−2iν

∫ ε2

0

XΣB,r
+,11 (ς)ς2iνe−iς

2

(λ− λ0)

dς

2πi

−rB(λ0)

2−2iν

∫ ε1

0

XΣA,r
−,11 (ς)ς2iνe−iς

2

(λ+ λ0)

dς

2πi
+
rB(λ0)e2πν

2−2iν

∫ ε2

0

XΣA,r
+,11 (ς)ς2iνe−iς

2

(λ+ λ0)

dς

2πi
,

XΣr
21 (λ) =

rB(λ0)

22iν

∫ ε1

0

XΣB,r
+,22 (ς)ς−2iνeiς

2

(λ− λ0)

dς

2πi
− rB(λ0)e2πν

22iν

∫ ε2

0

XΣB,r
−,22 (ς)ς−2iνeiς

2

(λ− λ0)

dς

2πi

+
rB(λ0)

22iν

∫ ε1

0

XΣA,r
+,22 (ς)ς−2iνeiς

2

(λ+ λ0)

dς

2πi
− rB(λ0)e2πν

22iν

∫ ε2

0

XΣA,r
−,22 (ς)ς−2iνeiς

2

(λ+ λ0)

dς

2πi
,

XΣr
22 (λ) = −rB(λ0)

2−2iν

∫ ε1

0

XΣB,r
−,21 (ς)ς2iνe−iς

2

(λ− λ0)

dς

2πi
+
rB(λ0)e2πν

2−2iν

∫ ε2

0

XΣB,r
+,21 (ς)ς2iνe−iς

2

(λ− λ0)

dς

2πi

−rB(λ0)

2−2iν

∫ ε1

0

XΣA,r
−,21 (ς)ς2iνe−iς

2

(λ+ λ0)

dς

2πi
+
rB(λ0)e2πν

2−2iν

∫ ε2

0

XΣA,r
+,21 (ς)ς2iνe−iς

2

(λ+ λ0)

dς

2πi
,

rB(λ0) := r(λ0)
N∏

l=n+1

(
(λ0 − λl)(λ0 + λl)

(λ0 − λl)(λ0 + λl)

)2

,
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XΣB,r
−,11 (ς) =

ς−iνe
iς2

2

2
iν
2 e−

πν
4

Diν(
√

2ςe
iπ
4 ), XΣB,r

+,11 (ς) =
ς−iνe

iς2

2

2
iν
2 e

3πν
4

Diν(
√

2ςe−
3πi
4 ),

XΣB,r
+,12 (ς) =

2
iν
2 ςiνe−

iς2

2 e
πν
4

β21
{∂ςD−iν(

√
2ςe−

iπ
4 )− iςD−iν(

√
2ςe−

iπ
4 )},

XΣB,r
−,12 (ς) =

2
iν
2 ςiνe−

iς2

2 e−
3πν

4

β21
{∂ςD−iν(

√
2ςe

3πi
4 )− iςD−iν(

√
2ςe

3πi
4 )},

XΣB,r
−,21 (ς) =

2−
iν
2 ς−iνe

iς2

2 e
πν
4

β12
{∂ςDiν(

√
2ςe

iπ
4 ) + iςDiν(

√
2ςe

iπ
4 )},

XΣB,r
+,21 (ς) =

2−
iν
2 ς−iνe

iς2

2 e−
3πν

4

β12
{∂ςDiν(

√
2ςe−

3πi
4 ) + iςDiν(

√
2ςe−

3πi
4 )},

XΣB,r
+,22 (ς) =

ςiνe−
iς2

2

2−
iν
2 e−

πν
4

D−iν(
√

2ςe−
iπ
4 ), XΣB,r

−,22 (ς) =
ςiνe−

iς2

2

2−
iν
2 e

3πν
4

D−iν(
√

2ςe
3πi
4 ),

XΣA,r
±,11 (ς) = XΣB,r

±,11 (ς), XΣA,r
±,12 (ς) = −XΣB,r

±,12 (ς),

XΣA,r
±,21 (ς) = −XΣB,r

±,21 (ς), XΣA,r
±,22 (ς) = XΣB,r

±,22 (ς),

β12 = −21+iν
√
πe−

πν
2 e

iπ
4

rB(λ0) Γ(−iν)
, β21 = β12,

the integrals are evaluated along the rays (0, εk) (and their complex conjugates),
ε1 :=∞ exp{ iπ4 }, ε2 :=∞ exp{− 3πi

4 }, D±iν(·) is the parabolic-cylinder function [32],
and

Λ̂0
C = exp

{ ∑
l∈{±}

(ρCl (0) + ρ̂Cl (0))

}
,

ρC±(0) = − 1

2πi

∫ ±λ0

0

ln|ς| d ln(1− |r(ς)|2), ρ̂C±(0)=

∫ 0

±∞

ln(1 + |r(iς)|2)

ς

dς

2πi
,

XΣC
11 (λ) = R̂(−)

C (0)

∫ ε1

0

XΣ2
C,r
−,12 (ς)e−iς

2

λ

dς

2πi
− R̂(−)

C (0)

∫ ε2

0

XΣ4
C,r
−,12 (ς)e−iς

2

λ

dς

2πi
,

XΣC
12 (λ) = −R̂(+)

C (0)

∫ ε1

0

XΣ1
C,r
−,11 (ς)eiς

2

λ

dς

2πi
+ R̂(+)

C (0)

∫ ε2

0

XΣ3
C,r
−,11 (ς)eiς

2

λ

dς

2πi
,

XΣC
21 (λ) = R̂(−)

C (0)

∫ ε1

0

XΣ2
C,r
−,22 (ς)e−iς

2

λ

dς

2πi
− R̂(−)

C (0)

∫ ε2

0

XΣ4
C,r
−,22 (ς)e−iς

2

λ

dς

2πi
,

XΣC
22 (λ) = −R̂(+)

C (0)

∫ ε1

0

XΣ1
C,r
−,21 (ς)eiς

2

λ

dς

2πi
+ R̂(+)

C (0)

∫ ε2

0

XΣ3
C,r
−,21 (ς)eiς

2

λ

dς

2πi
,

R̂(+)
C (0) = (−1)2iνλ4iν

0

{
rC(0)

(1− |r(0)|2)
− rC(i0)

(1 + |r(i0)|2)

}
, R̂(−)

C (0) = R̂(+)
C (0),

rC(0) := r(0) exp

{
4i

N∑
l=n+1

γl

}
, rC(i0) := r(i0) exp

{
4i

N∑
l=n+1

γl

}
,

where r(0) := (r(λ)|λ∈R)|λ=0 and r(i0) := (r(λ)|λ∈iR)|λ=0: the explicit expressions

for XΣiC,r
−,jk (ς), i ∈ {1, 2, 3, 4}, j, k ∈ {1, 2}, are not written down here since they will
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not actually be needed. Since [15] (r(λ)|λ∈R)|λ=0 = (r(λ)|λ∈iR)|λ=0 = 0, R̂(+)
C (0) =

R̂(−)
C (0) = h+

1 (λ;λ0) = 0, hence, XΣC
ij (λ) = 0, i, j ∈ {1, 2}. To obtain the expression

for XΣr
ij (λ), i, j ∈ {1, 2}, given above, use was made of the explicit representation

for µc00(·;λ0) := (Id − C\00(·;λ0))−1I on L′∪L′ (recall the definition of I1/2) in terms
of parabolic-cylinder functions given in section 7 of [15]. Now, substituting the ex-

pressions given above for XΣB,r
±,ij (ς) and XΣA,r

±,ij (ς), i, j∈{1, 2}, into the corresponding

integrals for XΣr
ij (λ), i, j ∈ {1, 2}, and using the following identities [32], ∂ςDa(ς) =

1
2 (aDa−1(ς)−Da+1(ς)), ςDa(ς)=Da+1(ς)+aDa−1(ς), and |Γ(iν)|2 =π/(ν sinhπν), as
well as the following integral [32]:∫ ∞

0

exp

(
−x

2

4

)
xa−1D−b(x)dx =

√
π exp{− 1

2 (a+ b) ln 2}Γ(a)

Γ( 1
2 (a+ b) + 1

2 )
, <(a) > 0,

one obtains the result stated in the lemma.
Proposition 4.2. As λ→∞, λ∈C\(Γ̂ ∪ (∪ni=1({±λi}∪{±λi}))), χ(λ) has the

following asymptotic expansion:

χ(λ) = I +
1

2λ

({
Qχ(x, t) + 4

n∑
i=1

(
βi − χc21(λi)

χc11(λi)
δ̂i

)}
σ−

+

{
Qχ(x, t) + 4

n∑
i=1

(
ωi − χc12(λi)

χc22(λi)
αi

)}
σ+

)
+O(λ−2),(94)

where limλ→∞(χc(x, t;λ))12 :=Qχ(x, t)/2λ, {αi, ωi}ni=1 satisfy the following nondegen-
erate system of 2n linear inhomogeneous algebraic equations:


Â+ B̂+

Ĉ+ D̂+





α1

α2

...
αn
ω1

ω2

...
ωn


=



g+
1 χ

c
12(λ1)

g+
2 χ

c
12(λ2)
...

g+
n χ

c
12(λn)

g+
1 χ

c
11(λ1)

g+
2 χ

c
11(λ2)
...

g+
n χc11(λn)


,(95)

where, for i, j∈{1, 2, . . . , n}, the n×n matrix blocks Â+, B̂+, Ĉ+, and D̂+ are defined
as follows,

Â+
ij :=


λi+g

+
i
χc12(λi)χ

c
22(λi)+λig

+
i

W(χc12(λi),χ
c
22(λi))

λiχc22(λi)
, i = j,

− 2g+
i

(−λiχc22(λi)χ
c
12(λj)+λjχ

c
22(λj)χ

c
12(λi))

χc22(λj)(λ2
i
−λ2

j
)

, i 6= j,

B̂+
ij :=


− 2g+

i
(λiχ

c
22(λi)χ

c
11(λi)−λiχc21(λi)χ

c
12(λi))

χc11(λi)(λ2
i
−λi2)

, i = j,

− 2g+
i

(λiχ
c
22(λi)χ

c
11(λj)−λjχc21(λj)χ

c
12(λi))

χc11(λj)(λ2
i
−λj2

)
, i 6= j,

Ĉ+
ij :=


− 2g+

i
(−λiχc21(λi)χ

c
12(λi)+λiχ

c
22(λi)χ

c
11(λi))

χc22(λi)(λi
2−λ2

i
)

, i = j,

− 2g+
i

(−λiχc21(λi)χ
c
12(λj)+λjχ

c
22(λj)χ

c
11(λi))

χc22(λj)(λi
2−λ2

j
)

, i 6= j,
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D̂+
ij :=


λi−g+

i
χc21(λi)χ

c
11(λi)+λi g

+
i

W(χc21(λi),χ
c
11(λi))

λiχc11(λi)
, i = j,

− 2g+
i

(λiχ
c
21(λi)χ

c
11(λj)−λjχc21(λj)χ

c
11(λi))

χc11(λj)(λi
2−λj2

)
, i 6= j,

{βi, δ̂i}ni=1 satisfy the following nondegenerate system of 2n linear inhomogeneous al-
gebraic equations,


Ê+ F̂+

Ĝ+ Ĥ+





β1

β2

...
βn
δ̂1
δ̂2
...

δ̂n


=



g+
1 χ

c
22(λ1)

g+
2 χ

c
22(λ2)
...

g+
n χ

c
22(λn)

g+
1 χ

c
21(λ1)

g+
2 χ

c
21(λ2)
...

g+
n χc21(λn)


,(96)

where, for i, j∈{1, 2, . . . , n}, the n×n matrix blocks Ê+, F̂+, Ĝ+, and Ĥ+ are defined
as follows,

Ê+
ij :=


λi−g+

i
χc12(λi)χ

c
22(λi)+λig

+
i

W(χc12(λi),χ
c
22(λi))

λiχc22(λi)
, i = j,

2g+
i

(λjχ
c
12(λj)χ

c
22(λi)−λiχc12(λi)χ

c
22(λj))

χc22(λj)(λ2
i
−λ2

j
)

, i 6= j,

F̂+
ij :=


2g+
i

(λiχ
c
12(λi)χ

c
21(λi)−λiχc11(λi)χ

c
22(λi))

χc11(λi)(λ2
i
−λi2)

, i = j,

2g+
i

(λiχ
c
12(λi)χ

c
21(λj)−λjχc11(λj)χ

c
22(λi))

χc11(λj)(λ2
i
−λj2

)
, i 6= j,

Ĝ+
ij :=


2g+
i

(λiχ
c
12(λi)χ

c
21(λi)−λiχc11(λi)χ

c
22(λi))

χc22(λi)(λi
2−λ2

i
)

, i = j,

2g+
i

(λjχ
c
12(λj)χ

c
21(λi)−λiχc11(λi)χ

c
22(λj))

χc22(λj)(λi
2−λ2

j
)

, i 6= j,

Ĥ+
ij :=


λi+g

+
i
χc11(λi)χ

c
21(λi)−λi g+

i
W(χc11(λi),χ

c
21(λi))

λiχc11(λi)
, i = j,

2g+
i

(λiχ
c
11(λi)χ

c
21(λj)−λjχc11(λj)χ

c
21(λi))

χc11(λj)(λi
2−λj2

)
, i 6= j,

with

g+
j := Cje

2iλ2
jx+4iλ4

j t(δ+(λj ;λ0))−2
N∏

l=n+1

(
(λj − λl)(λj + λl)

(λj − λl)(λj + λl)

)2

, 1 ≤ j ≤ n,

δ+(λk;λ0), k ∈ {1, 2, . . . , n}, given in Theorem 2.1, (18), and W(χcij(z), χ
c
i′j′(z)) is

the Wronskian of χcij(λ) and χci′j′(λ) (i, j, i′, j′ ∈ {1, 2}) evaluated at z: W(χcij(z),
χci′j′(z)) := (χcij(λ)∂λχ

c
i′j′(λ)−χci′j′(λ)∂λχ

c
ij(λ))|λ=z.

Proof. For 1≤ i≤n, set

res(χ(λ);λi) =

(
αi ai
βi bi

)
, res(χ(λ);λi) =

(
ci ωi
di δ̂i

)
.(97)
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From (92), (93), (97), and the polar (residue) conditions in Lemma 3.3, one gets a sys-

tem of linear algebraic equations for {αi, βi, ai, bi, ci, di, ωi, δ̂i}ni=1: from this system,
one shows that, for 1≤ i≤n,

(χc12(λi)αi + χc22(λi)ai)g
+
i = 0 ⇒ ai = −χc12(λi)

χc22(λi)
αi,

(χc12(λi)βi + χc22(λi)bi)g
+
i = 0 ⇒ bi = −χc12(λi)

χc22(λi)
βi,

(χc11(λi)ci + χc21(λi)ωi)g
+
i = 0 ⇒ ci = −χc21(λi)

χc11(λi)
ωi,

(χc11(λi)di + χc21(λi)δ̂i)g
+
i = 0 ⇒ di = −χc21(λi)

χc11(λi)
δ̂i;


.(98)

Using (98), which show that the matrices {res(χ(λ);λi)}ni=1 and {res(χ(λ);λi)}ni=1,
resp., are degenerate, one simplifies the resulting system of linear algebraic equations
for {αi, βi, ai, bi, ci, di, ωi, δ̂i}ni=1 and obtains (95) and (96): the nondegeneracy of
systems (95) and (96) is a consequence of the unique solvability of the original RH
problem (Lemma 2.2). By substituting (97) into (92) and defining Qχ(x, t) as in the
proposition, one obtains, using (93), the result given in Lemma 4.1, and (98), the
result given by (94).

Corollary 4.1. As t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn,

Q(x, t) = QC
+

(x, t) + 4i
n∑
j=1

(
ωj − χc12(λj)

χc22(λj)
αj

)
+O(C(λ0) exp{−abt}) ,

where QC
+

(x, t) := iQχ(x, t), a and b are given in Lemma 3.3, and C(λ0)∈L∞(R>M ;C).

Proof. Since, from Lemma 3.2, Q(x, t) = 2ilimλ→∞(λm](x, t;λ))12, the result fol-
lows from Lemma 3.3 and Proposition 4.2.

Proposition 4.3. As t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn,

Q(x, t) = QC+(x, t) + 4i

(
ωn − χc12(λn)

χc22(λn)
αn

)
+O

(
C1(λ0) ln t

t

)
+O(C2(λ0)e−a0b0t),(99)

where

αn =
â12g

+
n χc11(λn) + â22g

+
n χ

c
12(λn)

(â11â22 − â12â21)
,(100)

ωn =
â11g

+
n χc11(λn) + â21g

+
n χ

c
12(λn)

(â11â22 − â12â21)
,(101)

â11 :=
λn + g+

n χ
c
12(λn)χc22(λn) + λng

+
n W(χc12(λn), χc22(λn))

λnχc22(λn)
,(102)

â12 :=
2g+
n (λnχ

c
22(λn)χc11(λn)− λnχc21(λn)χc12(λn))

χc11(λn)(λ2
n − λn

2
)

,(103)

â21 :=
2g+
n (λnχ

c
22(λn)χc11(λn)− λnχc21(λn)χc12(λn))

χc22(λn)(λn
2 − λ2

n)
,(104)

â22 :=
λn − g+

n χc21(λn)χc11(λn) + λn g
+
n W(χc21(λn), χc11(λn))

λnχc11(λn)
,(105)



MODIFIED NONLINEAR SCHRÖDINGER EQUATION 819

QC+(x, t) is given in Theorem 2.1, (20)–(22) and (24), a0 := min(a, 8 min{ηl}n−1
l=1 )

(> 0), b0 :=min(b,min{|ξn−ξl|}n−1
l=1 ), C1(λ0)∈S(R>M ;C), and C2(λ0)∈L∞(R>M ;C).

Proof. Solving (95) as t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn for
{αi}ni=1 and {ωi}ni=1 via Cramer’s rule, one shows that

αi, ωi ∼ O
(

exp

{
−a[ min

1≤l≤n−1
|ξn − ξl|t

})
, 1 ≤ i ≤ n− 1,(106)

where a[ := 8 min{ηl}n−1
l=1 (> 0), and αn and ωn are given by (100) and (101): the

result now follows from Corollary 4.1 and the estimates in (106).
Proposition 4.4. As t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn,

Q(x, t) = Q+
as(x, t) +O

(
C(λ0) ln t

t

)
,

where Q+
as(x, t) is given in Theorem 2.1, (14)–(29), and C(λ0)∈S(R>M ;C).

Proof. For the proof substitute χcij(·), i, j∈{1, 2}, from Lemma 4.1 into (99)–(105)
and neglect exponentially small terms.

5. Asymptotic evaluation of ((Ψ−1(x, t; 0))11)2. In this section, the phase
integral, ((Ψ−1(x, t; 0))11)2, which appears in the gauge transformation (Proposi-
tion 2.3, (9)) is evaluated asymptotically as t→+∞ (x/t∼O(1)).

Lemma 5.1. As t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn,

((Ψ−1(x, t; 0))11)2 = exp{2 ln(χc22(0))}

× exp

{
2i

π

(∫ λ0

0

ln(1− |r(%)|2)

%
d%−

∫ ∞
0

ln(1 + |r(i%)|2)

%
d%

)}

× exp

{
−4i

N∑
l=n+1

γl

}
exp

{
2 ln

(
1−

n∑
i=1

(
2bi
λi

+
2δ̂i

λi

))}
+O(C(λ0)e−abt),

where bi = −χc12(λi)
χc22(λi)

βi, 1 ≤ i ≤ n, {βi, δ̂i}ni=1 satisfy (96), a and b are given in

Lemma 3.3, and C(λ0)∈L∞(R>M ;C).
Proof. From Lemma 2.1, the proof of Lemma 3.1, Proposition 3.2, (85), Lemma

3.2, (86), and Lemma 3.3, one gets that

Ψ(x, t; 0) = χ(0)(δ(0))σ3

N∏
l=n+1

(dl+(0))σ3 +O(C1(λ0) exp{−abt}),

where C1(λ0) ∈ L∞(R>M ;M2(C)). From Propositions 2.1–2.3, the parametrization
for the discrete eigenvalues (section 2), Lemma 3.2 (equation (87)), Proposition 4.1
(equations (92) and (93)), the proof of Proposition 4.2 (equations (97) and (98)), and
the σ1 and σ3 symmetry reductions for χ(λ), one shows that,

Ψ−1(x, t; 0)=(ĥ(0))σ3

 1−
n∑
i=1

(
2bi
λi

+ 2δ̂i
λi

)
0

0 1−
n∑
i=1

(
2αi
λi

+ 2ci
λi

)
+O(C2(λ0)e−abt),
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where ĥ(0) := χc22(0)(δ(0))−1 exp{−2i
∑N
l=n+1γl}, bi, 1 ≤ i ≤ n, and {βi, δ̂i}ni=1 are

as given in the lemma, ci = −χc21(λi)

χc11(λi)
ωi, 1 ≤ i ≤ n, {αi, ωi}ni=1 are defined by sys-

tem (95), and C2(λ0)∈L∞(R>M ;M2(C)): using the expression for δ+(λ;λ0) given in
Proposition 3.1 (and Remark 3.1), one obtains the result stated in the lemma.

In order to estimate (χc22(0))2, the following proposition and lemma are necessary.
Proposition 5.1. Define Q](x, t) :=2ilimλ→∞(λχc(x, t;λ))12. Then

(||Q](·, t)||L2(R;C))
2 =

2

π

(∫ ∞
0

ln(1 + |r(i%)|2)

%
d%−

∫ ∞
0

ln(1− |r(%)|2)

%
d%

)
,

(χc22(0))2 = (δ+(0;λ0))2 exp

{
i

∫ x

+∞
|Q](%, t)|2d%

}
.

Proof. The proof follows from the definition of χc(λ) given in Proposition 4.1,
Proposition 2.2, and Proposition 8.1 in [15].

Lemma 5.2 (see [35]). As t→+∞ and x→−∞ such that λ0>M,

Q](x, t) =
u+

1,1,0(λ0)ei(4λ
4
0t−ν(λ0) lnt)

√
t

+
u+
−1,2,0(λ0)

t
+O

(
C(λ0)(ln t)2

t3/2

)
,

where

u+
1,1,0(λ0) =

√
ν(λ0)

2λ2
0

exp{iθ+(λ0)},

θ+(λ0) = φ+(λ0)− 3π

4
+ arg Γ(iν(λ0))

+ arg r(λ0)−3ν(λ0) ln 2+2
N∑

l=n+1

arg

(
(λ0 − λl)(λ0 + λl)

(λ0 − λl)(λ0 + λl)

)
,

u+
−1,2,0(λ0) = − i

8πλ2
0

(
d(r(%)|%∈R)

d%

∣∣∣∣
%=0

− d(r(%)|%∈iR)

d%

∣∣∣∣
%=0

)

× exp

{
i

(
4

N∑
l=n+1

γl + 2ϑ+(λ0)

)}
,

ϑ+(λ0) = −
∫ λ0

0

ln(1− |r(%)|2)

%

d%

π
+

∫ ∞
0

ln(1 + |r(i%)|2)

%

d%

π
,

φ+(·) is given in Theorem 2.1, (22), and C(λ0)∈S(R>M ;C).
Comment to proof. Up to the leading (O(t−1)) term, the asymptotic expansion

was proved in [15]. The O(t−1) term constitutes the leading-order contribution from
the first-order stationary phase point at λ=0: the complete proof of this asymptotic
expansion can be found in [35].

Proposition 5.2. As t→+∞ and x→−∞ such that λ0>M,

(χc22(0))2 = exp

{
i

(√
2

t

∫ ∞
λ0

√
ν(µ)

µ2

(
R+
i (0) cos(κ+(µ; t))−R+

r (0) sin(κ+(µ; t))
)dµ
π

)}

+O
(
C(λ0)(ln t)2

λ2
0t

)
,
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where

R+
i (0) = ={R+(0)}, R+

r (0) = <{R+(0)}

:=

(
d(r(%)|%∈R)

d%

∣∣∣∣
%=0

− d(r(%)|%∈iR)

d%

∣∣∣∣
%=0

)
exp

{
4i

N∑
l=n+1

γl

}
,

κ+(λ0; t) := 4λ4
0t− ν(λ0) ln t+ θ+(λ0)− 2ϑ+(λ0),

and C(λ0)∈S(R>M ;C).
Proof. Writing

∫ x
+∞|Q](%, t)|2d% = −(||Q](·, t)||L2(R;C))

2 +
∫ x
−∞|Q](%, t)|2d%, us-

ing the expressions for (||Q](·, t)||L2(R;C))
2 and (χc22(0))2 given in Proposition 5.1,

the asymptotic expansion for Q](x, t) given in Lemma 5.2, the following inequali-
ties: |exp{(·)}−1| ≤ |(·)| sups∈[0,1] |exp{s(·)}| and 0 < ν(λ0) ≤ νmax := − 1

2π ln(1−
supλ∈R |r(λ)|2)<∞, and the fact that r(λ)∈S(Γ̂;C), one obtains the result stated in
the proposition.

Lemma 5.3. As t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn,

((Ψ−1(x, t; 0))11)2 = exp{i arg q+
as(x, t)}+O

(
C(λ0)(ln t)2

t

)
,

where arg q+
as(x, t) is given in Theorem 2.2, (48)–(51), and C(λ0)∈S(R>M ;C).

Proof. According to Lemma 5.1, in order to evaluate ((Ψ−1(x, t; 0))11)2, estimates

for exp{2 ln(χc22(0))} and {bi, δ̂i}ni=1 are required: the estimation for exp{2 ln(χc22(0))}
is given in Proposition 5.2; hence, it remains to estimate {bi, δ̂i}ni=1. Solving sys-
tem (96) as t→+∞ and x→−∞ such that λ0 >M and (x, t)∈Ωn for {βi}ni=1 and

{δ̂i}ni=1 via Cramer’s rule, one shows that βi, δ̂i∼O(exp{−a[min 1≤i≤n−1|ξn−ξi|t}),
1≤ i≤n−1, and

βn =
β+
n

(Ê+
nnĤ+

nn − F̂+
nnĜ+

nn)
, δ̂n =

δ̂+
n

(Ê+
nnĤ+

nn − F̂+
nnĜ+

nn)
,

where

β+
n :=

g+
n χ

c
22(λn)

χc11(λn)
+
|g+
n |2χc21(λn)χc22(λn)

λn
− |g

+
n |2χc22(λn)W (χc11(λn), χc21(λn))

χc11(λn)

+
2λn|g+

n |2χc22(λn)χc21(λn)

(λ2
n − λn

2
)

,

Ê+
nnĤ+

nn − F̂+
nnĜ+

nn :=
1

χc22(λn)χc11(λn)
+
g+
nW (χc21(λn), χc11(λn))

χc22(λn)χc11(λn)

+
g+
nW (χc12(λn), χc22(λn))

χc11(λn)χc22(λn)
+
g+
n χc21(λn)

λnχc22(λn)
− g+

n χ
c
12(λn)

λnχc11(λn)

+
(2λn)2|g+

n |2χc22(λn)χc11(λn)

(λ2
n − λn

2
)2

, δ̂+
n

:=
g+
n χc21(λn)

χc22(λn)
− 2λn|g+

n |2χc11(λn)χc22(λn)

(λ2
n − λn

2
)

.
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Substituting the expressions for χcij(·), i, j ∈ {1, 2}, given in Lemma 4.1 into the

above equations for β+
n , δ̂+

n , and Ê+
nnĤ+

nn−F̂+
nnĜ+

nn, and recalling that (see (98))

bi =−χc12(λi)
χc22(λi)

βi, 1≤ i≤ n, one obtains, as a result of Lemma 5.1, keeping only O(1)

and O(t−1/2) terms, the result stated in the lemma.
Corollary 5.1. As t→+∞ and x→−∞ such that λ0>M and (x, t)∈Ωn,

q(x, t) = Q+
as(x, t) exp{i arg q+

as(x, t)}+O
(
C(λ0)(ln t)2

t

)
,

where Q+
as(x, t) is given in Theorem 2.1, (14)–(29), arg q+

as(x, t) is given in Theo-
rem 2.2, (48)–(51), and C(λ0)∈S(R>M ;C).

Proof. The proof is a consequence of Proposition 2.3 and Lemma 5.3.

Corollary 5.2. As t→+∞ and x→+∞ such that λ̂0 :=
√

1
2 (xt − 1

s )>M, xt >
1
s ,

s∈R>0, and (x, t)∈ Ω̃n,

u(x, t) = v+
as(x, t)w

+
as(x, t) +O

(
C(λ̂0)(ln t)2

t

)
,

where v+
as(x, t) and w+

as(x, t) are given in Theorem 2.3, (58)–(70), and C(λ̂0)∈S(R>M ;C).

Proof. The proof is a consequence of Proposition 2.4 and Corollary 5.1.

6. Asymptotics as t→−∞. In this section, the asymptotic paradigm pre-
sented in sections 3–5 is reworked for the case when t→ −∞: since the proofs of
all obtained results are analogous, they will be omitted. This section is divided into
three parts: (1) in subsection 6.1, extended and model RH problems are formulated
as t→−∞; (2) in subsection 6.2, the model RH problem formulated in (1) above is
solved asymptotically as t→−∞ for the Schwartz class of nonreflectionless generic po-
tentials; and (3) in subsection 6.3, the phase integral, ((Ψ−1(x, t; 0))11)2, is evaluated
asymptotically as t→−∞.

6.1. Extended and model RH problems.
Proposition 6.1.1. In the solitonless sector (Zd≡∅), as t→−∞ and x→+∞

such that λ0>M,

m(x, t;λ) = ∆̃(λ) +O
(
C(λ0)√−t

)
,

where ∆̃(λ) :=(δ−(λ;λ0))σ3 ,

δ−(λ;λ0) = ((λ− λ0)(λ+ λ0))−iν exp

{ ∑
l∈{±}

ρ̃l(λ)

}
,

ρ̃±(λ) = − 1

2πi

∫ ±∞
±λ0

ln(ς − λ)d ln(1− |r(ς)|2),

ν := ν(λ0) is given by (21), ||(δ−(·;λ0))±1||L∞(C;C) := supλ∈C |(δ−(λ;λ0))±1| < ∞,
(δ−(±λ;λ0))−1 = δ−(λ;λ0), the principal branch of the logarithmic function is taken,
ln(µ−λ) :=ln|µ−λ|+i arg(µ−λ), arg(µ−λ)∈(−π, π), and C(λ0)∈S(R>M ;M2(C)).
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Remark 6.1.1. Hereafter, all explicit x, t dependencies are suppressed, except
where absolutely necessary, and δ−(λ;λ0) := δ̃(λ).

Lemma 6.1.1. There exists a unique solution m̃∆̃(λ) := m(λ)(∆̃(λ))−1:C\ (Zd∪
Γ̂)→ SL(2,C) of the following RH problem:

1. m̃∆̃(λ) is meromorphic forall λ∈C\Γ̂,
2.

m̃∆̃
+(λ) = m̃∆̃

−(λ)ṽ∆̃(λ), λ ∈ Γ̂,

where

ṽ∆̃(λ) = e−iθ(λ)ad(σ3)

(
(1− r(λ)r(λ))δ̃−(λ)(δ̃+(λ))−1 r(λ)δ̃−(λ)δ̃+(λ)

−r(λ)(δ̃−(λ))−1(δ̃+(λ))−1 (δ̃−(λ))−1δ̃+(λ)

)
,

3. m̃∆̃(λ) has simple poles at {±λi,±λi}Ni=1 with (1≤ i≤N)

res(m̃∆̃(λ);λi) = lim
λ→λi

m̃∆̃(λ)vi(δ̃(λi))
−2σ−,

res(m̃∆̃(λ);−λi) = −σ3res(m̃∆̃(λ);λi)σ3,

res(m̃∆̃(λ);λi ) = lim
λ→λi

m̃∆̃(λ)vi(δ̃(λi))
2σ+,

res(m̃∆̃(λ);−λi ) = −σ3res(m̃∆̃(λ);λi )σ3,

4. as λ→∞, λ∈C\(Zd∪Γ̂),

m̃∆̃(λ) = I +O(λ−1);

moreover, Q(x, t)=2ilimλ→∞(λm̃∆̃(x, t;λ))12 is equal to Q(x, t) in Lemma 2.2, (11).
Proposition 6.1.2. Introduce arbitrarily small, clockwise- and counterclockwise-

oriented, mutually disjoint (and disjoint with respect to Γ̂) circles K̃±j and L̃±j , 1≤
j≤n−1, around the eigenvalues {±λj}n−1

j=1 and {±λj}n−1
j=1 , resp., and define

m̃[(λ) :=



m̃∆̃(λ), λ ∈ C
∖(

Γ̂ ∪
(
n−1⋃
i=1

(K̃±i ∪ L̃±i )

))
,

m̃∆̃(λ)

(
I− vi(δ̃(±λi))−2

(λ∓λi) σ−

)
, λ ∈ intK̃±i , 1 ≤ i ≤ n− 1,

m̃∆̃(λ)

(
I + vi(δ̃(±λi))2

(λ∓λi) σ+

)
, λ ∈ intL̃±i , 1 ≤ i ≤ n− 1.

Then m̃[(λ) solves an RH problem on (σ£\∪n−1
i=1 ({±λi}∪{±λi}))∪(∪n−1

i=1 (K̃±i ∪L̃±i ))

with the same jumps as m̃∆̃(λ) on Γ̂, m̃[
+(λ)=m̃[

−(λ)ṽ∆̃(λ), and

m̃[
+(λ) =


m̃[
−(λ)

(
I + vi(δ̃(±λi))−2

(λ∓λi) σ−

)
, λ ∈ K̃±i , 1 ≤ i ≤ n− 1,

m̃[
−(λ)

(
I + vi(δ̃(±λi))2

(λ∓λi) σ+

)
, λ ∈ L̃±i , 1 ≤ i ≤ n− 1.

Remark 6.1.2. The superscripts ± on {K̃±i }n−1
i=1 and {L̃±i }n−1

i=1 , which are related
with {±λi}n−1

i=1 and {±λi}n−1
i=1 , resp., should not be confused with the subscripts ±
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appearing in the various RH problems in this and the next subsection, namely, m±(λ),

m̃∆̃
±(λ), m̃[

±(λ), m̃]
±(λ), χ̃±(λ), Ẽ±(λ), and χ̃c±(λ).

Lemma 6.1.2. Set

m̃](λ) :=



m̃[(λ)
n−1∏
l=1

(dl+(λ))−σ3 , λ ∈ C
∖(

Γ̂ ∪
(
n−1⋃
i=1

(K̃±i ∪ L̃±i )

))
,

m̃[(λ)(J̃
K̃±
i

(λ))−1
n−1∏
l=1

(dl−(λ))−σ3 , λ ∈ intK̃±i , 1 ≤ i ≤ n− 1,

m̃[(λ)(J̃
L̃±
i

(λ))−1
n−1∏
l=1

(dl−(λ))−σ3 , λ ∈ intL̃±i , 1 ≤ i ≤ n− 1,

where

dl+(λ) := (λ−λl)(λ+λl)
(λ−λl)(λ+λl)

, λ ∈ C
∖(

n−1⋃
i=1

(K̃±i ∪ L̃±i )

)
, 1 ≤ l ≤ n− 1,

dl−(λ) :=


(λ−λl)(λ+λl)

(λ±λl) , λ ∈
n−1⋃
i=1

intK̃±i , 1 ≤ l ≤ n− 1,

(λ±λl)
(λ−λl)(λ+λl)

, λ ∈
n−1⋃
i=1

intL̃±i , 1 ≤ l ≤ n− 1,

and the SL(2,C)-valued, holomorphic in intK̃±i and intL̃±i , resp., functions J̃
K̃±
i

(λ)

and J̃
L̃±
i

(λ), 1≤ i≤n−1, are given by

J̃
K̃±
i

(λ) =



n−1∏
l=1
6=i

d
−1
l−

(λ)

d
−1
l+

(λ)
− vi (̃δ(±λi))−2C̃

]
i

(di− (λ))2

n−1∏
l=1
6=i

d
−1
l−

(λ)

dl+
(λ)

(λ∓λi)
C̃]
i

(di− (λ))2

n−1∏
l=1
6=i

d−1
l− (λ)

dl+ (λ)

−vi(δ̃(±λi))−2
n−1∏
l=1
6=i

dl− (λ)

dl+ (λ) (λ∓ λi)
n−1∏
l=1
6=i

dl− (λ)

dl+ (λ)


,

J̃
L̃±
i

(λ) =


(λ∓ λi)

n−1∏
l=1
6=i

d−1
l− (λ)

d−1
l+

(λ)
vi(δ̃(±λi))2

n−1∏
l=1
6=i

d−1
l− (λ)

d−1
l+

(λ)

− C̃]
i

(di− (λ))−2

n−1∏
l=1
6=i

dl− (λ)

d−1
l+

(λ)

n−1∏
l=1
6=i

dl− (λ)

dl+
(λ)
− vi (̃δ(±λi))2C̃]i

(di− (λ))−2

n−1∏
l=1
6=i

dl− (λ)

d
−1
l+

(λ)

(λ∓λi)


,

with

C̃]i =(vi)
−1(δ̃(±λi))2(di−(±λi))2

n−1∏
l=1
6=i

(dl+(±λi))2, 1 ≤ i ≤ n− 1.

Then m̃](λ):C\((Zd\∪n−1
i=1 ({±λi}∪{±λi}))∪(Γ̂∪(∪n−1

i=1 (K̃±i ∪L̃±i ))))→SL(2,C) solves

the following, extended RH problem on (σ£ \∪n−1
i=1 ({±λi}∪{±λi}))∪(∪n−1

i=1 (K̃±i ∪L̃±i )):

m̃]
+(λ) = m̃]

−(λ)e−iθ(λ)ad(σ3)ṽ](λ),

where

ṽ](λ)|
Γ̂

=

 (1− r(λ)r(λ)) δ̃−(λ)

δ̃+(λ)

r(λ)

(δ̃−(λ)δ̃+(λ))−1

n−1∏
l=1

(
(λ−λl)(λ+λl)
(λ−λl)(λ+λl)

)2

− r(λ)

δ̃−(λ)δ̃+(λ)

n−1∏
l=1

(
(λ−λl)(λ+λl)
(λ−λl)(λ+λl)

)−2
δ̃+(λ)

δ̃−(λ)

,
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ṽ](λ) =


I + (vi)

−1(δ̃(±λi))2

(λ∓λi)

(
λ2
i−λi

2

2λi

)2 n−1∏
l=1
6=i

(
λl

2−λ2
i

λ2
l
−λ2

i

)2

σ+, λ ∈
n−1⋃
i=1

K̃±i ,

I + (vi)
−1(δ̃(±λi))−2

(λ∓λi)

(
λ2
i−λi

2

2λi

)2 n−1∏
l=1
6=i

(
λ2
l−λi

2

λl
2−λi2

)2

σ−, λ ∈
n−1⋃
i=1

L̃±i ,

with polar (residue) conditions

res(m̃](λ);λi) = lim
λ→λi

m̃](λ)vi(δ̃(λi))
−2

n−1∏
l=1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ−, n ≤ i ≤ N,

res(m̃](λ);−λi) = −σ3res(m̃](λ);λi)σ3, n ≤ i ≤ N,

res(m̃](λ);λi ) = lim
λ→λi

m̃](λ)vi(δ̃(λi))
2
n−1∏
l=1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ+, n ≤ i ≤ N,

res(m̃](λ);−λi ) = −σ3res(m̃](λ);λi )σ3, n ≤ i ≤ N,

and, as λ→∞, λ∈C\((Zd\∪n−1
i=1 ({±λi}∪{±λi}))∪(Γ̂∪(∪n−1

i=1 (K̃±i ∪L̃±i )))),

m̃](λ) = I +O(λ−1);

moreover, Q(x, t)=2ilimλ→∞(λm̃](x, t;λ))12 is equal to Q(x, t) in Lemma 2.2, (11).

Lemma 6.1.3. Let χ̃(λ) solve the following RH problem on σ£\∪n−1
i=1 ({±λi}∪

{±λi}) :

χ̃+(λ) = χ̃−(λ)e−iθ(λ)ad(σ3)ṽ](λ)|
Γ̂
, λ ∈ Γ̂,

with polar (residue) conditions

res(χ̃(λ);λi) = lim
λ→λi

χ̃(λ)vi(δ̃(λi))
−2

n−1∏
l=1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ−, n ≤ i ≤ N,

res(χ̃(λ);−λi) = −σ3res(χ̃(λ);λi)σ3, n ≤ i ≤ N,

res(χ̃(λ);λi ) = lim
λ→λi

χ̃(λ)vi(δ̃(λi))
2
n−1∏
l=1

(
(λi − λl)(λi + λl)

(λi − λl)(λi + λl)

)2

σ+, n ≤ i ≤ N,

res(χ̃(λ);−λi ) = −σ3res(χ̃(λ);λi )σ3, n ≤ i ≤ N,

and, as λ→∞, λ∈C\(∪Ni=n({±λi}∪{±λi})∪Γ̂),

χ̃(λ) = I +O(λ−1).

Then as t → −∞ and x → +∞ such that λ0 > M and (x, t) ∈ Ωn, the function

Ẽ(λ) :=m̃](λ)(χ̃(λ))−1 has the following asymptotics:

Ẽ(λ) = I +O(F̃ (λ;λ0) exp{ãb̃t}),

where ||F̃ (·;λ0)||L∞(C;M2(C)) <∞, ||F̃ (λ; ·)||L∞(R>M ;M2(C)) <∞, F̃ (λ;λ0)∼O (C(λ0)
λ )

as λ→∞ with C(λ0)∈L∞(R>M ;M2(C)), ã :=8 min{ηi}n−1
i=1 (>0), and b̃ :=min{|ξn−

ξi|}n−1
i=1 .
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6.2. Asymptotic solution for χ̃(λ).
Proposition 6.2.1. The solution of the model RH problem formulated in Lem-

ma 6.1.3, χ̃(λ):C\(Γ̂∪(∪Ni=n({±λi}∪{±λi})))→SL(2,C), has the following represen-
tation:

χ̃(λ) = χ̃d(λ) +

∫
Γ̂

χ̃−(%)(ṽ](%)|
Γ̂
− I)

(%− λ)

d%

2πi
,(107)

where

χ̃d(λ) = I

+

N∑
i=n

(
res(χ̃(λ);λi)

(λ− λi) − σ3res(χ̃(λ);λi)σ3

(λ+ λi)
+

res(χ̃(λ);λi)

(λ− λi)
− σ3res(χ̃(λ);λi)σ3

(λ+ λi)

)
.(108)

The solution of (107) can be written as the following ordered product:

χ̃(λ) = χ̃d(λ)χ̃c(λ),

where χ̃d(λ) is given by (108), and χ̃c(λ) solves the following RH problem: (1) χ̃c(λ) is

piecewise holomorphic for all λ∈C\̂Γ; (2) χ̃c+(λ)= χ̃c−(λ) exp{−iθ(λ)ad(σ3)}(ṽ](λ)|
Γ̂
),

λ∈ Γ̂; and (3) as λ→∞, λ∈C\Γ̂, χ̃c(λ)=I+O(λ−1).
Lemma 6.2.1. Let ε̃0 denote an arbitrarily fixed, sufficiently small positive real

number. For ℵ̃ ∈ {0,±λ0}, set Ñ (ℵ̃;ε̃0) := {λ; |λ−ℵ̃| ≤ ε̃0}. Then as t → −∞ and

x→ +∞ such that λ0 >M and λ ∈ C\∪ℵ̃∈{0,±λ0}Ñ (ℵ̃;ε̃0), χ̃c(λ) has the following

asymptotic expansion:

χ̃c(λ) = I +
1

4

√
−ν(λ0)

2λ2
0t

(
1

λ− λ0
+

1

λ+ λ0

)(
exp{−i(φ−(λ0) + Φ̂−(λ0; t))}σ−

+ exp{i(φ−(λ0) + Φ̂−(λ0; t))}σ+

)
+O

(
G̃(λ;λ0) ln|t|

t

)
,

where ν(λ0), φ−(λ0), and Φ̂−(λ0; t) are given in Theorem 2.1, equations (21), (23), and

(24), ||G̃(·;λ0)||L∞(C\∪
ℵ̃∈{0,±λ0}

Ñ (ℵ̃;̃ε0);M2(C))
<∞, G̃(λ;·)∈S(R>M ;M2(C)), G̃(λ;λ0)∼

O (C(λ0)
λ ) as λ→∞ with C(λ0)∈S(R>M ;M2(C)), and satisfies the following involu-

tions, χ̃c(−λ)=σ3χ̃
c(λ)σ3 and χ̃c(λ)=σ1χ̃c(λ)σ1.

Proposition 6.2.2. For n≤ i≤N, set

res(χ̃(λ);λi) =

(
α−i a−i
β−i b−i

)
, res(χ̃(λ);λi) =

(
c−i ω−i
d−i δ̂−i

)
.

Then as λ→∞, λ∈C\(Γ̂∪(∪Ni=n({±λi}∪{±λi}))), χ̃(λ) has the following asymptotic
expansion,

χ̃(λ) = I +
1

2λ

({
Qχ̃(x, t) + 4

N∑
i=n

(
β−i −

χ̃c21(λi)

χ̃c11(λi)
δ̂−i

)}
σ−

+

{
Qχ̃(x, t) + 4

N∑
i=n

(
ω−i −

χ̃c12(λi)

χ̃c22(λi)
α−i

)}
σ+

)
+O(λ−2),
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where limλ→∞(χ̃c(x, t;λ))12 :=Qχ̃(x, t)/2λ, {α−i , ω−i }Ni=n satisfy the following nonde-
generate system of 2(N−n+1) linear inhomogeneous algebraic equations,


Â− B̂−

Ĉ− D̂−





α−n
α−n+1

...
α−N
ω−n
ω−n+1

...
ω−N


=



g−n χ̃
c
12(λn)

g−n+1χ̃
c
12(λn+1)
...

g−N χ̃
c
12(λN )

g−n χ̃c11(λn)

g−n+1χ̃
c
11(λn+1)
...

g−N χ̃
c
11(λN )


,

where, for i, j ∈{n, n+1, . . . , N}, the (N−n+1)×(N−n+1) matrix blocks Â−, B̂−,
Ĉ−, and D̂− are defined as follows,

Â−ij :=


λi+g

−
i
χ̃c12(λi)χ̃

c
22(λi)+λig

−
i

W(χ̃c12(λi),χ̃
c
22(λi))

λiχ̃c22(λi)
, i = j,

− 2g−
i

(−λiχ̃c22(λi)χ̃
c
12(λj)+λj χ̃

c
22(λj)χ̃

c
12(λi))

χ̃c22(λj)(λ2
i
−λ2

j
)

, i 6= j,

B̂−ij :=


− 2g−

i
(λiχ̃

c
22(λi)χ̃

c
11(λi)−λiχ̃c21(λi)χ̃

c
12(λi))

χ̃c11(λi)(λ2
i
−λi2)

, i = j,

− 2g−
i

(λiχ̃
c
22(λi)χ̃

c
11(λj)−λj χ̃c21(λj)χ̃

c
12(λi))

χ̃c11(λj)(λ2
i
−λj2

)
, i 6= j,

Ĉ−ij :=


− 2g−

i
(λiχ̃

c
22(λi)χ̃

c
11(λi)−λiχ̃c21(λi)χ̃

c
12(λi))

χ̃c22(λi)(λi
2−λ2

i
)

, i = j,

− 2g−
i

(−λiχ̃c21(λi)χ̃
c
12(λj)+λj χ̃

c
22(λj)χ̃

c
11(λi))

χ̃c22(λj)(λi
2−λ2

j
)

, i 6= j,

D̂−ij :=


λi−g−i χ̃c21(λi)χ̃

c
11(λi)+λi g

−
i

W(χ̃c21(λi),χ̃
c
11(λi))

λiχ̃c11(λi)
, i = j,

− 2g−
i

(λiχ̃
c
21(λi)χ̃

c
11(λj)−λj χ̃c21(λj)χ̃

c
11(λi))

χ̃c11(λj)(λi
2−λj2

)
, i 6= j,

{β−i , δ̂−i }Ni=n satisfy the following nondegenerate system of 2(N−n+1) linear inhomo-
geneous algebraic equations,


Ê− F̂−

Ĝ− Ĥ−





β−n
β−n+1

...
β−N
δ̂−n
δ̂−n+1

...

δ̂−N


=



g−n χ̃
c
22(λn)

g−n+1χ̃
c
22(λn+1)
...

g−N χ̃
c
22(λN )

g−n χ̃c21(λn)

g−n+1χ̃
c
21(λn+1)
...

g−N χ̃
c
21(λN )


,
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where, for i, j ∈{n, n+1, . . . , N}, the (N−n+1)×(N−n+1) matrix blocks Ê−, F̂−,
Ĝ−, and Ĥ− are defined as follows,

Ê−ij :=


λi−g−i χ̃c12(λi)χ̃

c
22(λi)+λig

−
i

W(χ̃c12(λi),χ̃
c
22(λi))

λiχ̃c22(λi)
, i = j,

2g−
i

(λj χ̃
c
12(λj)χ̃

c
22(λi)−λiχ̃c12(λi)χ̃

c
22(λj))

χ̃c22(λj)(λ2
i
−λ2

j
)

, i 6= j,

F̂−ij :=


2g−
i

(λiχ̃
c
12(λi)χ̃

c
21(λi)−λiχ̃c11(λi)χ̃

c
22(λi))

χ̃c11(λi)(λ2
i
−λi2)

, i = j,

2g−
i

(λiχ̃
c
12(λi)χ̃

c
21(λj)−λj χ̃c11(λj)χ̃

c
22(λi))

χ̃c11(λj)(λ2
i
−λj2

)
, i 6= j,

Ĝ−ij :=


2g−
i

(λiχ̃
c
12(λi)χ̃

c
21(λi)−λiχ̃c11(λi)χ̃

c
22(λi))

χ̃c22(λi)(λi
2−λ2

i
)

, i = j,

2g−
i

(λj χ̃
c
12(λj)χ̃

c
21(λi)−λiχ̃c11(λi)χ̃

c
22(λj))

χ̃c22(λj)(λi
2−λ2

j
)

, i 6= j,

Ĥ−ij :=


λi+g

−
i
χ̃c11(λi)χ̃

c
21(λi)−λi g−i W(χ̃c11(λi),χ̃

c
21(λi))

λi χ̃c11(λi)
, i = j,

2g−
i

(λiχ̃
c
11(λi)χ̃

c
21(λj)−λj χ̃c11(λj)χ̃

c
21(λi))

χ̃c11(λj)(λi
2−λj2

)
, i 6= j,

with a−i =− χ̃c12(λi)

χ̃c22(λi)
α−i , b

−
i =− χ̃c12(λi)

χ̃c22(λi)
β−i , c

−
i =− χ̃c21(λi)

χ̃c11(λi)
ω−i , d

−
i =− χ̃c21(λi)

χ̃c11(λi)
δ̂−i , n≤ i≤N,

g−j := Cje
2iλ2

jx+4iλ4
j t(δ−(λj ;λ0))−2

n−1∏
l=1

(
(λj − λl)(λj + λl)

(λj − λl)(λj + λl)

)2

, n ≤ j ≤ N,

δ−(λk;λ0), k ∈ {n, n+1, . . . , N}, given in Theorem 2.1, (19), and W(χ̃cij(z), χ̃
c
i′j′(z))

is the Wronskian of χ̃cij(λ) and χ̃ci′j′(λ) (i, j, i′, j′∈{1, 2}) evaluated at z : W(χ̃cij(z),
χ̃ci′j′(z)) := (χ̃cij(λ)∂λχ̃

c
i′j′(λ)−χ̃ci′j′(λ)∂λχ

c
ij(λ))|λ=z.

Corollary 6.2.1. As t→−∞ and x→+∞ such that λ0>M and (x, t)∈Ωn,

Q(x, t) = QC−(x, t) + 4i
N∑
j=n

(
ω−j −

χ̃c12(λj)

χ̃c22(λj)
α−j

)
+O(C(λ0) exp{ãb̃t}),

where QC−(x, t) := iQχ̃(x, t), ã and b̃ are given in Lemma 6.1.3, and C(λ0)∈L∞(R>M ;C).

Proposition 6.2.3. As t→−∞ and x→+∞ such that λ0>M and (x, t)∈Ωn,

Q(x, t) = QC−(x, t) + 4i

(
ω−n −

χ̃c12(λn)

χ̃c22(λn)
α−n

)
+O

(
C1(λ0) ln|t|

t

)
+O(C2(λ0)eã0̃b0t),

where α−i , ω
−
i ∼O(exp{ã[ minn+1≤l≤N |ξn−ξl|t}), n+1≤ i≤N, ã[ := 8 min{ηl}Nl=n+1

(>0),

α−n =
â−12g

−
n χ̃c11(λn) + â−22g

−
n χ̃

c
12(λn)

(â−11â
−
22 − â−12â

−
21)

,

ω−n =
â−11g

−
n χ̃c11(λn) + â−21g

−
n χ̃

c
12(λn)

(â−11â
−
22 − â−12â

−
21)

,
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â−11 :=
λn + g−n χ̃

c
12(λn)χ̃c22(λn) + λng

−
n W(χ̃c12(λn), χ̃c22(λn))

λnχ̃c22(λn)
,

â−12 :=
2g−n (λnχ̃

c
22(λn)χ̃c11(λn)− λnχ̃c21(λn)χ̃c12(λn))

χ̃c11(λn)(λ2
n − λn

2
)

,

â−21 :=
2g−n (λnχ̃

c
22(λn)χ̃c11(λn)− λnχ̃c21(λn)χ̃c12(λn))

χ̃c22(λn)(λn
2 − λ2

n)
,

â−22 :=
λn − g−n χ̃c21(λn)χ̃c11(λn) + λn g

−
n W(χ̃c21(λn), χ̃c11(λn))

λnχ̃c11(λn)
,

QC−(x, t) is given in Theorem 2.1, equations (20), (21), (23), and (24), ã0 :=min(ã, ã[) (>

0), b̃0 :=min(̃b,min{|ξn−ξl|}Nl=n+1), C1(λ0)∈S(R>M ;C), and C2(λ0)∈L∞(R>M ;C).
Proposition 6.2.4. As t→−∞ and x→+∞ such that λ0>M and (x, t)∈Ωn,

Q(x, t) = Q−as(x, t) +O
(
C(λ0) ln |t|

t

)
,

where Q−as(x, t) is given in Theorem 2.1, (14)–(29), and C(λ0)∈S(R>M ;C).

6.3. Asymptotics of ((Ψ−1(x, t; 0))11)2 as t→−∞.
Proposition 6.3.1. Define Q\(x, t) :=2i limλ→∞(λχ̃c(x, t;λ))12. Then

(χ̃c22(0))2 = (δ−(0;λ0))2 exp

{
i

∫ x

+∞
|Q\(%, t)|2d%

}
.

Lemma 6.3.1 (see [35]). As t→−∞ and x→+∞ such that λ0>M,

Q\(x, t) =
u−1,1,0(λ0)ei(4λ

4
0t+ν(λ0) ln|t|)

√−t +
u−−1,2,0(λ0)

(−t) +O
(
C(λ0)(ln |t|)2

(−t)3/2

)
,

where

u−1,1,0(λ0) =

√
ν(λ0)

2λ2
0

exp{iθ−(λ0)},

θ−(λ0)=φ−(λ0)+
3π

4
−arg Γ(iν(λ0))

+ arg r(λ0)+3ν(λ0) ln 2+2
n−1∑
l=1

arg

(
(λ0 − λl)(λ0 + λl)

(λ0 − λl)(λ0 + λl)

)
,

u−−1,2,0(λ0)=
i

8πλ2
0

(
d(r(%)|%∈R)

d%

∣∣∣∣
%=0

− d(r(%)|%∈iR)

d%

∣∣∣∣
%=0

)

× exp

{
i

(
4

n−1∑
l=1

γl + 2ϑ−(λ0)

)}
,

ϑ−(λ0) = −
∫ ∞
λ0

ln(1− |r(%)|2)

%

d%

π
,
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φ−(·) is given in Theorem 2.1, (23), and C(λ0)∈S(R>M ;C).
Proposition 6.3.2. As t→−∞ and x→+∞ such that λ0>M,

(χ̃c22(0))2 = exp

{
i

(√
2

−t
∫ ∞
λ0

√
ν(µ)

µ2

(
R−i (0) cos(κ−(µ; t))−R−r (0) sin(κ−(µ; t))

)dµ
π

)}

+O
(
C(λ0)(ln |t|)2

λ2
0t

)
,

where

R−i (0) = ={R−(0)}, R−r (0)=<{R−(0)},

R−(0) :=

(
d(r(%)|%∈R)

d%

∣∣∣∣
%=0

− d(r(%)|%∈iR)

d%

∣∣∣∣
%=0

)
· exp

{
4i

n−1∑
l=1

γl

}
,

κ−(λ0; t) := 4λ4
0t+ν(λ0) ln|t|+θ−(λ0)−2ϑ−(λ0),

and C(λ0)∈S(R>M ;C).
Lemma 6.3.2. As t→−∞ and x→+∞ such that λ0>M and (x, t)∈Ωn,

((Ψ−1(x, t; 0))11)2 = exp{2 ln(χ̃c22(0))} exp

{
2i

π

∫ ∞
λ0

ln(1− |r(%)|2)

%
d%

}
exp

{
− 4i

n−1∑
l=1

γl

}

× exp

{
2 ln

(
1−

N∑
i=n

(
2b−i
λi

+
2δ̂−i
λi

))}
+O(C(λ0) exp{ãb̃t}),

where (χ̃c22(0))2 is given in Proposition 6.3.2, b−i =− χ̃c12(λi)

χ̃c22(λi)
β−i , n≤ i≤N, β−j , δ̂−j ∼

O(exp{ã[ minn+1≤j≤N |ξn−ξj |t}), n+1≤j≤N,

β−n =
βN ,−n

(Ê−nnĤ−nn − F̂−nnĜ−nn)
, δ̂−n =

δ̂N ,−n

(Ê−nnĤ−nn − F̂−nnĜ−nn)
,

with

βN ,−n :=
g−n χ̃

c
22(λn)

χ̃c11(λn)
+
|g−n |2χ̃c21(λn)χ̃c22(λn)

λn
− |g

−
n |2χ̃c22(λn)W (χ̃c11(λn), χ̃c21(λn))

χ̃c11(λn)

+
2λn|g−n |2χ̃c22(λn)χ̃c21(λn)

(λ2
n − λn

2
)

,

Ê−nnĤ−nn − F̂−nnĜ−nn :=
1

χ̃c22(λn)χ̃c11(λn)

+
g−nW (χ̃c21(λn), χ̃c11(λn))

χ̃c22(λn)χ̃c11(λn)
+
g−nW (χ̃c12(λn), χ̃c22(λn))

χ̃c11(λn)χ̃c22(λn)

+
g−n χ̃c21(λn)

λnχ̃c22(λn)
− g−n χ̃

c
12(λn)

λnχ̃c11(λn)
+

(2λn)2|g−n |2χ̃c22(λn)χ̃c11(λn)

(λ2
n − λn

2
)2

,

δ̂N ,−n :=
g−n χ̃c21(λn)

χ̃c22(λn)
− 2λn|g−n |2χ̃c11(λn)χ̃c22(λn)

(λ2
n − λn

2
)

,
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and C(λ0)∈L∞(R>M ;C).
Corollary 6.3.1. As t→−∞ and x→+∞ such that λ0>M and (x, t)∈Ωn,

q(x, t) = Q−as(x, t) exp{i arg q−as(x, t)}+O
(
C(λ0)(ln |t|)2

t

)
,

where Q−as(x, t) is given in Theorem 2.1, (14)–(29), arg q−as(x, t) is given in Theo-
rem 2.2, (48)–(51), and C(λ0)∈S(R>M ;C).

Corollary 6.3.2. As t→−∞ and x→−∞ such that λ̂0 :=
√

1
2 (xt − 1

s )>M,

x
t >

1
s , s∈R>0, and (x, t)∈ Ω̃n,

u(x, t) = v−as(x, t)w
−
as(x, t) +O

(
C(λ̂0)(ln |t|)2

t

)
,

where v−as(x, t) and w−as(x, t) are given in Theorem 2.3, (58)–(70), and C(λ̂0)∈S(R>M ;C).
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Abstract. We prove the existence of nontrivial stable solutions to the Landau–Lifshitz equation
with a Neumann boundary condition. The Landau–Lifshitz equation is a phenomenological model
for ferromagnets.

Key words. Landau–Lifshitz equation, harmonic map, stable nontrivial solution
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PII. S0036141097327951

1. Introduction. Let Ω be an nonsimply connected bounded domain in R3 with
C3 boundary. We seek for a solution u = (u1, u2, u3) : Ω → S2 ⊂ R3 of the Landau–
Lifshitz equation{

∆u+ |∇u|2u− λ(Wu(u)− (Wu(u) · u)u) = 0 in Ω,

∂u/∂ν = 0 on ∂Ω,
(1.1)

where λ > 0 is a parameter and ν is the unit outer normal vector of ∂Ω. In this paper,
we assume W (u) = u2

3 and denote Wu(u) = (0, 0, 2u3)t.
Equation (1.1) is the Euler–Lagrange equation of the Landau–Lifshitz energy

functional

Eλ(u) =

∫
Ω

1

2
|∇u|2 + λW (u)dx(1.2)

on H1(Ω, S2).
Functional (1.2) was first derived for ferromagnetic problems by Landau and Lif-

shitz [LL] in 1935. The ferromagnetic theory states that below a critical temperature,
a sufficiently large ferromagnetic body breaks up into small uniformly magnetized
regions separated by thin transition layers. Equation (1.1) is the static equivalent of
the time-dependent Landau–Lifshitz equation

∂u

∂t
= −u× (u× (∆u− λWu(u)))

+ γu× (∆u− λWu(u)).(1.3)

Here γ = 0 is called Gilbert damping constant.
It is clear that (1.1) is related to harmonic maps from Ω to S2. The solutions

to (1.1) have similar properties as those of the Ginzburg–Landau equation: there are
vortices motions and so on (c.f. [PZ]). Similar properties for the Ginzburg–Landau
equation have been discussed recently in a large number of papers (see [BBH], [JMZ],

∗Received by the editors September 29, 1997; accepted for publication (in revised form) August
3, 1998; published electronically May 13, 1999. This research was partly supported by the Japan
Society for the Promotion of Science.

http://www.siam.org/journals/sima/30-4/32795.html
†Department of Mathematics, Hokkaido University, Sapporo, Japan (zhai@math.sci.hokudai.

ac.jp).
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etc. and references therein). These results motivate us to conjecture similar conclusions
for the Landau–Lifshitz equation.

In this paper, we study the static Landau–Lifshitz equation (1.1) in an nonsim-
ply connected bounded domain of R3. The existence of nontrivial solutions and their
stability are obtained. We shall use the methods developed for the Ginzburg–Landau
equation. But the Landau–Lifshitz equation is more complicated: we have to deal
carefully with the constraint condition u ∈ S2, to analyze the spectrum of the lin-
earized operator in a detailed way by using Kato’s perturbation theory (c.f. [K]) since
the linearized operator is not self-adjoint, and to use some new techniques developed
recently for fully nonlinear parabolic equations (c.f. [L]).

Here, we assume W (u) = u2
3, which corresponds to the presence of a continuum

of directions of easy magnetization in S2 ∩ {u3 = 0}. Our results assert that in each
homotopy class from a nonsimply connected bounded domain Ω to S2 ∩ {u3 = 0},
there exists a stable distribution of directions of easy magnetization.

This paper consists of five sections and an appendix. In section 2, we state the
main theorems of this paper which are proved in sections 3–5. In the Appendix, we
modify a stability result given in [H, chapter 5, exercise 6] by the theory of fully
nonlinear parabolic equations (see [L], chapter 9) such that it can be applied to the
Landau–Lifshitz equation.

2. Main theorems.

THEOREM 1. Assume that Ω is not simply connected. Then there is λ0 > 0 such
that for λ > λ0, there exists a solution,

uλ(x) = (cos ξλ(x) cos θλ(x), cos ξλ(x) sin θλ(x), sin ξλ(x)) ∈ C2+α(Ω),

0 < α < 1 to (1.1) corresponding to each homotopy class [θ0] of continuous maps from
Ω to S2 ∩ {u3 = 0}. Moreover, θλ is homotopic to θ0 and

‖ξλ‖Cα(Ω) 5
C

λ
,(2.1)

where the constant C is independent of λ and θλ is S1-valued.

THEOREM 2. Assume that Ω is not simply connected. Then there exists a λ̄ > 0,
and for λ = λ̄, there exists a γ̄ = γ̄(λ) > 0 such that, for λ = λ̄ and γ ∈ [0, γ̄],
the solutions uλ(x) obtained in Theorem 1 are stable steady state solutions of the
time-dependent Landau–Lifshitz equation

∂u

∂t
= −u× (u× (∆u− λWu(u)))

+ γu× (∆u− λWu(u)) in Ω× (0,∞),

∂u

∂ν
= 0 on ∂Ω× (0,∞),

u ∈ S2 in Ω× (0,∞).

(2.2)

Remark 3. Here stability means Liapunov stability.

Remark 4. The solutions obtained in Theorem 1 take their values inside a neigh-
borhood of the equator of S2, and thus they can be viewed as maps into a set which is
homotopically equivalent to the equatorial S1. In this sense, we say that the solutions
are nontrivial.
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3. Proof of Theorem 1. Let u = (cos ξ cos θ, cos ξ sin θ, sin ξ) (−π2 5 ξ 5
π
2 , θ ∈ S1 = R/2πZ) in (1.2). The energy functional Eλ is translated into

Eλ(θ, ξ) =

∫
Ω

(
1

2
|∇ξ|2 +

cos2 ξ

2
|∇θ|2 + λ sin2 ξ

)
dx.(3.1)

For any given smooth map θ0 : Ω→ S1, (θ−θ0, ξ) can be regarded as a R2-valued
function for any θ ∈ [θ0] and the Euler–Lagrange equation of (3.1) can be written as

∆ξ −
(
λ− |∇θ|

2

2

)
sin 2ξ = 0 in Ω,

∂ξ

∂ν
= 0 on ∂Ω

(3.2)

and 
div(cos2 ξ∇θ) = 0 in Ω,

∂θ

∂ν
= 0 on ∂Ω.

(3.3)

We first consider the limit functional of (3.1) as λ→∞,

E∞(θ) =

∫
Ω

1

2
|∇θ|2dx.

Its critical points are well-known harmonic maps to S1 which satisfy
∆θ = 0 in Ω,

∂θ

∂ν
= 0 on ∂Ω.

(3.4)

The following lemma is standard (the proof can been found, for example, in
[JMZ]).

Lemma 3.1. Assume that Ω is not simply connected. Then there exists a solution
θ∗ ∈ C2+α(Ω, S1) to (3.4) in each homotopy class of continuous mappings from Ω
into S1. Moreover, the solution is unique up to an additive constant.

Hereafter, for technical reasons we fix a point p ∈ Ω and let q = θ∗(p).
Definition 3.2. Let α0 ∈ (0, 1) and define

E(θ∗) = {θ|θ − θ∗ ∈ C1+α0(Ω,R), θ(p) = q, θ is homotopic to θ∗,
‖θ − θ∗‖C1+α0 (Ω) 5 1}.

Lemma 3.3. For any given θ ∈ E(θ∗), there exists a solution ξθλ to (3.2) which
satisfies

‖ξθλ‖C2+α0 (Ω) 5 C1,(3.5)

lim
λ→∞

sup
θ∈E(θ∗)

‖ξθλ‖C2(Ω) = 0,(3.6)

and

‖ξθλ‖Cα0 (Ω) 5
C2

λ
,(3.7)
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provided λ is large enough. Here the constants Ci = Ci(‖θ‖C1+α0 (Ω)) (i = 1, 2) are

independent of λ.
Proof. Let η := ξ + C

λ , where C is a constant, to be determined in the proof. The
equation for η is written as

∆η −
(
λ− |∇θ|

2

2

)
sin 2

(
η − C

λ

)
= 0 in Ω,

∂η

∂ν
= 0 on ∂Ω.

(3.8)

Let

F (η) = −
(
λ− |∇θ|

2

2

)
sin 2

(
η − C

λ

)
.

It is easy to check that there exists a constant C = C(‖θ‖C1+α0 (Ω)) and λ0(> 0) such

that

F (0) = 0, F
(2C

λ

)
5 0

for λ = λ0. From [A], there exists a nonnegative solution ηθλ to (3.8) which satisfies

0 5 ηθλ 5
2C

λ
,

provided λ = λ0. Let ξθλ = ηθλ − C
λ . Thus ξθλ is a solution of (3.2) and

−C
λ
5 ξθλ 5

C

λ
,(3.9)

provided λ = λ0.
Rewrite (3.2) as

−∆ξ + 2λξ = λ(2ξ − sin 2ξ) +
|∇θ|2

2
sin 2ξ,

and use the Campanato inequality [C2] to obtain

‖ξ‖Cα0 (Ω) 5
C

λ
(λ‖2ξ − sin 2ξ‖Cα0 (Ω) + ‖ξ‖Cα0 (Ω) + ‖θ‖2

C1+α0 (Ω)
)(3.10)

for a solution ξ ∈ Cα0(Ω) to (3.2).
Claim 1. For δ > 0, there exists λ(δ) > 0 such that

‖2ξθλ − sin 2ξθλ‖Cα0 (Ω) 5 δ‖ξθλ‖Cα0 (Ω),

provided λ = λ(δ).
Using (3.10) and Claim 1, we get (3.7).
From (3.7) and standard linear elliptic equation theory, we can prove (3.5). Equa-

tion (3.6) is a simple corollary of (3.5) and (3.7).
Proof of Claim 1. For simplicity, we denote 2ξθλ by ξ. Since

sin ξ = ξ − ξ3

3!
+
ξ5

5!
− · · ·
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for small |ξ|, from the definition of Hölder seminorm, we have

‖ξ − sin ξ‖Cα0 (Ω) = sup
x,y∈Ω, x 6=y

|ξ(x)− sin ξ(x)− ξ(y) + sin ξ(y)|
|x− y|α0

5 ‖ξ‖Cα0 (Ω)

∞∑
m−1

2 =1

(m− 1)(Cλ )m−1

m!
.

Claim 1 is proved.
Lemma 3.4. For ξθλ obtained in Lemma 3.3, there exists a solution θ(ξθλ) to (3.3)

which satisfies

‖θ(ξθλ)− θ∗‖C2+α0 (Ω) → 0 as λ→∞(3.11)

uniformly for θ ∈ E(θ∗).
Proof. The proof of existence part is similar to Lemma 3.1. So we need only to

prove (3.11). For simplicity, we denote ξθλ and θ(ξθλ) by ξ and θ̄, respectively. From
(3.3)–(3.4), we obtain equations for θ̄ − θ∗:

div(cos2 ξ∇(θ̄ − θ∗)) = −∇ cos2 ξ · ∇θ∗ + (1− cos2 ξ)∆θ∗ in Ω,

∂(θ̄ − θ∗)
∂ν

= 0 on ∂Ω.
(3.12)

By standard elliptic regularity theory and Lemma 3.3, we have

‖θ̄ − θ∗‖C2+α0 (Ω) → 0 as λ→∞
uniformly for θ ∈ E(θ∗).

Proposition 3.5. Let Tλ(θ) = θ(ξθλ) for θ ∈ E(θ∗). Then Tλ(E(θ∗)) is pre-
compact in E(θ∗) and Tλ is continuous provided λ is large enough.

Proof. From Lemmas 3.3–3.4, we obtain that Tλ(E(θ∗)) is precompact. Let θ1

and θ2 be two elements in E(θ∗). Assume that ξ1 = ξθ1λ , ξ2 = ξθ2λ , and θ̄1 = θ(ξθ1λ ),

θ̄2 = θ(ξθ2λ ) are the solutions of (3.2) and (3.3), respectively. We consider the equations

∆(ξ1 − ξ2)− λ(sin 2ξ1 − sin 2ξ2) +
|∇θ1|2

2
sin 2ξ1 − |∇θ2|2

2
sin 2ξ2 = 0,

div(cos2 ξ1∇θ̄1)− div(cos2 ξ2∇θ̄2) = 0.

As in the proof of Lemmas 3.3–3.4, we can prove the continuity of Tλ.
Proof of Theorem 1. From Proposition 3.5 and the Schauder fixed point theorem,

Tλ has a fixed point θλ in E(θ∗) for large λ. Then we obtain a solution (θλ, ξλ) to
(3.2)–(3.3) which has the properties stated in Theorem 1.

4. Proof of Theorem 2 for γ = 0. By the change of coordinates u =
(cos ξ cos θ, cos ξ sin θ, sin ξ), (2.2) is rewritten as

∂tθ =

(
1

cos2 ξ

)
div(cos2 ξ∇θ) in Ω× (0,∞),

∂tξ = ∆ξ +

( |∇θ|2
2
− λ
)

sin 2ξ in Ω× (0,∞),

∂θ

∂ν
= 0,

∂ξ

∂ν
= 0 on ∂Ω× (0,∞).

(4.1)
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For the solution (θλ, ξλ) obtained in Theorem 1, the linearized operator Aλ of the
terms in the right-hand side of (4.1) at (θλ, ξλ) can be written as(

∆ + ( 1
cos2 ξλ

)∇ cos2 ξλ · ∇ − 2
cos2 ξλ

∇ξλ · ∇θλ − 2 sin ξλ
cos ξλ

∇θλ · ∇
(sin 2ξλ)∇θλ · ∇ ∆ + (|∇θλ|2 − 2λ) cos 2ξλ

)
.

Noting that Aλ is not self-adjoint, we decompose Aλ into two parts: Aλ = Āλ+G,
where

Āλ =

(
∆ − 2

cos2 ξλ
∇ξλ · ∇θλ

0 ∆ + (|∇θλ|2 − 2λ) cos 2ξλ

)
,

and

G =

(
1

cos2ξλ
∇ cos2 ξλ · ∇ − sin 2ξλ

cos2 ξλ
∇θλ · ∇

sin 2ξλ∇θλ · ∇ 0

)
.

Denote H = L2(Ω) × L2(Ω) with the standard inner product. It is easy to see
that Āλ can be extended to a self-adjoint operator in H.

We consider the eigenvalue problem for Āλ

−Āλ
(
φ
ψ

)
= µ̄

(
φ
ψ

)
,(4.2)

where φ and ψ belong to H1(Ω) and ∂φ
∂ν = 0, ∂ψ∂ν = 0 on ∂Ω.

The eigenvalues and eigenfunctions of (4.2) are denoted by

µ̄1(λ) 5 µ̄2(λ) 5 · · · 5 µ̄k(λ) 5 · · ·

and {(φλk , ψλk )}, respectively, where ‖φλk‖2L2(Ω) + ‖ψλk‖2L2(Ω) = 1.

Lemma 4.1. For k = 1, there exists a constant Ck which is independent of λ such
that

lim sup
λ→∞

|µ̄k(λ)| 5 Ck.
Proof. Note that

−
∫

Ω

(φλk , ψ
λ
k )Āλ(φλk , ψ

λ
k )tdx = C(ξλ, θλ) + 2λ

∫
Ω

(cos 2ξλ)(ψλk )2dx.

Let φk ∈ H1(Ω) (‖φk‖L2(Ω) = 1) be the kth eigenfunction of Laplace operator −∆
with the Neumann boundary condition. Then

C(ξλ, θλ) 5 µ̄k(λ) 5 −
∫

Ω

(φk, 0)Āλ(φk, 0)tdx 5 C(‖φk‖H1(Ω)).

We get the conclusion of Lemma 4.1.
From the proof of Lemma 4.1 and (2.1), we also obtain the following lemma.
Lemma 4.2. There exists a constant C̄k such that for large λ,∣∣∣λ ∫

Ω

(ψλk )2dx
∣∣∣ 5 C̄k.
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Rewrite the eigenvalue problem (4.2) in the form ∆φ− 2

cos2 ξλ
(∇ξλ · ∇θλ)ψ = −µ̄φ,

∆ψ + (|∇θλ|2 − 2λ)(cos 2ξλ)ψ = −µ̄ψ,
(4.3)

where φ and ψ belong to H1(Ω), and ∂φ
∂ν = 0, ∂ψ∂ν = 0 on ∂Ω.

Lemma 4.3. There exists a constant C which is independent of λ such that for
large λ,

‖ψλk‖Cα(Ω) 5
C

λ
,(4.4)

‖ψλk‖C2+α(Ω) 5 C,(4.5)

and

‖φλk‖C2+α(Ω) 5 C.(4.6)

Proof. Applying the Campanato inequality to the second equation of (4.3), we
obtain

‖ψλk‖Cα(Ω) 5
C

λ
.(4.7)

Applying the linear elliptic regularity theory to the second equation again, we get

‖ψλk‖C2+α(Ω) 5 C.(4.8)

Using (4.8) and the linear elliptic regularity theory for the first equation of (4.3), we
obtain that if λ is large enough, then

‖φλk‖C2+α(Ω) 5 C.(4.9)

Thus, we proved the lemma.

By direct calculation, we can prove the following.

Lemma 4.4. 0 is always the eigenvalue of (4.3) and (4.10). The corresponding
eigenfunction is ( 1√

|Ω| , 0).


−AλΦ = µΦ in Ω,

∂Φ

∂ν
= 0 on ∂Ω.

(4.10)

Next, we consider the spectrum of operator Aλ and analyze its behavior by the
perturbation theory (c.f. [K]).

Lemma 4.5. Let T = ρI − Āλ. For δ > 0, there exist ρ > 0 and λ0 = λ0(δ), such
that G is T -bounded with T -bound b: b 5 δ1/2 for λ = λ0.

Proof. It is clear that T can be extended to a self-adjoint operator in Hilbert space
H and D(G) ⊃ D(T ). For Φ = (φ, ψ)t ∈ D(T ), and for δ > 0, there exists λ0 = λ0(δ)
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such that for λ = λ0 we have

‖GΦ‖2H =

∫
Ω

(
1

cos2 ξλ
∇ cos ξλ · ∇φ− sin 2ξλ

cos2 ξλ
∇θλ · ∇ψ

)2

+

∫
Ω

(sin 2ξλ∇θλ · ∇φ)2

5 max
Ω

(
2
|∇ cos2 ξλ|2

cos4 ξλ
+ | sin 2ξλ∇θλ|2

)∫
Ω

|∇φ|2

+ 2 max
Ω

( | sin 2ξλ∇θλ|
cos2 ξλ

)2 ∫
Ω

|∇ψ|2

5 δ〈TΦ,Φ〉H
5 δ‖TΦ‖2H‖Φ‖2H ,

for some ρ > 0. Thus

‖GΦ‖H 5 δ1/2(‖Φ‖H + ‖TΦ‖H).

Let σ(T ) denote the spectral set of T and ρ(T ) = C \ σ(T ). For µ ∈ σ(T ), let

d = dist(µ, σ(T ) \ {µ})
and Γr = {ζ ∈ C : |ζ − µ| = r} for 0 < r 5 d/2. From [K, Chapter IV, Theorem
3.17], we have following lemma.

Lemma 4.6. If 1+2r+ |µ| < rδ−1/2, then Γr ⊂ ρ(T −G) and Γr encloses exactly
Multiple(µ) eigenvalues of T −G and no other points of σ(T −G).

Proof of Theorem 2 when γ = 0. Applying Lemmas 4.1–4.3 to the formula

µ̄k(λ) = −
∫

Ω

(φλk , ψ
λ
k )Āλ(φλk , ψ

λ
k )tdx,

we find that as λ→∞,

µ̄k(λ)→ µk,

where µk is the kth eigenvalue of the Laplace operator ∆ with the Neumann boundary
condition. Since

0 = µ1 < µ2 5 µ3 5 · · · 5 µk 5 · · · ,
by Lemmas 4.4–4.6, we have

0 ≡ µ1(λ) < Re(µ2(λ)),

for large λ, where µk(λ) denote the kth eigenvalue of the eigenvalue problem (4.10) for
Aλ. By [L, chapter 9], we can prove a modification of [H, chapter 5, exercise 6], which
is applied to quasi-linear parabolic equations including our case (see the Appendix).
From this modification, we get that the solution (θλ, ξλ) is stable provided λ is large
enough. Thus we proved Theorem 2 in the case of γ = 0.

5. Proof of Theorem 2 when γ 6= 0. For simplicity, we denote the solution
(θλ, ξλ) obtained in section 3 by (θ, ξ). The linearized operator Aλ is written as

Aλ =

(
a11 a12

a21 a22

)
,
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where

a11 = ∆ +
∇ cos2 ξ · ∇

cos2 ξ
− γ sin 2ξ

cos ξ
∇θ · ∇,

a12 =


− 2

cos2 ξλ
∇ξ · ∇θ − 2 sin ξ

cos ξ
∇θ · ∇

− γ

cos ξ
(∆ + (|∇θ|2 − 2λ) cos 2ξ)

−
(
γ sin ξ

cos2 ξ

)(
∆ξ +

( |∇θ|2
2
− λ
)

sin 2ξ

)

 ,

a21 = sin 2ξ∇θ · ∇+

(
γ

cos ξ

)
(cos2 ξ∆ +∇ cos2 ξ · ∇),

a22 =

∆ + (|∇θ|2 − 2λ) cos 2ξ +

(
γ

cos ξ

)
(− sin 2ξ∆θ

− 2 cos 2ξ∇ξ · ∇θ − sin 2ξ∇θ · ∇) +

(
γ sin ξ

cos2 ξ

)
div(cos2 ξ∇θ)

 .

Decompose the operator Aλ into Āλ and the perturbation G:

(5.1)

G = Aλ − Āλ

=


∇ cos2 ξ·∇

cos2 ξ − γ sin 2ξ∇θ·∇
cos ξ


− sin 2ξ∇θ · ∇

cos2 ξ
− γ∆

cos ξ

+
2γλ

cos ξ
(cos 2ξ + sin2 ξ)


a21 −γ sin 2ξ∇θ · ∇

cos ξ

 .

Let µ̄1(λ) 5 µ̄2(λ) 5 · · · 5 µ̄k(λ) 5 · · · and

(φ̄λk , ψ̄
λ
k ), ‖φ̄λk‖2L2(Ω) + ‖ψ̄λk‖2L2(Ω) = 1, k = 1, 2, . . .

denote the eigenvalues and eigenfunctions of Āλ, respectively. Then, there exists a
constant C which is independent of λ = λ̄ and γ ∈ [0, γ̄] for some γ̄ > 0 and λ̄ > 0,
such that

−C + 2λ

∫
Ω

cos 2ξ(ψ̄λk )2dx 5 µ̄k(λ)

= −
∫

Ω

(φ̄λk , ψ̄
λ
k )Āλ(φ̄λk , ψ̄

λ
k )tdx

5 C,

uniformly for λ = λ̄ and γ ∈ [0, γ̄]. That is, we have the following lemma.
Lemma 5.1. There exist λ̄ > 0, γ̄ > 0, and Ck > 0 such that |µ̄k(λ)| 5 Ck and

λ

∫
Ω

(ψ̄λk )2dx 5 Ck

for λ = λ̄ and γ ∈ [0, γ̄], where Ck is independent of λ and γ.
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Proof. First we have the estimates

µ̄k(λ) = −
∫

Ω

(φ̄λk , ψ̄
λ
k )Āλ(φ̄λk , ψ̄

λ
k )tdx

=
∫

Ω

(|∇φ̄λk |2 + |∇ψ̄λk |2)dx− C
∫

Ω

γ(|∇φ̄λk · ∇ψ̄λk |)dx− C
∫

Ω

(|∇ξ · ∇φ̄λk |

+ |∇θ · ∇φ̄λk |+ |∇ξ · ∇φ̄λk |+ |∇θ · ∇ψ̄λk |)(|φ̄λk |+ |ψ̄λk |)dx− C
+ 2λ

∫
Ω

cos 2ξ(ψ̄λk )2dx

= 1

2

∫
Ω

(|∇φ̄λk |2 + |∇ψ̄λk |2)dx+ 2λ

∫
Ω

cos 2ξ(ψ̄λk )2dx− C
= −C,

provided γ is small enough and λ is large enough, where C only depends on ‖ξ‖C2(Ω)

and ‖θ‖C2(Ω).

For φ ∈ H1(Ω) (‖φ‖L2(Ω) = 1), we have

−
∫

Ω

(φ, 0)Āλ(φ, 0)tdx 5 C(‖φ‖2H1(Ω) + 1).

Thus we proved the lemma.
Next the lemma is obtained by direct calculation.
Lemma 5.2. 0 is always a eigenvalue of operator Āλ and Aλ. The corresponding

eigenfunction is ( 1√
|Ω| , 0).

The eigenvalue problem for Āλ can be written as

∆φ− 2

cos2 ξ
(∇ξ · ∇θ)ψ

− (
γ

cos ξ
)(|∇θ|2(cos 2ξ)ψ)−

(
γ sin ξ

cos2 ξ

)(
∆ξ +

|∇θ|2
2

sin 2ξ

)
ψ

= −µ̄φ in Ω,

∂φ

∂ν
= 0 on ∂Ω,

(5.2)

and 

∆ψ + (|∇θ|2 − 2λ)(cos 2ξ)ψ +

(
γ

cos ξ

)
(− sin 2ξ∆θ − 2 cos 2ξ∇ξ · ∇θ)ψ

+

(
γ sin ξ

cos2 ξ

)
div(cos2 ξ∇θ)ψ = −µ̄ψ in Ω,

∂ψ

∂ν
= 0 on ∂Ω.

(5.3)

Lemma 5.3. There exist λ̄ > 0 and γ̄ > 0 such that

‖ψ̄λk‖Cα(Ω) 5
C

λ
,(5.4)

‖ψ̄λk‖C2+α(Ω) 5 C,(5.5)



LANDAU–LIFSHITZ EQUATION 843

and

‖φ̄λk‖C2+α(Ω) 5 C,(5.6)

provided λ = λ̄ and γ ∈ [0, γ̄], where constant C only depends on k and the C2+α(Ω)
norm of (ξλ, θλ).

Proof. For simplicity, we denote (φ̄λk , ψ̄
λ
k ) by (φ, ψ).

Step 1. Using the Campanato inequality in (5.3), we find that there exist γ̄ > 0
and λ̄ > 0 such that for γ ∈ [0, γ̄] and λ = λ̄,

‖ψ‖Cα(Ω) 5
C

λ
,(5.7)

where constant C is independent of λ, γ and ‖φ‖C2+α(Ω).

By the elliptic regularity theory, there exist γ̄ > 0 and λ̄ > 0 such that for
γ ∈ [0, γ̄] and λ = λ̄,

‖ψ‖C2+α(Ω) 5 C,(5.8)

with constant C <∞.
Step 2. Using the boundary extending method, we may extend the Neumann

boundary problem (5.2) in Ω to an interior elliptic problem in a larger domain Ω̃
(Ω ⊂ Ω̃). From the interior boundedness estimate (see, for example, Theorem 8.17 in
[GT]) we obtain

sup
Ω
|φ| 5 C(‖φ‖L2(Ω) + ‖ψ‖C2+α(Ω) + 1).(5.9)

Applying the elliptic regularity theory to (5.2), we have

‖φ‖C2+α(Ω) 5 C(‖φ‖C0(Ω) + ‖ψ‖C2+α(Ω) + 1).(5.10)

By (5.8), (5.9), and (5.10), (5.6) is obtained.
Lemma 5.4. There exist λ̄ > 0 and d > 0 such that for λ = λ̄,

µ̄1(λ) = 0 is a simple eigenvalue of Āλ,

and

µ̄2(λ) = d

uniformly for γ ∈ [0, γ̄], where d is independent of λ and γ, and γ̄ is the same as in
Lemma 5.3.

Proof. From Lemma 5.3, (5.2) and (5.3) converge to the eigenvalue problem
∆φ = −µφ in Ω,

∂φ

∂ν
= 0 on ∂Ω.

(5.11)

The first eigenvalue of (5.11) is simple and µ1 = 0. We get the conclusion of this
lemma.

Next, we consider the spectrum of the operator Aλ by a similar method as in
section 4. Precisely, we have the following.
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Lemma 5.5. Let T = ρI − Āλ. For δ > 0, there exist ρ > 0, λ0 = λ0(δ), and for
λ = λ0 there exists γ0(λ) > 0 such that for λ = λ0 and γ ∈ (0, γ0), we have

‖GΦ‖H 5 δ1/2((ρ+ 1)‖Φ‖H + ‖TΦ‖H) for Φ ∈ D(T ).

That is, G is T -bounded with T -bound b : b 5 δ1/2.
Proof of Theorem 2. For fixed λ = λ̄, we can choose γ ∈ (0, γ̄) such that γλ is

small enough. By a perturbating argument (c.f. [K]), we have that for fixed λ = λ̄,
there exists γ̄(λ) > 0 such that for γ ∈ [0, γ̄(λ)], the eigenvalues {µk(λ)}k of operator
Aλ have a similar behavior to that of Āλ. Note that 0 is always a eigenvalue of Aλ.
Then µ1(λ) = 0 is simple and

Re(µ2(λ)) = d

2
.

As in section 4, by Lemma A.1, we proved Theorem 2.

Appendix. In this appendix, we extend a stability result for a semilinear para-
bolic equation given in [H, exercise 6, pp. 108] to quasi-linear equations, including the
time-dependent Landau–Lifshitz equation. To overcome some technical difficulties, we
use the theory for nonlinear parabolic equations (c.f. [L]).

Using spherical coordinates, the time-dependent Landau–Lifshitz equation with
the Neumann boundary condition is written as

ηt =
1

cos2 ξ
(div(cos2 ξ∇(η + θ0)) + cos ξ(h2 cos(η + θ0)

− h1 sin(η + θ0)))− γ

cos ξ

(
∆ξ +

(
|∇(η + θ0)|2

2
− λ
)

sin 2ξ

+H · (− sin ξ cos(η + θ0),− sin ξ sin(η + θ0), cos ξ)

)

ξt = ∆ξ +

( |∇(η + θ0)|2
2

− λ
)

sin 2ξ

+H · (− sin ξ cos(η + θ0),− sin ξ sin(η + θ0), cos ξ)

+
γ

cos ξ
(div(cos2 ξ∇(η + θ0))

+ cos ξ(h2 cos(η + θ0)− h1 sin(η + θ0)))

(A.1)

in Ω× (0,∞) with the Neumann boundary condition

∂η

∂ν
= 0,

∂ξ

∂ν
= 0 on ∂Ω× (0,∞).

Here, η := θ− θ0, θ0 is a given map from Ω to S2 ∩{u3 = 0} with ∂θ0/∂ν = 0 on ∂Ω,
and θ ∈ [θ0]. We only need to consider the case of H ≡ 0. Denote the right terms by
F (η, ξ) and (A.1) by

yt = Aλy + F̃ (y);(A.2)

here, y = (η, ξ)T , Aλ is the linearized operator of F at the steady state solution
(ηλ, ξλ) = (θλ − θ0, ξλ) and

F̃ (y) := F (y + (ηλ, ξλ))−Aλy.
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Let X = L2(Ω,R2). It is clear that Aλ is a closed sectorial operator from

D(Aλ) := {y ∈W 2,2(Ω,R2) : ∂y/∂ν = 0 on ∂Ω}

to X (c.f. [L, pp. 72]). By a direct calculation, we have that ȳ(τ) = (τ, 0)T for τ ∈ R
satisfies

Aλȳ(τ) + F̃ (ȳ(τ)) = 0.

Let N = span− {ȳ′(0)} and X2 = R(Aλ). Then

X = N +X2.

For y given in a neighborhood of 0 in X, we can decompose it into

y = ȳ(τ) + z,

where z belongs to X2. Let

v ∈ X : A∗λv = 0, 〈v, ȳ′(0)〉X = 1.

Since 0 is a simple eigenvalue of Aλ, (A.2) is equivalent to
dτ

dt
= φ(τ, z),

dz

dt
= E2Aλz + g(τ, z),

(A.3)

where

φ(τ, z) =
〈v, F̃ (ȳ(τ) + z)− F̃ (ȳ(τ))〉X

〈v, ȳ′(τ)〉X ,

E2 is the projector from X to X2, and

g(τ, z) = E2(F̃ (ȳ(τ) + z)− F̃ (ȳ(τ))− ȳ′(τ)φ(τ, z)).

LEMMA A.1. There exists a neighborhood O of 0 in D := X2 ∩W 2,2(Ω,R2) such
that φ(τ, ·) and g(τ, ·) are C1 functions from O to R and from O to X, respectively,
with a locally Lipschitz continuous derivative, uniformly for |τ | 5 1.

Proof. We have to prove that there exists a neighborhood O of 0 in D, and for
z0 ∈ O there exist δ > 0 and C = C(O, δ) > 0 such that for z1 : ‖z1 − z0‖D 5 δ,

‖Dzg(τ, z0)y −Dzg(τ, z1)y‖X 5 C‖z1 − z0‖D,

|Dzφ(τ, z0)y −Dzφ(τ, z1)y| 5 C‖z1 − z0‖D,

uniformly for y ∈ D : ‖y‖D = 1 and τ : |τ | 5 1. Here,

‖ · ‖D = ‖ · ‖W 2,2(Ω).

By a direct calculation, we find that we only need to prove following estimate:

‖(Aλ(ȳ(τ) + (ηλ, ξλ) + z0)−Aλ(ȳ(τ) + (ηλ, ξλ) + z1))y‖X 5 C‖z0 − z1‖D.
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To obtain the last estimate, we use the Sobolev imbedding inequality. Let (ηi, ξi) =
ȳ(τ) + (ηλ, ξλ) + zi (i = 0, 1). For example, the following inequalities can be proved:∫

Ω

(
sin 2ξ1
cos2 ξ1

∆η1− sin 2ξ0
cos2 ξ0

∆η0

)2

5 C(ξ1)

∫
Ω

(∆η1 −∆η0)2

+

∫
Ω

(
sin 2ξ1
cos2 ξ1

− sin 2ξ0
cos2 ξ0

)2

(∆η0)2

5 C(ξ1)‖η1 − η0‖2D +

(∫
Ω

(∆η0)2

)∥∥∥∥ sin 2ξ1
cos2 ξ1

− sin 2ξ0
cos2 ξ0

∥∥∥∥2

L∞(Ω)

5 C(ξ1, ξ0, η0)(‖η1 − η0‖2D + ‖ξ1 − ξ0‖2D),

and ∫
Ω

|∇(ξ1 − ξ0)|2|∇η0|2 5 C(η0)

(∫
Ω

|∇(ξ1 − ξ0)|4
)1/2

5 C1(η0)‖ξ1 − ξ0‖2D,
etc. Thus, we proved this lemma.

Next, we apply the theory of [L, chapter 9] to the second equation of (A.3);
here we assume that τ satisfies |τ | 5 1. It is clear that the graph norm of E2Aλ :
D(Aλ) ∩X2 → X2 is equivalent to the norm of D. From section 5, we know that 0 is
a simple eigenvalue of Aλ for large λ and small γ, and the eigenvalues of E2Aλ lie in
the half plane {ω ∈ C : Re(ω) = d} for some d > 0. Thus we can apply [L, Theorem
9.1.2] to the second equation of (A.3) and obtain that there exists M > 0, if ‖z(0)‖D
is small; then the solution z(t) satisfies

‖z(t)‖D 5Me−dt‖z(0)‖D for t = 0.(A.4)

Thus, there exists M ′ > 0 such that if |τ(0)|+ ‖z(0)‖D is small, then

|τ(t)|+ ‖z(t)‖D 5M ′e−dt|τ(0)|+ ‖z(0)‖D for t = 0.

That is, the solutions which satisfy the conditions in Theorem 2 are stable in Liapunov
meaning.
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ators of second order with Neumann boundary condition, Matematiche (Catania), 35
(1980), pp. 61–72.



LANDAU–LIFSHITZ EQUATION 847

[GH] B. Guo and M.-C. Hong, The Landau–Lifshitz equation of the ferromagnetic spin chain
and harmonic maps, Calc. Var. Partial Differential Equations, 1 (1993), pp. 311–334.

[GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,
Die Grundlehren der Mathematischen Wissenschaften 224, 2nd ed., Springer-Verlag,
New York, 1983.

[H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathe-
matics 840, Springer-Verlag, New York, 1981.

[JMZ] S. Jimbo, Y. Morita, and J. Zhai, Ginzburg-Landau equation and stable solutions in a
nontrivial domain, Comm. Partial Differential Equations, 20 (1995), pp. 2093–2112.

[JZ] S. Jimbo and J. Zhai, Ginzburg-Landau equation with magnetic effect: Non-simple-
connected domains, J. Math. Soc. Japan, 50 (1998), pp. 663–684.

[K] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der Mathematischen
Wissenschaften 132, Springer-Verlag, New York, 1966.

[L] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress
in Nonlinear Differential Equations and Their Applications 16, Birkhäuser Verlag, Basel,
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Abstract. The purpose of this paper is to give an asymptotic estimate of the counting function
of the number of resonant frequencies on the purely imaginary axis in the case of the impedance
boundary condition. We extend the work of P. Lax, R. Phillips, and J. Beale who studied the
Dirichlet, Neumann, and Robin boundary conditions associated with the Helmholtz equation. The
method they developed hinges on a special link between the poles of the scattering matrix (i.e., the
resonant frequencies) and the zeros of the scattering matrix. This relation holds for conservative
boundary conditions but not for absorbing boundary conditions. The first part of this paper consists
in finding a relation of this form for the impedance boundary condition. Then we follow the work of
P. Lax, R. Phillips, and J. Beale in order to get the final estimate.

Key words. wave equations, scattering theory, integral operators, eigenvalue problem
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1. Introduction. In a lot of physical problems, such as radar identification, the
analysis of physical measurements is done through the transient response. The be-
havior of this latter is explained by the existence of complex frequencies called the
“resonant frequencies” (see the Singularity Expansion Method [1]). In the view of
inverse problems, one can wonder what can be deduced of the obstacle from a knowl-
edge of its resonant frequencies. We wish to infer from these numbers an estimate of
the size of the obstacle. This is of great practical interest. This is also mathematically
very important since this piece of information can remove the ill-posedness of the
inverse problem [8].

Let Ωint be an open bounded domain and Ω its complement in RN . The outward
normal to Γ = ∂Ωint is denoted by n. We assume that Γ is twice differentiable. The
resonant frequencies are defined as the poles of the scattering matrix or equivalently
the singularities of the “outgoing” Green’s function for the Helmholtz equation outside
an obstacle [9]. A lot of work has been done on the location of the resonant frequencies
(see [16] for an overview). There are in fact two classes of results on poles: counting
functions of the number of poles and pole-free regions. We focus in this paper only on
the first class. Several results dealing with pole-free regions can be found in [11, 13, 18].
It is known that the set of all resonant frequencies has no cluster point, except at
infinity. Hence in any compact set of C, there is only a finite number of poles. Let us
denote by NG(σ) the number of poles within the circle |z| < σ. R. Melrose has shown
in [15] the following sharp polynomial bound in the case of the Dirichlet boundary
condition

NG(σ) ≤ CG + CG σ
N ,(1)
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where N is the dimension of space. For this result as well as for most results on poles,
the dimension of space is assumed to be odd. Inequality (1) has no application to the
inverse problem, since no lower bound of NG(σ) is known and no information about
CG is at our disposal.

The second result concerns the counting function on the purely imaginary axis
for odd space dimensions:

NI(σ) = #{k pole , k ∈ R and |k| < σ} .

In odd space dimensions, we know that there are infinitely many poles on the purely
imaginary axis. More precisely, we have

1

(N − 1)!

(
R1

γ0

)N−1

≤ lim
σ→∞

NI(σ)

σN−1
≤ 1

(N − 1)!

(
R2

γ0

)N−1

,(2)

where R1 is the radius of the largest sphere contained in Ωint, R2 is the radius of
the smallest sphere containing Ωint, and γ0 is a known constant. This result has been
shown by P. Lax and R. Phillips in [10] for the Dirichlet and the Neumann boundary
conditions, and by J. Beale in [2] for the Robin boundary condition. The aim of this
work is to show (2) in the case of the impedance boundary condition.

Let us now give the idea of the proof of (2) in the case of the Dirichlet, Neumann,
and Robin boundary conditions. These three boundary conditions are very close to one
another since they share a very important property: the energy of the acoustic waves
in the whole exterior domain is conserved. The conservative nature of the boundary
condition means that the scattering matrix S(k) is unitary for k ∈ R. When k is not
real, there is a more general relation (namely the Schwarz reflection principle):

S(k) =[S∗(k)]
−1
.(3)

It follows that k is a zero of S if and only if k is a pole of S∗. On the other hand, the
poles of S are exactly the poles of S∗ (see Lemma 23). Therefore the location of the
zeros of S is linked to the location of the poles of S, as stated in the following rule:
k is a pole of S if and only if k is a zero of S. Consequently, the repartitioning of the
resonant frequencies on the purely imaginary axis is symmetric to the repartitioning
of the zeros of S on the purely imaginary axis. This property is at the root of (2), since
it is easier to study the zeros of an operator than it is to study its poles. A special
analysis of the zeros of the scattering matrix can be carried out on a purely imaginary
axis since the study of the zeros of S(k) for k ∈ iR+ turns into a real symmetric
eigenvalue problem for an elliptic operator. As a matter of fact, the scattering matrix
reads

S(k) = (−1)
N+1

2 [I +Q(k)W ] ,(4)

where Q(k) is a compact operator and W is a unitary operator. Moreover, Q(k) is
also self-adjoint on the purely imaginary axis. Hence, NI(σ) is the number of times
−1 is an eigenvalue of Q(iµ)W (where Q(iµ) is compact and self-adjoint) when µ runs
in the slab [0, σ].

The general theory of the Lax–Phillips group for dissipative systems can be found
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in [12], the following problem is studied

∂2w(t,x)

∂t2
−∆w(t,x) = 0 , in R+×Ω

∂w(t,x)

∂n
− λ(x)

∂w(t,x)

∂t
= 0, on R+×Γ

w(0,x) = f0(x) in Ω
∂w(0,x)

∂t
= f1(x) in Ω.

(5)

The impedance λ is assumed to satisfy the physical hypotheses

0 ≤ λ(x) < 1, ∀x ∈ Γ.(6)

The time translation operator U(t) is defined by

U(t) :

(
f0

f1

)
7→

(
w(t, .)
∂w(t,.)
∂t

)
.

The scattering theory developed by P. Lax and R. Phillips in [9] consists of studying
the properties of the one-parameter semigroup {U(t)}t∈R acting on L2(Ω)×L2(Ω). P.
Lax and R. Phillips showed that U(t) has some eigenvalues

U(t)g = e−iktg

for some g ∈ L2
loc(Ω)×L2

loc(Ω) and some discrete values k ∈ C. The factors k are the
resonant frequencies . The first component u of g is a nontrivial solution to

∆u+ k2u = 0 in Ω,
∂u
∂n + ikλu = 0 on Γ,
u outgoing.

(7)

In section 2, we will explain what is meant by “outgoing.”
We wish to extend (2) to the impedance problem described above. Problem (5)

corresponds to the fact that the obstacle is absorbing some energy. The main difficulty
due to this boundary condition is that the scattering matrix is no longer unitary for
real frequencies. Moreover (3) does not hold, which implies that there does not seem
to be any link between the zeros and the poles of S. For this reason, as noticed in [2],
the proof of (2) seems to be nonachievable.

To generalize the Schwarz reflection principle, we find it more convenient to focus
on the problem in frequency (i.e., (7)) rather than the problem in time (i.e., (5)). This
enables us to introduce a more general impedance boundary condition, ∂u∂n + iζ(k)u =
g, where ζ(k) is the impedance function (which depends on k ∈ C and on x ∈ Γ).
ζ(k) is supposed to be analytic in k and to satisfy the following physical assumption:

<(ζ(k) k
) ≥ 0 ∀k ∈ C.(8)

The positive sign means that the obstacle is absorbing some energy. Obviously, this
condition is satisfied with the impedance function ζ(k) = λk.

By studying more deeply the form of the scattering matrix, a relation quite similar
to (3) can be derived. To allow this, the impedance ζ(k) must be put as an argument of
the scattering matrix: we denote by S(k, ζ(k)) the scattering matrix at the frequency
k with the impedance function ζ(k). With this notation, we will show that

S
(
k,−ζ(k)

)
=[S∗(k, ζ(k))]

−1
.(9)
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In other words, k is a pole of S with the impedance function ζ(k) if and only if k is
a zero of S with the impedance function −ζ(k). The application of (3) to this case
would lead to this equivalence: k is a pole of S with the impedance function ζ(k) if
and only if k is a zero of S with the impedance function ζ(k). Consequently, the use
of (9) implies a modification of the impedance function considered when studying the

zeros of S. If (k, ζ(k)) satisfies (8), then
(
k,−ζ(k)

)
does not satisfy condition (8) since

<
(
−ζ(k) k

)
= −<(ζ(k) k

) ≤ 0 ∀k ∈ C.

Therefore, we shall need to define and study the scattering matrix for nonphysical
impedances. However, we assume that the nonphysical impedances satisfy the follow-
ing growth condition∣∣<(ζ(k,x)k

)∣∣ ≤ λm|k|2 ∀k ∈ C with |k| ≥ K and ∀x ∈ Γ,(10)

for some K ≥ 0 and 0 < λm < 1. At this point, we are ready to apply the work of
P. Lax, R. Phillips, and J. Beale in order to give an estimate of the number NI(σ) of
purely imaginary resonant frequencies for the impedance boundary condition ∂w

∂n −
λ∂w∂t = 0 whose modulus is lower than σ. From (9), it suffices to count the number of
zeros of S(iµ,−iλµ) when µ runs in [0, σ].

One can hint at formula (2) from a completely different method than that devel-
oped in the rest of this paper.

Theorem 1. There exists a constant C such that for σ large enough, we have

NI(σ) ≤ CσN−1 .

Proof. The scattering matrix reads (see (45))

S(iσ,−iσλ) = (−1)
N+1

2

[
I−
(−σ

2π

)N−1
2

s(σ)W

]
,

where s(σ) is the so-called transmission coefficient. We will show in Lemma 27 that
for σ large enough, s(σ) is a negative and self-adjoint operator. Consequently, the
singular values [6] sj(s(σ)) of s(σ) are identical to the eigenvalues ±λj(s(σ)W ) of
±s(σ)W (the ± sign comes from W ). From Theorem 34, the number of poles in the
slab [−iσ, 0] is asymptotically (as σ → ∞) equal to the number of eigenvalues of(−σ

2π

)N−1
2 s(σ)W that are greater than 1. Up to a factor 2, this is also asymptotically

equal to the number of singular values of
(−σ

2π

)N−1
2 s(σ) that are greater than 1. From

(32) and (33), the kernel of s(σ) is

− σ
N−3

2

2(2π)
N−1

2

∫
Γ

(
∂eσŷ·z

∂nz
+ λσeσŷ·z

)
S+(iσ,−iλσ)

(
∂eσx̂·z

∂nz
+ λσeσx̂·z

)
dγ(z),

where the jump operator S+(iσ,−iλσ) is defined in section 2. Let us denote by ∆S

the Laplace–Beltrami operator on the unit sphere S1. Using the classical estimate∣∣∣(∆S + 1)
m/2

eσx̂·z
∣∣∣ ≤ CmmeCσ for z ∈ Γ, we get for an arbitrary integer m:∥∥∥∥∥

(−σ
2π

)N−1
2

(∆S + 1)
m/2

s(σ)

∥∥∥∥∥
L2(S1)→L2(S1)

≤ CmmeCσ .
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Writing s(σ) =(∆S + 1)
−m/2

(∆S + 1)
m/2

s(σ), we have [6]

sj

((−σ
2π

)N−1
2

s(σ)

)

≤ sj
(
(∆S + 1)

−m/2
)∥∥∥∥∥
(−σ

2π

)N−1
2

(∆S + 1)
m/2

s(σ)

∥∥∥∥∥
L2(S1)→L2(S1)

.

Since (∆S + 1)
−m/2

is pseudodifferential operator of order −m, there exists C such

that sj

(
(∆S + 1)

−m/2
)
≤ C

jm/(N−1) (see, for instance, [7, Lemma A.4]). Henceforth

sj

((−σ
2π

)N−1
2

s(σ)

)
≤ C mm

jm/(N−1)
eCσ .

Taking the value of m which minimizes the right-hand side, we obtain

sj

((−σ
2π

)N−1
2

s(σ)

)
≤ exp

(
Cσ − 1

C
j

1
N−1

)
.

It follows that the condition sj

((−σ
2π

)N−1
2 s(σ)

)
> 1 implies that j ≤ CσN−1 for some

constant C. Thus,

#

{
j , sj

((−σ
2π

)N−1
2

s(σ)

)
> 1

}
≤ CσN−1 .

From the above remarks, this gives the final estimate.
We would like to point out a difference of notation between this paper and [9]. The

resonant frequencies as defined here lie in the lower half plane of complex frequencies
(see Theorem 16) whereas the resonant frequencies as defined in [9] lie in the upper
half plane. This is just a matter of convenience and habit.

Let us now give some notation. By L(X,Y ) is meant the set of all the linear
operators that maps X onto Y continuously. L2(O) is the classical space of all square
integrable distributions. Hs(O) is the classical Sobolev space (s ∈ R). Hs

loc(O) is the
Frechet space of the distributions whose restriction to each bounded domain O′ ⊂ O
is in Hs(O′). ‖.‖L2(O) and ‖.‖Hs(O) are the classical norms in L2(O) and Hs(O),
respectively. BR is the ball of center 0 and radius R. SR is the sphere of center 0
and radius R. S1 in the unit sphere. The complex scalar product in L2(Γ) is denoted
by 〈., .〉, where Γ is the boundary of an obstacle. (., .) stands for the complex scalar
product in L2(S1). The two Hankel functions of order 0 and first and second kind

are denoted by H
(1)
0 (z) and H

(2)
0 (z). For a linear operator B applying on complex

valued functional spaces such as L2 or H1, let us define its conjugate B as follows:
Bg is the complex conjugate of Bg. For a function u defined in either Ωint or Ω, we
denote by u|Γ the restriction of u on Γ. Let us now consider a function v defined on
Ωint ∪ Ω = RN\Γ. When a function v is considered on Γ, vint or vint|Γ denotes the
value on Γ of the restriction to Ωint, whereas v or v|Γ means that we take the value
on Γ of the restriction to Ω. The jump of v on Γ is defined by [[v]] := vint|Γ − v|Γ. In
this paper, vectors will be typed in bold characters, whereas scalar numbers will be
typed with standard letters. For x ∈ RN , we define x̂ := x

|x| ∈ S1.
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The layout of this paper is as follows. In section 2, we study the nonphysical
impedance problem (i.e., subject to (10)) and introduce the notion of incoming and
outgoing solutions. Then we define the far field pattern of these solutions. We also give
a very important relation between the incoming and the outgoing far field patterns.
In section 3, we focus on the physical problem (i.e., subject to (8) and (10)). We
define the resonant frequencies as the poles of the outgoing Green function. Then
the expression of the scattering matrix is given. The resonant frequencies are proved
to be exactly the poles of the scattering matrix. We show (9) and state the relation
between the poles and the zeros of S. In section 4, inequality (2) is proved (with the
impedance ζ(k) = λk).

2. Definition and properties of the far field pattern. In this section, we
aim to construct the far field pattern of the incoming and the outgoing solutions and
give the link between these two quantities. Here we consider the general impedance
boundary condition ∂u

∂n + iζ(k)u = g on Γ, where ζ(k) is an analytic function of k ∈ C
which satisfies

<(ζ(k)) 6= 0 ∀k ∈ R∗.(11)

This condition means that the energy of the system is not conserved (see Lemma 19).
The impedance function ζ depends also on x ∈ Γ, and will be denoted either ζ(k) or
ζ(k,x). We assume furthermore that ζ(k) belongs to C2(Γ) and satisfies∣∣<(ζ(k,x)k

)∣∣ ≤ λm|k|2 ∀k ∈ C with |k| ≥ K and ∀x ∈ Γ(12)

for some K ≥ 0 and 0 < λm < 1.

2.1. Incoming and outgoing solutions. Let us consider the following problem
for =(k) > 0: 

u+ ∈ H1(Ω) ,
−∆u+ − k2u+ = 0 in Ω,
∂u+

∂n + iζ(k)u+ = g on Γ.

(13)

Lemma 2. Let ζ(k) be an impedance function satisfying condition (12). Then the
problem (13) has a unique solution when the complex frequency k lies inside the set
C+ defined by

=(k) ≥ λm|k|+ λmC + 1 and |k| ≥ K,

where C > 0 depends only on the domain Ω (see Figure 1).
The set C+ is not empty since λm < 1. The condition λm < 1 is necessary to show

the coerciveness of (13).
Proof. One can give the variational formulation of (13):

b+(u+, v) = −
∫

Γ

gv dγ ∀v ∈ H1(Ω),

where

b+(u, v) :=

∫
Ω

(∇u·∇v − k2uv
)− ∫

Γ

iζ(k)uv dγ.
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Fig. 1. The set C+.

In order to use Lax–Milgram’s lemma, let us compute

<(ikb+(u, u)
)

= =(k)

∫
Ω

|∇u|2 + =(k)|k|2
∫

Ω

|u|2 +

∫
Γ

<(ζ(k)k
) |u|2 dγ.(14)

By (12), we have for |k| ≥ K∫
Γ

<(ζ(k)k
) |u|2 dγ ≥ −λm|k|2 ∫

Γ

|u|2 dγ.

From Lemma 3.3 in [2], for any domain D with a twice differentiable and bounded
boundary, there exists a constant C depending only on D such that ∀ u ∈ H1(D) and
∀ ε > 0 ∫

∂D
|u|2 ≤ ε

∫
D
|∇u|2 +

(
C +

1

ε

)∫
D
|u|2.(15)

Then, by (12), using (15) with D = Ω and ε = 1
|k| , we get∫

Γ

<(ζ(k)k
) |u|2 dγ ≥ −λm|k|2 ∫

Γ

|u|2 dγ

≥ −λm|k|‖∇u‖2L2(Ω) − λm|k|2(C + |k|)‖u‖2L2(Ω) ,

and

<(ikb+(u, u)
) ≥(=(k)−λm|k|)‖∇u‖2L2(Ω) + |k|2(=(k)−λm|k|−λmC)‖u‖2L2(Ω) .

Therefore, if =(k) ≥ λm|k|+ λmC + 1, then we have shown the coerciveness of ikb+:

<(ikb+(u, u)
) ≥ min

(
λmC + 1, |k|2)‖u‖2H1(Ω) .
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This means, by Lax–Milgram’s lemma, that (13) has a unique solution. The lemma
is proved.

Remark 3. It is well known (see [4]) that when =(k) > 0, the requirement that
the solution of the Helmholtz equation belongs to H1(Ω) is equivalent to the outgoing
Sommerfeld condition [4]. Namely, whenever =(k) > 0, (13) is equivalent to the
following problem

u+ ∈ H1
loc(Ω)

−∆u+ − k2u+ = 0 in Ω,
∂u+

∂n + iζ(k)u+ = g on Γ,

limr→∞ r
N−1

2

(
∂u+

∂r − iku+
)

= 0 uniformly in all directions.

This defines the “outgoing” solution of the Helmholtz equation.

For k ∈ C+ we define the operator R+(k, ζ(k)) by R+(k, ζ(k)) g = u+, where u+

is the solution to (13). In order to extend R+ in C\C+, we need a formulation of the
solution by integral equations over the boundary Γ (see [5]). u+ can be written as a
combination of the single layer and the double layer potentials

u+ = −iṼ +
k

(
ζ(k)v+

)− K̃+
k

(
v+
)

in Ω,(16)

where the potential v+ ∈ H1/2(Γ) defined on Γ must be determined. The integral
operators

Ṽ +
k v(x) :=

∫
Γ

G+
k (x,y) v(y) dγ(y) ,

K̃+
k v(x) :=

∫
Γ

∂

∂ny
G+
k (x,y) v(y) dγ(y)

are defined for x 6∈ Γ. We recall that the outgoing fundamental solution G+
k (x,y) is

equal to i
4H

(1)
0 (k|x − y|) for N = 2 and exp(ik|x−y|)

4π|x−y| for N = 3. The advantage of

integral representations is that the Helmholtz equation and the outgoing Sommerfeld
condition are automatically satisfied. Then the potential v+ ∈ H1/2(Γ) is determined
by requiring that the impedance boundary condition is satisfied, leading to [5]:

T+(k, ζ(k)) v+ := −D+
k

(
v+
)− i(ζ(k)K+

k

(
v+
)

+
(
K+
k

)t(
ζ(k)v+

))
+ζ(k)V +

k

(
ζ(k)v+

)
= g,(17)

where the integral operators

V +
k (v) (x) :=

∫
Γ

G+
k (x,y) v(y) dγ(y) ,

K+
k (v) (x) :=

∫
Γ

∂G+
k (x,y)

∂ny
v(y) dγ(y) ,

(
K+
k

)t
(v) (x) :=

∫
Γ

∂G+
k (x,y)

∂nx
v(y) dγ(y) ,

D+
k (v) (x) :=

∫
Γ

∂2G+
k (x,y)

∂nx∂ny
v(y) dγ(y)
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are defined for x ∈ Γ. We recall that

V +
k ∈ L

(
H−1/2(Γ) , H1/2(Γ)

)
, K+

k ∈ L
(
H−1/2(Γ) , H1/2(Γ)

)
,(

K+
k

)t ∈ L(H−1/2(Γ) , H1/2(Γ)
)

, D+
k ∈ L

(
H1/2(Γ) , H−1/2(Γ)

)
.

Note that (16) is only one possible representation of u+. The reason for using (16)
is that the associated integral equation, namely (17), is also the integral equation for
the resolution of the interior impedance problem. We set

C̃ :=

{
C\{z ∈ R, z ≤ 0} if N is even,
C otherwise.

Lemma 4. The operator R+ ∈ L(H−1/2(Γ) , H1(Ω)
)
, defined for k ∈ C+ by

Lemma 2, has a meromorphic extension to C̃, and the extension is an operator be-
longing to the space L(H−1/2(Γ) , H1

loc(Ω)
)
.

Proof. The inverse of the operator T+ is labeled S+. We have that T+ belongs to
the space L(H1/2(Γ) , H−1/2(Γ)

)
and S+ ∈ L(H−1/2(Γ) , H1/2(Γ)

)
in C+. The three

operators R+, T+, and S+ are well-defined in C+. Moreover, by (16) and (17), R+

and S+ are linked by the relation

R+(k, ζ(k)) =
(
−iṼ +

k ζ(k)− K̃+
k

)
S+(k, ζ(k)) .(18)

Since
(
−iṼ +

k ζ(k)− K̃+
k

)
is analytic in C̃, it is equivalent to extend R+ or S+. Hence-

forth the extension of R+ is done through T+. First, by (17), one can see that T+ is
well-defined ∀ k ∈ C̃ and is analytic in k. Then, from [5], we notice that for k0, such
that =(k0) > 0, the operator D+

k0
is invertible. We write for k ∈ C̃

T+(k, ζ(k)) = −D+
k0

[I + C(k, ζ(k))] ,

where

C(k, ζ(k)) := D+
k0

−1(
D+
k −D+

k0

)
+ iD+

k0

−1
ζ(k)K+

k

+iD+
k0

−1(
K+
k

)t
ζ(k)−D+

k0

−1
ζ(k)V +

k ζ(k).

By subtracting the symbol of the pseudodifferential operators D+
k and D+

k0
, one can

easily show that D+
k0

−1(
D+
k −D+

k0

)
is compact (see [3, 14]). Moreover, from the map-

ping properties of D+
k0

−1
, K+

k ,
(
K+
k

)t
, and V +

k , the three remaining pseudodifferen-
tial operators appearing in the expression of C(k, ζ(k)) are compact. We conclude
that C(k, ζ(k)) is compact. Finally by Lemma 2, T+(k, ζ(k)) is invertible ∀ k ∈ C+.

Consequently, by Steinberg’s theorem [17], (T+(k, ζ(k)))
−1

= S+(k, ζ(k)) has a mero-
morphic extension to C̃\C+. Hence, S+ has a countable number of poles. Thanks to
relation (18) and to the analycity of ζ(k) and of the two operators Ṽ +

k and K̃+
k , R+

is extended in the same way as S+.

Remark 5. The proof of Lemma 4 gives the way to define the outgoing solution of
the Helmholtz equation for almost any frequency k ∈ C̃. From now on, we will refer
to this procedure when stating that a solution is outgoing.

As a consequence of the above two lemmas, we have the following theorem.
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Fig. 2. The set C−.

Theorem 6. R+ has a countable number of poles. These poles lie in C̃\C+.
Conversely, the incoming solution u− is defined for =(k) < 0 by

u− ∈ H1(Ω) ,
−∆u− − k2u− = 0 in Ω,
∂u−
∂n + iζ(k)u− = g on Γ.

(19)

As for the outgoing problem, one can show the following lemma.
Lemma 7. Let ζ(k) be an impedance function satisfying condition (12). Then the

problem (19) has a unique solution when the complex frequency k lies inside the set
C− defined by

=(k) ≤ −λm|k| − (λmC + 1) and |k| ≥ K,

where C > 0 depends only on the domain Ω (see Figure 2).
Remark 8. When =(k) < 0, the requirement that the solution to the Helmholtz

equation belongs to H1(Ω) is equivalent to the incoming Sommerfeld condition [4].
Namely, whenever =(k) < 0, (19) is equivalent to the following problem:

u− ∈ H1
loc(Ω) ,

−∆u− − k2u− = 0 in Ω,
∂u−
∂n + iζ(k)u− = g on Γ,

limr→∞ r
N−1

2

(
∂u−
∂r + iku−

)
= 0 uniformly in all directions.

This defines the “incoming” solution of the Helmholtz equation.
We define the operator R−(k, ζ(k)) by R−(k, ζ(k)) g = u− for k ∈ C−. All the

previous integral operators can be defined for the incoming problem. The superscript
+ has to be replaced by −. The incoming fundamental solution G−k (x,y) is equal to
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Fig. 3. The set Cint.

− i
4H

(2)
0 (k|x − y|) for N = 2 and exp(−ik|x−y|)

4π|x−y| for N = 3. Equation (17) with the

superscript − instead of + is the integral equation for the incoming problem and
defines the operator T−. The operators R− and S− are extended in a meromorphic
way to C\C−, leading to the following lemma.

Lemma 9. The operator R− ∈ L(H−1/2(Γ) , H1(Ω)
)

defined for k ∈ C− by Lemma

7 has a meromorphic extension to C̃, and the extension is an operator belonging to
L(H−1/2(Γ) , H1

loc(Ω)
)
.

Theorem 10. R− has a countable number of poles. These poles lie in C̃\C−.

Finally, it appears useful to define the impedance interior problem,
uint ∈ H1

(
Ωint

)
,

−∆uint − k2uint = 0 in Ω,
∂uint

∂n + iζ(k)uint = g on Γ,

(20)

and the operator Rint(k, ζ(k)) by Rint(k, ζ(k)) g = uint when uint is well-defined.
Similarly to Lemmas 2 and 7, we have the following.

Lemma 11. Let ζ(k) be an impedance function satisfying condition (12). The
problem (20) has a unique solution when the complex frequency k lies inside the set
Cint defined by (see Figure 3)

|=(k)| ≥ λm|k|+ λmC + 1 and |k| ≥ K,

where C > 0 depends only on the domain Ω.

The solution uint can be represented by an integral representation involving either
the outgoing kernel G+

k or the incoming kernel G−k :

Rint =
(
−iṼ +

k ζ(k)− K̃+
k

)
S+(k, ζ(k)) ,
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or

Rint =
(
−iṼ −k ζ(k)− K̃−k

)
S−(k, ζ(k)) .

Obviously, these two expressions are equivalent inside Ωint. As in Lemmas 4 and 9,
one can show that the problem (20) has a countable number of poles.

Theorem 12. Rint has a countable number of poles. These poles lie in C̃\Cint.
The importance of the interior problem for the construction of the scattering

matrix comes from the following two relations,

S+(k, ζ(k)) : g 7→ v+ = [[u+]] := uint|Γ − u+|Γ,

S−(k, ζ(k)) : g 7→ v− = [[u−]] := uint|Γ − u−|Γ,
where u+, u− and uint are the solutions of (13), (19), and (20), respectively, with the
right-hand side g.

2.2. Link between incoming and outgoing solutions. In fact, the two prob-
lems (13) and (19) are very close to one another. Thus, special relations link R+ and
R−. This is what makes the relation (9) possible. First, if u+ = R+(k, ζ(k)) g for
k ∈ C+, we see that the incoming Sommerfeld condition holds with (−k) instead of
k. Then, since −k ∈ C−, by Lemma 7, we get

R+(k, ζ(k)) = R−(−k, ζ(k))(21)

whenever k ∈ C+. By analyticity arguments, this relation holds ∀ k ∈ C̃ such that
R+(k, ζ(k)) is defined. This shows that the poles of R+(k, ζ(k)) are exactly those of
R−(−k, ζ(k)).

On the other hand, if one sets u = R+(k, ζ(k)) g, then u satisfies for k ∈ C+
−∆u− k2

u = 0 in Ω,
∂u
∂n − i ζ(k)u = g on Γ,

limr→∞ r
N−1

2

(
∂u
∂r + iku

)
= 0.

By Lemma 7, this problem has a unique solution since k ∈ C− and the couple(
k,−ζ(k)

)
satisfies (12). Hence u = R−

(
k,−ζ(k)

)
g. Then

R+(k, ζ(k)) = R−
(
k,−ζ(k)

)
(22)

for k ∈ C+. Using the same argument as for (21), relation (22) holds for almost all
k ∈ C̃. With the same argument, we also have

Rint(k, ζ(k)) = Rint(−k, ζ(k)) , Rint(k, ζ(k)) = Rint
(
k,−ζ(k)

)
.(23)

If T± stands for either T+ or T−, we have〈
T±(k, ζ(k)) v, v′

〉
= −

∫
Γ×Γ

∂2

∂nx∂ny
G±k (x,y) v(x)v′(y) dγ(x) dγ(y)

−i
∫

Γ×Γ

[
∂

∂ny
G±k (x,y) ζ(k,x) +

∂

∂nx
G±k (x,y) ζ(k,y)

]
v(x)v′(y) dγ(x) dγ(y)

+

∫
Γ×Γ

G±k (x,y) ζ(k,x) ζ(k,y) v(x)v′(y) dγ(x) dγ(y) .
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One can easily check the relation G±k (x,y) = G±−k(x,y) for both the incoming and the

outgoing solutions. Let (T±(k, ζ(k)))
∗

be the adjoint operator of T±(k, ζ(k)). Since
the kernel of T± is symmetric with respect to x and y, we have (T±(k, ζ(k)))

∗
=

T±(k, ζ(k)), and thus〈(
T±(k, ζ(k))

)∗
v, v′

〉
=
〈
T±(k, ζ(k))v, v′

〉
=
〈
T±
(
−k,−ζ(k)

)
v, v′

〉
for almost all k ∈ C̃. Hence(

T±(k, ζ(k))
)∗

= T±(k, ζ(k)) = T±
(
−k,−ζ(k)

)
(24)

for almost all k ∈ C̃. If S± stands for S+ or S−, then we also have(
S±(k, ζ(k))

)∗
= S±(k, ζ(k)) = S±

(
−k,−ζ(k)

)
(25)

for almost all k ∈ C̃. Similarly, the relation G+
−k(x,y) = G−k (x,y) enables us to show

the following equality

S−(k, ζ(k)) = S+(−k, ζ(k))(26)

for almost all k ∈ C̃.

2.3. The far field patterns. The outgoing and incoming solutions share a
special behavior at infinity (i.e., very far away from the obstacle): the solution at a
point x ∈ RN is asymptotically equal to a function of |x| times a function of x̂ := x

|x| .
This latter function is called the far field pattern. The main interest of the far field
for what we are concerned with lies in the fact that it gives a characterization of the
scattering matrix.

The outgoing kernel satisfies

G+
k (x,y) =

eik|x|

|x|N−1
2

e−ikx̂·yχ(k) +O

(
eik|x|

|x|N+1
2

)
, where χ(k) =

(−ik)
N−3

2

2(2π)
N−1

2

,

and

∂G+
k

∂ny
(x,y) =

eik|x|

|x|N−1
2

∂e−ikx̂·y

∂ny
χ(k) +O

(
eik|x|

|x|N+1
2

)
.

Recalling that v+ = S+(k, ζ(k)) g = [[u+]] and using (18), we get

R+(k, ζ(k)) g(x) =
eik|x|

|x|N−1
2

A+,g(x̂, k, ζ(k)) +O

(
eik|x|

|x|N+1
2

)
,(27)

where for any x̂ ∈ S1

A+,g(x̂, k, ζ(k)) := −χ(k)

∫
Γ

(
∂e−ikx̂·y

∂ny
+ iζ(k,y)e−ikx̂·y

)
[[u+(y)]] dγ(y) .

For the incoming solution, we have

G−k (x,y) =
e−ik|x|

|x|N−1
2

eikx̂·yχ(−k) +O

(
e−ik|x|

|x|N+1
2

)
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and

∂G−k
∂ny

(x,y) =
e−ik|x|

|x|N−1
2

∂eikx̂·y

∂ny
χ(−k) +O

(
e−ik|x|

|x|N+1
2

)
.

Hence

R−(k, ζ(k)) g(x) =
e−ik|x|

|x|N−1
2

A−,g(x̂, k, ζ(k)) +O

(
e−ik|x|

|x|N+1
2

)
,(28)

where for any x̂ ∈ S1

A−,g(x̂, k, ζ(k)) := −χ(−k)

∫
Γ

(
∂eikx̂·y

∂ny
+ iζ(k,y)eikx̂·y

)
[[u−(y)]] dγ(y) .

A+,g and A−,g are the scattering amplitudes, or far field patterns of, respectively,
the outgoing and the incoming solution.

From (21), we automatically infer that

A−,g(x̂, k, ζ(k)) = A+,g(x̂,−k, ζ(k)) ,(29)

and (22) implies that

A+,g(x̂, k, ζ(k)) = A−,g
(
x̂, k,−ζ(k)

)
.(30)

Now we study more closely the case of the plane wave incidence. This is important
for several reasons. First, it is a very important case physically. Second, the far field
pattern can be expressed as a superposition of plane waves. More precisely, for the
incident wave u0(x) = e−ikŷ·x where |ŷ| = 1, the boundary condition reads

∂u

∂n
+ iζ(k)u =

∂u0

∂n
+ iζ(k)u0 = qŷ,k,ζ(k),

where

(
qŷ,k,ζ(k)

)
(x) :=

∂

∂nx
e−ikŷ·x + iζ(k,x)e−ikŷ·x.(31)

The far field pattern, with respect to the plane wave, is labeled s±, i.e.,

s±(ŷ, x̂, k, ζ(k)) := A±,qŷ,k,ζ(k)
(x̂, k, ζ(k)) .(32)

Putting together (27), (28), and (31), we have that

A+,g(x̂, k, ζ(k)) = −χ(k)

∫
Γ

qx̂,k,ζ(k) S
+(k, ζ(k)) g dγ

A−,g(x̂, k, ζ(k)) = −χ(−k)

∫
Γ

q−x̂,k,ζ(k) S
−(k, ζ(k)) g dγ.(33)
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2.4. Two fundamental relationships between incoming and outgoing
far field patterns.

Lemma 13. We have

A−,g(−x̂, k, ζ(k)) = −1
N+1

2 A+,g(x̂, k, ζ(k))

+
ik

2π

N−1
2
∫
|ŷ|=1

s−(x̂, ŷ, k, ζ(k))A+,g(ŷ, k, ζ(k)) dS(ŷ),(34)

A+,g(x̂, k, ζ(k)) = −1
N+1

2 A−,g(−x̂, k, ζ(k))

+

(−ik
2π

)N−1
2
∫
|ŷ|=1

s+(x̂,−ŷ, k, ζ(k))A−,g(−ŷ, k, ζ(k)) dS(ŷ).(35)

Proof. For k ∈ C̃ and g ∈ H−1/2(Γ) fixed, let us compute

H = −A+,g(x̂, k, ζ(k))

χ(k)
+
A−,g(−x̂, k, ζ(k))

χ(−k)

=

∫
Γ

[
S+(k, ζ(k)) g − S−(k, ζ(k)) g

]
qx̂,k,ζ(k) dγ.

Thanks to (26), one may write

H =
〈
S+(k, ζ(k)) g, qx̂,k,ζ(k)

〉−〈g, (S+(−k, ζ(k))
)∗
qx̂,k,ζ(k)

〉
.

Due to (25), we arrange the previous equation as

H =
〈
S+(k, ζ(k)) g, qx̂,k,ζ(k)

〉−〈g, S+
(
k,−ζ(k)

)
qx̂,k,ζ(k)

〉
.

By (31), the plane wave satisfies q := qx̂,k,ζ(k) = q−x̂,k,−ζ(k)
. We define the function

v by v = R+
(
k,−ζ(k)

)
q in Ω and by v = Rint

(
(k,−ζ(k)

)
q in Ωint. In fact, v is

the outgoing solution of ∆v + k
2
v = 0. Moreover, we have S+

(
k,−ζ(k)

)
qx̂,k,ζ(k) =

S+
(
k,−ζ(k)

)
q = [[v]] and ∂v

∂n − iζ(k)v = q = qx̂,k,ζ(k) on both sides of Γ. From (27)

and (32), the asymptotic behavior of v is

v(y)
|y|→∞∼ eik|y|

|y|N−1
2

s+

(
−x̂, ŷ, k,−ζ(k)

)
,

where s+ is defined in (32).
On the other hand, let us denote by u = R+(k, ζ(k)) g in Ω and u = Rint(k, ζ(k)) g

in Ωint, the outgoing solution with the initial data g. We have

S+(k, ζ(k)) g = [[u]],
∂u

∂n
+ iζ(k)u = g on Γ

and

u(y)
|y|→∞∼ eik|y|

|y|N−1
2

A+,g(ŷ, k, ζ(k)) .



GENERALIZATION OF THE SCHWARZ REFLECTION PRINCIPLE 863

Therefore

H =

〈
[[u]],

∂v

∂n
− iζ(k)v

〉
−
〈
∂u

∂n
+ iζ(k)u, [[v]]

〉
=

∫
Γ

{
[[u]]

(
∂v

∂n
+ iζ(k)v

)
−
(
∂u

∂n
+ iζ(k)u

)
[[v]]

}
.

Let us denote by Ω̃R the domain Ωint ∪(Ω ∩BR) for some R > 0 large enough. Then
Green’s formula applied to Ω̃R turns into the two following relations:∫

Ω̃R

∇u · ∇v − k2uv =

∫
Ω̃R

∇u · ∇v + ∆u v

=

∫
Γ

(
∂uint

∂n
vint − ∂u

∂n
v

)
dγ +

∫
SR

∂u

∂r
v dSR

and ∫
Ω̃R

∇u · ∇v − k2uv =

∫
Ω̃R

∇u · ∇v + u∆v

=

∫
Γ

(
uint ∂v

int

∂n
− u ∂v

∂n

)
dγ +

∫
SR

u
∂v

∂r
dSR.

By subtracting these last two equations, we have

−
∫
SR

(
∂u

∂r
v − u∂v

∂r

)
dSR

=

∫
Γ

{(
∂uint

∂n
vint − ∂u

∂n
v

)
−
(
uint ∂v

int

∂n
− u ∂v

∂n

)}
dγ

=

∫
Γ

{[(
∂uint

∂n
+ iζ(k)uint

)
vint −

(
∂u

∂n
+ iζ(k)u

)
v

]
−
[
uint

(
∂vint

∂n
+ iζ(k)vint

)
− u
(
∂v

∂n
+ iζ(k)v

)]}
dγ.

Since

∂uint

∂n
+ iζ(k)uint =

∂u

∂n
+ iζ(k)u

and

∂vint

∂n
+ iζ(k)vint =

∂v

∂n
+ iζ(k)v,

the last equality becomes∫
SR

(
∂u

∂r
v − u∂v

∂r

)
dSR =

∫
Γ

{
[[u]]

(
∂v

∂n
+ iζ(k)v

)
−
(
∂u

∂n
+ iζ(k)u

)
[[v]]

}
dγ.(36)

Now on SR, the asymptotic behavior of u and v enables one to write

∂u(rŷ)

∂r
v(rŷ)− u(rŷ)

∂v(rŷ)

∂r

r→∞∼ 2ik

rN−1
s+

(
−x̂, ŷ, k,−ζ(k)

)
A+,g(ŷ, k, ζ(k)) .
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Thus,

H =

∫
SR

(
∂u

∂r
v − u∂v

∂r

)
dSR

with ∫
SR

(
∂u

∂r
v − u∂v

∂r

)
dSR

R→∞∼ 2ik

RN−1

∫
SR

s+

(
−x̂, ŷ, k,−ζ(k)

)
A+,g(ŷ, k, ζ(k)) dSR.

By (30) and (32)

s+

(
−x̂, ŷ, k,−ζ(k)

)
= A+,q−x̂,k,−ζ(k)

(
ŷ, k,−ζ(k)

)
= A+,qx̂,k,ζ(k)

(
ŷ, k,−ζ(k)

)
= A−,qx̂,k,ζ(k)

(ŷ, k, ζ(k)) = s−(x̂, ŷ, k, ζ(k)) .

Thus,

s+

(
−x̂, ŷ, k,−ζ(k)

)
= s−(x̂, ŷ, k, ζ(k))(37)

and ∫
SR

(
∂u

∂r
v − u∂v

∂r

)
dSR

R→∞−→ 2ik

∫
|ŷ|=1

s−(x̂, ŷ, k, ζ(k))A+,g(ŷ, k, ζ(k)) dS(ŷ).

Since H does not depend on R, it follows that

H = 2ik

∫
|ŷ|=1

s−(x̂, ŷ, k, ζ(k))A+,g(ŷ, k, ζ(k)) dS(ŷ).

Finally from the relations χ(k)
χ(−k) = (−1)

N−3
2 = (−1)

N+1
2 and 2ikχ(−k) =

(
ik
2π

)N−1
2 ,

we have proved (34).
Let us now explicitly write down the mapping A− → A+. We proceed as previ-

ously. Thanks to (25) and (26), H is given by

H = −
∫

Γ

{
S−(k, ζ(k)) g − S−(−k, ζ(k)) g

}
qx̂,k,ζ(k) dγ

= −〈S−(k, ζ(k)) g, qx̂,k,ζ(k)

〉
+
〈
g, S−

(
k,−ζ(k)

)
qx̂,k,ζ(k)

〉
.

We now set v = R−
(
k,−ζ(k)

)
qx̂,k,ζ(k) in Ω

v = Rint
(
k,−ζ(k)

)
qx̂,k,ζ(k) in Ωint

and

{
u = R−(k, ζ(k)) g in Ω
u = Rint(k, ζ(k)) g in Ωint.

Hence

H =

∫
Γ

{(
∂u

∂n
+ iζ(k)u

)
[[v]]− [[u]]

(
∂v

∂n
+ iζ(k)v

)}
.
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Formula (36) also holds with the new choice of u and v. Thus,

H = −
∫
SR

(
∂u

∂r
v − u∂v

∂r

)
dSR

= 2ik

∫
|ŷ|=1

s−
(
−x̂, ŷ, k,−ζ(k)

)
A−,g(ŷ, k, ζ(k)) dS(ŷ).

Finally we have proved (35) by (37) and by changing ŷ into −ŷ in the integral.

3. The scattering matrix. In section 2, we have introduced several notions in
the case of a general impedance boundary condition. We are going to apply them to
the case of an impedance that satisfies the physical assumption

0 ≤ <(ζ(k,x)k
) ≤ λm |k|2 ∀k ∈ C with |k| ≥ K and ∀x ∈ Γ(38)

for some K ≥ 0 and 0 < λm < 1. We use the notation of section 2.

3.1. Notion of resonant frequency. The calculations of section 2.1 are also
valid in the case of (38). However few results can be improved. In particular, Lemma
2 becomes the following.

Lemma 14. Let ζ(k) be an impedance function satisfying condition (38). The
problem (13) has a unique solution when the complex frequency k lies inside the upper
half plane C+ :={k ∈ C , =(k) > 0}.

Proof. We proceed as in the proof of Lemma 2. From (14) and (38), one can
automatically deduce that ikb+ is coercive when =(k) > 0. We conclude the proof by
using the Lax–Milgram lemma.

As in section 2.1, we define R+(k, ζ(k)) : g 7→ u+, where u+ is solution to (13).
Using Lemma 4, one can extend R+ to C̃\C+. Hence R+ has a countable number of
poles in C̃\C+.

Definition 15. The “resonant frequencies” are defined as the poles of the oper-
ator R+(k, ζ(k)) , where ζ(k) is a physical impedance.

Combining Lemmas 4 and 14, we get the following theorem.
Theorem 16. The resonant frequencies lie in C̃\C+.

3.2. Definition of the scattering matrix and derivation of the funda-
mental relation. In [9], the scattering matrix for the Dirichlet or the Neumann
boundary condition is defined from the problem in time. However, in [10, formula
(A.16)], it is shown that the scattering matrix satisfies a relation which involves only
the far fields of the outgoing and incoming solutions. For the impedance boundary
condition, if the scattering matrix is denoted by S(k, ζ(k)), this relation writes for-
mally

S(k, ζ(k)) : A−,g(−x̂, k, ζ(k)) 7→ A+,g(x̂, k, ζ(k))(39)

∀ g ∈ H−1/2(Γ). In order to infer from this property a definition of the scattering
matrix, we must get rid of the term g in (39). To this end, let us introduce the far
field operators A±(k, ζ(k)) defined by

(A±(k, ζ(k)) g)(x̂) = A±,g(x̂, k, ζ(k)) .

If W stands for the symmetry operator (i.e., [Wa] (ŷ) = a(−ŷ)), then (39) turns into

S(k, ζ(k))WA−(k, ζ(k)) g = A+(k, ζ(k)) g
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∀ g ∈ H−1/2(Γ). Hence S(k, ζ(k))WA−(k, ζ(k)) = A+(k, ζ(k)), which implies the
following definition.

Definition 17. The “scattering matrix” S(k, ζ(k)) associated with the frequency
k and the impedance ζ(k) is defined by

S(k, ζ(k)) := A+(k, ζ(k)) (A−(k, ζ(k)))
−1
W−1.

The operators A±(k, ζ(k)) map H−1/2(Γ) to L2(S1). We will show in the proof of
Theorem 18 that A±(k, ζ(k)) is one-to-one. Hence A±(k, ζ(k)) is an isomorphism from
H−1/2(Γ) onto the space A±(k, ζ(k))H−1/2(Γ). Actually, the space A±(k, ζ(k))H−1/2

(Γ) is strictly included in L2(S1). We do not know how to characterize the far field
patterns of waves scattered by an obstacle in L2(S1) [5]. Hence the scattering matrix
is only defined on WA±(k, ζ(k))H−1/2(Γ). However, we will show later on that the
scattering matrix can be extended to any function of L2(S1).

Theorem 18. The poles of the scattering matrix are the poles of the far field
operator A+(k, ζ(k)).

Proof. From Definition 17, the poles of the scattering matrix are composed of the
poles of A+(k, ζ(k)) plus the zeros of A−(k, ζ(k)). Thus the property is proved if we
show that there is no zero of A−(k, ζ(k)).

Suppose by contradiction that k is a zero of A−(k, ζ(k)). Then 0 is eigenvalue of
A−(k, ζ(k)). Hence there exists a nonzero function g ∈ H−1/2(Γ) such that the far
field A−(k, ζ(k)) g := u∞ of the incoming solution u to the extension of the problem
(19) vanishes (see Lemma 9). Hence from [5, Theorem 2.13], we have u ≡ 0 outside a
ball containing the obstacle Ωint, and thus by analytic continuation (see [4]) u ≡ 0 in
Ω. Taking the restriction of u on the boundary, we get ∂u

∂n + iζ(k)u = 0 on Γ. Finally,
since g 6≡ 0, the impedance boundary condition cannot be satisfied, which leads to a
contradiction.

3.3. Expression of the scattering matrix. We set

[Q+(k, ζ(k))A] (x̂) =

∫
|ŷ|=1

s+(x̂,−ŷ, k, ζ(k))A(ŷ)dS(ŷ),

[Q−(k, ζ(k))A] (x̂) =

∫
|ŷ|=1

s−(x̂, ŷ, k, ζ(k))A(ŷ)dS(ŷ).

By (35) and (39), the scattering matrix writes

S(k, ζ(k)) = (−1)
N+1

2

[
I−
(
ik

2π

)N−1
2

Q+(k, ζ(k))

]
.(40)

From this expression of the scattering matrix, it is now clear that the domain of
definition of S can be extended to the whole space L2(S1). Thanks to (34), the inverse
of S is given by

S−1(k, ζ(k)) = (−1)
N+1

2

[
I−
(−ik

2π

)N−1
2

Q−(k, ζ(k))

]
.(41)

The conjugate of the scattering matrix is

S∗(k, ζ(k)) = (−1)
N+1

2

I−
(−ik

2π

)N−1
2

Q+(k, ζ(k))
∗
 .



GENERALIZATION OF THE SCHWARZ REFLECTION PRINCIPLE 867

The kernel of Q+(k, ζ(k)) is s+(x̂,−ŷ, k, ζ(k)), so that the kernel of Q+(k, ζ(k))
∗

is
s+(ŷ,−x̂, k, ζ(k)). From the reciprocity relation [5, 9], we have s+(ŷ,−x̂, k, ζ(k)) =
s+(−x̂, ŷ, k, ζ(k)). Thus, by relation (37), s−

(
x̂, ŷ, k,−ζ(k)

)
is the kernel of the op-

erator Q+(k, ζ(k))
∗
, which implies that Q+((k, ζ(k))

∗
= Q−

(
k,−ζ(k)

)
. Hence

S∗(k, ζ(k)) = S−1
(
k,−ζ(k)

)
,

and we obtain the fundamental relation

S
(
k,−ζ(k)

)
=[S∗(k, ζ(k))]

−1
.(42)

Hence relation (9) is shown. We have insisted in the introduction on the fact that this
relation plays a central role in this work. We now give a simple consequence of (42).

It is important for applications to see whether or not the scattering matrix is
unitary on the real axis. Indeed, the scattering matrix is unitary on the real axis if
and only if the time translation operator U(t) is unitary. This latter property means
that the energy of the systems is conserved. Because of the surface impedance which
introduces some absorption, we expect the scattering matrix to be not unitary. The
answer to this question is given in the next lemma.

Lemma 19. The scattering matrix is unitary on the real axis if and only if ζ(k)
is purely imaginary on the real axis.

As a consequence of this lemma, the assumption (11) implies that the scatter-
ing matrix is not unitary on the real axis. In fact, if (11) is not satisfied, then the
impedance boundary condition degenerates into the Robin boundary condition on the
real axis.

Proof. The scattering matrix is unitary on the real axis if and only if

S∗(k, ζ(k)) =[S(k, ζ(k))]
−1

for almost all k ∈ R∩C̃. Hence by (42), the scattering matrix is unitary on the real axis
if and only if S(k, ζ(k)) = S(k,−ζ(k)

)
. By (40), this is equivalent to s+(x̂,−ŷ, k, ζ(k))

= s+

(
x̂,−ŷ, k,−ζ(k)

)
for almost all x̂ ∈ S1 and almost all ŷ ∈ S1. From the unique-

ness of the recovery of the impedance (on a known and fixed boundary) from the
far field pattern (see Theorem 6.13 in [4]), we conclude that the scattering matrix is
unitary on the real axis if and only if ζ(k) = −ζ(k) for k real.

3.4. Relation between the resonant frequencies and the zeros of the
scattering matrix. The main interest of the scattering matrix lies in the following
result.

Theorem 20. The poles of the scattering matrix S(k, ζ(k)) are exactly the reso-
nant frequencies (see Definition 15).

Proof. From Theorem 18 and relation (33), the poles of the scattering ma-
trix are the poles of the jump operator S+(k, ζ(k)). Since S+(k, ζ(k)) g corresponds
to the jump between the outgoing solution R+(k, ζ(k)) g and the interior solution
Rint(k, ζ(k)) g, the poles of the scattering matrix are a priori composed of the poles of
R+(k, ζ(k)) (namely the resonant frequencies) and the poles of Rint. We are going to
show that the poles of the interior problem disappear so that the theorem is proved.

From (40), to show this we have only to show that the kernel s+ of the operator
Q+ is independent of the interior problem. We recall that the interior problem appears
in the jump operator S+, i.e.,

s+(x̂, ŷ, k, ζ(k)) = A+,qx̂,k,ζ(k)
(ŷ, k, ζ(k))
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= −χ(k)

∫
Γ

qŷ,k,ζ(k)S
+(k, ζ(k)) qx̂,k,ζ(k) dγ

= −χ(k)

∫
Γ

qŷ,k,ζ(k)

(
uint − u+

)
dγ,

where uint is solution to (20) with g = qx̂,k,ζ(k). We set ex̂(y) = e−ik x̂.y. We notice
that ∀ k ∈ C, ex̂ is solution to (20) with g = qx̂,k,ζ(k). When k is not a pole of (20),
we have uniqueness of (20) and thus uint(y) = ex̂(y). Now when k is a pole of (20),
we do not want to single out the particular solution ex̂. We assume that uint is any
solution to (20). Green’s formula then gives

0 =

∫
Ωint

eŷ∆uint −∆eŷ u
int =

∫
Γ

eŷ
∂uint

∂n
− ∂eŷ

∂n
uint dγ.

Thus, since ∂uint

∂n + iζ(k)uint = ∂ex̂
∂n + iζ(k)ex̂ on Γ, it follows that∫

Γ

qŷ,k,ζ(k)u
int dγ =

∫
Γ

eŷ

(
∂uint

∂n
+ iζ(k)uint

)
dγ =

∫
Γ

eŷ

(
∂ex̂
∂n

+ iζ(k)ex̂

)
dγ.

We can also show that, by Green’s formula,∫
Γ

eŷ
∂ex̂
∂n

dγ =

∫
Γ

∂eŷ
∂n

ex̂ dγ.

Thus, ∫
Γ

qŷ,k,ζ(k)u
int dγ =

∫
Γ

(
∂eŷ
∂n

+ iζ(k)eŷ

)
ex̂ dγ =

∫
Γ

qŷ,k,ζ(k)ex̂ dγ

and

s+(x̂, ŷ, k, ζ(k)) = −χ(k)

∫
Γ

qŷ,k,ζ(k)

(
ex̂ − u+

)
dγ.(43)

We notice that the interior problem disappears: the spurious poles (of the interior
problem) are not poles of S.

Remark 21. The scattering matrix gives the relationship between incoming and
outgoing solutions. In order to give an explicit form of S in the previous section, we
used integral equations on the boundary of the obstacle. The main drawback to the use
of integral equations is that they introduce the interior problem and its singularities
in the formulation of S. In particular, we know that the problem (20) is singular for a
countable number of poles. Theorem 20 shows that these poles do not create spurious
poles for S, that is to say, the poles of the scattering matrix are in fact the resonant
frequencies of the exterior problem.

Theorem 22. k is a resonant frequency (i.e., a pole of S for the impedance ζ(k))
if and only if k is a zero of S for the impedance −ζ(k).

Proof. From (42), k is a pole of S∗ for the impedance ζ(k) if and only if k is a
zero of S for the impedance −ζ(k). To conclude, we use Theorem 20 and Lemma 23
below.

Lemma 23. Let B(k) be an operator-valued meromorphic function. Then B(k)
and B(k)∗ have their poles at the same complex numbers k.
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Proof. Assume that k be a pole of B(k). Let kn be a sequence which converge
to k. Then there exists a sequence un such that ‖un‖ = 1 and ‖B(kn)un‖ tends to
infinity. We set vn = B(kn)un. We have

‖vn‖ =

(
B(kn)un ,

vn
‖vn‖

)
=

(
un , B(kn)∗

vn
‖vn‖

)
≤‖un‖

∥∥∥∥B(kn)∗
vn
‖vn‖

∥∥∥∥ .
We conclude that

∥∥∥B(kn)∗ vn
‖vn‖

∥∥∥ tends to infinity, which implies that k is a pole of

B(k)∗.

4. Purely imaginary resonant frequencies. In this section, some estimates
on the location of the purely imaginary poles are given. Thanks to Theorem 22, we
are able to use the work of P. Lax and R. Phillips [9, 10] and J. Beale [2]. Here we
are concerned with an impedance of the form

ζ(k,x) = kλ(x),(44)

where 0 ≤ λ(x) < 1 for any x ∈ Γ. Relation (11) is satisfied. Moreover, λm :=
maxx∈Γ λ(x) < 1, which implies that (12) holds. Condition (38) is trivially satisfied
so that all the results of previous section hold with the choice (44). Equation (44) is
the impedance function which is most broadly used in the literature.

We first give the expression of the scattering matrix on the purely imaginary axis.
It is of the form (4) where Q(iσ) is a compact self-adjoint operator when σ ∈ R.

4.1. The transmission coefficient. As in [10, 2], we wish to study the location
of the zeros of S instead of the location of the poles of S.

Theorem 24. The resonant frequencies are the poles of the extension of the
problem (13) with the impedance (44). These resonant frequencies lie in the lower half
plane C̃\C+.

Moreover, −iσ (with σ ∈ R) is a resonant frequency if and only if 0 is an eigen-
value of the operator S(iσ,−iλσ).

Proof. The first part of the theorem is a simple consequence of Definition 15 and
Theorem 16.

By Theorem 22, k = −iσ is a resonant frequency (i.e., a pole of S for the
impedance ζ(k) = −iλσ) if and only if k = iσ is a zero of S for the impedance
−ζ(k) = −iλσ.

As stated in the introduction, we do not consider, for the study of the zeros
of S, the problem (13) at the frequency k = iσ with the impedance (44), i.e.,
ζ(iσ) = iσλ. We consider instead the problem (13) at the frequency k = iσ with
the impedance −iσλ. Thus we have to find the location of the zeros of the scattering
matrix S(iσ, ζ̃(iσ)

)
, with the impedance ζ̃(k, x) = −λ(x)k. From (40),

S(iσ,−iσλ) = (−1)
N+1

2

[
I−
(−σ

2π

)N−1
2

s(σ)W

]
,(45)

where the operator W is defined by the relation [Wa] (ŷ) = a(−ŷ), and where s(σ)
is the operator of L2(S1) whose kernel is s(x̂, ŷ;σ) := s+(x̂, ŷ, iσ,−iλσ). By (27) and
(32), s(x̂, ŷ;σ) is given by

s(x̂, ŷ;σ) = lim
r→∞

[
r
N−1

2 eσρv(ρŷ, x̂;σ)
]
,
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where { (
σ2 −∆

)
v(y, x̂;σ) = 0 in Ω,(

∂
∂n + λ(y)σ

)
v(y, x̂;σ) =

(
∂
∂n + λ(y)σ

)
eσ x̂·y on Γ.

(46)

This problem is elliptic and has a real-valued solution, so that s(x̂, ŷ;σ) is real val-
ued. Moreover, from the reciprocity relation [5, 9], we have s(x̂, ŷ;σ) = s(ŷ, x̂;σ).
Consequently, the operator s(σ) is self-adjoint. That s(σ) is compact follows from the
fact that s(σ) is a Hilbert–Schmidt operator. s(x̂, ŷ;σ) is called the “transmission
coefficient”.

Let us now finish this section by giving an integral representation of the trans-
mission coefficient s. To this end, we set vx̂(z) = v(z, x̂;σ) and eŷ(z) = eσŷ·z.

Lemma 25. For σ > 0, the transmission coefficient is given by

s(x̂, ŷ;σ)=
σ
N−3

2

2 (2π)
N−1

2

[
−
∫

Ωint

pσ(ex̂, eŷ)−
∫

Ω

pσ(vx̂, vŷ)−
∫

Γ

λσ(ex̂eŷ−vx̂vŷ) dγ

]
,

where pσ(u, v) = ∇u · ∇v + σ2uv.
Proof. From (43), we have (with k = iσ, and ζ(k) = −iλσ)

s(x̂, ŷ;σ) = −χ(iσ)

∫
Γ

(
∂eŷ
∂n

+ λσeŷ

)
(ex̂ − vx̂) dγ,

where χ(iσ) = σ
N−3

2

2(2π)
N−1

2

. Since
∂vŷ
∂n + λσvŷ =

∂eŷ
∂n + λσeŷ, we get

s(x̂, ŷ;σ) = − σ
N−3

2

2(2π)
N−1

2

{∫
Γ

(
∂eŷ
∂n

+ λσeŷ

)
ex̂ dγ −

∫
Γ

(
∂vŷ

∂n
+ λσvŷ

)
vx̂ dγ

}
.

Let us set Lσu =
(
σ2 −∆

)
u. Since Lσvŷ = 0 and Lσeŷ = 0, Green’s formula leads to

0 =

∫
Ωint

ex̂Lσeŷ =

∫
Ωint

pσ(ex̂, eŷ)−
∫

Γ

ex̂
∂eŷ
∂n

dγ

and

0 =

∫
Ω

vx̂Lσvŷ =

∫
Ω

pσ(vx̂, vŷ) +

∫
Γ

vx̂
∂vŷ

∂n
dγ.

Hence, putting these two expressions in s(x̂, ŷ;σ), we have proved the lemma.

4.2. Properties of the zeros of S. The problem (46) does not correspond to a
physical impedance (i.e., the impedance does not satisfy the condition (38)). However,
the impedance satisfies the condition (12).

Theorem 26. Assume that 0 < λm := maxx∈Γ λ(x) < 1. Then for

σ ≥ σ′0 :=
λmC + 1

1− λm ,

(where C is a constant which depends only on Ω ) the problem (46) has a unique
solution in H1(Ω).

Proof. We only have to use Lemma 2 with the frequency k = iσ and the impedance
ζ̃(k) = −λk. We check that this impedance satisfies the condition (12) with K = 0.



GENERALIZATION OF THE SCHWARZ REFLECTION PRINCIPLE 871

Hence there exists a constant C depending only on Ω such that the problem (46) has
a unique solution whenever σ ≥ λmσ + λmC + 1.

In the remaining, an impedance function λ will be said to be admissible if λ(x) ≥ 0
∀ x ∈ Γ and if 0 < λm := maxx∈Γ λ(x) < 1.

Lemma 27. Assume that 0 < λm := maxx∈Γ λ(x) < 1. Then the operator s(σ) is
negative for

σ ≥ σ′′0 :=
λmC

1− λm2 ,

where C is the same constant as in Theorem 26.
Proof. If we set

Ea(x) =

∫
|ŷ|=1

eσ ŷ·xa(ŷ)dS(ŷ) and Va(x) =

∫
|ŷ|=1

v(x, ŷ;σ) a(ŷ)dS(ŷ),

then one can write

(s(σ)a, a)=
σ
N−3

2

2 (2π)
N−1

2

[
−
∫

Ωint

pσ(Ea, Ea)−
∫

Ω

pσ(Va, Va)−
∫

Γ

λσ
(
Ea

2−Va2
)
dγ

]
.

The only positive term in the right-hand side of above equation is
∫

Γ
λσVa

2 dγ. Using

(15) with D = Ω and ε = 1
λmσ

, we have

λmσ

∫
Γ

Va
2 dγ ≤

∫
Ω

|∇Va|2 + λmσ(C + λmσ)

∫
Ω

Va
2.

Therefore for σ ≥ σ′′0 , we have σ2 ≥ λmσ(C + λmσ), which proves that

(s(σ)a, a) ≤ σ
N−3

2

2 (2π)
N−1

2

[
−
∫

Ωint

pσ(Ea, Ea)−
∫

Γ

λσEa
2 dγ

]
≤ 0.

We set σ0 := max(σ′0, σ
′′
0 ). For σ ≥ σ0, the above theorem shows that the eigen-

values of s(σ) are all negative. But when σ < σ0, some eigenvalues may be positive.
More precisely, Beale showed in [2] that the number of positive eigenvalues counted
with multiplicities is finite. In the same way, most of the results of [2] are also valid
in our case of interest.

The kernel s(x̂, ŷ;σ) is square integrable. Thus s(σ) is an Hilbert–Schmidt oper-
ator. s(σ) is then compact, which implies that the eigenvalues of s(σ) are bounded
and that zero is the only possible cluster point.

As for Theorem 3.7 in [2], the next theorem shows that s(σ) is an increasing
function of the interior domain.

Theorem 28. Let us introduce two bounded domains Ωint
1 and Ωint

2 such that
Ωint

1 ⊂ Ωint
2 . The associated admissible impedances are respectively denoted by λ1 and

λ2. We set si(σ) the transmission operator with respect to Ωint. Then for σ ≥ σ0

s2(σ) ≤ s1(σ) ≤ 0.

Proof. For a ∈ L2(S1), we set

E(x) =

∫
|ŷ|=1

eσ ŷ·xa(ŷ)dS(ŷ), Vi(x) =

∫
|ŷ|=1

vi(x, ŷ;σ) a(ŷ)dS(ŷ).
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We set Ωj = RN\Ω(j)
i . Then

2 (2π)
N−1

2 σ
3−N

2 [(s1(σ)a, a)−(s2(σ)a, a)]

=

∫
Ω1∩Ωint

2

(pσ(E,E)− pσ(V1, V1)) +

∫
Ω2

(pσ(V2, V2)− pσ(V1, V1))

−
∫

Γ1

λ1σ
(
E2 − V1

2
)
dγ +

∫
Γ2

λ2σ
(
E2 − V2

2
)
dγ

=

∫
Ω1∩Ωint

2

pσ(E − V1, E − V1) +

∫
Ω2

pσ(V2 − V1, V2 − V1)

+2

∫
Ω1∩Ωint

2

pσ(E − V1, V1) + 2

∫
Ω2

pσ(V2 − V1, V1)

−
∫

Γ1

λ1σ
(
E2 − V1

2
)
dγ +

∫
Γ2

λ2σ
(
E2 − V2

2
)
dγ.

Using Green’s formula, we have that

0 =

∫
Ω1∩Ωint

2

Lσ(E − V1)V1 =

∫
Ω1∩Ωint

2

pσ(E − V1, V1)

−
∫

Γ1

λ1σ (E − V1)V1 dγ −
∫

Γ2

∂(E − V1)

∂n
V1 dγ

and

0 =

∫
Ω2

Lσ(V2 − V1)V1 =

∫
Ω2

pσ(V2 − V1, V1) +

∫
Γ2

∂(V2 − V1)

∂n
V1 dγ.

Thus ∫
Ω1∩Ωint

2

pσ(E − V1, V1) +

∫
Ω2

pσ(V2 − V1, V1)

=

∫
Γ1

λ1σ (E − V1)V1 dγ −
∫

Γ2

∂(V2 − E)

∂n
V1 dγ

=

∫
Γ1

λ1σ (E − V1)V1 dγ +

∫
Γ2

λ2σ (V2 − E)V1 dγ.

Hence

2 (2π)
N−1

2 σ
3−N

2 [(s1(σ)a, a)−(s2(σ)a, a)] =

∫
Ω1∩Ωint

2

pσ(E − V1, E − V1)

+

∫
Ω2

pσ(V2 − V1, V2 − V1)−
∫

Γ1

λ1σ (E − V1)
2
dγ

+

∫
Γ2

λ2σ (E − V1)
2
dγ −

∫
Γ2

λ2σ (V1 − V2)
2
dγ.

Only two terms are nonpositive in the right-hand side of this equation. By (15) with
D = Ω1 ∩ Ωint

2 and ε =(λ1)m σ, we have

−(λ1)m σ

∫
Γ1

(E − V1)
2
dγ ≥(λ1)m σ

∫
Γ2

(E − V1)
2
dγ −

∫
Ω1∩Ωint

2

|∇(E − V1)|2



GENERALIZATION OF THE SCHWARZ REFLECTION PRINCIPLE 873

−(λ1)m σ (C +(λ1)m σ)

∫
Ω1∩Ωint

2

|E − V1|2

≥(λ1)m σ

∫
Γ2

(E − V1)
2
dγ −

∫
Ω1∩Ωint

2

pσ(E − V1, E − V1)

since (λ1)m < 1 and σ ≥ σ0. Similarly, one can show that

−(λ2)m σ

∫
Γ2

(V1 − V2)
2
dγ ≥ −

∫
Ω2

pσ(V1 − V2, V1 − V2) .

Therefore,

(s1(σ)a, a) ≥(s2(σ)a, a) .

As in [2, Corollary 3.8], we have the following corollary.
Corollary 29. Suppose that in the above theorem Ωint

2 = Ωint is star-like with
res-
pect to the origin, and Ωint

1 = tΩint, 0 < t < 1. We assume that λ2(x) = λ(x)
and λ1(x) = 1

tλ
(

x
t

)
, x ∈ Γ. Then the number σ0 in Theorem 28 can be chosen

independent of t.
Following [2, Theorem 3.9], we also have the following theorem.

Theorem 30. If Ωint is star-like, then σ
N−1

2 s(σ) is a decreasing function of σ,
for σ ≥ σ0.

We do not give a proof of this theorem since the proof done in [2] for the Robin
boundary condition can clearly be extended to our case.

We turn now to study the eigenvalues of the scattering matrix (see (45)). Since

the operator s(σ) is compact, so is K(σ) :=−(−σ2π

)N−1
2 s(σ)W . Therefore the eigen-

values have no cluster point, except possibly zero. In each compact set that does not
include zero, there are at most a finite number of eigenvalues of K(σ). Moreover, since
s(x̂, ŷ;σ) is real, the eigenvalues of s(σ) are real. Hence the eigenvalues of K(σ) are
real if N is odd. In this case, the positive eigenvalues µm and the negative ones κm
of K(σ) are labeled by

µ1 ≥ µ2 ≥ · · · > 0 > · · · ≥ κ2 ≥ κ1,

where limm→∞ µm = limm→∞ κm = 0.
Our aim is to find the positive values of σ for which −1 is an eigenvalue of K(σ).

This problem turns into that of studying the negative eigenvalues κm(σ) and picking
out the values of σ such that κm(σ) = −1.

From the expression of s(x̂, ŷ;σ) stated in Lemma 25, it is easy to show that the
operator s(σ) is bounded and analytic when σ → 0, if N > 2. When N = 2, the factor

σ
N−3

2 in the expression of s implies that s(σ) tends to infinity when σ → 0. And for
N > 2, from the expression of K(σ) we automatically can infer that limσ→0K(σ) = 0,
which proves that for any m, limσ→0 µm(σ) = limσ→0 κm(σ) = 0. With the same

argument, we have κm(σ)
σ→∞−→ −∞.

In fact, κ is an eigenvalue of K(σ) if
(± ( 2π

−σ
)N−1

2 κ
)

is an eigenvalue of s(σ). The
sign ± comes from the operator W . The presence of W in the expression of K(σ)
complicates the study of the eigenvalues and the eigenvectors of K(σ). However, one
can show, as in [2, Theorem 4.3], that the results on s(σ) can be extended to K(σ).
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Fig. 4. The function σ 7→ κm(σ) and its intersection with the line κ = −1. We have A =
N(0, σ; Γ, λ) , B = M(σ; Γ, λ) , C = M(σ0; Γ, λ) , and D = Np(Γ,Λ).

Theorem 31. Assume that σ ≥ σ0.
• If Ωint

1 ⊂ Ωint
2 and if we denote by κ

(1)
m and κ

(2)
m (respectively, µ

(1)
m and µ

(2)
m )

the negative eigenvalues (respectively, the positive eigenvalues) with respect to
Ωint

1 and Ωint
2 , then

κ(2)
m (σ) ≤ κ(1)

m (σ) ≤ 0, µ(2)
m (σ) ≥ µ(1)

m (σ) ≥ 0.

• κm(σ) is a decreasing function of σ.
We can also establish another result shown in [2, Theorem 4.4]: if N is even, then

there are at most a finite number of zeros of S. The reason for this comes from the
relation

K(σ) = −iN−1
( σ

2π

)N−1
2

s(σ)W.

We know by Lemma 27 that all the eigenvalues of s(σ) are negative when σ ≥ σ0.
In this case, the eigenvalues of K(σ) are purely imaginary and thus cannot be equal
to −1. On the other hand, if N is odd, there is an infinite sequence of zeros for each
σ > 0. From now on, we assume that N is odd.

Let us denote by N(σ1, σ2; Γ, λ) the number of zeros of the scattering matrix
S(iσ,−iλσ) when σ describes the slab [σ1, σ2] (see Figure 4). Thanks to Theorem 31,
it is quite clear what is going on for σ ≥ σ0: since κm(σ) is decreasing and tends to
minus infinity as σ → ∞, then the equation κm(σ) = −1 has at most one solution
σ ≥ σ0. Moreover, if κm(σ0) ≥ −1, then the equation κm(σ) = −1 has exactly one
solution σ ≥ σ0. But in [0, σ0], κm(σ) is not monotone and even can have some poles.

First let us show that the overall number of poles ∀ κm is bounded. iσ is a pole
of S(iσ,−iλσ) if and only if σ is a pole of an eigenvalue κm. The set of all the poles
of S(iσ,−iλσ) has no cluster point, except at infinity. Furthermore, the multiplicity
of each pole is finite. For any compact set of C, there is at most a finite number of
poles of S(iσ,−iσλ). Therefore for σ ∈ [0, σ0] there is a finite number of poles and
by Theorem 26, there are only a finite number of poles of S(iσ,−iσλ) for σ > 0. The
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finite number of poles for σ > 0 is denoted by Np(Γ, λ). Each pole of the scattering
matrix corresponds to a pole of one eigenvalue κm(σ). We conclude that there exists
an integer m0 such that κm has no pole for m ≥ m0.

Using the same argument to the scattering matrix S(−iσ,−iσλ) in the lower half
plane, we conclude that this operator has only a finite number of poles in any compact
set of C\{0}, and by Theorem 24 that S(iσ,−iσλ) has a finite number of zeros in any
finite compact set of σ > 0. To show that there is no cluster point at zero, we note
that

‖K(σ)‖ ≤ max(|κ1(σ)| , µ1(σ))
σ→0−→ 0.

Hence ‖K(σ)‖ < 1 in a compact set surrounding zero, which proves that S(iσ,−iσλ)
is invertible in this set. Therefore, zero cannot be a cluster point, and in the interval
[σ1, σ2] the number of zeros of S(iσ,−iσλ) is finite for any σ1 ≥ 0. This number is
clearly N(σ1, σ2; Γ, λ).

Lemma 32. Assume that Ωint is star-shaped. If M(σ; Γ, λ) denotes the number of
eigenvalues such that κm(σ) ≤ −1 (see F igure 4), then for σ > σ0

N(σ0, σ; Γ, λ) = M(σ; Γ, λ)−M(σ0; Γ, λ) .

Moreover,

N(0, σ; Γ, λ) ≥M(σ; Γ, λ)−Np(Γ, λ) .

Proof. Since κm(σ) is a decreasing function of σ for each m, we conclude that
there are exactly M(σ; Γ, λ)−M(σ0; Γ, λ) eigenvalues κm such that κm(σ0) > −1 and
κm(σ) ≤ −1. From Theorem 31, one can infer that each of these eigenvalues crosses
the line −1 exactly once in [σ0, σ]. The other eigenvalues cannot cross the straight
line −1 in [σ0, σ], which proves the first equality.

For the second inequality, since κm(0) = 0 for anym, we notice that theM(σ; Γ, λ)
eigenvalues that are lower than −1 at the frequency σ must cross the line −1 at
least once in [0, σ] if and only if κm(σ) is continuous in [0, σ]. The function κm(σ)
is continuous in [0, σ] if there is no pole in [0, σ]. Since at most Np(Γ, λ) eigenvalues
have one pole or more, the theorem is proved.

Corollary 33. If Ωint
1 ⊂ Ωint

2 with Ωint
1 star-shaped, and λ1, λ2 are two admis-

sible impedances defined on Γ1, Γ2, respectively, then we have for σ > σ0

N(0, σ; Γ2, λ2) ≥ N(σ0, σ; Γ1, λ1)−Np(Γ2, λ2) .

Proof. From Lemma 32, we have

M := M(σ; Γ1, λ1) ≥ N(σ0, σ; Γ1, λ1) .

There are exactly M eigenvalues of Ωint
1 lower than −1 at the frequency σ, i.e.,

κ
(1)
1 (σ) ≤ −1, . . . , κ

(1)
M (σ) ≤ −1.

Thus by Theorem 31, κ
(2)
1 (σ) ≤ −1, . . ., κ

(2)
M (σ) ≤ −1, which means that

M(σ; Γ2, λ2) ≥M.

Finally, by Lemma 32,

N(0, σ; Γ2, λ2) ≥M(σ; Γ2, λ2)−Np(Γ2, λ2)

≥ N(σ0, σ; Γ1, λ1)−Np(Γ2, λ2) .
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Theorem 34. Assume that there exist two balls BR1
and BR2

of radii R1 and R2,
respectively, such that BR1

⊂ Ωint, Ωi ⊂ BR2
. Assume furthermore that Ωint is star-

shaped. Let λ, λ1, and λ2 be admissible impedances on Γ, SR1
, and SR2

, respectively.
Then for σ > σ0

N(0, σ; Γ, λ) ≥M(σ;SR1
, λ1)−M(σ0;SR1

, λ1)−Np(Γ, λ) ,

N(0, σ; Γ, λ) ≤M(σ;SR2
, λ2)−M(σ0;SR2

, λ2) +N(0, σ0;SR2
, λ2)

+Np(SR2
, λ2) +N(0, σ0; Γ, λ) .

Proof. From Corollary 33, we have that

N(0, σ; Γ, λ) ≥ N(σ0, σ;SR1
, λ1)−Np(Γ, λ) .

Then by Lemma 32, the first inequality is proved.
Corollary 33 now enables us to write

N(0, σ;SR2
, λ2) ≥ N(σ0, σ; Γ, λ)−Np(SR2

, λ2) .

Hence one may infer that

N(0, σ; Γ, λ) = N(0, σ0; Γ, λ) +N(σ0, σ; Γ, λ)

≤ N(0, σ;SR2
, λ2) +Np(SR2

, λ2) +N(0, σ0; Γ, λ) .

By Lemma 32, we have

N(0, σ;SR2
, λ2) = N(0, σ0;SR2

, λ2) +N(σ0, σ;SR2
, λ2)

= M(σ;SR2
, λ2)−M(σ0;SR2 , λ2) +N(0, σ0;SR2 , λ2) .

This, combined with previous relation, proves the second inequality of the theo-
rem.

In the right-hand side of the two inequalities of Theorem 34, only the first term
depends on σ. If N is odd, these two terms tend to infinity as σ → ∞, and hence
gives the leading behavior of N(0, σ; Γ, λ) for σ large. These two factors, namely
M(σ;SR1

, λ1) and M(σ;SR2
, λ2) can be computed as in [2, section 5]. In fact, the

asymptotic number of zeros on the imaginary axis for the case of the sphere is in-
dependent of the boundary condition. More precisely, the number of zeros on the
imaginary axis between 0 and iσ for the case of a sphere a radius R is asymptotically

equal to 1
(N−1)!

(
R
γ0

)N−1
, where γ0 ≈ 0.6627 [2]. Noting that NI(σ) = N(0, σ; Γ, λ), we

can infer the following theorem.
Theorem 35. Assume N is odd. Assume further that BR1 ⊂ Ωint, Ωi ⊂ BR2 and

that Ωint is star-shaped. Then

lim
σ→∞

NI(σ)

σN−1
≥ 1

(N − 1)!

(
R1

γ0

)N−1

,

lim
σ→∞

NI(σ)

σN−1
≤ 1

(N − 1)!

(
R2

γ0

)N−1

,

where γ0 is the unique solution of the equation

e
√

1+γ0
2

√
1 + γ0

2 − 1

γ0
= 1.



GENERALIZATION OF THE SCHWARZ REFLECTION PRINCIPLE 877

5. Conclusion. The motivation of this paper was to answer the following ques-
tion: What can we infer of the obstacle from the location of the resonant frequencies?
It is well known that the asymptotic repartition of eigenvalues of the interior acoustic
problem gives the volume and the perimeter of the obstacle. This leads us to consider
counting functions of the resonant frequencies for the exterior of an obstacle. It is not
easy at all to link the global counting function with some geometrical quantities on
the obstacle. However, a special study can be performed on the purely imaginary axis.
There are infinitely many resonant frequencies on this axis. Let NI(σ) be the number
of purely imaginary poles whose modulus is lower than σ. We set

RΓ = γ0

[
(N − 1)! lim

σ→∞
NI(σ)

σN−1

] 1
N−1

.

Then for the acoustic waves with the impedance boundary condition (in odd space
dimensions), we have

R1 ≤ RΓ ≤ R2,

where R1 is the radius of the largest sphere contained in the obstacle and R2 is
the radius of the smallest sphere containing the obstacle. Without further a priori
information on the obstacle Ωint, this relation is not of great interest for the inverse
problem: it simply states that the boundary of the obstacle is crossing a sphere of
radius RΓ. This does not give a very precise idea of the size of the obstacle. For the
inverse problem, it would be more interesting to have an upper bound on R2 or a
lower bound on R1.

However, we are sometimes looking for an obstacle belonging to a special class of
targets. For instance, for radar identification, one can look for an airplane. Since the
shape of an airplane is always roughly the same, we can figure out that RΓ gives a
good idea of the size of the airplane. It is in this sense that the last inequality has to
be used.

Acknowledgment. The author is grateful to David L. Colton for suggesting this
subject and for many useful discussions.
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Abstract. We consider the Dirichlet problem for uniformly elliptic operators L =
∑

aijDij
with measurable coefficients aij in the unit ball B1 ⊂ Rd. A recent sensational result of Nikolai
Nadirashvili states that there is no uniqueness of “weak” solutions to this problem if d ≥ 3. He con-

structed two sequences of linear elliptic operators with smooth coefficients {a0,k
ij } and {a1,k

ij }, which

have the same ellipticity constant ν > 0 and converge to the same functions aij almost everywhere
(a.e.) in B1 as k →∞, while the corresponding sequences of solutions {u0,k} and {u1,k} converge
to two different functions; i.e., the Dirichlet problem has at least two “weak” solutions. In the present
paper, we popularize and slightly generalize Nadirashvili’s result: for an arbitrary constant Λ > 0, we
construct two sequences of linear elliptic operators with the same ellipticity constant ν = ν(Λ) > 0

and the additional restriction |a0,k
ij − a1,k

ij | ≤ Λ for all i, j, k, which define two different “weak”

solutions to the Dirichlet problem [N. S. Nadirashvili, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24
(1997), pp. 537–550].

Key words. elliptic PDE, measurable coefficients, nonuniqueness

AMS subject classifications. 35A05, 35B27, 35J25, 60G44, 60J60
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1. Introduction. Let Ω be a bounded domain in Rd, d ≥ 1, with the boundary
∂Ω of class C2. Let a = (aij(x)) be a real, symmetric, measurable d × d matrix
function on Ω, satisfying the uniform ellipticity condition

ν|ξ|2 ≤
d∑

i,j=1

aijξiξj ≤ ν−1|ξ|2 for all ξ ∈ Rd,(1.1)

where ν = const ∈ (0, 1]. We consider the Dirichlet problem

Lu =

d∑
i,j=1

aijDiju = 0 in Ω, u = g on ∂Ω,(1.2)

where Diju = ∂2u/∂xi∂xj , and g is a given continuous function. If aij ∈ C(Ω),
then this problem has a unique strong solution, which belongs to the Sobolev space
W 2,p(Ω′) for any subdomain Ω′ ⊂ Ω′ ⊂ Ω and 1 < p < ∞ (see [15, section 9.6]).
For discontinuous aij , there is no definition of solution to the problem (1.2), which
preserves simultaneously all the basic properties of strong solutions, such as the ex-
istence, uniqueness, maximum principle, etc. For arbitrary approximation aij by
smooth functions akij , k = 1, 2, . . . , the solutions uk to the corresponding Dirichlet

problems are uniformly bounded and equicontinuous on Ω (see [23], [27], and also
[15, section 9.8]). Therefore, there exists a subsequence (we call it {uk} again) con-
verging to some function u ∈ C(Ω). In the following definition, this function is called
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a weak solution to the problem (1.2), and so our previous argument shows that the
weak solutions always exist.

Definition 1.1. A function u = u(x) ∈ C(Ω) is a weak solution to the
problem (1.2) if there exists a sequence of real symmetric matrices of coefficients
{ak} = {(akij(x))}, k = 1, 2, . . . , such that

(i) akij ∈ C∞(Ω) and satisfy (1.1) for each k with the same constant ν ∈ (0, 1];

(ii) akij → aij a.e. in Ω as k →∞;

(iii) the (classical) solutions {uk} to the problems

Lkuk =

d∑
i,j=1

akijDiju
k = 0 in Ω, uk = g on ∂Ω(1.3)

converge in C(Ω) to u:

lim
k→∞

sup
Ω
|uk − u| = 0.(1.4)

The properties of classical or strong solutions, which do not depend on the smooth-
ness of coefficients, such as the Hölder estimates, the Harnack inequality, and different
forms of the maximum principle, are automatically extended to the weak solutions.
As regards the uniqueness of weak solutions, the situation is different. For classical
solutions, the uniqueness follows from the maximum principle, because the difference
of two solutions to a linear homogeneous equation Lu = 0 satisfies the same equation.
This reasoning does not work for weak solutions because different weak solutions may
be obtained by means of different sequences {ak}. Many mathematicians tried to
solve this so-called weak uniqueness problem for discontinuous aij (see [3], [4], [5], [9],
[10], [11], [22], [29], and references therein), but positive results were obtained only
under additional restrictions on aij . We will discuss some of these results in section 2
below.

A recent sensational result of Nikolai Nadirashvili [25] states that the weak unique-
ness may fail if d ≥ 3. He constructed two sequences of operators with smooth
coefficients {a0,k

ij } and {a1,k
ij }, which satisfy the ellipticity condition (1.1) with the

same constant ν ∈ (0, 1] and converge to the same functions aij a.e. in the unit ball
B1 = {|x| < 1} ⊂ R3 as k → ∞, while the corresponding sequences of solutions
converge to two different functions. In other words, there are at least two different
weak solutions to the problem (1.2) in Ω = B1 ⊂ R3. In this paper, we show that the
weak uniqueness still fails under the additional restriction

sup
Ω
|a0,k
ij − a1,k

ij | ≤ Λ for all i, j, k(1.5)

with a constant Λ > 0 which can be made arbitrarily small. Namely, we have the
following result.

Theorem 1.2. For any constant Λ > 0, there exist two sequences {a0,k} =

{(a0,k
ij )} and {a1,k} = {(a1,k

ij )} of real, symmetric, 3×3 matrix functions on B1 ⊂ R3,

and a function g ∈ C∞(B1), such that

(i) for each k, functions {a0,k
ij }, {a1,k

ij } ⊂ C∞(B1), satisfy (1.5) with the given
constant Λ, and (1.1) with a constant ν = ν(Λ) ∈ (0, 1];

(ii) a0,k
ij , a

1,k
ij converge to the same functions aij a.e. in B1 as k →∞;
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(iii) for m = 0 and 1, the sequences um,k of solutions to the problems

Lm,kum,k =

3∑
i,j=1

am,kij Diju
m,k = 0 in B1, um,k = g on ∂B1(1.6)

converge to two different functions u0 and u1, respectively:

lim
k→∞

sup
B1

|um,k − um| = 0, u0(0) 6= u1(0).(1.7)

By Definition 1.1, these limit functions u0 and u1 are two different weak solutions
to the problem (1.2) for Ω = B1.

Proof. The proof of this theorem is given below in section 4. As in the Nadirashvili
paper [25], we use some special “piecewise periodic” approximations of aij , though
the technical details here are different from those in [25].

Theorem 1.2 is easily extended to higher dimensions d > 3, with minimal modi-
fications in the proof.

Remark 1.1. The definition of weak solution here and in [22], [29] is equivalent
to the definition of “good” solution in [9], [10], [11], [25]. Jensen [16] (see also [8])
proved that the concept of weak solution to (1.2) coincides with that of viscosity
solution. Our preference is motivated by the following reasons. By Corollary 2.2
below, any strong solution u ∈ W 2,d(Ω) of (1.2) is a weak solution, but not vice
versa. Moreover, the weak uniqueness problem of (1.2) with arbitrary g is equivalent
to the weak uniqueness problem for corresponding diffusion processes (see [19], [21]).
This means Nadirashvili’s example automatically gives the negative answer to the
latter problem.

The following martingale problem is also equivalent to the weak uniqueness prob-
lem for (1.2) with arbitrary g ∈ C(Rd) (see [19], [21], and a discussion in [9]). Let
an operator L =

∑
aijDij with coefficients aij satisfying (1.1) be defined on the

whole space Rd. Using a “selection” procedure initiated by Krylov [20], Stroock and
Varadhan [30] proved that for each x ∈ Rd, there exists a probability measure Px
on C([0,∞),Rd) = {ξt, t ≥ 0}, such that

(i) Px(ξ0 = x) = 1,

(ii) ϕ(ξt)− ϕ(ξ0)− ∫ t
0
Lϕ(ξs) ds is a Px-local martingale for all ϕ ∈ C2(Rd).

They also showed that the solution to the martingale problem is unique if aij are
continuous or d ≤ 2 (see [31] and [30, Chapter 7]). It remained unknown if the
solution was unique for d ≥ 3 and discontinuous aij . Nadirashvili’s result gives a
negative answer to this question as well: the martingale problem may have different
solutions.

In section 2, we discuss different conditions on the coefficients, which provide the
uniqueness of weak solutions. Section 3 contains some preparatory material. Finally,
section 4 is devoted to the proof of Theorem 1.2.

2. Uniqueness of weak solutions. Many positive results on the weak unique-
ness are based on the following Aleksandrov–Bakelman–Pucci estimate for functions
in the Sobolev space W 2,d(Ω). Having in mind the imbedding W 2,d(Ω) ⊂ C(Ω),
we always consider only such “representatives” of functions in W 2,d(Ω) which are
continuous on Ω.

Theorem 2.1. Let a = (aij(x)) be a real, symmetric, measurable d × d matrix

function on a bounded domain Ω ⊂ Rd, d ≥ 2. Then for any function u ∈ W 2,d(Ω),



882 MIKHAIL V. SAFONOV

we have

sup
Ω
|u| ≤ sup

∂Ω
|u|+N‖Lu‖Ld(Ω),(2.1)

where L =
∑
aijDij, and the constant N depends only on d, ν, and diam Ω.

Proof. The proof is contained in [1] (see also [15, Chapter 9]).
Corollary 2.2. If the problem (1.2) has a strong solution u ∈W 2,d(Ω), then u

is also a unique weak solution to this problem.
Proof. Let ak = (akij(x)), k = 1, 2, . . . , be real, symmetric, smooth matrix func-

tions, such that akij → aij a.e. in Ω as k → ∞, and let {uk} be a sequence of
solutions to the problems (1.3). Then

Lk(uk − u) = −Lku = (L− Lk)u in Ω, uk − u = 0 on ∂Ω.

By Theorem 2.1,

sup
Ω
|uk − u| ≤ N · ‖(L− Lk)u‖Ld(Ω)

(2.2)

= N

∫
Ω

∣∣∣∣∣∣
∑
i,j

(aij − akij)Diju

∣∣∣∣∣∣
d

dx


1/d

,

with a constant N independent on k. Since the integral function converges to 0 a.e.
in Ω as k →∞ and is dominated by const ·∑ |Diju|d ∈ L1(Ω), we have (1.4). This
means u is the only weak solution to the problem (1.2).

Using suitable approximations of g ∈ C(Ω) by smooth functions, we can reduce
the weak uniqueness problem to the case g ∈ C∞(Ω). Further, we set v = u − g, so
that the problem (1.2) is transformed to the equivalent one:

Lv =
∑
i,j

aijDijv = f in Ω, v = 0 on ∂Ω,(2.3)

where f = −Lg ∈ L∞(Ω). The problem (2.3) has a unique strong solution in W 2,d(Ω),
even for f ∈ Ld(Ω), if the estimate

max
i,j
‖Dijv‖Ld(Ω) ≤ N‖Lv‖Ld(Ω) for v ∈ C2(Ω), v = 0 on ∂Ω,(2.4)

holds with a constant N independent of v (see [15, Chapter 9]). This is true in the
following cases (i), (ii), and (iii).

(i) aij ∈ C(Ω). By the Calderon–Zygmund inequality (see [15, Chapter 9]),
the estimate (2.4) remains true also for norms in Lp(Ω), 1 < p <∞.

(ii) d = 2. The estimate (2.4) is due to S. N. Bernstein when Ω is a ball in R2.
It is generalized to bounded domains Ω with ∂Ω ∈ C2 (see [24, Chapter 3, section
19]).

(iii) The coefficients aij are close to some constants a0
ij (cf. [12]):

|aij − a0
ij | ≤ ε0,(2.5)

where ε0 = ε0(d, ν) is a small positive constant. The estimate (2.4) for L =
∑
aijDij

is obtained by easy perturbation arguments. Indeed, as a particular case of (i), this
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estimate holds for L0 =
∑
a0
ijDij ; i.e., for arbitrary v ∈ C2(Ω) satisfying v = 0 on

∂Ω, we have

M =
∑
i,j

‖Dijv‖ ≤ N0‖L0v‖,

where N0 = N0(ν,Ω) and ‖ · ‖ is the norm in Ld(Ω). Using (2.5), we get

‖L0v‖ ≤ ‖Lv‖+ ‖(L− L0)v‖ ≤ ‖Lv‖+ ε0M,

M ≤ N0‖L0v‖ ≤ N0‖Lv‖+N0ε0M.

For 0 < ε0 < 1/N0, the last inequality implies (2.4) with N = (1−N0ε0)−1N0.
Summarizing the above considerations, we obtain the weak uniqueness for the

problem (1.2) with arbitrary g ∈ C(Ω) in the cases (i), (ii), and (iii).
Corollary 2.2 does not cover all the cases when the weak uniqueness holds. If the

coefficients aij are discontinuous at a single point, the weak solution to the problem
(1.2) may not belong to W 2,p(Ω) if p > 3

2 (see [28, Remark 8.1]). However, Luis
Caffarelli proved that in this case the weak solution is unique. Relying on this result,
Cerutti, Escauriaza, and Fabes [9], [10] proved the uniqueness when aij ∈ C(Ω \ E),
where E is a countable set having at most one cluster point. Further generalizations
were made by Krylov [22] for E with countable closure and by Safonov [29] for closed
E of small Hausdorff dimension α = α(d, ν); i.e., α→ 0 as ν → 0. Nevertheless, many
special questions remain open, e.g., whether or not the weak uniqueness holds when
E is a segment in Ω ⊂ Rd, d ≥ 3.

For other related results, see [3], [5], [4], [11]. We only mention a paper by Bass
and Pardoux [5], where the weak uniqueness is proved when Ω is the union of a finite
number of disjoint polyhedrons and aij are constants on each of them.

Since the problems (1.2) and (2.3) are equivalent, the weak uniqueness can be
treated in terms of properties of the Green function for Ω (see [9], [10], [11], [22]).
By this approach, Krylov [22] showed that the weak uniqueness is a local property of
coefficients aij , i.e., it holds for a neighborhood of each point x0 ∈ Ω, if and only if it
holds for Ω.

Both (1.2) and (2.3) are the particular cases of the problem

Lu =
∑
i,j

aijDiju = f in Ω, u = g on ∂Ω,(2.6)

where f ∈ Ld(Ω), g ∈ C(Ω). The weak uniqueness for (1.2) with arbitrary g ∈ C(Ω)
implies the uniqueness for (2.6) in the following sense. Let smooth functions akij =

akji, f
k, gk be given for i, j = 1, 2, . . . , d; k = 1, 2, . . . . Suppose akij satisfy (1.1) for

each k, akij → aij a.e. in Ω, fk → f in Ld(Ω), and gk → g in C(Ω) as k → ∞. Let

uk be a (classical) solution to the problem

Lkuk =
∑
i,j

akijDiju
k = fk in Ω, uk = gk on ∂Ω.(2.7)

Then uk → u in C(Ω) as k →∞, where the limit function u does not depend on the
choice of akij , f

k, gk (see [29, section 2]). The weak uniqueness is also preserved after
perturbation of L by zero order terms (see [22], [11]). However, this is not true for
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approximations of f in Lp(Ω) with p < d, as the following example shows (cf. [14],
[2], [26]). This example also shows that the estimate (2.1) fails for Lp-norms, p < d,
in place of the Ld-norm.

Example 2.1. Let d ≥ 2, 0 < p < d be fixed. We choose α = const ∈ (0, 1), such
that (2 − α)p < d, and consider the function u(x) = 1 − |x|α on B1 ⊂ Rd. Since
Diju(x) = O(|x|α−2), the function u belongs to W 2,p(B1) and satisfies

Lu =
∑
i,j

aijDiju = 0 in B1, u = 0 on ∂B1,(2.8)

where

aij = δij + β
xixj
|x|2 , β =

d− 2 + α

1− α .

Obviously, the only weak solution to (2.8) is identically zero. Although our function
u(x) has a singularity at 0, we can approximate it by functions uε, 0 < ε < 1, such
that

uε ∈ C∞(Ω), uε = u on B1 \Bε; |Diju
ε| ≤ Nεα−2 on Bε,

with a constant N which is independent on ε. Therefore,

Luε = fε in B1, uε = 0 on ∂B1,

where

fε = 0 on B1 \Bε, |fε| ≤ Nεα−2 on Bε.

In particular, fε → 0 in Lp(B1), while uε → u 6= 0 in C(B1) as ε→ 0.

3. Auxiliary results. In this section, we consider linear elliptic operators L =∑
aijDij with the coefficients aij ∈ C∞(Rd), d ≥ 1. As usual, we assume that the

matrix function a = (aij(x)) is real, symmetric, and satisfies (1.1) with a constant
ν ∈ (0, 1]. In addition, suppose aij are periodic with period 1 in each of the variables.

We may treat aij as functions in C∞(T d), where T d is the d-dimensional torus. We

will identify T d with [− 1
2 ,

1
2 )d ⊂ Rd and the functions on T d with 1-periodic functions

on Rd, so that

u(x) ≡ u(x+ z) on T d =

[
1

2
,

1

2

)d
(3.1)

for some vector z with integer components.
The following theorem is a version of the Fredholm alternative for equations with

periodic coefficients.
Theorem 3.1.

(i) The equation

Lu =
∑
i,j

aijDiju = f(3.2)

with f ∈ C∞(T d) has a solution in C∞(T d) if and only if

(f, ρ) =

∫
T d
fρ dx = 0(3.3)



NONUNIQUENESS FOR ELLIPTIC EQUATIONS 885

for every solution ρ ∈ C∞(T d) of the adjoint homogeneous equation

L∗ρ =
∑
i,j

Dij(aijρ) = 0.(3.4)

(ii) The homogeneous equations Lu = 0 and L∗ρ = 0 have the same finite
number of linearly independent solutions.

Proof. The proof is given in [7, part 2, section 3.6], even for more general equations
of higher order. For second-order equations, we specify these statements as follows.

Corollary 3.2. Under the additional restriction∫
T d
ρ dx = 1,(3.5)

equation (3.4) has a unique solution ρ ∈ C∞(T d). Moreover, ρ ≥ 0 on T d. Equation
(3.2) with f ∈ C∞(T d) has a solution in C∞(T d) if and only if f satisfies (3.3) with
this ρ.

Proof. By the strong maximum principle (see [7, part 2, section 2.2], or [15,
Theorem 3.5]), from Lu = f ≥ 0 on T d it follows that u = const, f = 0. Therefore,
the number of linearly independent solutions for each of two equations Lu = 0 and
L∗ρ = 0 is one. This implies that the problem (3.4), (3.5) has a unique solution
ρ ∈ C∞(T d), and the last statement here is equivalent to Theorem 3.1(i).

To prove the inequality ρ ≥ 0 on T d, suppose otherwise. Then there exists a
positive function f ∈ C∞(T d) satisfying (3.3) with this ρ. In turn, this provides the
solvability of (3.2) for f > 0, which is impossible. This contradiction gives ρ ≥ 0, and
the proof is completed.

Definition 3.3. Let a = (aij) be a real, symmetric d× d matrix function, where

aij ∈ C∞(T d) and satisfy (1.1) with a constant ν ∈ (0, 1]. A homogenized matrix of
a is the constant matrix

a0 = (a0
ij) = H(a) =

∫
T d
aρ dx,(3.6)

where ρ ∈ C∞(T d) is a (unique) solution to the problem (3.4), (3.5).
The following theorem was proved by Freidlin [13]. He used an interpretation of

ρ(x) as the density of limit distributions on T d of Markov processes corresponding
to L =

∑
aijDij . Here we give an alternative proof which is closer to [6], [17]. We

do not use this theorem here; however, its proof presents in a “pure” form the basic
element in the proof of Theorem 1.2.

Theorem 3.4. Let d×d matrices a(x) and a0 be as in Definition 3.3. For ε > 0,
we set aε(x) = a(ε−1x), so that aε are defined for all ε ≥ 0. Let Ω be a bounded
domain in Rd with the boundary ∂Ω ∈ C∞, and let a function g ∈ C∞(Ω) be given.
Then the solutions uε, ε ≥ 0, to the problems

Lεuε =
∑
i,j

aεijDiju
ε = 0 in Ω, uε = g on ∂Ω,(3.7)

satisfy

lim
ε→0+

sup
Ω
|uε − u0| = 0.(3.8)



886 MIKHAIL V. SAFONOV

Proof. We have the matrix equality

(a− a0, ρ) =

∫
T d

(a− a0)ρ dx =

∫
T d
aρ dx− a0

∫
T d
ρ dx = a0 − a0 = 0.

By Corollary 3.2 applied to each entry of the matrix a − a0, there exists a matrix
function v = (vij) with vij ∈ C∞(Ω), such that

Lv(x) =
∑
i,j

aijDijv(x) = a(x)− a0.(3.9)

For ε > 0, we have

ε2Lε(v(ε−1x)) = (Lεv)(ε−1x) = a(ε−1x)− a0 = aε(x)− a0.(3.10)

Consider the functions

wε(x) = uε(x)− u0(x) + ε2
∑
i,j

vij(ε
−1x)Diju

0(x).

Since the coefficients and the boundary data in (3.7) are smooth, all the functions
uε, u0, vij belong to C∞(Ω). Using the identities Lεuε = L0u0 = 0 and (3.10), we
get

Lεwε = Lεuε − Lεu0 + ε2
∑
i,j

Lε(vij(ε
−1x)) ·Diju

0(x) + F ε

= Lεuε − Lεu0 + (Lε − L0)u0 + F ε = F ε,

where

F ε(x) = ε2
∑
i,j

[
Lε(vij(ε

−1x)Diju
0(x))− Lε(vij(ε−1x)) ·Diju

0(x)
]

satisfies |F ε| ≤ Nε with a constant N which is independent of ε. Moreover, since
uε = u0 = g on ∂Ω, we also have |wε| ≤ Nε2 on ∂Ω. By the comparison principle for
second-order elliptic equations, |wε| ≤ Nε in Ω for 0 < ε < 1, which gives us equation
(3.8).

As in the Nadirashvili paper [25], our approach to Theorem 1.2 is based on the
fact that two different constant 3×3 matrices A0 and A1 may be obtained by homog-
enization of smooth matrices a0 and a1 correspondingly, which coincide on a portion
of T 3, and on the fact that locally the structure of am is similar to that of Am (m = 0
and 1) on the remaining part of T 3. The details are given in the following technical
lemma.

Lemma 3.5. For any constants Λ ≥ λ0 > 0 and θ > 0, there exists an open set
G = G(Λ, θ) ⊂ T 3 of the Lebesgue measure |G| ≤ θ and two real symmetric, 3 × 3
matrix functions a0 = (a0

ij(x)), a1 = (a1
ij(x)), such that

(i) functions a0
ij , a

1
ij ∈ C∞(T 3), satisfy (1.1) with a constant ν = ν(Λ, θ) ∈

(0, 1], and

a0 = I, a1 = I + λ ltl on G, a0 = a1 on T 3 \G,(3.11)

where I = (δij) is the unit matrix, λ ∈ C∞(T 3), l = (l1, l2, l3) with li ∈ C∞(G), lt

is the corresponding column vector, and

0 ≤ λ ≤ Λ, |l|2 =
∑
i

l2i = 1 on G, λ ≡ 0 on T 3 \G;(3.12)
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(ii) the homogenized matrices

A0 = H(a0) = I, A1 = H(a1) = c(I + λ0e
t
3e3),(3.13)

where 1 ≤ c = const ≤ 1 + Λ, e3 = (0, 0, 1).
Proof. Step 1. We will find G in the form G = G′ × T 1 ⊂ T 3, where

G′ = {x′ = (x1, x2) : r0 < |x′| < r1} ⊂ T 2 =

[
−1

2
,

1

2

)2

,(3.14)

r1 = min(1
4 ,
√

θ
π ), and a small constant r0 ∈ (0, 1

4r1] will be chosen later. We have

|G| = |G′| < πr2
1 ≤ θ. Next, we choose a smooth function λ on R1 with compact

support in (r0, r1) such that

0 ≤ λ ≤ Λ on R1, λ = Λ on

[
2r0,

1

2
r1

]
.(3.15)

We will use the same notation λ for the function λ = λ(r), r = |x′| =
√
x2

1 + x2
2 on

R2 ⊂ R3. Further, we set

l = (l1, l2, l3) = r−1(x1, x2, 0), r = |x′| on G.(3.16)

Then λ and l satisfy (3.12), and the matrices a0, a1 are well defined on G by the
identities (3.11). We will extend a0

33 = a1
33 = 1 from G to T 3 by the formula

a0
33 = a1

33 = 1 + c0ζ0(r)− c1ζ1(r), r = |x′|(3.17)

with some constants c0 ≥ 0, 0 ≤ c1 ≤ 1
2 . Here ζ0 and ζ1 are smooth functions

on R1 with compact supports in (−r0, r0) and (1
4 ,

1
2 ) , correspondingly, satisfying

0 ≤ ζ0, ζ1 ≤ 1 on R1, ζ0 = 1 on [− 1
2r0,

1
2r0], and ζ1 = 1 on a fixed subinterval of

( 1
4 ,

1
2 ). The remaining coefficients

a0
ij = a1

ij = δij on T 3 \G, i+ j < 6.(3.18)

Together with (3.11), the formulas (3.17), (3.18) determine the matrices a0, a1 ∈
C∞(T 3) satisfying all the properties (i). The properties (ii) will be obtained by a
suitable choice of the constants r0, c0, c1.

Step 2. For m = 0 and 1, we denote by ρm the solution to the problem (3.4),
(3.5) with d = 3, aij = amij . Since am = (amij ) depend only on x′ = (x1, x2), ρm
coincide with the (unique) solutions to the problem

(Lm)∗ρm =
2∑

i,j=1

Dij(a
m
ijρm(x′)) = 0,

∫
T 2

ρm(x′) dx′ = 1.(3.19)

Therefore, ρm(x) = ρm(x′) = ρm(x1, x2) do not depend on x3. By (3.11) and (3.18),
a0
ij = δij for i + j < 6. Hence ρ0 ≡ 1, and the homogenized matrix A0 = H(a0) has

the entries

A0
ij =

∫
T 2

a0
ij dx

′ = δij , i+ j < 6.
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We do not have any explicit representations for ρ1. However, from the symmetry it
follows that ρ1 = ρ1(x1, x2) is an even function of x1 and x2. By (3.11), (3.15)–(3.18),
we get

A1
ij =

∫
T 2

a1
ijρ1 dx

′ = δij +

∫
T 2

λr−2xixjρ1 dx
′ = 0, i 6= j,

1 ≤ A1
11 = A1

22 = 1 +

∫
T 2

λr−2x2
1ρ1 dx

′ ≤ 1 + Λ,

so that

A1
ij = cδij for i+ j < 6, where 1 ≤ c ≤ 1 + Λ.(3.20)

Now it remains to get the equalities A0
33 = 1, A1

33 = c(1 + λ0), which by virtue
of (3.17) are equivalent to the system

ρ00c0 − ρ01c1 = 0, ρ10c0 − ρ11c1 = b,

where

0 ≤ ρmn =

∫
T 2

ζnρm dx
′, 0 ≤ b = (1 + λ0)c− 1 ≤ (2 + Λ)Λ.

The solution of this system is

c1 =
b

Kρ01 − ρ11
, c0 =

ρ01

ρ00
c1, where K =

ρ10

ρ00
.

We also need the inequalities 0 ≤ c1 ≤ 1
2 , which guarantee the uniform ellipticity

of the matrices a0, a1. We may assume that ζ1 is fixed and for different r0 > 0
the functions ζ0 are obtained by rescaling x −→ const · x, so that now everything
depends only on r0 ∈ (0, 1

4r0]. Since ρ01 does not depend on r0 and ρ11 ≤ 1, the
desired inequalities 0 ≤ c1 ≤ 1

2 hold automatically for small r0 > 0 if we show that

K =
ρ10

ρ00
→ +∞ as r0 → 0 + .(3.21)

Step 3. We set B = BA = {y′ = (y1, y2) : |y′| < A} ⊂ R2, where A =
√

2
2 .

Notice that for each x′ = (x1, x2) ∈ T 2 = [− 1
2 ,

1
2 )2, there exist at least one and at

most two points y′ = (y1, y2) ∈ B, such that both x1 − y1 and x2 − y2 are integers.
Therefore, considering ρm ∈ C∞(T 2) as periodic functions on R2 for m = 0 and 1,
we obtain

1 =

∫
T 2

ρm dx
′ ≤

∫
B

ρm dx
′ ≤ 2.(3.22)

Further, since λ(r) = 0, ζ0(r) = 1 on [0, 1
2r0], the ordinary differential equation

(1 +mλ)w′′m +
1

r
w′m = ζ0(3.23)

has a solution wm(r) = 1
4r

2 on (0, 1
2r0]. This solution is uniquely extended to (0, A].

The function

Wm(r) = wm(r)− w′m(A)

2A
r2, where r = |x′| =

√
x2

1 + x2
2,
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belongs to C∞(B) and satisfies

LmWm =
2∑

i,j=1

amijDijWm = (1 +mλ)W ′′m +
1

r
W ′m = ζ0 − w′m(A)

A
(2 +mλ)(3.24)

in B, DiWm = 0 on ∂B. Integrating by parts twice, using (3.19) and then (3.24),
we have ∫

B

LmWm · ρm dx′ =

∫
B

Lm(Wm −Wm(A)) · ρm dx′

=

∫
B

(Wm −Wm(A)) · (Lm)∗ρm dx′ = 0,

ρm0 =

∫
T 2

ζ0ρm dx
′ =

∫
B

ζ0ρm dx
′ =

w′m(A)

A

∫
B

(2 +mλ)ρm dx
′.

By the inequalities (3.22), we get

K =
ρ10

ρ00
≥ 1

2
f(A), where f(r) =

w′1(r)

w′0(r)
.(3.25)

Since λ = 0 on [0, r0], we have w1 ≡ w0 on [0, r0]; in particular, f(r0) = 1. Moreover,
since ζ0 = 0 on [r0,∞), and λ = Λ on [2r0,

1
2r1], we also have

(ln f)′ =
w′′1
w′1
− w′′0
w′0

=
−1

(1 + λ)r
+

1

r
=

λ

(1 + λ)r
on [r0,∞),

ln f(A) =

∫ A

r0

λ dr

(1 + λ)r
≥ Λ

1 + Λ

∫ 1
2 r1

2r0

dr

r
=

Λ

1 + Λ
ln

r1

4r0
.

The last relation shows that by the choice of small r0 ∈ (0, 1
4r1], f(A) can

be made arbitrarily large. Then (3.25) gives us the desired estimate (3.24), and so
Lemma 3.5 is proved.

4. Proof of Theorem 1.2. Step 1. For the given constant Λ > 0 and θ = 1
2 ,

we fix the open set G ⊂ T 3 and the constant ν = ν(Λ) ∈ (0, 1] from Lemma 3.5.
Starting from the unit ball B1 in R3, we will construct a decreasing sequence of open
sets

B1 = G0 ⊃ G1 ⊃ · · · ⊃ Gk ⊃ Gk+1 ⊃ · · ·(4.1)

of the Lebesgue measures

|Gk| ≤ 2−k|B1|, k = 0, 1, . . . ,(4.2)

and two sequences of real, symmetric, smooth 3×3 matrix functions {a0,k} and {a1,k}
on B1, satisfying (1.1) with the chosen constant ν = ν(Λ), and such that

a0,k = I, a1,k = I + λk (lk)tlk on Gk; a0,k = a1,k = a on B1 \Gk,(4.3)
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where λk ∈ C∞(B1), lk = (lk1 , l
k
2 , l

k
3) with lki ∈ C∞(Gk), and

0 ≤ λk ≤ Λ, |lk| = 1 on Gk; λk ≡ 0 on B1 \Gk.(4.4)

Our goal is to construct {a0,k} and {a1,k} in such a manner that for some g ∈
C∞(B1), the sequences {u0,k} and {u1,k} of solutions to the problems (1.6) uniformly
converge to two different functions u0 and u1.

Notice that from (4.2)–(4.3) the convergence follows of a0,k
ij , a

1,k
ij to aij a.e. on

B1 as k →∞; i.e., see statement (ii) of Theorem 1.2.
We set G0 = B1, λ0 = Λ, l0 = e3 = (0, 0, 1), g = x2

1 − x2
3. Then a0,0 = I, a1,0 =

I + Λet3e3, the corresponding solutions to the problems (1.6), u0,0 ≡ g, and u1,0 are
different; hence

|u0,0 − u1,0|0 ≥ H(4.5)

with some constant H > 0. Here and in the remaining part of the proof, | · |0 denotes
the norm in C(B1).

Step 2. Now we have Gk, a
0,k, a1,k satisfying (4.2)–(4.4) for k = 0. Assuming

that they are given for some integer k ≥ 0, we will construct Gk+1, a
0,k+1, a1,k+1.

By induction, we get all of these objects for all integers k ≥ 0.
We divide Gk into a finite number of regular sets Gk,n, n = 1, 2, . . . , fix an

arbitrary point Pk,n ∈ Gk,n for each n, and introduce the piecewise constant matrix
function on Gk,

a = (aij) = I + λ l
t
l, where λ = λk(Pk,n), l = lk(Pk,n) on Gk,n.(4.6)

For arbitrary constant δk > 0, we can choose Gk,n of appropriately small diameters,
such that

|a1,k
ij − aij | ≤ δk on Gk =

⋃
n

Gk,n.(4.7)

Further, for arbitrary constant µk > 0, there exists a function ηk ∈ C∞(B1), such
that 0 ≤ ηk ≤ 1 on B1, ηk = 0 on B1 \Gk and near ∂Gk,n for each n, and

|Gk \G′k| ≤ µk, where G′k = {x ∈ Gk : ηk(x) = 1}.(4.8)

The constants δk, µk will be selected later.
Next, we concentrate on Gk,n for fixed n. We change the coordinates by the

formula

x = yQn, y = xQtn,(4.9)

where Qn is a matrix of rotation satisfying l = e3Qn. Let ã0(y), ã1(y) be matrix
functions a0, a1 in Lemma 3.5 applied with λ0 = λ. By (3.13), we have

Ã0 = H(ã0) = I, Ã1 = H(ã1) = c(I + λet3e3), 1 ≤ c ≤ 1 + Λ.

As in (3.9), there exist 3 × 3 matrix functions ṽm(y) = (ṽmij (y)) for m = 0 and 1,

with entries in C∞(T 3), satisfying∑
i,j

ãmij (y)Dij ṽ
m(y) = ãm(y)− Ãm.
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One can see from the proof of Lemma 3.5 that the smoothness of ãm does not
depend on n (i.e., on the choice of λ0 = λ). Moreover, replacing ṽm by ṽm + const,
we may assume ṽm(0) = 0. Then by the well-known properties of solutions of elliptic
equations with smooth coefficients, the bounds for ṽm and their derivative of any
order do not depend on n. In the x-coordinates, the matrices ãm(y), ṽm(y), Ãm are
replaced by

am(x) = Qtnã
m(xQtn)Qn, vm(x) = Qtnṽ

m(xQtn)Qn, Am(x) = QtnÃ
mQn,

correspondingly. As a result, we obtain∑
i,j

amijDijv
m(x) = am(x)−Am.(4.10)

By (4.6) and the choice of the orthogonal matrix Qn in (4.9),

A0 = I, A1 = c(I + λ l
t
l) = c a, 1 ≤ c ≤ 1 + Λ.(4.11)

Step 3. For m = 0 and 1, we define

am,k+1(x) = (1− ηk(x))a0,k(x) + ηk(x) am(ε−1x) on B1(4.12)

with a small ε > 0. Here and in (4.10), the matrix functions am, vm depend also on
k, n: these functions satisfy (4.10), (4.11) on Gk,n with a depending on k, n, so that

ε2
∑
i,j

amij (ε
−1x)Dijv

m(ε−1x) = am(ε−1x)−Am,(4.13)

but they may be discontinuous on Gk =
⋃
nGk,n. However, since ηk vanishes on

B1 \ Gk and near ∂Gk,n, the functions a0,k+1 and a1,k+1 are well defined, belong
to C∞(B1), and satisfy (1.1) with the constant ν = ν(Λ).

Further, we denote by Z3 the set of all vectors in R3 with integer components
and define

T ε,n(z) =

{
x ∈ R3 : ε−1xQtn − z ∈ T 3 =

[
−1

2
,

1

2

)3
}
,

Gε,n(z) = {x ∈ R3 : ε−1xQtn − z ∈ G ⊂ T 3},
where Qn is the matrix of rotation in (4.9). For different z ∈ Z3, T ε,n(z) are
disjoint cubes in R3 with the edge length ε, which are obtained from the “standard”
cube T 3 = [− 1

2 ,
1
2 )3 by the mapping

T 3 3 y −→ x = ε(y + z)Qn,

and Gε,n(z) is the image of G ⊂ T 3 by the same mapping. Obviously,

|Gε,n(z)| ≤ θ|T ε,n(z)| = 1

2
|T ε,n(z)|.(4.14)

Finally, we define

Gk+1 =
⋃
n

⋃
z∈Zn

Gε,n(z) where Zn = {z ∈ Z3 : T ε,n(z) ⊂ Gk,n}.(4.15)
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Since the components Gε,n(z) of this set are disjoint, from (4.14) and (4.2) it follows

|Gk+1| =
∑
n

∑
z∈Zn

|Gε,n(z)| ≤ 1

2

∑
n

∑
z∈Zn

|T ε,n(z)| ≤ 1

2

∑
n

|Gk,n| = 1

2
|Gk| ≤ 2−(k+1)|B1|;

i.e., the estimate (4.2) holds for k + 1.
In order to get the representation (4.3) for the matrix functions am,k+1, we will

use the fact that x ∈ Gε,n(z) if and only if y = ε−1xQtn − z ∈ G ⊂ T 3. By the
periodicity, ãm(y) ≡ ãm(y + z), and hence

am(ε−1x) = Qtnã
m(ε−1xQtn)Qn = Qtnã

m(y)Qn

for all x ∈ Gε,n(z). Since a0,k = I on Gk ⊃ Gε,n(z), we have

am,k+1(x) = (1− ηk(x))I + ηk(x)Qtnã
m(y)Qn on Gε,n(z).

The properties (3.11) in Lemma 3.5 for ãm imply ã0 = I, ã1 = I + λltl, with
λ = λ(y), l = l(y) satisfying (3.12). Hence

a0,k+1 = I, a1,k+1 = I + λk+1(lk+1)tlk+1 on Gε,n(z),

where

λk+1(x) = ηk(x)λ(y), lk+1(x) = l(y)Qn, y = ε−1xQtn − z.

Thus λk+1, l
k+1 are defined and smooth on Gk+1 =

⋃
Gε,n(z). From λ ∈ C∞(T 3),

λ ≡ 0 on B1 \Gk+1, we obtain λk+1 ∈ C∞(B1).
The properties (4.4) for λk+1, l

k+1 are obvious. In (4.3), we only need to show
that

a0,k+1 = a1,k+1 on B1 \Gk+1.(4.16)

This equality on T ε,n(z)\Gε,n(z) for z ∈ Zn follows from ã0(y) = ã1(y) on T 3\Gk.
The remaining points in B1 \Gk+1 lie either in B1 \Gk or in the 2ε-neighborhood
of ∂Gk,n for some n. Since ηk = 0 on B1 \ Gk and near ∂Gk,n, we have (4.16),
provided ε > 0 is small enough.

Step 4. We will show that the solutions um,k+1 to the problems (1.6) can be
made arbitrarily close to um,k; i.e., for arbitrary constant hk > 0, by the appropriate
choice of constants δk, µk, ε in (4.7), (4.8), (4.12), we have

|um,k+1 − um,k|0 ≤ hk(4.17)

for m = 0 and 1. For fixed m, k, ε, we introduce the function

w = um,k+1 − um,k + ε2ηkV, where V = V (x) =
∑
i,j

vij(ε
−1x)Diju

m,k(x),

(vij) = vm is the matrix function from (4.13), which is smooth on each set Gk,n.
Since ηk = 0 on B1 \Gk and near ∂Gk,n for each n, the function w is well defined,
belongs to C∞(B1), and w = 0 on ∂B1. Obviously,

|um,k+1 − um,k|0 ≤ |w|0 + ε2|V |0 ≤ |w|0 +Nε2.(4.18)
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Here and in the rest of the proof, N denotes different constants not depending on ε
and the constants δk, µk in (4.7), (4.8). By Theorem 2.1,

|w|0 ≤ N‖F‖L3(B1), where F = Lm,k+1w.(4.19)

Therefore, we will get the estimate (4.17) if we show that the norm of F in L3(B1)
can be made arbitrarily small.

On the set B1 \Gk, we have ηk = 0, am,k+1 = am,k = a0,k; hence

F = Lm,k+1(um,k+1 − um,k) = Lm,k+1um,k+1 − Lm,kum,k = 0.

The estimate of F on Gk is more delicate. We write F = Lm,k+1w = F1 + F2,
where

F1(x) = −Lm,k+1um,k(x) + ε2ηk(x)
∑
i,j

Lm,k+1vmi,j(ε
−1x) ·Diju

m,k(x),

F2 = ε2
∑
i,j

[
Lm,k+1(ηkv

m
i,j(ε

−1x)Diju
m,k(x))− Lm,k+1vmi,j(ε

−1x) · ηkDiju
m,k(x)

]
.

Using the identity (4.13), we have

F1 = −
∑
i,j

AmijDiju
m,ku =

∑
i,j

(amij −Amij )Diju
m,ku on G′k = {ηk = 1} ⊂ Gk.

By virtue of (4.7), (4.8),

|F1| ≤ Nδk on G′k, |F1| ≤ N on Gk \G′k.
Hence the norm of F1 in L3(B1) is bounded by N(δk+µ

1
3 ) and can be made arbitrarily

small. The same is true for F = F1 + F2 because of the estimate |F2| ≤ N1ε with
a constant N1, which does not depend on ε. Now the desired approximation (4.17)
follows from (4.19).

Step 5. Using (4.5) and (4.17), it is easy to complete our construction. We
choose a sequence {hk} satisfying

∑
hk ≤ 1

4H. By the Cauchy criterion, sequences

{u0,k}, {u1,k} converge in C(B1) to some functions u0, u1:

|u0,k − u0|0, |u1,k − u1|0 → 0 as k →∞.
By the triangle inequality, for any natural K,

|u0,K − u1,K |0 ≥ |u0,0 − u1,0|0 −
K−1∑
k=0

|u0,k+1 − u0,k|0 −
K−1∑
k=0

|u1,k+1 − u1,k|0

≥ H − 2
∞∑
k=0

hk ≥ 1

2
H > 0.

Therefore,

|u0 − u1|0 = lim
K→∞

|u0,K − u1,K |0 ≥ 1

2
H > 0.

Theorem 1.2 is completely proved.
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A DENSENESS THEOREM WITH AN APPLICATION TO A
TWO-DIMENSIONAL INVERSE POTENTIAL REFRACTION
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Abstract. In this paper we will be concerned with the problem of reconstructing a region
D ⊂ Ω ⊂ R2, from the knowledge of the boundary potential u|∂Ω, where u satisfies

div ((χΩ̄\D + aχD)∇u) = 0 in Ω and
∂u

∂ν
= I on ∂Ω,

with a a real, positive constant. We will show that the domain derivative of the corresponding
forward mapping is injective. This is done by proving the denseness of a certain subspace of L1(∂D).
The novelty of the result is that our proof is valid without any restriction on the Neumann boundary
data I.

Key words. parameter identification, potential refraction, Hilbert problems

AMS subject classifications. 31A25, 35R30

PII. S0036141098336108

1. Introduction. The denseness theorem proved in this paper is related to an
inverse problem in electrical impedance tomography. Its relation to this problem was
first worked out in [2], [3]. Here we will briefly outline its relevance without any
proofs.

We start by introducing some notations. If D ⊂ Rn is bounded with smooth
boundary ∂D, we will denote the outward unit normal of ∂D by ν or, to avoid
ambiguities, more precisely by νD. The Euclidean scalar product in Rn is denoted by
〈·, ·〉. The symbols for the standard function spaces will always stand for the spaces
of real valued functions. A lower index C will be added for the corresponding space
of complex valued functions. In particular, C(D) and C(D)C denote the spaces of
real and complex valued, continuous functions on D, respectively. For a nonnegative
integer k and 0 < α < 1, we set

Pk,α(D) := {f ∈ Ck,α(D̄) : f is harmonic in D},
Xk,α(∂D) := Ck,α(∂D,Rn).

The spaces Xk,α(∂D) will be interpreted as vector fields on ∂D. If Z ∈ Xk,α(∂D),
then we will denote its normal component 〈Z, ν〉 by Zν . As usual, the upper indices
k and α will be dropped if they are zero. In the two-dimensional case D ⊂ R2 we will
identify R2 ' C via (x, y) ' x+ iy and set

Hα(D) := {f ∈ Cα(D̄)C : f is holomorphic in D}.

Further, the unit tangent on ∂D with positive orientation will be denoted by τ or τD.
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Let Ω ⊂ Rn be an open bounded set with smooth boundary ∂Ω. Consider the
elliptic boundary value problem

div(σ∇u) = 0 in Ω,(1.1a)

σ
∂u

∂ν
= I on ∂Ω,(1.1b) ∫

∂Ω

u ds = 0.(1.1c)

Here ∂/∂ν denotes the outward normal derivative on ∂Ω, div the divergence, and ∇
the gradient. In the applications σ is a positive electrical conductivity, I a boundary
current satisfying

∫
∂Ω
I ds = 0, and u the potential of the electric field generated by

I. A suitable weak formulation of (1.1) can be shown to have a unique solution.
We will exclusively consider the case in which I ∈ C(∂Ω) and the conductivity is

of the form

σ = χΩ̄\D + aχD,

where a is a real positive constant, D is an open subset with C2-smooth boundary
such that D̄ ⊂ Ω, and χM denotes the characteristic function of a subset M ⊂ Rn.
Then the solution u of (1.1) is in C(Ω̄) ∩ C2(Ω \ ∂D). Setting u+ := u|Ω\D and
u− := u|D, (1.1) can be rewritten in the form

4u = 0 in Ω \ ∂D,(1.2a)

∂u+

∂ν
− a∂u−

∂ν
= 0 on ∂D,(1.2b)

∂u+

∂ν
= I on ∂Ω,(1.2c) ∫

∂Ω

u+ ds = 0.(1.2d)

For the remainder of this section we will assume that ∂D is C2,α-smooth for some
0 < α < 1. Then the first and second derivatives of u− and u+ can be extended
Hölder-continuously onto ∂D.

We are interested in the inverse problem of reconstructing the conductivity inside
Ω from the boundary potential u|∂Ω. It can be seen from simple counterexamples that,
in general, it is not possible to reconstruct D and a simultaneously from a single pair
I, u|∂Ω. Therefore it is assumed that the conductivity constant a is known. Then the
conductivity depends only on the region D, and we can define the forward mapping

F : D 7→ u|∂Ω.

This mapping can be linearized at D in the following manner. For Z in some
sufficiently small neighborhood U of 0 in X2,α(∂D) the set

{x+ Z(x) : x ∈ ∂D}
is again the C2,α-smooth boundary of an open set DZ . For a compact subset K ⊂
Ω̄ \∂D we can choose U small enough such that K ∩ D̄Z = ∅ for any Z ∈ U . We then
may consider the mapping

ΨK : X2,α(∂D) ⊃ U → C(K), Z 7→ uZ |K ,(1.3)
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where uZ is the solution of (1.2) with conductivity χΩ̄\DZ +aχDZ , so that Ψ∂Ω(DZ) =
F (DZ).

Theorem 1.1. For each compact K ⊂ Ω̄ \ ∂D the mapping (1.3) is Fréchet
differentiable. Exhausting Ω̄ \ ∂D by compact sets, for Z ∈ X2,α(∂D) we can define
the differentiated potential

u′ :=
d

ds

∣∣∣∣
s=0

ΨK(DsZ)

as a function in C(Ω̄\∂D). Then u′+ and u′− together with their first partial derivatives
can be continuously extended to ∂D. If u is the solution of (1.2) with respect to the
region D, then u′ is the unique solution of the transmission problem

4u′ = 0 in Ω \ ∂D,(1.4a)

u′+ − u′− = −Zν
(∂u+

∂ν
− ∂u−

∂ν

)
on ∂D,(1.4b)

∂u′+
∂ν
− a∂u

′
−

∂ν
= (1− a) Div(Zν Gradu) on ∂D,(1.4c)

∂u′+
∂ν

= 0 on ∂Ω,(1.4d) ∫
∂Ω

u′+ ds = 0.(1.4e)

Here Div and Grad denote the surface divergence and surface gradient on ∂D, which,
in the two-dimensional case, may both be replaced by the derivative with respect to the
arc length.

Theorem 1.1 can be obtained by representing the solution of (1.2) by single layer
potentials over the boundaries ∂Ω and ∂D and then using results by Potthast [7],
[8] on the Fréchet differentiability of the classical boundary integral operators. A
proof using weak formulations for the analogous result, when Dirichlet data u|∂Ω are
prescribed and Neumann data ∂u/∂ν on ∂Ω are measured, can be found in [4].

Denoting by X2,α
T (∂D) the space of vector fields in X2,α(∂D), which are tangential

on ∂D, the above Fréchet derivative of F at D may be viewed as a mapping

F ′D : X2,α(∂D)/X2,α
T (∂D)→ C(∂Ω), [Z] 7→ u′|∂Ω.(1.5)

The uniqueness of the linearized inverse problem amounts to proving the injectivity
of F ′D. Again, it can be seen from counterexamples that a general uniqueness result
is false, unless Rn \D is assumed to be connected. If we suppose that this condition
is fulfilled, the injectivity of F ′D can then be obtained from the denseness of a certain
subspace of Cα(∂D) in L1(∂D). This is one of the main results of [2], and it is proved
without using the characterization of the derivative in Theorem 1.1.

Theorem 1.2. Assume that Rn \D is connected and let the notations be as in
Theorem 1.1. If Z is in the kernel of F ′D and a 6= 1, then for any v ∈ P1,α(D) we
have ∫

∂D

Zν〈∇u+,∇v〉 ds = 0.(1.6)

Proof. The trivial Cauchy data F ′D(Z) = u′+|∂Ω = 0 and (1.4d) imply u′+ = 0 by
Holmgren’s uniqueness theorem. Now the statement follows by plugging the Cauchy
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data of u′− from (1.4b), (1.4c) into Green’s second theorem applied to u′− and v in
D.

For a > 0 define a refraction operator on the space of vector fields on ∂D by

R∂Da : X(∂D)→ X(∂D), X 7→ X − (a− 1)〈X, ν〉ν.(1.7)

The operator R∂Da multiplies the normal component of X by a and leaves the tan-
gential component unchanged. Clearly, the zeros of X and R∂Da (X) coincide. Set
∇af = R∂Da (∇f |∂D), f ∈ C1(D̄). The main result can now be formulated as follows.

Theorem 1.3. Let D ⊂ R2 be an open, bounded, connected, and simply connected
set with C2-smooth boundary. If u ∈ P1,α(D) is not constant and a > 0, then the
function space

F∂D(∇au) := {〈∇au,∇v〉 : v ∈ P1,α(D)} ⊂ Cα(∂D)(1.8)

is dense in L1(∂D).
Observing that for the solution of (1.2) we have from (1.2b) and the continuity

of u

∇u+|∂D = R∂Da (∇u−|∂D) = ∇au−|∂D,

the injectivity of F ′D in the two-dimensional case is now almost immediate.
Corollary 1.4. Let D be an open, bounded, connected, and simply connected

set with C2,α-smooth boundary and assume that I 6= 0 and a > 0, a 6= 1. Then the
Fréchet derivative (1.5) is injective.

The denseness of the spaces F(∇au) is well known if the vector field ∇au has no
zeros. This can be deduced from the standard theory of Hilbert problems, as will be
explained in the next section. The results in [9], [1] on the local uniqueness of F are
restricted to injections I which ensure ∇u+(x) 6= 0, x ∈ ∂D independently of D. In
Theorem 1.3 we have not excluded vector fields with zeros on ∂D and therefore we
need no restrictions on I in Corollary 1.4.

2. Sketch of the proof. Obviously, h ∈ Cα(∂D) is an element of F∂D(∇au), if
the oblique derivative problem

Find v ∈ P1,α(D) satisfying 〈∇au,∇v〉 = h on ∂D(2.1)

is solvable. In arbitrary dimensions a solution theory for the Laplace equation with
boundary condition 〈X,∇v〉 = h on ∂D, where X is some vector field on ∂D, is
available only if the normal component of X has no zeros on ∂D (see [11]). Since u
is harmonic in D, we have∫

∂D

〈∇au, ν〉 ds = a

∫
∂D

∂u/∂ν ds = 0,

and therefore this condition will never be satisfied for (2.1). In two dimensions oblique
derivative problems are more thoroughly investigated through their equivalent formu-
lation as Hilbert problems for holomorphic functions (see [6]). This provides a solution
theory for the case where X has no zeros on ∂D. Unfortunately, this condition in
general also will not be satisfied for (2.1). However, unlike the normal derivative,
the gradient of a nonconstant harmonic function can vanish only on a set of measure
zero on ∂D. Using this and the multiplicative structure on R2 ' C, it is possible to
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show the solvability of (2.1) for enough inhomogeneities h by considering a suitable
modification of (2.1). On the other hand, this procedure restricts the proof to the
two-dimensional case.

For z ∈ C we denote the real and imaginary part by Re z and Im z, respectively.
The complex conjugate of z is denoted by z.

If f is holomorphic in D, then Re f and Im f are harmonic in D. If u is harmonic
in D, then ∇u is antiholomorphic, i.e., ∂u/∂x1− i∂u/∂x2 is holomorphic in D. Since
D is assumed to be simply connected, the converse is also true. If f is holomorphic
in D, then there exists a harmonic function u on D with f ' ∇u. This sets up a
one-to-one correspondence between Hα(D) and the gradients of functions in P1,α(D).
If z, w ∈ C, then Re(zw) is equal to the Euclidean scalar product of z and w, both
interpreted as vectors in R2.

Now let u, v ∈ P1,α(D) and define f, g ∈ Hα(D) by ∇u ' f and ∇v ' g.
Define the refraction operator (1.7) on the complex functions on ∂D through the
identification R2 ' C, and set

ϕa := R∂Da (f |∂D) ∈ Cα(∂D)C.(2.2)

Then we have ∇au ' ϕa. From the above we find Re(ϕag) = 〈∇au,∇v〉, hence

F∂D(∇au) = Fc∂D(ϕa),(2.3)

where

Fc∂D(ϕa) := {Re(ϕag) : g ∈ Hα(D)}.(2.4)

Now we can reformulate Theorem 1.3 in terms of holomorphic functions.
Theorem 2.1. Assume that f ∈ Hα(D) is not identically zero and that a > 0,

and define ϕa as in (2.2). Then the function space Fc∂D(ϕa) is dense in L1(∂D).
The oblique derivative problem (2.1) is equivalent to the Hilbert problem

Find g ∈ Hα(D) satisfying Re(ϕag) = h on ∂D.(2.5)

Therefore Theorems 1.3 and 2.1 state that the inhomogeneities h ∈ Cα(∂D) admitting
a solution of (2.5) are dense in L1(∂D). This denseness is fairly simple to show, if
ϕa(z) 6= 0 for all z ∈ ∂D. For this we need the notion of the index of ϕa defined as
the integer

Ind(ϕa) =
1

2π
argϕa

∣∣∣∣
∂D

.

The Hilbert problem is solvable for all h ∈ Cα(∂D) if and only if the index is non-
negative (see [6]). The functions

ϕλ = R∂Dλ (f |∂D), λ = (1− t)a+ t, t ∈ [0, 1],

have no zeros for all t. Therefore a continuity argument implies

Ind(ϕa) = Ind(f |∂D).(2.6)

Since f is holomorphic, the index of f |∂D is equal to the number of zeros of f in D.
We thus have Ind(ϕa) > 0, and therefore Cα(∂D) ⊂ Fc∂D(ϕa), which clearly implies
the asserted L1(∂D)-denseness.
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In [3] it is shown that the relation between the index of the boundary values of
a holomorphic function and its zeros inside the region is still valid for the sectionally
holomorphic function fu with fu|D = ∇u−, fu|Ω\D̄ = ∇u+, provided that ∂D is
analytic. In [9] Powell has proved under suitable restrictions on the Neumann data I
that∇u+|∂Ω has no zeros and its index is zero. By the above argument, this implies
∇u+|∂D 6= 0, whence the denseness of F∂D(∇au−) follows. In [9] the condition
∇u+(z) 6= 0, z ∈ ∂D, is used to derive local injectivity of F . These results are
generalized in [1].

For general currents I, there is no guarantee that ∇u+ has no zeros on ∂D. If we
have ϕa(z) = 0 for some z ∈ ∂D, then it is obvious that (2.5) can be solvable only if
the inhomogeneity h also vanishes in z. Thus in this case Cα(∂D) 6⊂ Fc∂D(ϕa), and
therefore the difficulty in the proof of Theorem 2.1 is to work around the zeros of ϕa.

The proof, presented in the next section, consists of the following steps:
(i) With the aid of the Riemann mapping theorem, we will show that without

loss of generality we may assume that

D = D := {z ∈ C : |z| < 1}, ∂D = S1 := {z ∈ C : |z| = 1}.

(ii) We divide the boundary condition in (2.5) by |ϕ1|2, ϕ1 := RS1

1 (f |S1) = f |S1

and obtain

Re(ϕag)/|ϕ1|2 = Re
(
ϕa/ϕ1 · g/ϕ1) = h/|ϕ1|2.(2.7)

Noting that Fc∂D(ϕa) is a linear subspace of L1(S1), it is clear that the solvability
of (2.5) need be shown only for some subset I ⊂ Cα(S1) whose linear span is a dense
subspace of L1(S1). We choose this subset so that the supports of its functions do
not intersect with a neighborhood of the zeros of ϕ1 which, by definition, coincide
with those of ϕa. Then the right-hand side in (2.7) can be considered a function in
Cα(S1) by setting it equal to zero outside the support of h. For a function ϕ on S1

we will denote the set of its zeros by N(ϕ) and define a set of suitable inhomogeneities
for (2.5) by setting

Cα(S1, J) := {h ∈ Cα(S1) : supph ⊂ J}, J ⊂ S1,(2.8)

I(ϕa) :=
⋃

J⊂S1\N(ϕa)
J closed, connected

Cα(S1, J).(2.9)

The span of I(ϕa) is dense in L1(S1).
If f is assumed to admit an extension to a holomorphic function in some neigh-

borhood of D̄, then the set N(ϕ1) = N(f |S1) is finite. We prove that in this case
ψ := ϕa/ϕ1 can be extended into N(ϕ1) as an analytic function ψ on S1. Further-
more, ψ vanishes nowhere on S1 and the index of ψ is zero. Thus the Hilbert problem

Find g ∈ Hα(D) satisfying Re(ψg) = h on S1(2.10)

is solvable for all h ∈ Cα(S1). Now if h ∈ I(ϕa) and g̃ ∈ Hα(D) is a solution of

Re(ψg̃) = h/|ϕ1|2 on S1, then g := fg̃ ∈ Hα(D) satisfies

Re(ϕag) = Re(ψϕ1 · ϕ1g̃) = |ϕ1|2 Re(ψg̃) = h on S1.(2.11)

Thus if f is holomorphic in a neighborhood of D̄ we have

I(ϕa) ⊂ FcS1(ϕa),(2.12)
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hence for this case Theorem 2.1 is proven.
Note that in step (ii), we will make no use of D = D. Only the assumption

that ∂D is analytic will be needed. In this case it follows from elliptic regularity
results that the interior potential u− in (1.2) can be extended as a harmonic function
in a neighborhood of D̄. Thus for analytic boundaries Corollary 1.4 already can be
deduced at this point of the proof.

The formulation of step (ii) with D = D is motivated by the fact that there exist
explicit formulas for the solution of (2.10) for the unit disk. These formulas will be
used in the next step.

(iii) Finally, we treat the general case f ∈ Hα(D). For r < 1 we set

fr(z) := f(rz), |z| < 1/r, ϕ(r)
a := RS1

a (fr|S1), ϕ
(r)
1 := fr|S1 .

Obviously, we have

ϕ(r)
a −−−→

r→1
ϕa, ϕ

(r)
1 −−−→

r→1
ϕ1 (Cα(S1)C-convergence).(2.13)

Since the functions fr are holomorphic in a neighborhood of D̄, from step (ii) we have

I(ϕ(r)
a ) ⊂ FcS1(ϕ(r)

a ).

Let h ∈ I(ϕa) and J ⊂ S1 \ N(ϕa) be closed and connected with supph ⊂ J . By

definition, ϕ1 has no zeros in J . From the uniform convergence ϕ
(r)
1 → ϕ1 it follows

that there exists r0 < 1, such that ϕ
(r)
1 has no zeros in J for r0 < r < 1. Therefore,

for these r we have h ∈ I(ϕ
(r)
a ). Consequently, there exist gr ∈ Hα(D) with boundary

values satisfying

Re(ϕ
(r)
a gr) = h, r0 < r < 1.(2.14)

Since the ϕ
(r)
a approximate ϕa, we intend to show that

Re(ϕagr) −−−→
r→1

h (L1(S1)-convergence).(2.15)

This establishes that I(ϕa) is contained in the closure of FcS1(ϕa) in L1(S1), which
completes the proof of Theorem 2.1.

Bearing in mind that Re(zw), z, w ∈ C, is the Euclidean scalar product of z and
w, we obtain the estimate

‖Re(ϕagr)− h‖L1(S1) =
∥∥∥Re(ϕagr)− Re(ϕ

(r)
a gr)

∥∥∥
L1(S1)

=
∥∥∥Re

(
(ϕa − ϕ(r)

a )gr
)∥∥∥
L1(S1)

6 ‖ϕa − ϕ(r)
a ‖L∞(S1)C‖gr‖L1(S1)C .

From (2.13) we have ‖ϕa − ϕ(r)
a ‖L∞(S1)C → 0. Thus, for the proof of (2.15), we

have to show that the functions gr can be chosen such that the restrictions gr|S1 are
uniformly L1(S1)C-bounded for r → 1.
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3. Proof of Theorem 2.1. Let D be as in Theorem 2.1 and f ∈ Hα(D). The
Riemann mapping theorem asserts the existence of a C1,α-diffeomorphism

Φ : D̄ → D̄
such that Φ|D : D → D is biholomorphic. Let u ∈ P1,α(D) with ∇u ' f . Then
u∗ := u ◦ Φ−1 ∈ C1,α(D̄) is harmonic in D. Let f∗ ∈ Hα(D) be defined by ∇u∗ ' f ,

ϕa := R∂Da (f |∂D), and ϕ∗a := RS1

a (f∗|S1) ∈ Cα(S1).

As usual, we denote the complex derivative of Φ by Φ′. If z ∈ C, z = a+ ib, a, b ∈ R,
then the multiplication by z under the identification R2 ' C is equivalent to the
multiplication by the matrix

(
a −b
b a

)
. Therefore we have

det(JΦ) = |Φ′|2,
where JΦ denotes the Jacobi matrix of Φ. In particular, Φ preserves the orientation
and Φ′ has no zeros. The multiplication of a line vector in R2 by

(
a −b
b a

)
from the

right corresponds to multiplication by z. Define

Φ∗ : L1(S1)→ L1(∂D), φ 7→ φ ◦ Φ,

and for q ∈ C(∂D) let Mq be the multiplication mapping

Mq : L1(∂D)→ L1(∂D), ψ 7→ q · ψ.
Lemma 3.1. The functions ϕa, ϕ∗a and the spaces Fc∂D(ϕa), FcS1(ϕ∗a) are related

by

Φ∗(ϕ∗a) = ϕa/Φ
′ and Fc∂D(ϕa) = M|Φ′|2

(
Φ∗(FcS1(ϕ∗a))

)
.

Proof. If

γ : [0, L)→ ∂D

denotes a parametrization of ∂D by the arclength with positive orientation, then

Φ ◦ γ : [0, L)→ S1

is a regular C1,α-parametrization of S1 with positive orientation. Let z ∈ ∂D, z =
γ(t), and w = Φ(z) ∈ S1. Then from (Φ ◦ γ)·(t) = Φ′(z) · γ̇(t) and γ̇(t) = τD(z) we
obtain that

τD(w) = Φ′(z)
|Φ′(z)|τD(z) and νD(w) = Φ′(z)

|Φ′(z)|νD(z).(3.1)

The gradients of u and u∗ are related by

∇u∗(w) = ∇(u ◦ Φ−1)(w) = ∇u(z) ◦ JΦ−1(w).

By the above remarks the multiplication by JΦ−1(w) corresponds to the complex
multiplication by (Φ−1)′(w) = 1/Φ′(z), hence

f∗(w) = f(z)/Φ′(z).(3.2)
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In two dimensions the refraction operator can be written R∂Da (X) = 〈X, τ〉τ +
a〈X, ν〉ν, X ∈ X(∂D). Rewriting the scalar products in complex notation, we ob-
tain

ϕ∗a(w) = Re
(
f∗(w)τD(w)

)
τD(w) + aRe

(
f∗(w)νD

)
νD(w).

From this, inserting (3.1) and (3.2), we derive

ϕ∗a(w) = Re
(
f(z)τD(z)
|Φ′(z)|

)(
Φ′(z)
|Φ′(z)| τD(z)

)
+ aRe

(
f(z)νD(z)
|Φ′(z)|

)(
Φ′(z)
|Φ′(z)| νD(z)

)
= Φ′(z)
|Φ′(z)|2

{
Re
(
f(z)τD(z)

) · τD(z) + aRe
(
f(z)νD(z)

) · νD(z)
}

= ϕa(z)/Φ′(z).

This, in view of Φ∗(ϕ∗a)(z) = ϕ∗a(w), proves the first statement of the lemma.
For the second statement let h ∈ FcS1(ϕ∗a). By definition there exists g ∈ Hα(D)

such that

Re(ϕ∗ag) = h on S1.

Then the boundary values of ĝ := Φ′ · (g ◦ Φ) ∈ Hα(D) satisfy

Re
(
ϕa(z)ĝ(z)

)
= Re

(
ϕ∗a(w)Φ′(z)Φ′(z)g(w)

)
= |Φ′(z)|2h(w) = |Φ′(z)|2Φ∗(h)(z),

whence M|Φ′|2
(
Φ∗(FcS1(ϕ∗a))

) ⊂ Fc∂D(ϕa). The converse inclusion is derived in an

analogous manner, by replacing Φ by its inverse Φ−1.
In particular, the mappings Φ∗ and M|Φ|2 are continuous and continuously in-

vertible. Hence they map dense subsets of L1(S1) and L1(∂D) onto dense subsets
of L1(∂D). Therefore the L1(∂D)-denseness of Fc∂D(ϕa) is equivalent to the L1(S1)-
denseness of FcS1(ϕ∗a). Consequently, without loss of generality from now on we may
assume that D = D.

Lemma 3.2. The set of zeros N(ϕ1) is closed and has measure zero in S1. The
linear span of I(ϕa) is dense in Lp(S1) for any 1 6 p 6 2.

Proof. The first statement is trivial. Proof that the set {z ∈ S1 : f(z) = 0} has
measure zero in S1 can be found in [12, Theorem 1.9, p. 203].

Since the Lp(S1)-norms, p < 2, are weaker than the L2(S1)-norm, it suffices to
show L2(S1)-denseness of I(ϕa). Let h′ ∈ L2(S1) be orthogonal to I(ϕa). Then for
any z0 ∈ S1 \N(ϕa) we choose a closed and connected neighborhood J ⊂ S1 \N(ϕa)
of z0 and a function

χ ∈ Cα(S1, J) such that χ > 0, χ(z0) > 0.

We select a sequence (hk)k∈N in Cα(S1) converging to h′ in L2(S1). Then, since
χhk ∈ I(ϕa), we have ∫

S1

h′χhk ds = 0 for all k ∈ N.

Passing to the limit k → ∞ we find
∫
S1 χ(h′)2 ds = 0. Therefore h′ vanishes almost

everywhere in the neighborhood {z ∈ S1 : χ(z) > 0} of z0. Since N(ϕa) has measure
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zero, this implies h′ = 0 almost everywhere. Thus I(ϕa)⊥ = {0}, and the third
assertion is established.

Lemma 3.3. Let arg be the argument function on C \ {0} with values in (−π, π].
Then for all z ∈ S1 \N(ϕa)

min(1, a) 6 |ϕa(z)/ϕ1(z)| 6 max(1, a),(3.3)

|arg(ϕa(z)/ϕ1(z))| 6 arccos
(
2
√
a/(1 + a)

)
<
π

2
.(3.4)

Proof. If ν(z), τ(z) is used as a coordinate system, then we have ϕa(z) = (ax1, x2)
provided that ϕ1(z) = (x1, x2). From this it follows that

|ϕ1(z)| 6 |ϕa(z)| 6 a|ϕ1(z)| if a > 1,

a|ϕ1(z)| 6 |ϕa(z)| 6 |ϕ1(z)| if a 6 1,

which establishes the first assertion. Interpreting ν(z) and τ(z) as complex numbers
we define

ζa(x1, x2) :=
ax1ν(z) + x2τ(z)

x1ν(z) + x2τ(z)
, (x1, x2) ∈ R2 \ {0},

and

ϑ∗a := sup
(x1,x2)∈R2\{0}

|arg(ζa(x1, x2))|.(3.5)

From these definitions it is obvious that
∣∣arg

(
ϕa(z)/ϕ1(z)

)∣∣ 6 ϑ∗a. A simple compu-
tation shows that

Re(ζa(x1, x2)) =
ax2

1 + x2
2

x2
1 + x2

2

> 0, (x1, x2) ∈ R2 \ {0}.(3.6)

Since the function arg has discontinuities only on the half-line {z ∈ R : z 6 0}, the
function |arg ◦ζa| is continuous on R2 \ {0}. Since from the definitions it is obvious
that ζa does depend only on the argument of (x1, x2), it suffices to take the supremum
in (3.5) over the unit circle. Since continuous functions on compact sets assume their
maximum, there exists (x∗1, x

∗
2) on S1 such that

ϑ∗a = |arg(ϑa(x∗1, x
∗
2))|.

From (3.6) we obtain ϑ∗a <
π
2 . Finally, the explicit expression

ϑ∗a = arccos(2
√
a/(1 + a))

follows from elementary calculations.
Lemma 3.4. Suppose that f admits an extension as a holomorphic function in

some neighborhood of D̄. Then the set N(ϕ1) is finite and the function ϕa(z)/ϕ1(z),
z ∈ S1 \ N(ϕ1) can be extended as an analytic function ψ into N(ϕ1). The extension
ψ has no zeros and its index is zero.

Proof. The smoothness of ψ need only be shown for points in the finite set N(ϕ1).
Let z0 ∈ S1 with ϕ1(z) = 0 and let u be the harmonic function with ∇u ' f . We
claim that there exists a holomorphic function fa defined in some ε-neighborhood
Uε(z0) := {z ∈ C : |z − z0| < ε} of z0 such that

fa|S1∩Uε = ϕa.(3.7)



906 BERND HOFMANN

Indeed, if ε is small enough, by the Cauchy–Kowalevski theorem there exists a solution
v of

4v = 0 in Uε(z0) and v = u,
∂v

∂ν
= a

∂u

∂ν
on S1 ∩ Uε(z0).

Then obviously ∇v = Ra(∇u), and therefore the holomorphic function fa defined by
fa ' ∇v satisfies (3.7).

Thus in some neighborhood of z0 on S1 the function ϕa/ϕ1 is equal to the restric-
tion of the meromorphic function fa/f . If this function would have a pol in z0, the
values of fa(z)/f(z), z 6= z0, would be unbounded in any neighborhood of z0 in S1,
and this contradicts (3.3) of Lemma 3.3. Consequently, fa/f is holomorphic in some
neighborhood of z0, and this proves that ϕa/ϕ1 admits an analytic extension onto all
of S1.

Clearly, the estimates of Lemma 3.3 are valid on all of S1. From this, the last
statement of Lemma 3.4 is obvious.

For the solution of the Hilbert problem (2.10), we will have to define a logarithm
of the function −ψ/ψ on S1. At this point, in the solution theory of a general Hilbert
problem the index of ψ is important. In our special case we can use the estimate (3.4)
to define a logarithm of −ψ/ψ somewhat more directly. Therefore the index of ψ will
implicitly enter only in the proof of Theorem 2.1. Let ϑ∗a := arccos(2

√
a/(1 + a)) as

in the proof of Lemma 3.3. With ϑa := π/2−ϑ∗a > 0 we can rewrite (3.4) in the form

arg(ψ) ∈ [−π/2 + ϑa, π/2− ϑa],

whence

arg(ψ/ψ) = arg(ψ2/|ψ|2) = arg(ψ2) ∈ [−π + 2ϑa, π − 2ϑa]

follows. Defining a second argument function Arg with values in [0, 2π), we get

Arg(−ψ/ψ) ∈ [2ϑa, 2π − 2ϑa].

If Log denotes the branch of the logarithm corresponding to Arg, that is, Log(z) =
log |z|+ iArg(z) where log stands for the usual real logarithm, then the function

Log(−ψ/ψ) : S1 → C

is analytic on S1. Since the values of −ψ/ψ are on the unit circle, the values of
Log(−ψ/ψ) are purely imaginary. For later use we note

1
i Log

(− ψ(z)/ψ(z)
) ∈ [2ϑa, 2π − 2ϑa], z ∈ S1.(3.8)

There exist explicit formulas for the solution of (2.10) in terms of the Cauchy
integral operator, which is defined by

A(φ)(z) :=
1

πi

∫
S1

φ(ζ)

ζ − z dζ, z ∈ C, φ ∈ Cα(S1)C.

We collect some properties of A from [5].
The function A(φ) is holomorphic in C \ S1. The functions A(φ)+ := A(φ)|C\D̄

and A(φ)− := A(φ)|D can be extended onto S1 as functions in Cα(C\D) and Cα(D̄),
respectively. We have lim|z|→∞A(φ)(z) = 0 uniformly in all directions. For z ∈ S1
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the integral A(φ)(z) exists as a Cauchy principal value and A(φ)|S1 ∈ Cα(S1). To
avoid ambiguities, we define

A(φ) := A(φ)|S1 , φ ∈ Cα(S1)C.

The mappings

Cα(S1)C → Cα(S1)C, C
α(C \ D)C, C

α(D̄)C, φ 7→ A(φ), A(φ)+, A(φ)−

are continuous. Their values on S1 are related by the Sokhotski–Plemelj formulas

A(φ)− −A(φ)+ = 2φ and A(φ)− +A(φ)+ = 2A(φ) on S1.

Later in the proof we will also need the facts that A2 = IdCα(S1)C and that A can be
extended as a continuous linear operator L2(S1)C → L2(S1)C.

Theorem 3.5. If f admits an extension as a holomorphic function in some
neighborhood of D̄, then the Hilbert problem (2.5) is solvable for any inhomogeneity
h ∈ I(ϕa), that is, I(ϕa) ⊂ FcS1(ϕa). If ψ is as in Lemma 3.4, then a solution g is
given by

H(z) := exp(1
2A(Log(−ψ/ψ))

)
(z), z ∈ C,(3.9a)

G(z) := 1
2H(z) ·A(− h/(|ϕ1|2ψH+)

)
(z), z ∈ C,(3.9b)

g̃(z) := G−(z) +G+(1/z), z ∈ D,(3.9c)

g(z) := f(z)g̃(z), z ∈ D.(3.9d)

Proof. As described in the preceding section, g̃ is the solution of

g̃ ∈ Hα(D) with Re(ψg̃) = h/|ϕ1|2.(3.10)

The formulas (3.9a)–(3.9c) summarize the solution of (3.10) by transforming it into
a Riemann problem (see [6]).

The Sokhotski–Plemelj formulas yield

1
2A(Log(−ψ/ψ))− − 1

2A(Log(−ψ/ψ))+ = Log(−ψ/ψ) on S1.

Taking the exponential, we deduce that H is a solution of the homogeneous Riemann
problem

ψH− + ψH+ = 0 on S1.

Since exp z 6= 0 for all z ∈ C the boundary values H+ have no zeros. For brevity we
set δ := −h/(|ϕ1|2ψH+). We recall the fact that we have set δ(z) = 0 if z /∈ supph,
implying that δ ∈ Cα(S1)C. On S1 we have

ψG− + ψG+ = 1
2 (ψH−A(δ)− + ψH+A(δ)+) = 1

2ψH+(−A(δ)− +A(δ)+)

= −ψH+δ = h/|ϕ1|2.

From 1/z = z, z ∈ S1, we find G+(1/z) = G+(z), z ∈ S1, whence

Re(ψg̃) = Re(ψG− + ψG+) = Re(ψG− + ψG+)

= h/|ϕ1|2



908 BERND HOFMANN

follows. Therefore the boundary values of g satisfy

Re(ϕag) = |ϕ1|2 Re(ψg̃) = h.

Now we consider the case of a general f ∈ Hα(D) and for 0 < r < 1 define

fr(z) = f(rz), ϕ
(r)
1 := fr|S1 , ϕ(r)

a := RS1

a (fr|S1), ψr := ϕ(r)
a /ϕ

(r)
1 .

The functions fr are holomorphic in a neighborhood of D̄ and hence the functions ψr
are analytic on S1. The function H in (3.9a) does not depend on the inhomogeneity
h. Let

H(r; z) := exp(A(iφr)(z)), z ∈ C, φr := 1
2i Log(−ψr/ψr)

be formed correspondingly for fr. From (3.8) we have

φr(z) ∈ [ϑa, π − ϑa], z ∈ S1, 0 < r < 1.(3.11)

In the investigation of the convergence of H(r; ·) for r → 1, we will frequently use
the fact that for a compact set M ⊂ C the multiplication mapping

Cα(M)C × Cα(M)C → Cα(M)C, (f, g) 7→ fg,

and the inverse mapping

{f ∈ Cα(M)C : f(z) 6= 0, z ∈M} → Cα(M)C, f 7→ 1/f,

are continuous. Further, if U ⊂ C is open, then Cα(M,U)C := {f ∈ Cα(M)C :
f(M) ⊂ U} is open in Cα(M)C and, for F ∈ Cα(U)C, the mapping

Cα(M,U)C → Cα(M)C, f 7→ F ◦ f,

is continuous. The fact that the images of these mappings are in Cα(M)C was already
used above.

Lemma 3.6. If J ⊂ S1 \ N(ϕa) is closed and connected, then the one-sided
boundary values H(r; ·)±|J are convergent in Cα(J)C. The limit functions have no
zeros in J .

Proof. Let J̃ ⊂ N(ϕa) be closed and connected. Since ϕ
(r)
1 , ϕ

(r)
a converge in

Cα(S1)C to ϕ1 and ϕa, both of which have no zeros on J̃ , it follows that

(ψr/ψr)|J̃ = (ϕ(r)
a /ϕ

(r)
1 · ϕ(r)

1 /ϕ
(r)
a )|J̃ converges for r → 1 in Cα(J̃)C.

Hence

φr|J̃ converges for r → 1 in Cα(J̃)C.(3.12)

In particular, φr is pointwise convergent outside the set N(ϕa) of measure zero.
From (3.11) and Lebesgue’s convergence theorem we obtain that

φr converges for r → 1 in any Lp(S1)C, 1 6 p <∞.(3.13)

Now, if J ⊂ S1 \ N(ϕa) is closed and connected, the Cα(J)C-convergence of
A(iφr)|J follows by a suitable splitting of the integral. For this we choose a closed
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and connected set J̃ ⊂ S1 \ N(ϕa) containing J in the interior and a real-valued
χ ∈ Cα(S1) such that

suppχ ⊂ J̃ , χ > 0, χ = 1 on a neighborhood of J.

Then χφr, and in turn A(iχφr), is Cα(S1)C convergent as r → 1. The second part of
the density (1 − χ)φr is L1(S1)C-convergent and equal to zero in a neighborhood of
J , which is independent of r. Hence A(i(1 − χ)φr)|J converges together with all its
derivatives. Therefore

A(iφr)|J = A(iχφr)|J + A(i(1− χ)φr)|J converges for r → 1 in Cα(J)C.

The Sokhotski–Plemelj formulas imply A(iφr)± = A(iφr) ∓ iφr on S1, whence,
in view of (3.12), the Cα(J)C convergence of A(iφr)±|J follows. Since the application
of the exponential preserves this convergence, the lemma is proved.

The crucial point in part (iii) of the sketch of the proof is to show the uniform
L1(S1)C-boundedness of H(r; ·)±. If it were possible to extend A to an endomorphism
of L∞(S1)C, this would follow immediately from (3.11). But it is known that for a
continuous, but not Hölder-continuous, density φ the function A(φ) might have un-
bounded singularities. So A(L∞(S1)C) is not even contained in L∞(S1)C. From (3.13)
the density φr, and hence A(iφr) and A(iφr)±, is L2(S1)C-convergent as r → 1. Thus
we need a statement that the singularities of limr→1 A(iφr) in N(ϕa) are weak enough
such that exp(A(iφr)) is still uniformly L1(S1)C-bounded. This is achieved with the
aid of the next theorem, which is due to Smirnov ([10, Hilfssatz 2]).

Theorem 3.7. Assume that φ ∈ Cα(S1) satisfies φ(z) ∈ [ϑ, π − ϑ] for all z ∈ S1

and some ϑ > 0. Then

‖exp(A(iφ))‖L1(S1)C 6 e
‖Re(A(iφ))‖L1(S1)/ sinϑ.

Here we have set ‖F‖L1(S1)C := 1
2π

∫ 2π

0

∣∣F (eit)
∣∣ dt, F ∈ L1(S1)C.

Proof. Clearly, it suffices to prove the estimate for ‖exp(φ̃)‖L1(S1) with φ̃ :=

Re(A(iφ)). In the sequel we identify Cα(S1)C with Cα(R/2π)C by the parametrization
t 7→ eit.

On the unit circle the Cauchy integral operator can be written in the form

A(δ)(z) =
1

πi

∫
S1

δ(ζ)

ζ − z dζ

=
1

2πi

∫ 2π

0

(
cot

τ − t
2

+ i
)
δ(τ) dτ, δ ∈ Cα(S1)C, z = eit.

Denoting by 1S1 the density equal to 1 everywhere on S1, it follows that A(iφ) =

φ̃ + icφ1S1 , where cφ = 1
2π

∫ 2π

0
φ(τ) dτ . Together with the formulas A2 = IdS1 ,

A(1S1) = 1S1 , and φ̃ = A(iφ)− i Im(A(iφ)) = A(iφ)− icφ1S1 , this implies that

A(φ̃+ iφ) = A(A(iφ)− icφ1S1) + φ̃+ icφ1S1

= iφ+ φ̃.

Now, from the Sokhotski–Plemelj formulas it can be seen that the holomorphic func-
tion

g(z) :=
1

2πi

∫
S1

φ̃(ζ) + iφ(ζ)

ζ − z dζ = 1
2A(φ̃+ iφ)(z), z ∈ D,
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has boundary values g− = φ̃ + iφ. Hence eg ∈ Hα(D) has boundary values eφ̃+iφ.
The Cauchy integral formula yields

eg(0) =
1

2πi

∫
S1

e(φ̃+iφ)(ζ) dζ

ζ
=

1

2π

∫ 2π

0

eφ̃(τ)+iφ(τ) dτ.(3.14)

Taking the imaginary part of this equation we arrive at

Im(eg(0)) =
1

2π

∫ 2π

0

eφ̃(τ) sin(φ(τ)) dτ.

Clearly eφ̃(τ) > 0, and the assumption φ(τ) ∈ [ϑ, π− ϑ] implies sin(φ(τ)) > sinϑ > 0.
Thus

Im(eg(0))/ sinϑ > 1

2π

∫ 2π

0

eφ̃(τ) dτ = ‖exp φ̃‖L1(S1).

If to the left-hand side we apply the estimate

Im(eg(0)) 6
∣∣∣eg(0)

∣∣∣ = eRe g(0) = exp
( 1

2π

∫ 2π

0

φ̃(τ) dτ
)
6 e‖φ̃‖L1(S1) ,

the claim of the theorem follows.
The asserted boundedness of the H(r; ·)± can now be proved.
Corollary 3.8. The boundary values of the functions H(r; ·)± are uniformly

L1(S1)C-bounded as r → 1.
Proof. From Theorem 3.7 together with (3.11) we obtain that

‖H(r; ·)‖L1(S1)C 6 e
‖Re(A(iφr))‖L1(S1)/ sinϑa.(3.15)

In (3.12) we have already seen that φr and, consequently, A(iφr) converge as r → 1
in L2(S1)C. Since on compact sets L2-convergence is stronger than L1-convergence,
the right-hand side in (3.15) is convergent for r → 1. Hence H(r; ·)|S1 is uniformly
bounded as r → 1. Since the φr are real-valued, the assertion follows from

H(r; ·)± = exp(A(iφr)∓ iφr) = H(r; ·)|S1e∓iφr on S1.

Now suppose we are given h ∈ I(ϕa) and r0 < 1 is big enough to ensure that

h ∈ I(ϕ
(r)
a ) for r0 < r < 1. Then define functions G(r; ·), g̃r, and gr by replacing ϕ1,

ϕa in the definitions (3.9b)–(3.9d) by ϕ
(r)
1 and ϕ

(r)
a , respectively, so that gr ∈ Hα(D)

satisfy Re(ϕ
(r)
a gr) = h on S1. In view of the remarks at the end of (iii) in the preceding

section, the proof of Theorem 2.1 is finished by the following lemma.
Lemma 3.9. The functions gr|S1 are uniformly L1(S1)C-bounded for r → 1.
Proof. Let J ⊂ S1 \ N(ϕa) be a closed and connected set such that supph ⊂ J .

Consider the density

δr := −h/(|ϕ(r)
1 |2ψrH(r; ·)+

)
= −h/

(
ϕ(r)
a ϕ

(r)
1 H(r : ·)+

)
,

of A in the definition (3.9b) of G(r; ·). If J̃ ⊂ S1 \ N(ϕa) is closed and connected

and contains J in its interior, then by Lemma 3.6 the functions ϕ
(r)
a ϕ

(r)
1 H(r; ·)+|J̃

converge in Cα(J̃) to some function without zeros in J̃ . Since we have defined δr to
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be zero outside the support of h, the density δr is Cα(S1)C-convergent. Thus A(δr)
is convergent in Cα(S1)C. The one-sided boundary values of G(r; ·) are given by

G(r; z)± = 1
2H(r; z)± · (A(δr)∓ δr(z)), z ∈ S1.

From

‖F1F2‖L1(S1)C 6 ‖F1‖L1(S1)C‖F2‖L∞(S1)C , F1 ∈ L1(S1)C, F2 ∈ L∞(S1)C,

the functions G(r; ·)±|S1 can be seen to be uniformly L1(S1)C-bounded for r → 1.
Now it is easily checked from

g̃r|S1 = G(r; ·)|S1 +G(r; ·)|S1 and gr = fr g̃r = ϕ
(r)
1 g̃r

that g̃r|S1 and gr|S1 are L1(S1)C-bounded for r → 1.
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Abstract. The paper considers a simple model of a radially symmetric cell which undergoes
growth due to a continuous supply of nutrient, and disintegration as a result of the various tasks the
cell performs. The boundary of the cell is a “free boundary,” unknown in advance, which evolves
by responding to both the growth and disintegration processes. If the nutrient concentration (at
infinity) exceeds a certain critical number, then two stationary solutions exist. It is established,
by rigorous mathematical proofs, that the stationary solution with the smaller radius is unstable,
whereas the stationary solution with the larger radius is stable.

Key words. protocell, parabolic system, free boundary problem

AMS subject classifications. 35K20, 35K55, 35K57, 35B40
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1. The model. In this paper we consider a physico-chemical model of a self-
maintaining protocell which undergoes a process of growth and dissolution that mimics
(but greatly simplifies) biological cells. The model is somewhat different from the one
that was initiated and studied in [4], [5]. The protocell can be visualized as having a
porous structure maintained by building materials with concentration C; the structure
is sustained only as long as C exceeds a critical concentration C∗. Metabolism is
maintained by nutrient material with concentration σ which is distributed in the
entire space with σ = τ at ∞ (τ > 0). C and σ satisfy a coupled system of reaction
diffusion equations:

c
∂C

∂t
−∆C = σ, ∆σ − σ = 0 in the cell,

∆σ = 0 outside the cell,

where c is a positive constant. The constant c is the quotient of the time scale of
diffusion to the time scale of cell doubling. In cases of interest, such as in tumor
growth [1], [2], c is a very small constant.

On the boundary of the protocell C = C∗. The various tasks that the cell
continuously performs take their toll on the cell: they cause it to shrink. This is
modelled by disintegration at the boundary at a rate β, β > 0. On the other hand
the flux of building material at the boundary causes the cell to grow. The total result
of these two effects is

Vn = −∂C
∂n
− β,

where n is the exterior normal, and Vn is the velocity of the boundary points in the
direction n.
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We shall consider here only the case of a spherical cell (in three dimensions).
Setting

r =
√
x2

1 + x2
2 + x2

3, u = C − C∗

and denoting the boundary of the cell by r = s(t), we then have the following system
for u = u(r, t), σ = σ(r, t) and r = s(t):( ∂2

∂r2
+

2

r

∂

∂r

)
σ = σχ{r<s(t)}(r, t) in R3,(1.1)

σ → τ as |x| → ∞,(1.2)

and

cut −
( ∂2

∂r2
+

2

r

∂

∂r

)
u = σ if r < s(t), t > 0,(1.3)

u = 0 on r = s(t), t > 0,(1.4)

u = u0(r) for t = 0,(1.5)

and finally, the free boundary condition

s′(t) = −ur(s(t), t)− β.(1.6)

As shown in [4], if τ/β is less than a critical number µ∗, then no steady state
solutions exist, whereas if τ/β is larger than µ∗, then there exist two steady state
solutions, with free boundary radii R−0 and R+

0 , R−0 < R+
0 . Numerical results and

some heuristic arguments are given in [4] to show that the solution withR−0 is unstable,
whereas the solution with R+

0 is stable. The purpose of this paper is to give rigorous
mathematical proofs of these results.

In sections 2 and 3 we establish various estimates and prove the existence and
uniqueness of the solution to (1.1)–(1.6). In section 4 we prove that the stationary
solution corresponding to R−0 is unstable. In section 5 we prove that the stationary
solution corresponding to R+

0 is stable if c is suitably small.

2. A priori bounds on the solution. The function

g(r) =
r2

r − tanh r
(0 < r <∞)(2.1)

will play a fundamental role in what follows. One can easily verify that r−tanh r > 0,
so that g(r) > 0; furthermore, g(r) → ∞ if r → 0 or r → ∞ and there is a unique
r = R∗, where g(r) attains its minimum µ∗, i.e.,

min
0<r<∞

g(r) = g(R∗) = µ∗.(2.2)

One can compute that

R∗ ≈ 1.6061486 and µ∗ ≈ 3.7739398.

The steady state solutions with free boundary r = R0 are given by

u(r) =
τ

coshR0

( sinhR0

R0
− sinh r

r

)
for r < R0,(2.3)
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where R0 satisfies

τ

β
=

R2
0

R0 − tanhR0
= g(R0).(2.4)

If τ/β < µ∗, then there are no steady state solutions, whereas if τ/β > µ∗, then there
are two solutions, uR+

0
and uR−0

, corresponding to R0 = R+
0 and R0 = R−0 , where

R−0 < R∗ < R+
0 . As τ/β increases from µ∗ to ∞, R−0 decreases from R∗ to 0 and R+

0

increases from R∗ to +∞.
For a given s(t), (1.1) with the boundary condition (1.2) can be solved explicitly

(see [4, Eqs. (8) and (9)]):

σ(r, t) =


τ
(

1− s(t)− tanh s(t)

r

)
for r > s(t),

τ
1

cosh s(t)

sinh r

r
for r < s(t).

(2.5)

Substituting (2.5) into (1.3), we get an equation for u involving the free boundary:

cut −
( ∂2

∂r2
+

2

r

∂

∂r

)
u = τ

1

cosh s(t)

sinh r

r
if r < s(t), t > 0.(2.6)

Further,

u = 0 on r = s(t), t > 0,(2.7)

s′(t) = −ur(s(t), t)− β if t > 0,(2.8)

and

u = u0(r) for t = 0.(2.9)

Lemma 2.1. If a solution of (2.6)–(2.9) exists for the time interval [0, T ], then

4π

3
s3(t) =

4π

3
s3(0) + c

∫
{r<s(0)}

u0(r)dV − c
∫
{r<s(t)}

u(r, t)dV

+4πτ

∫ t

0

[ 1

g(s(ξ))
− β

τ

]
s2(ξ)dξ

(2.10)

for 0 < t 6 T .
Proof. By integration of (2.6) we get

c

∫
{r<s(t)}

u(r, t)dV − c
∫
{r<s(0)}

u0(r)dV

= c

∫ t

0

∫
{r<s(ξ)}

ut(r, ξ)dV dξ

=

∫ t

0

∫
{r=s(ξ)}

∂u

∂r
dS + τ

∫ t

0

∫ s(ξ)

0

1

cosh s(t)

sinh r

r
4πr2drdξ

= 4π

∫ t

0

{
s2(ξ)[−s′(ξ)− β] + τ [s(ξ)− tanh s(ξ)]

}
dξ

=
4π

3
[s3(0)− s3(t)] + 4π

∫ t

0

{τ [s(ξ)− tanh s(ξ)]− βs2(ξ)}dξ,
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from which the lemma follows.
We shall henceforth assume that

0 6 u0(r) 6 C0(s(0)− r) for 0 6 r < s(0),(2.11)

where C0 is a positive constant.
Theorem 2.2. If a solution (u(r, t), s(t)) of (2.6)–(2.9) exists for all 0 < t < T

(T <∞), then

s(t) < R for all 0 < t < T,(2.12)

where R is a constant independent of T .
Proof. We distinguish the following two cases.
Case (i): τ/β 6 µ∗. Since u0(r) > 0, we have, by the maximum principle,

u(r, t) > 0 for 0 6 r < s(t). From (2.10) and the definition of µ∗ we obtain

4π

3
s3(t) 6 4π

3
s3(0) + c

∫
{r<s(0)}

u0(r)dV − 4πβ

∫ t

0

(
1− 1

µ∗
τ

β

)
s2(ξ)dξ.(2.13)

It follows that

s(t) 6
(
s3(0) + 3c

∫ s(0)

0

u0(r)r2dr
)1/3

.(2.14)

Case (ii): τ/β > µ∗. In this case, the equation (2.3) has exactly two solutions
R−0 and R+

0 .
Setting

C1 = max(R+
0 , s(0)),(2.15)

we can choose (using (2.11)) a constant R such that

C3
1 +

τ

2
cC3

1R 6 R3, and 0 6 u0(r) 6 τ

2
(R− r), 0 < r < s(0).(2.16)

We shall prove that (2.12) holds for this choice of R. Indeed, if this is not true, then
there is a first t∗ > 0 such that s(t∗) = R. Since s(t) < R for 0 < t < t∗, we have, by
comparison (using the maximum principle),

0 6 u(r, t) 6 τ

2
(R− r), 0 < r < s(t), 0 < t 6 t∗.(2.17)

Take t1 ∈ [0, t∗) such that

s(t1) = C1, C1 < s(t) < R for t1 < t < t∗.

Then
{ τ
β

[s(ξ)− tanh s(ξ)]− s2(ξ)
}
6 0 for t1 < t < t∗ and (2.10) yields

s3(t) < s3(t1) + 3c

∫ s(t1)

0

u(r, t1)r2dr + 3β

∫ t

t1

{ τ
β

[s(ξ)− tanh s(ξ)]− s2(ξ)
}
dξ

6 C3
1 +

τ

2
cC3

1R 6 R3 for t1 < t 6 t∗.

Thus s(t∗) < R, which is a contradiction.
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From the uniform boundedness of s(t) we can infer (by comparison) the uniform
boundedness of u(r, t):

0 6 u(r, t) 6 C(R− r), where R > sup
06t6T

s(t).(2.18)

The next lemma gives a sharper estimate on u(r, t) for r near s(t), as well as a useful
estimate for s′(t).

Lemma 2.3. Let R, C1 be positive constant for which

R > sup
06t6T

s(t),

0 6 u0(r) 6 C1 tanh(cβs(0))
{

1− e−cβ(s(0)−r)
}

for 0 6 r < s(0).
(2.19)

Then there is a constant K depending only on C1, R, τ , c, and β such that

0 6 u(r, t) 6 K tanh(cβs(t))
{

1− e−cβ(s(t)−r)
}

for 0 < t 6 T,(2.20)

and

−β < s′(t) < −β + cK tanh(cβs(t)) for 0 < t 6 T.(2.21)

Proof. By the maximum principle, u(r, t) > 0 if r < s(t) and ur(s(t), t) < 0;
hence,

s′(t) > −β for t > 0.(2.22)

Let

w(r, t) = K tanh(cβs(t))
{

1− e−cβ(s(t)−r)
}
,

where we choose K large enough so that

w(r, 0) > u0(r).(2.23)

Clearly,

cwt −
( ∂2

∂r2
+

2

r

∂

∂r

)
w

= Kcβ tanh(cβs(t))e−cβ(s(t)−r)
{
cs′(t) + cβ +

2

r
+

c
[
ecβ(s(t)−r) − 1

]
s′(t)

sinh(cβs(t)) cosh(cβs(t))

}
> Kcβ tanh(cβs(t))e−cβ(s(t)−r)

{2

r
− 2cβ

cosh(cβs(t))

}
> (2−

√
2)Kcβ tanh(cβs(t))e−cβ(s(t)−r) 1

r
;

in deriving the above inequalities, we made use of (2.22) and of the inequalities:

eξ − 1 6 2 sinh ξ for ξ > 0,

cosh(ξ) > 1 +
ξ2

2
>
√

2ξ.
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We claim that for a suitable choice of the constant K,

(2−
√

2)Kcβ tanh(cβs(t))e−cβ(s(t)−r) 1

r
> τ 1

cosh(s(t))

sinh r

r
for 0 < r < s(t);

(2.24)
the proof of this inequality will be given later. If (2.24) holds, then by the maximum
principle,

u(r, t) 6 w(r, t).(2.25)

(Note that wr|r=0 < 0, ur|r=0 = 0 so w−u cannot take minimum at r = 0.) It follows
that

ur(s(t), t) > wr(s(t), t) = −Kcβ tanh(cβs(t)),(2.26)

thus

s′(t) 6 −β +Kcβ tanh(cβs(t)).

To finish the proof of the lemma, it remains to verify (2.24). Observe that (2.24)
is equivalent to

(2−
√

2)K tanh(cβs(t)) > τ

cβ

ecβs(t)

cosh s(t)
e−cβr sinh r for 0 < r < s(t).(2.27)

The function e−cβr sinh r is monotonically increasing in the following cases:
Case (i). cβ 6 1;

Case (ii). cβ > 1, r 6 s(t) 6 1

2
log

cβ + 1

cβ − 1
for all 0 6 t 6 T .

In these two cases, it suffices to prove (2.27) for r = s(t) so that (2.27) holds if
K is such that

(2−
√

2)K > τ

cβ
sup

0<ξ<∞

tanh(ξ)

tanh(cβξ)
≡ τ

cβ
max

(
1,

1

cβ

)
.(2.28)

Finally, if cβ > 1 and max06t6T s(t) > 1
2 log cβ+1

cβ−1 , we rewrite (2.24) in the form

(2−
√

2)K tanh(cβs(t))e−(cβ−1)(s(t)−r) > τ

cβ

es(t)

cosh s(t)
e−r sinh r for 0 < r < s(t)

(2.29)
and observe that the function e−r sinh r is monotonically increasing. It therefore
suffices to prove (2.29) just for r = s(t) on the right-hand side. But, since s(t) < R,
this is a consequence of

(2−
√

2)Ke−(cβ−1)R > τ

cβ
sup

0<ξ<∞

tanh(ξ)

tanh(cβξ)
≡ τ

cβ
(2.30)

which holds if K is chosen sufficiently large.

3. Existence and uniqueness. In this section we assume, in addition to (2.11),
that

u′0(r) is continuous if 0 6 r 6 s(0).(3.1)
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Theorem 3.1. Let (2.11) and (3.1) hold. Then
(i) there exists a unique solution (u(r, t), s(t)) of (2.6)–(2.9) with s′(t) continuous

for a time interval 0 6 t < δ0;
(ii) if a solution (u(r, t), s(t)) exists for 0 6 t < T and lim inf

t→T−0
s(t) > 0, then the

solution can be continued to 0 6 t 6 T + δ for some δ > 0.
The proof, by a fixed point theorem for a contraction mapping, is similar to the

corresponding proof for the Stefan problem [3, Chap. 8] and is therefore omitted.
Theorem 3.2. If

τ

β
< µ∗,

then there exists a finite t∗ such that the solution exists for 0 6 t < t∗ and s(t) → 0
for t→ t∗; i.e., the cell shrinks to zero at time t∗.

Proof. From (2.13) we get

s3(t) + δ

∫ t

0

s2(ξ)dξ 6 C̃1

for some positive constants C̃1 and δ.
By Theorem 3.1, the solution can be continued as long as s(t) remains uniformly

positive. If the assertion of the theorem is not true, then the solution exists (and
s(t) is positive) for all 0 < t < ∞. Let K be as in Lemma 2.3 and take s0 such

that K tanh(βs0) < β/2. Since
∫ t

0
s2(ξ)dξ is uniformly bounded, there exists a t̃ > 0

such that s(t̃) < s0. By Lemma 2.3 and a continuation argument, we then have
s′(t) 6 −β/2 for all t > t̃. This is a contradiction to the assumption that s(t) > 0 for
all t > 0.

In view of Theorems 2.2 and 3.1, a solution (u(r, t), s(t)) exists for all 0 6 t <∞
if and only if, for any T > 0, there is s > 0 such that

inf
06t<T

s(t) > s > 0.

Furthermore, by Lemma 2.3, the constant s can be chosen to be independent of T if
a global solution exists.

Next we establish a lower bound for s(t) in the case τ/β > µ∗.
Let C1, C2 and D1, D2 be positive constants such that

C1 > R+
0 , C3

1 +
τ

2
cC3

1C2 = C3
2 ,(3.2)

D2 > R−0 , D1 = D2

(τ
2
cC2 + 1

)1/3

.(3.3)

Theorem 3.3. Assume that

D1 < R+
0 .(3.4)

If s(0), u0(r) satisfy

D1 6 s(0) 6 C1,(3.5)

0 6 u0(r) 6 τ

2
(C2 − r) for 0 < r < s(0),(3.6)
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then there exists a global solution (u(r, t), s(t)) of (2.6)–(2.9) with

s(t) > D2 for all t > 0.(3.7)

Proof. In view of (3.2), we can apply Case (ii) of Theorem 2.2 to conclude that
s(t) 6 C2 and then, by the maximum principle,

0 6 u(r, t) 6 τ

2
(C2 − r).(3.8)

It follows that if

R−0 < s(t) < R+
0 for t1 < t < t2,

s(t1) = min[s(0), R+
0 ], s(t2) = D2,

then

3

∫ s(t2)

0

u(r, t2)r2dr − 3

∫ s(t1)

0

u(r, t1)r2dr 6 τ

2
C2D

3
2 =

1

c
(D3

1 −D3
2),(3.9)

where the inequality follows from (3.8).
To prove the theorem it suffices to show that (3.7) holds as long as the solution

exists. If this is not true then there is a smallest t = t2 such that s(t2) = D2. By (3.4),
(3.5) there exists a t1 such that t1 < t2, s(t1) = min[s(0), R+

0 ] and s(t2) < s(t) < s(t1)
for t1 < t < t2. As in Case (ii) of Theorem 2.2,

s3(t1)−D3
2 < 3c

∫ D2

0

u(r, t2)r2dr − 3c

∫ s(t1)

0

u(r, t1)r2dr,

and since D3
1 6 min[s3(0), (R+

0 )3], this is a contradiction to (3.9).
Remark 3.1. If c is suitably small, then (3.4) is satisfied. In this case we have, by

(3.7), (3.8),

D2 < s(t) < C2 for all t > 0.

In particular, if

R−0 + 2δ < s(0) < C1 (δ > 0)(3.10)

and c is sufficiently small, depending on δ and C1, then

R−0 + δ < s(t) < C1 + δ for all t > 0.(3.11)

4. R−0 is unstable. From Lemma 2.3 we infer that if s(0) is very small, then
s′(t) remains uniformly negative as long as the solution exists. In this section we shall
prove, under more general assumptions on s(0), that s(t) is monotone decreasing, and
in particular, we shall deduce that the stationary solution corresponding to R−0 is
unstable.

Theorem 4.1. Suppose that

ur(r, 0) > − τ

cosh s(0)

r cosh r − sinh r

r2
− τ

s(0)

[β
τ
− 1

g(s(0))

]
r,(4.1)

ur(s(0), 0) > −β,(4.2)
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and

s(0) 6 R−0 .(4.3)

Then s′(t) < 0 as long as s(t) remains positive, and s(t) shrinks to zero in finite
time.

Proof. From (4.2) we deduce that s′(0) < 0 and, by continuity, s′(t) < 0 for small
t > 0. If s′(t) does not remain negative while s(t) is positive, then there exists a first
t∗ such that s(t∗) > 0, s′(t∗) = 0. Since s′(t) < 0 for 0 6 t < t∗, we have

ur(s(t), t) > −β for 0 6 t < t∗,
0 < s(t) < s(0) 6 R−0 for 0 6 t < t∗.

We introduce the auxiliary function

w = ur(r, t) +
τ

cosh s(t)

r cosh r − sinh r

r2
+

τ

s(t)

[β
τ
− 1

g(s(t))

]
r,

where g(r) is defined in (2.1).
Since g′(r) < 0 for 0 < r 6 R−0 , g(R−0 ) = τ/β, and 0 < s(t) 6 R−0 , we have[β

τ
− 1

g(s(t))

]
> 0 for 0 < t < t∗.(4.4)

Using the relation (r cosh r − sinh r)/r2 = (∂/∂r)(sinh r/r), we easily deduce that

−∆
(r cosh r − sinh r

r2

)
+

2

r2

(r cosh r − sinh r

r2

)
= − ∂

∂r
∆

sinh r

r
= − ∂

∂r

sinh r

r
= − r cosh r − sinh r

r2
.

Combining this relation with (4.4) and the inequality s′(t) < 0, we find that

cwt − wrr − 2

r
wr +

2

r2
w > 0 for 0 < t < t∗.

Clearly, w(s(t), t) > 0 for 0 < t < t∗, and by (4.1), w(r, 0) > 0. It follows, by the
maximum principle, that w(r, t) > 0 for 0 < t < t∗. Since s′(t∗) = 0, we have also
(from the definition of w and g) that w(s(t∗), t∗) = 0 and, therefore, by the maximum
principle,

wr(s(t
∗), t∗) < 0.

That is,

urr(s(t
∗), t∗) < − τ

s(t∗)

[β
τ
− 3

s(t∗)
+

3 tanh s(t∗)
s2(t∗)

+ tanh s(t∗)
]
.

On the other hand, from s′(t∗) = 0 we deduce that ut(s(t
∗), t∗) = 0 so that

0 = cut(s(t
∗), t∗) = urr(s(t

∗), t∗) +
2

s(t∗)
ur(s(t

∗), t∗) +
τ

cosh s(t∗)
sinh s(t∗)
s(t∗)

< − τ

s(t∗)

[3β

τ
− 3

s(t∗)
+

3 tanh s(t∗)
s2(t∗)

]
= − 3τ

s(t∗)

[β
τ
− 1

g(s(t∗))

]
6 0 by (4.4),
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which is a contradiction. Having now proved that s′(t) < 0 as long as s(t) remains
positive, we next show that s(t) converges to zero in finite time. Indeed, otherwise
the limit s0 = limt→∞ s(t) lies in the interval (0, R−0 ). By a standard theorem on
parabolic equations [3, Chap. 6], (u(r, t), s(t)) converges to a stationary solution, and
consequently, s0 must coincide with either R−0 or R+

0 , which is a contradiction.
If, in Theorem 4.1, we take s(0) = R−0 , then we get the following.
Corollary 4.2. Suppose

ur(r, 0) > − τ

coshR−0

r cosh r − sinh r

r2
for 0 < r < R−0 ,(4.5)

s(0) = R−0 , ur(R
−
0 , 0) > −β.(4.6)

Then s′(t) < 0 as long as s(t) remains positive, and s(t) shrinks to zero in finite
time.

Since there are arbitrarily small perturbations of the stationary solution

τ

coshR−0

( sinhR−0
R−0

− sinh r

r

)
which satisfies (4.5), (4.6), we conclude the following.

Corollary 4.3. The stationary solution (4.5) is unstable.
One can even choose small perturbations of the stationary solution with s(0) >

R−0 (but s(0)−R−0 small) for which s(t) shrinks to zero in finite time.
The method of proof of Theorem 4.1 can be extended to establish monotonic

decrease of s(t) under different assumptions on the data. We give one example.
Theorem 4.4. Suppose

ur(r, 0) > −β r

s(0)
, ur(s(0), 0) > −β,(4.7)

τ 6 3β

tanh s(0)
.(4.8)

Then s′(t) < 0 as long as s(t) remains positive.
The proof is essentially the same as the proof of Theorem 4.1, with w replaced

by ur(r, t) + βr/s(t).
We note that Theorem 4.4 is not contained in Theorem 4.1 since, in general,

−βr/s(0) is not larger than the right-hand side of (4.1).

5. R+
0 is stable. In this section we prove that the stationary solution corre-

sponding to R+
0 is stable provided the coefficient c is sufficiently small. As noted in

the introduction, in actual biological cells of interest, c may indeed be very small. In
the case c = 0, the solution (ϕ(r, t), R(t)) of (2.6)–(2.9) can be computed explicitly
[4]:

ϕ(r, t) =
τ

coshR(t)

( sinhR(t)

R(t)
− sinh r

r

)
for r < R(t),

where the free boundary R(t) satisfies

dR

dt
= τ

R− tanhR

R2
− β = τ

[ 1

g(R)
− β

τ

]
≡ τ

(
h(R)− β

τ

)
.(5.1)
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Note that

h(R) >
β

τ
and Ṙ > 0 for R−0 < R < R+

0 ,

h(R) <
β

τ
and Ṙ < 0 for R > R+

0 ,

and h′(R+
0 ) < 0. Hence, by standard ODE analysis it follows that if R(0) > R−0 , then

|R(t)−R+
0 | 6 Ce−αt for all t > 0,(5.2)

where C,α are positive constants.
In this section we want to extend this result to the case where c is positive and

small.
Theorem 5.1. Let s(0) > R−0 . If c is sufficiently small, then the solution

(u(r, t), s(t)) of (2.6)–(2.9) exists for all t > 0,

lim
t→∞ s(t) = R+

0 ,(5.3)

and the convergence is exponentially fast.
This establishes a global asymptotic stability of the stationary solution corre-

sponding to R+
0 .

From Remark 3.1 we already know that the solution exists for all t > 0 and that
(3.11) holds; i.e.,

R−0 < S 6 s(t) 6 S <∞ for all t > 0.(5.4)

Lemma 5.2. Define

R = lim inf
t→∞ s(t), R = lim sup

t→∞
s(t).

If c is sufficiently small, then R = R = R+
0 .

Proof. By (5.4)

R−0 < R 6 R 6 S.

We claim that

R−0 < R 6 R+
0 6 R 6 S.(5.5)

In fact, if R > R+
0 , then g(s(ξ)) > τ/β + ε for some small ε > 0 and all sufficiently

large ξ. Therefore, ∫ ∞
0

[ 1

g(s(ξ))
− β

τ

]
s2(ξ)dξ = −∞,

which is a contradiction to Lemma 2.1. This proves that R 6 R+
0 . Similarly, R+

0 6 R.
Next, we claim that

lim inf
t→∞ u(r, t) > τ

coshR

( sinhR

R
− sinh r

r

)
uniformly for r < s(t),(5.6)

lim sup
t→∞

u(r, t) 6 τ

coshR

( sinhR

R
− sinh r

r

)
uniformly for r < s(t).(5.7)
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To prove (5.6), let ϕ(r, t) be the solution of the following problem:

cϕt −∆ϕ =
τ

cosh(R+ ε)

sinh r

r
for r < R− ε, t > T,

ϕ(R− ε, t) = 0 for t > T,

ϕ(r, T ) = 0 for r < R− ε,
where ε > 0 is small. If we take T = T (ε) to be large enough, then

R− ε 6 s(t) 6 R+ ε for t > T,

and, by maximum principle, u(r, t) > ϕ(r, t) for t > T . Hence

lim inf
t→∞ u(r, t) > lim

t→∞ϕ(r, t) =
τ

cosh(R+ ε)

( sinh(R− ε)
R− ε − sinh r

r

)
.

Letting ε→ 0+, we obtain the inequality (5.6). The inequality (5.7) can be established
in a similar way.

Next, we estimate R−R+
0 in case R > R+

0 . Choose a sequence tj →∞ such that
s(tj)→ R and take t̃j < tj such that

R+
0 +

1

j
= s(t̃j) < s(t) for t̃j < t < tj ;

since lim inft→∞ s(t) 6 R+
0 < R, such a choice of t̃j is possible. Then g(s(ξ)) > τ/β

for t̃j < ξ < tj and Lemma 2.1 implies that

s3(tj)− s3(t̃j) 6 3c

∫ s(̃tj)

0

u(r, t̃j)r
2dr − 3c

∫ s(tj)

0

u(r, tj)r
2dr.

Using (5.6), (5.7) in the last inequality, and letting j →∞, we obtain

R
3 − (R+

0 )3 6 3c

∫ R+
0

0

τ

coshR

( sinhR

R
− sinh r

r

)
r2dr

−3c

∫ R

0

τ

coshR

( sinhR

R
− sinh r

r

)
r2dr

6 3cτ

∫ R+
0

0

( 1

coshR

sinhR

R
− 1

coshR

sinhR

R

)
r2dr

+3cτ

∫ R+
0

0

( 1

coshR
− 1

coshR

)
r sinh rdr.

Since the last integrand is 6 0, we obtain

R
3 − (R+

0 )3 6 cτ
( 1

coshR

sinhR

R
− 1

coshR

sinhR

R

)
(R+

0 )3

=
cτ

coshR coshR
[k(R)− k(R)](R+

0 )3,
(5.8)

where k(r) = sinh r cosh r/r; note that k′(r) > 0. Similarly, we have (with s(τj) →
R, s(τ̃j) = R+

0 − 1/j, s(t) < R+
0 − 1/j if τ̃j < t < τj)

R3 − (R+
0 )3 > − cτ

coshR coshR
[k(R)− k(R)](R+

0 )3,(5.9)
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provided R < R+
0 . Notice that if R = R+

0 (or R = R+
0 ) then (5.8) (or (5.9)) is trivially

satisfied. Combining (5.8) with (5.9) we get

R−R 6 cτ

A
(R−R),(5.10)

where

A =
(R

2
+RR+R2) coshR coshR

2(R+
0 )3k′(R)

> A0,

and A0 is a positive constant depending only on S, S, and R+
0 . If cτ/A0 < 1, then

R−R = 0 and the lemma is proved.
Having proved (5.2), we shall next prove local stability of R+

0 with exponential
convergence of s(t). Introduce the functions

ϕ(r, t) =
τ

cosh s(t)

(
sinh s(t)

s(t)
− sinh r

r

)
,(5.11)

and v = u− ϕ. A direct computation shows that

cvt −
( ∂2

∂r2
+

2

r

∂

∂r

)
v = −cϕt for 0 6 r < s(t),(5.12)

v(s(t), t) = 0,(5.13)

s′(t) = −vr(s(t), t)− β + τ
s(t)− tanh s(t)

s2(t)
.(5.14)

Lemma 5.3. Suppose that cτ < 3/2. Then there exists an ε > 0 such that if

|s(0)−R+
0 | < ε2, |s′(0)| < ε,

and ∣∣∣∣u0(r)− τ

cosh s(0)

( sinh s(0)

s(0)
− sinh r

r

)∣∣∣∣ < τ

7
ε
(
s(0)− r2

s(0)

)
,

then a global solution (u(r, t), s(t)) exists and s(t) converges to the steady state (cor-
responding to R+

0 ) exponentially fast.
The proof requires the fact that g′(R+

0 ) > 0 (g is defined in (2.1)) and, thus, does
not apply to R−0 (since g′(R−0 ) < 0).

Proof. Clearly,

|ϕt| = τ |s′(t)|
∣∣∣∣s(t)− tanh s(t)

s2(t)
− sinh s(t)

cosh2 s(t)

( sinh s(t)

s(t)
− sinh r

r

)∣∣∣∣
6 τ |s′(t)|max

[s(t)− tanh s(t)

s2(t)
,

sinh s(t)

cosh2 s(t)

( sinh s(t)

s(t)
− sinh r

r

)]
6 τ |s′(t)|max

[s(t)− tanh s(t)

s2(t)
,

sinh2 s(t)

s(t) cosh2 s(t)

]
6 τ |s′(t)| 1

s(t)
.

(5.15)

We claim that

|s′(t)| < εe−εt for 0 < t <∞.(5.16)
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By assumption, (5.16) is satisfied for t = 0. If the assertion (5.16) is not true, then
there is a first t∗ such that |s′(t∗)| = εe−εt

∗
. Introduce the function

w(r, t) =
cτε

6− C∗εe
−εt
(
s(t)− r2

s(t)

)
for 0 6 t 6 t∗,

where C∗ > s2(t) + 2c for all 0 < t <∞. Then

cwt −∆w =
cτε

6− C∗ε
1

s(t)

[
6 + c

(
1 +

r2

s2(t)

)
s′(t)− ε(s2(t)− r2)

]
e−εt

> cτε

6− C∗ε
1

s(t)
(6− C∗ε)e−εt

> cτε

s(t)
e−εt,

and, by assumption, w(r, 0) > |v(r, 0)|. Recalling (5.15) and (5.12), (5.13), we can
use the maximum principle to compare ±v with w and conclude that

|v(r, t)| 6 w(r, t).

Since v(s(t), t) = w(s(t), t), we have also

|vr(s(t), t)| 6 2cτε

6− C∗εe
−εt.

Thus ∣∣∣∣s′(t) + β − τ s(t)− tanh s(t)

s2(t)

∣∣∣∣ 6 2cτε

6− C∗εe
−εt.(5.17)

Let

h(r) =
1

g(r)
, f(t) = τ

h(R+
0 )− h(s(t))

s(t)−R+
0

,

where g(r) is defined by (2.1). Then we can rewrite (5.17) in the form∣∣∣∣(s(t)−R+
0 )′ + f(t)(s(t)−R+

0 )

∣∣∣∣ 6 2cτε

6− C∗εe
−εt.(5.18)

It follows that

|s(t)−R+
0 | 6 |s(0)−R+

0 | exp
(
−
∫ t

0

f(ξ)dξ
)

+
2cτε

6− C∗ε
∫ t

0

exp
(
−εη−

∫ t

η

f(ξ)dξ
)
dη.

Notice that for s(t) near R+
0 , (h(R+

0 ) − h(s(t)))/(s(t) − R+
0 ) ∼ −h′(R+

0 ) ≡ δ > 0.
Thus, for s(t) near R+

0 , τ(δ + C∗ε) > f(t) > τ(δ − C∗ε). Consequently,

|s(t)−R+
0 | 6

ε2

τ(δ − C∗ε)e
−τ(δ−C∗ε)t +

2cτε

6− C∗ε
1

τ(δ − C∗ε)− εe
−εt.(5.19)

Using this in (5.18) we obtain

|s′(t)| 6 2cτε

6− C∗εe
−εt + |f(t)||s(t)−R+

0 |

6 2cτε

6− C∗εe
−εt

+τ(δ + C∗ε)

(
ε2

τ(δ − C∗ε)e
−τ(δ−C∗ε)t +

2cτε

6− C∗ε
1

τ(δ − C∗ε)− εe
−εt
)

< εe−εt for 0 < t 6 t∗,
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provided

2cτ

6− C∗ε +
[τ(δ + C∗ε)ε
τ(δ − C∗ε) +

2cτ

6− C∗ε
τ(δ + C∗ε)

τ(δ − C∗ε)− ε
]
< 1,

which is satisfied if cτ < 3/2 and ε is sufficiently small, and this is a contradiction to
the assumption that |s′(t∗)| is equal to e−εt

∗
. Finally, from (5.19), we deduce that

s(t) converges to R+
0 exponentially fast.

Proof of Theorem 5.1. From Lemma 5.2 and (5.6), (5.7), we see that the assump-
tions of Lemma 5.3 are satisfied at some sufficiently large time t = T . It follows
that

|s(t)−R+
0 | 6 Ce−αt,

|s′(t)| 6 Ce−αt

for all large enough t, where C,α are positive constants, and this completes the proof
of Theorem 5.1.

Remark 5.1. The above proof shows that if (3.6) and (3.10) hold, then the asser-
tion of Theorem 5.1 holds for any 0 < c < c∗, where c∗ depends only on δ, C1, and C2

in addition to τ and β.

REFERENCES

[1] H.M. Byrne and M.A.J. Chaplain, Growth of nonnecrotic tumors in the presence of in-
hibitors, Math. Biosci., 130 (1995), pp. 151–181.

[2] H.M. Byrne and M.A.J. Chaplain, Growth of nonnecrotic tumors in the presence of in-
hibitors, Math. Biosci., 135 (1996), pp. 187–216.

[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood
Cliffs, NJ, 1964.

[4] H. Schwegler, K. Tarumi, and B. Gerstmann, Physico-chemical model of protocell, J. Math.
Biol., 22 (1985), pp. 335–348.

[5] K. Tarumi and H. Schwegler, A nonlinear treatment of the protocell by boundary layer
approximation, Bull. Math. Biol., 49 (1987), pp. 307–320.



AN ANALYTICAL PROOF OF THE LINEAR STABILITY
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Abstract. In this paper we establish the exponential decay of solutions of the equation

ut + ϕ(x)ux = −∂4
xu

in an exponentially weighted norm. Here ϕ(x) is the viscous shock profile corresponding to the
Burgers equation with fourth-order viscosity:

ut + uux = −∂4
xu.

Because of the fact that the profile is not monotone, showing the stability is nontrivial. We extend
the techniques of Koppel and Howard (Adv. Math. 18 (1975), pp. 306-358), techniques that they
employ to prove the existence of the viscous shock profile, and we use the techniques to prove the
stability of the viscous shock profile. We have previously shown that the viscous shock profile is a
stable solution in an exponentially weighted norm by making use of numerical results. The main
advantage of our current method is that it is analytical. One sees more clearly what properties of
the viscous shock profile cause it to be a stable solution of the PDE.

Key words. viscous shock profiles, stability

AMS subject classifications. 35B35, 35K55, 34E05

PII. S003614109833639X

1. Introduction. In this paper we establish the exponential decay of solutions
of the equation

ut + ϕ(x)ux = −∂4
xu(1.1)

in an exponentially weighted norm. Here ϕ(x) is the stationary (i.e., time-independent)
viscous shock profile corresponding to the Burgers equation with fourth-order viscos-
ity,

ut + (f(u))x = −∂4
xu, f(u) = u2/2,(1.2)

that satisfies the condition ϕ(x)→ ∓1 as x→ ±∞.
Equation (1.2) occurs in many contexts. Sivashinsky [10] has shown that (1.2) can

be used to model burning on a Bunsen burner. Additionally, the modified equations
that correspond to stable third-order methods for approximating the solutions of

ut + uux = 0(1.3)

have the general form

ut + uux = −k(u)uxxxx.(1.4)
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We show that the stationary viscous profile of (1.4) is linearly stable when k(u) ≡ 1.
Furthermore, the problems that arise in the study of the fourth-order version

of Burgers’s equation are similar to the problems that come up in the study of the
stability of viscous shock profiles of systems of equations. Work on the stability of
viscous shock profiles of systems of equations has been done by Goodman [3], Liu [5],
Szepessy and Xin [11], and Matsumura and Nishihara [6].

We have shown previously [2] that showing the exponential decay of solutions
of (1.1) in a slightly different exponentially weighted norm is sufficient to show that
the viscous shock profile is a nonlinearly stable solution of (1.2) in that exponentially
weighted norm. It is simple to extend that proof to show that our results here are
sufficient to guarantee that the solution is nonlinearly stable in our other, slightly
different norm.

In [2], we made use of rigorous numerical results of Michelson [8] and the theory
of sectorial operators to show that the solutions of (1.1) are exponentially stable in
an exponentially weighted norm. Our current technique is completely analytical and
does not use the theory of sectorial operators.

The function ϕ(x) is the odd solution of the ODE ϕ′′′ = 1
2 (1 − ϕ2) subject to

the condition ϕ(∞) = −1. Koppel and Howard [4] established the existence of the
oddly symmetric viscous shock profile by showing that there exists a ν such that the
solution of the ODE ϕ′′′ = 1

2 (1− ϕ2) with initial values ϕ = 0, ϕ′ = −ν, ϕ′′ = 0 must
intersect the stable manifold of the solution −1. Later, McKord [7] showed that this
is the unique solution of the ODE subject to the conditions that the solution be odd
and tend to −1 as x→∞. We show that zero is a stable solution of the linearization
of the integrated Burgers equation about the viscous shock profile, i.e., of (1.1), by
making use of some estimates contained in the existence proof given by Koppel and
Howard [4].

As has been pointed out by Alexander, Gardner, and Jones [1], some existence
proofs contain within them the seeds of stability proofs. In [1], there are results of
this nature for systems of second-order PDEs. In this paper, we deal with solutions
of a fourth-order equation in an exponentially weighted space.

Existence proofs for ϕ(x) abound. The earliest proof is by Koppel and Howard [4].
It is a tour de force. Mock [9] presents a proof of the existence of viscous shock profiles
for equations of the type we are studying. His proof is somewhat more general than
that of Koppel and Howard. Finally, McKord [7] presents an index theoretic proof
of the existence of the viscous shock profile. We show that Koppel and Howard’s
methods can be extended to a proof of stability in an exponentially weighted space.

As it seems that Koppel and Howard’s general method can also be used to prove
the existence of viscous shock profiles for Burgers’s equation with more general fluxes
than f(u) = u2/2, it seems likely that our method can be used to prove the stability
of such profiles in an exponentially weighted space. Then the methods of our previous
article should suffice to show that the profiles are nonlinearly stable as well.

2. Conditions sufficient for decay to prevail. We look at the behavior of
solutions of (1.1) in the wε norm which is defined as

‖g‖2L2
w,ε

=

∫ ∞
−∞

wε(x)g2(x) dx, wε(x) = cosh(εx).

We prove that the derivative of the wε norm of the solutions of (1.1) is negative.
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Calculating the derivative and integrating by parts, we find that

d

dt
‖u(t)‖2L2

w,ε
= ε

∫
sinh(εx)ϕ(x)u2(x) dx+

∫
wε(x)ϕ′(x)u2 dx− 2

∫
(wεu)xxuxx dx.

We note that if ϕ′(x) ≤ 0, then ε = 0 is sufficient to force the norm of the solution
not to increase. It is because our profile is not monotone that we must make use of a
weighted norm in order to get any sort of linear stability result.

A simple calculation shows that∫
(wεu)xxuxx dx =

∫
(ε2wεu+ 2ε sinh(εx)ux + wεuxx)uxx dx.

Integration by parts leads to∫
ε2wεuuxx dx =

∫
ε4

2
wεu

2 dx− ε2
∫
wεu

2
x dx,

and ∫
2ε sinh(εx)uxuxx = −ε2

∫
wε(x)u2

x dx.

Finally, we find that

d

dt
‖u(t)‖2L2

w,ε
= ε

∫
sinh(εx)ϕ(x)u2(x) dx+

∫
wε(x)ϕ′(x)u2 dx

−2

∫
wε(x)(uxx)2 dx+ 4ε2

∫
wε(x)u2

x dx− ε4
∫
wεu

2 dx.

To finish off our calculations, we estimate these terms in such a way that they
can be written as the integral of the product the weight, wε(x), a function to be
determined, Ψ(x), and u2(x). To do this we bound

∫
wεu

2
x dx as follows:∫

wεu
2
x dx =

1

2
ε2
∫
wεu

2 dx−
∫
wεuuxx dx

≤ 1

2
ε2
∫
wεu

2 dx+

√∫
wεu2 dx

∫
wεu2

xx dx

≤ 1

2
ε2
∫
wεu

2 dx+
c

2

∫
wεu

2 dx+
1

2c

∫
wεu

2
xx dx.

Picking c = ε2 we find that

d

dt
‖u(t)‖2L2

w,ε
≤
∫
wε
(
ϕ′(x) + ε tanh(εx)ϕ(x) + 3ε4

)
u2(x) dx.

We have shown that a sufficient condition for the derivative to be decreasing at the
rate a‖u‖2L2

w,ε
is

Ψ(x) ≡ ϕ′(x) + ε tanh(εx)ϕ(x) + 3ε4 < −a < 0.

We note that the balancing that occurs here—between ϕ(x), ϕ′(x), and 3ε4—
is expected. As a rule, exponential weights tend to destabilize parabolic PDEs [2].
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Therefore, the 3ε4 which comes from the parabolic part of (1.1) should tend to desta-
bilize the problem.

The other two terms come from the fundamentally hyperbolic part of the problem.
If we were dealing with the equation ut+ϕ(x)ux = 0, then the fact that ϕ(x)→ ∓1 as
x→ ±∞ would force the solutions to “flow in from infinity.” Thus, the term involving
ϕ(x) should help us. Similarly, if we were dealing with the hyperbolic PDE, then the
solution would “focus” where ϕ′(x) is negative, and hence, its L2

wε norm would shrink
at a rate related to ϕ′(x). The solution would “spread” where ϕ′(x) is positive, and
there would be an increase in the L2

wε norm.
The condition on Ψ(x) says that the “focusing” (or “spreading”) due to ϕ′(x),

the drift in from infinity due to ϕ(x), and the smearing caused by the parabolic term
must balance properly. If they balance properly, then we can show that the solutions
of (1.1) decay in our weighted norm. In the next section we will show that Ψ(x) ≤ −a
by using various estimates on the size of ϕ(x) and ϕ′(x) for various regions of the
real line. That is, we will show that for certain values of ε the three effects balance
properly.

Remark. If we show that Ψ(x) ≤ −a, then we will have shown that ‖u‖L2
wε
≤

e−at/2‖u0‖L2
wε

. This is a more precise result than our result in [2]. Using a combi-
nation of the theory of sectorial operators and Michelson’s results the most that one
can say is that there exists a constant C such that ‖u‖L2

wε
≤ Ce−at/2‖u0‖L2

wε
. In this

sense, the analytical method gets better results than our previous method got.

3. The proof that Ψ(x) < −a . First we note that as tanh(εx) and ϕ(x) are
odd and ϕ′(x) is even, Ψ(x) is even. Therefore, if Ψ(x) < −a in the region x ≥ 0,
then Ψ(x) < −a on the whole real line.

Looking at the computer drawn plot of ϕ(x) (for purposes of illustration) it is
clear that if Ψ(x) is to be negative for small x, then ϕ′ must be rather negative for
small x. Because ϕ(x) itself is small for small x, the ϕ′(x) must be quite negative in
order to force Ψ(x) to be negative. Similarly, for large x it is clear that ϕ′(x) is small.
Therefore, for large x we will have to show that ϕ(x) is relatively large and negative.
From Figure 3.1, it seems that it should be possible to prove these results.

There are two major steps in our proof. First, we extend the methods of Koppel
and Howard. They proved the existence of a solution ϕ(x) by showing that two curves
must intersect. We determine how the curves intersect. We then show that in each
of four regions ϕ(x) and ϕ′(x) are small enough that Ψ(x) is negative in those four
regions. The four regions are as follows:

1. Region I, which goes from x = 0 until the first point at which ϕ(x) = −.5.
2. Region II, which goes from the first point at which ϕ(x) = −.5 to the first

point at which ϕ(x) = −1.
3. Region III, which goes from the first point at which ϕ(x) = −1 to the first

point at which ϕ′(x) = 0.
4. Region IV, which is the region to the right of Region III.

(In Figure 3.1, the four regions are delineated by dotted lines. The first region starts
to the right of the first dotted line.) In all of these steps we make use of estimates
contained in Koppel and Howard.

3.1. Locating the intersection—An introduction. Before proceeding, we
explain the nature of the method used by Koppel and Howard. (Note that their
results are stated for −ϕ(t). We convert all of their results to results about ϕ(x).)

Following Koppel and Howard, we denote d
dx by ˙ and d2

dx2 by .̈ Koppel and Howard
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Fig. 3.1. ϕ(x) (solid line) and ϕ′(x) (dashed line).

look at solutions of the equation

d3

dx3
p(x, ν) =

1

2
(1− p2(x, ν))(3.1)

subject to the initial conditions p(0, ν) = p̈(0, ν) = 0, ṗ(0, ν) = −ν. They find ana-
lytical bounds for p(x, ν) and its first two derivatives. They show that the function
p2(x, ν) is an upper-bound of p(x, ν) in the region 0 ≤ x ≤ 2

√
ν (see fact I.1 below)

and that Q3(x, ν) = p2(x, ν) − 6ν3x9/9! is a lower-bound as long as p(x, ν) has not
yet hit −1 (see fact I.2 below).

They proceed to show that the stable manifold, u(x, κ) (where κ parameterizes
the manifold), of the solution (−1, 0, 0) can be approximated by −1 + u2(x, κ) where
u2(x, κ) is defined below (in fact II.5). Looking at fact II.5, we see that the parameter
κ is essentially the “amplitude” of the perturbation. They proceed to estimate the first
point at which p hits −1 and the first point after x = 0 at which u hits −1. They show
that there exists a ν0 and a κ∗ and points x0 and x∗ such that p(x0, ν0) = (−1, α, β)
and u(x∗, κ∗) = (−1, α, β). Since the equation is autonomous, this shows that there
exists an odd solution of the ODE that is equal to (0,−ν, 0) when x = 0 and that
tends towards −1 as x gets large.

Koppel and Howard do not try to evaluate ν0 and κ∗. As we need to make use
of particular properties of the solution, we must know these values more precisely.

In our proof we make use of the following facts proven in Koppel and Howard [4].
Facts from Koppel and Howard.
I. Facts related to p(x, ν).
1. The function p2(x, ν) = −vx+ x3/12− v2x5/120 + vx7/2520− x9/145, 152 is

an upper-bound of p in the region 0 ≤ x ≤ 2
√
ν. Furthermore, in this region

ṗ2 and p̈2 are upper-bounds of the first two derivatives of p as well [4, p. 318].
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2. The function Q3(x, ν) = p2(x, ν) − 6ν3x9/9! is a lower-bound for p(x, ν) as
long as p(x, ν) has not yet hit −1. Furthermore, in this region Q̇3 and Q̈3 are
lower-bounds of the first two derivatives of p as well [4, p. 319].

3. For all x ≥ 0, ṗ(x, ν) ≤ −ν + x2/4 [4, p. 318, Eq. 6.1].
4. Let x0,ν be the first point at which p(x, ν) = 0. Let T be the curve of points

(ṗ(x0,ν , ν), p̈(x0,ν , ν)). Then T slopes upward [4, p. 321].
II. Facts related to u(x, κ).
5. The function

u2(x, κ) = −κe−x/2 sin

(√
3

2
x

)
+
κ2

8
e−x

(
1 +

2

7
cos(
√

3x)

)
satisfies the inequality

|u(x, κ)− (−1 + u2(x, κ))| ≤ .0714κ3e−3x/2 [4,p. 327].

6. Similarly, the function

u̇2(x, κ) = −κe−x/2 cos

(√
3

2
x+

π

6

)
− κ2

8
e−x

(
1 +

4

7
cos
(√

3x− π

3

))
satisfies

|u̇(x, κ)− u̇2(x, κ)| ≤ .1363κ3e−3x/2 [4,p. 327–328].

7. Let x0,κ be the first nonnegative point at which u(x, κ) = 0. Let S1 be the
curve of points (u̇(x0,κ, κ), ü(x0,κ, κ)). Then for 0 ≤ κ ≤ .856, S1 slopes
downward [4, p. 330].

8. For 0 ≤ κ ≤ 1 the curve S1 lies between the curves y = −x and y = −x +
.175x2 − .3x3 [4, p. 329].

9. For any κ ≤ 1, u(x, κ) crosses zero exactly once in the region 0 ≤ x ≤ .3κ [4,
Lem. 6.5, p. 328].

3.2. A refinement of the method of Koppel and Howard. In their paper,
Koppel and Howard establish the existence of ϕ(x) by showing that the manifold
of the solutions of (3.1) that have initial data p(0, ν) = p̈(0, ν) = 0, ṗ(0, ν) = −ν
intersects the stable manifold of the solution u ≡ −1. We are interested in actually
figuring out roughly how the intersection occurs.

From fact II.8, we see that if we can estimate u̇(x0,ν , ν), then we automatically
have an estimate of ü(x0,ν , ν) as well. From facts II.7 and II.8 we see that if we can
locate two points on S1, we can say quite a bit about the locations of all the points
on S1 between these two points. We note that if κ = 0 then u2 ≡ 0. Thus, the
intersection with −1 occurs when u̇ = ü = 0. Therefore, (0, 0) is one point on S1.

Next, we would like to estimate the point on S1 that corresponds to ν = .67.
Using fact II.5, it is easy to see that u(.09, .67) > −1 and u(.17, .67) < −1. Thus,
u(x, .67) must cross −1 somewhere in the region .09 ≤ x ≤ .17. Making use of fact
II.6, we see that the function u̇2 + .1363κ3e−3x/2 is an upper bound for u̇(x, κ). It is
easy to see that u̇2 + .1363κ3e−3x/2 is an increasing function of x if κ ≤ .7 and x ≤ .2.
(Just check its derivative.) Therefore, we evaluate u̇2 + .1363κ3e−3x/2 at x = .17 in
order to get an upper-bound on the derivative at the point at which u(x, .67) first
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crosses −1. We find that u̇(x, .67) ≤ −.5174 as long as x ≤ .17. Using facts II.7 and
II.8 we see that any curve that must cross the crosshatched region in Figure 3.2 must
cross the curve S1, and 0 ≤ κ ≤ .67 at the point at which the curves cross.

We now show that T crosses the crosshatched region for a value of ν between .8 and
.9. If ν = .8, then at the point at which p crosses −1, Koppel and Howard have shown
that −.2831 ≤ ṗ ≤ −.2770 [4, p. 319–320] and .472 ≤ p̈ ≤ .493. Following Koppel and
Howard we find a similar estimate for ν = .9. We note that Q3(1.28, .9) = −.9986 and
p2(1.29, .9) = −1.0042. As Q3 is a lower-bound, and p2 is an upper-bound, we see
that there exists 1.28 ≤ x0,.9 ≤ 1.29 such that p(x0,.9, .9) = −1. A simple calculation

shows that if ν = .9, then both p̈2 and Q̈3 are positive in the 1.28 ≤ x ≤ 1.29.
Therefore, both ṗ2 and Q̇3 are increasing in this region. Thus,

−.5712 = Q̇3(1.28, .9) ≤ ṗ(x0,.9, .9) ≤ ṗ2(1.29) = −.5664.

As p is decreasing when it passes through x0,.9, we see from (3.1) that the third
derivative of p goes from positive to negative as it crosses through x0,.9. That is, x0,.9

is a local maximum of p̈(x, .9). Thus, p̈(x0,.9, .9) ≥ Q̈3(1.28, .9) = .4007. Note that
d3

dx3 p2 = 1
2 (1−p2

1) with p1(x, ν) = −νx+x3/12. Clearly, p1 is decreasing in the interval,
and we see that p1(1.29, .9) = −.9821 > −1. Thus, we find that the third derivative of
p2 is positive in the whole interval. That implies that p̈2 is increasing in the interval.
Thus, p̈(x0,.9, ν) ≤ p̈2(1.29, .9) = .4058. We see then that .4007 ≤ p̈ ≤ .4058.

Remark. In evaluating p2 and Q3, we are evaluating polynomials with rational
coefficients at rational numbers. Such calculations can be made with perfect accuracy.
A simple way to keep such calculations exact is to do the calculations using Mathe-
matica. All critical calculations involving polynomials with rational coefficients were
performed in this fashion. Only after the calculations were finished were the results
rounded to four places.

Looking at Figure 3.2 we see that because T slopes up (see fact I.4), T must cross
the crosshatched region.

Thus, we see that the intersection of T and S1 takes place when κ is between 0
and .67 and ν is between .8 and .9.

The behavior of ϕ(x) can now be studied by studying the behavior of p(x, ν)
until its first positive −1 crossing and by studying the behavior of u(x, κ) after its
first −1 crossing. In section 3.3 we study the behavior of ϕ(x) in regions I and II by
making use of our knowledge of p(x, ν). In section 3.4 we study the behavior of ϕ(x)
by making use of our knowledge of u(x, κ).

3.3. Estimates for regions I and II. From fact I.3, we see that for any ν we
know that p2(x, ν) decreases until at least x = 2

√
ν. We want to find a value, x†, such

that for all .8 ≤ ν ≤ .9 we know p2(x†, ν) is less than −.5. We will then estimate the
values of the derivative in the region 0 ≤ x ≤ x†—a region that includes region I. By
showing that in region I the derivative is suitably small, we will later be able to show
that Ψ(x) is negative.

If .8 ≤ ν ≤ .9, we find that

p2 = −νx+ x3/12− v2x5/120 + νx7/2520− x9/145, 152

≤ −.8x+ x3/12− .64x5/120 + .9x7/2520− x9/145, 152.

From fact I.3, we know that p(x, ν) decreases as long as x ≤ 2
√
ν ≤ 2

√
.8 = 1.79. We

find that the right-hand side first falls below −.5 for some x ≤ .66; we let x† = .66.
From fact I.3, we see that for all 0 ≤ x ≤ x†, the derivative of the solution is less
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Fig. 3.2. The crossing of T and S1. The small box to the left shows the rigorous
bounds on (ṗ(x0,.8, .8), p̈(x0,.8, .8)). The small box on the right shows the rigorous bounds on
(ṗ(x0,.9, .9), p̈(x0,.9, .9)). The crosshatched region must contain the curve S1, and T must start
from the box on the left and move up to the box on the right. Clearly, T crosses the crosshatched
region and, therefore, S1.

than or equal to −ν + .662/4 ≤ −.6911. Also, we find that the right-hand side is less
than −1 when x = 1.66. Therefore, the first −1 crossing occurs before this point. For
0 ≤ x ≤ 1.66 and .8 ≤ ν ≤ .9, we find that p′(x, ν) ≤ −.8 + 1.662/4 = −.1111.

Because of the fact that tanh(εx) appears in Ψ(x), it will be important to know
what the earliest point at which the profile may hit −.5 or −1 is. To determine this,
we look for the last point at which Q3(x) cannot be less than −.5 or −1 for values of
ν between .8 and .9.

Q3 = −νx+ x3/12− ν2x5/120 + νx7/2520− x9/145, 152− 6ν3x9/9!

≥ −.9x+ x3/12− .81x5/120 + .8x7/2520− x9/145, 152− 6.7290x9/9!.

We find that when x = .55 the right-hand side is equal to −.4815. Thus, the first −.5
crossing does not come before x = .55. When x = 1.2, the right-hand side is −.9516.
Thus, the first −1 crossing cannot come before x = 1.2.

3.4. Estimates for region III and region IV. We show that as long as
κ ≤ .67, ϕ′(x) cannot get too positive in region IV. (By definition, ϕ′(x) is nonpositive
in region III.) From fact II.6 we see that

u̇ ≤ −κe−x/2 cos

(√
3

2
x+

π

6

)
− κ2

8
e−x

(
1 +

4

7
cos
(√

3x− π

3

))
+ .1363κ3e−3x/2

≤ −κe−x/2 cos

(√
3

2
x+

π

6

)
+ .672

(
−1

8
+

1

14
+ .1363× .67

)
e−x
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Does not
Region begin before x = ϕ ≤ ϕ′ ≤
I 0 0 −.6911

II .55 −.5 −.1111

III 1.2 −.8292 0

IV 2.208 −.8979 .1783

Table 3.1
A summary of our results about ϕ and ϕ′.

≤ −κe−x/2 cos

(√
3

2
x+

π

6

)
+ .0169e−x.

A simple calculus argument shows that

−e−x/2 cos

(√
3

2
x+

π

6

)
≤ −e− 2π

3
√

3 cos(5π/6) = .1732.

As −κ2e−x/8 + .1363κ3e−3x/2 is always negative if x ≥ 0 and κ ≤ .67, it is clear
that for x ≥ 0 u̇ cannot get positive until one of the sinusoids above gets negative.
It is easy to see that the first point at which this happens is x = 2π

3
√

3
≥ 1.209. We

will need this fact later as well. We find that the largest value of u̇ cannot exceed
.1732 + .0169e−1.209 = .1783.

Looking at u region III and making use of fact II.5, we find that

u ≤ −1− κe−x/2 sin

(√
3

2
x

)
+
κ2

8
e−x

(
1 +

2

7
cos(
√

3x)

)
+ .0714κ3e−3x/2

≤ −1− κe−x/2 sin

(√
3

2
x

)
+ e−x

9κ2

56
+ .0714κ3e−3x/2

≤ −1− κe−x/2 sin

(√
3

2
x

)
+ .0963.

A simple calculus argument shows that −κe−x/2 sin(
√

3
2 x) ≤ .0771. This shows that

u ≤ −1 + .1708 = −.8292. Thus, we see that in region III the value of ϕ never gets
above −.8292. The region in which ϕ′ may be positive, region IV, starts no earlier
than when the x used in u2 is equal to 1.209. In this region we find that ϕ(x) never
gets above −1 + .0771 + e−1.209 9

56 .672 + .0714(.673)e−3·1.209/2 = −.8979 and ϕ′ never
gets above .1783.

From fact II.9 we see that the first −1 crossing of u never occurs later than
.3 · .67 = .201. We have seen that the derivative never gets positive earlier than 1.209.
Thus, the derivative never gets positive earlier than 1.008 units past the point at
which the solution first crosses −1. Combining this with our earlier result, we find
that the ϕ′(x) never gets positive before x = 2.208. We summarize these results in
Table 1.

We now evaluate Ψ(x) in each of our regions. Recall that Ψ(x) = ϕ′(x) +
ε tanh(εx)ϕ(x) + 3ε4. In region I, we see that Ψ(x) ≤ −.6911 + 3ε4. In region II,
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we know that x ≥ .55. Thus, in region II Ψ(x) ≤ −.1111 − .5ε tanh(.55ε) + 3ε4.
In region III, Ψ(x) ≤ −.8292ε tanh(1.2ε) + 3ε4. Finally, in region IV we find that
Ψ(x) ≤ .1783− .8979ε tanh(2.2ε) + 3ε4.

We find that −.6911 + 3ε4 is negative as long as ε ≤ .69. Similarly, −.1111 −
.5ε tanh(.55ε)+3ε4 is negative as long as ε ≤ .49. Additionally, −.8292ε tanh(1.2ε)+3ε4

is negative until ε > .54. Finally, .1783 − .8979ε tanh(2.2ε) + 3ε4 is negative as long
as .43 ≤ ε ≤ .47. Thus, if .43 ≤ ε ≤ .47 we find that Ψ is negative and all solutions of
the PDE must decay exponentially quickly in the wε norm.

We have shown that there exist values of ε for which solution of (1.1) decay
exponentially quickly in the wε norm. Using Michelson’s rigorous numerical results,
one can show that a larger range of ε gives this decay. That these methods give
somewhat better results is not surprising—the estimates we use here are rather crude.
Conversely, we have seen that where our method works, it gives us somewhat more
information than we got using the numerical results. Using our current method, we
find that there is no possibility of the solution increasing even momentarily. Our
results also have the advantage of all analytical results. They are easy to understand
and simple to check.

Acknowledgment. We would like to thank Professor Steve Schochet of Tel Aviv
University for many helpful discussions and for suggesting that it was possible to show
that there exist epsilon for which Ψ(x) is strictly negative.
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Abstract. We study solutions to the 2D quasi-geostrophic (QGS) equation

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = f

and prove global existence and uniqueness of smooth solutions if α ∈ ( 1
2
, 1]; weak solutions also exist

globally but are proven to be unique only in the class of strong solutions. Detailed aspects of large
time approximation by the linear QGS equation are obtained.

Key words. quasi-geostrophic equation, existence, uniqueness, large time approximation
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1. Introduction. This paper is concerned with the 2D surface quasi-geostrophic
(QGS) equation

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = f,

where α ∈ [0, 1], κ > 0, and θ = θ(x, t) is a real scalar function of two space variables
x and a time variable t. The velocity u = (u1, u2) is incompressible and determined
from θ by a stream function ψ:

(u1, u2) =

(
− ∂ψ

∂x2
,
∂ψ

∂x1

)
,(1.1)

and the stream function ψ satisfies

(−∆)
1
2ψ = −θ.(1.2)

The nonlocal operator (−∆)β (β ≥ 0) is defined through the Fourier transform

̂(−∆)βf(ξ) = |ξ|2β f̂(ξ),

where f̂ is the Fourier transform of f [11]. For notational convenience, we write Λ for

(−∆)
1
2 .

The variable θ in the 2D QGS equation represents the potential temperature, u is
the fluid velocity, and the stream function ψ can be identified with the pressure. When
the fractional power α = 1/2, the equation, derived from the more general quasi-
geostrophic models (see pages 345–368 and 653–670 of [7]), describes the evolution
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of the temperature on the 2D boundary of a rapidly rotating half-space with small
Rossby and Ekman numbers. Dimensionally, the 2D QGS equation with α = 1/2 is
the analogue of the 3D Navier–Stokes equations. The general fractional power α is
considered here in order to observe the minimal power of Laplacian necessary in the
analysis and thus make a comparison with the 3D Navier–Stokes equations [3], [6].

Recently, this equation has been intensively investigated because of both its math-
ematical importance and its potential for applications in meteorology and oceanogra-
phy [4], [7], [5]. Mathematically, the behavior of solutions to the 2D QGS equation is
strikingly similar to that of the potentially singular solutions to the 3D hydrodynam-
ics equations. Despite exhibiting a number of similar features, the 2D QGS equation
is considerably simpler than the 3D Euler or Navier–Stokes equations.

The smooth solution of the QGS equation is unique but, if κ = 0, it is known
to exist only for a finite time [4]. On the other hand, weak solutions are global but
their uniqueness is unknown [8]. Whether the smooth solution develops singularity
in finite time and whether weak solutions are unique are fundamental mathematical
issues related to the QGS equation. We show in section 2 that the solution remains
smooth for all time for α ∈ (1

2 , 1] and any weak solution must coincide with a more
regular solution as long as such a strong solution exists.

Large time behavior of weak solutions is investigated in sections 3 and 4. In
section 3, the L2 decay rate of order t−

1
2α is obtained. For generic initial data, this

rate is optimal. The solution θ of the nonlinear equation may be approximated by
the solution Θ of the linear equation with a higher-order correction. An explicit form
for the higher-order correction is attempted in section 4. A rate of order t

1
2− 1

α is first
obtained without any smoothness assumption. With the assumption that

‖Λ2−2α+δθ(·, t)‖L2 ∼ t−ε,

the ratio and the difference are shown to behave as follows:

‖θ(·, t)‖L2

‖Θ(·, t)‖L2

∼ 1 +O(t−min{ 1
2α ,ε}), ‖θ(·, t)−Θ(·, t)‖L2 ∼ t− 1

2α−min{ 1
2α ,ε},

which imply that the effect of the nonlinearity is felt only in the higher-order correc-
tion.

We conclude this introduction by mentioning the global existence result of weak
solutions obtained in [8]. When not specified, the spatial domain can be either the
whole R2 or the 2D torus T2.

Proposition 1.1. Let T > 0 be arbitrary. Then for every θ0 ∈ L2 and f ∈
L2([0, T ];H−α), there exists a weak solution of

∂tθ + u · ∇θ + κΛ2αθ = f,(1.3)

θ |t=0 = θ0(1.4)

which satisfies

θ ∈ L∞([0, T ];L2) ∩ L2([0, T ];Hα).

2. Global smooth solution and uniqueness. It is shown here that weak
solutions of the QGS equation are globally smooth for α ∈ ( 1

2 , 1] and “strong” solutions
are unique. The spatial domain here is the 2D torus T2.
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Theorem 2.1. Let α ∈ ( 1
2 , 1], β ≥ 0, and β+ 2α > 2. If θ0 ∈ Hβ(T2) and if, for

T > 0,

f ∈ L2([0, T ];Hβ−α),

∫ T

0

‖f(τ)‖Lqdτ <∞,

where q =∞ for β ≥ 1 and q = 2/(1− β) for β < 1, then the solution θ of (1.3) and
(1.4) obeys for all t ≤ T

‖Λβθ(t)‖L2 ≤ C,(2.1)

where C is constant depending only on T , ‖θ0‖Hβ , ‖f‖L2([0,T ];Hβ−α), and
∫ T

0
‖f(τ)‖Lqdτ .

Proof. We sketch the proof. Taking the scalar product of (1.3) with Λ2βθ

1

2

d

dt

∫
|Λβθ|2 + κ

∫
|Λα+βθ|2 = −

∫
(u · ∇θ)Λ2βθ +

∫
Λ2βθf

and using the estimates∣∣∣∣∫ Λ2βθf

∣∣∣∣ ≤ κ

4
‖Λα+βθ‖2L2 +

1

κ
‖Λβ−αf‖2L2 ,(2.2)

∣∣∣∣∫ (u · ∇θ)Λ2βθ

∣∣∣∣ ≤ κ

4
‖θ‖2Hα+β + C(κ, θ0, f)‖θ‖2Hβ ,(2.3)

where C(κ, θ0, f) is constant, we obtain (2.1) after applying Gronwall’s inequality.
The estimate (2.3) is obtained by using the calculus inequality (see page 61 of [8] and
inequality (3.1.59) on page 74 of [12])

‖Λs(gh)‖L2 ≤ C(‖g‖Lq‖Λsh‖Lp + ‖h‖Lq‖Λsg‖Lp)

with 1/p+ 1/q = 1/2, g = u, h = θ, s = β + 1− α, and the maximum principle

‖θ‖Lq ≤ ‖θ0‖Lq +

∫ t

0

‖f(τ)‖Lqdτ.

Although weak solutions may not be unique, there is at most one solution in the
class of “strong” solutions.

Theorem 2.2. Assume that α ∈ ( 1
2 , 1], T > 0, p and q satisfy

p ≥ 1, q > 0,
1

p
+
α

q
= α− 1

2
;(2.4)

then there is at most one solution θ of the QGS equation with initial data θ0 ∈ L2

such that

θ ∈ L∞([0, T ];L2) ∩ L2([0, T ];Hα),(2.5)

θ ∈ Lq([0, T ];Lp).(2.6)
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We make two remarks.
Remark 2.3. It is clear from the proof given below that we can assume that only

one of the two solutions is “strong,” i.e., in the class (2.5), (2.6), the other being only
a weak solution.

Remark 2.4. By taking α = 1, (2.6) with (2.4) reduces exactly to the regular-
ity assumptions in obtaining uniqueness for weak solutions to the 3D Navier–Stokes
equations (cf. Temam [13, p. 299]). Theorem 2.2 is a sort of generalization in the
sense that it holds for a range of α ∈ ( 1

2 , 1].
Proof of Theorem 2.2. The difference θ = θA − θB of two solutions θA and θB

satisfies

∂tθ + u · ∇θA + uB · ∇θ + κΛ2αθ = 0(2.7)

in which u = uA − uB with uA and uB being the velocities corresponding to θA and
θB . We take the scalar product of (2.7) with ψ = −Λ−1θ and use∫

T2

ψu · ∇θA = 0,

∣∣∣∣∫
T2

θuB · ∇ψ
∣∣∣∣ ≤ κ‖ψ‖2Hα+ 1

2
+ C(κ)‖θB‖

1
1−β
Lp ‖ψ‖2H 1

2
,

where β = 1
α

(
1
2 + 1

p

)
and C(κ) = Cκ−

β
1−β (see page 32 of [8]). It then follows that

d

dt
‖ψ‖2

H
1
2
≤ C(κ)‖θB‖

1
1−β
Lp ‖ψ‖2H 1

2
,

which implies that ψ = 0 and thus θ = 0.

3. Large time behavior. The large time behavior of weak solutions is investi-
gated in this section. We adapt well-known ideas of Amick, Bona, and Schonbek [1]
and Schonbek [9], [10].

We first analyze the case when the force f = 0 and the result can be stated as
follows.

Theorem 3.1. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2). Then there exists a
weak solution θ of the 2D QGS equation

∂tθ + u · ∇θ + Λ2αθ = 0, θ |t=0 = θ0(3.1)

such that

‖θ(·, t)‖L2(R2) ≤ C(1 + t)−
1

2α ,(3.2)

where C is a constant depending on L1 and L2 norms of θ0.
Remark 3.2. For generic initial data, the rate obtained in Theorem 3.1 is optimal,

as implied by Theorem 4.6 of section 4.
The proof of Theorem 3.1 consists of two major steps. The first step is a formal

argument to show that (3.2) holds for smooth solutions. In the second step the
formal argument is applied to a sequence of “retarded mollifications” [2] and we
obtain Theorem 3.1 after passing to the limit. We will need a simple estimate.
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Lemma 3.3. Assume that θ0 ∈ L1(R2) ∩ L2(R2). Then θ satisfies the a priori
estimate

|θ̂(ξ, t)| ≤ ‖θ0‖L1 + |ξ|
∫ t

0

‖θ(τ)‖2L2dτ.

Proof. We have from (3.1)

(∗) ∂tθ̂ + |ξ|2αθ̂ = −û · ∇θ.

Since ∇ · u = 0,

|û · ∇θ| ≤ |ξ|‖θ(t)‖2L2 .

After integrating (∗), we obtain

|θ̂(ξ, t)| ≤ |θ̂0(ξ)|+ |ξ|
∫ t

0

‖θ(τ)‖2L2dτ ≤ ‖θ0‖L1 + |ξ|‖θ0‖2L2t.

Proof of Theorem 3.1. Taking the scalar product of (3.1) with θ we obtain

1

2

d

dt

∫
Rn
|θ|2 +

∫
Rn

(Λαθ)
2

= 0.

Using Plancherel’s theorem,

d

dt

∫
R2

|θ̂|2 + 2

∫
R2

|ξ|2α|θ̂|2 = 0.

For the second term∫
R2

|ξ|2α|θ̂|2 ≥
∫
B(t)c

|ξ|2α|θ̂|2 ≥ g2α(t)

∫
B(t)c

|θ̂|2

= g2α(t)

∫
R2

|θ̂|2 − g2α(t)

∫
B(t)

|θ̂|2,

where g ∈ C([0,∞);R+) remains to be determined and B(t)c is the complement of
B(t) with

B(t) =
{
ξ ∈ R2 : |ξ| < g(t)

}
.

By Lemma 3.3, we obtain

d

dt

∫
R2

|θ̂|2 + 2g2α(t)

∫
R2

|θ̂|2

≤ 2πg2α(t)

∫ g(t)

0

[
‖θ0‖L1 + r

∫ t

0

‖θ(τ)‖2L2dτ

]2

rdr.(3.3)
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By integrating (3.3), we have

e
2
∫ t

0
g2α(τ)dτ

∫
R2

|θ̂|2 ≤ ‖θ0‖2L2

+

∫ t

0

e
2
∫ s

0
g2α(τ)dτ

[
C1g

2α+2(s) + C2sg
2α+4(s)

∫ s

0

‖θ(τ)‖4L2dτ

]
ds,(3.4)

where C1 = 2π‖θ0‖2L1 and C2 = π.
To obtain a basic estimate, we take g2α(t) =

(
1
2 + 1

2α

)
[(e + t) ln(e + t)]−1 and

thus e
2
∫ t

0
g2α(τ)dτ

= [ln(e+ t)](1+ 1
α ). We then obtain from (3.4)

‖θ‖2L2 ≤ C[ln(e+ t)]−1− 1
α .

To obtain the sharp decay result, we take g2α(t) = 1
2α(t+1) and thus e

2
∫ t

0
g2α(τ)dτ

=

(1 + t)
1
α . From (3.4),

‖θ(t)‖2L2 ≤ C(t+ 1)−
1
α + C(t+ 1)(1− 2

α )

∫ t

0

‖θ(s)‖2L2 [ln(e+ s)]−1− 1
α ds.

Using Gronwall’s inequality and the fact that α ≤ 1,

‖θ(t)‖2L2 ≤ C(1 + t)−
1
α ,(3.5)

where the constant C depends on the L1 and L2 norms of θ0. We note here that
(3.5) is actually obtained by first taking g2α(t) =

(
1

2α − ε
)

1
1+t and then passing to

the limit as ε→ 0. This completes the formal argument step.
Next we construct a sequence of retarded mollifications θn and carry over the

formal arguments to θn. We will present here only the main ideas. We approximate
the QGS equation by a sequence of equations

∂tθn + un · ∇θn + Λ2αθn = 0,(3.6)

where δn → 0 and un = Sδn(θn) is obtained from θn by

Sδn(θn) =

∫ ∞
0

φ(τ)R⊥θn(t− δnτ)dτ.

We denote here R⊥ = (−∂x2
Λ, ∂x1

Λ) as the Riesz transform. The smooth function
φ is nonnegative with compact support in [1, 2] and

∫∞
0
φ(t)dt = 1. For each n,

(3.6) is a linear equation since the values of un(t) depend only on the values of θn in
[t− 2δn, t− δn].

Without giving details, we point out that θn converges to a weak solution θ
strongly in L2 for almost every t. Hence

‖θ(t)‖L2 ≤ ‖θn(t)− θ(t)‖L2 + ‖θn(t)‖L2 ≤ C(1 + t)−
1

2α ,

where C is a constant depending only on the L1 and L2 norms of θ0. This completes
the proof of Theorem 3.1.

We now consider the case when the force f is not zero.
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Theorem 3.4. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2). Assume that f ∈
L1([0,∞);L2), satisfying

‖f(·, t)‖L2 ≤ C(1 + t)−
1
α−1, |f̂(ξ, t)| ≤ C|ξ|α(3.7)

for some constant C. Then there is a weak solution of the QGS equation

∂tθ + u · θ + Λ2αθ = f

such that

‖θ(·, t)‖L2 ≤ C(1 + t)−
1

2α .(3.8)

Proof. The arguments of Theorem 3.1 work here and we will point out only the
difference. It is easy to see that

‖θ(t)‖L2 ≤ ‖θ0‖L2 +

∫ t

0

‖f(τ)‖L2dτ ≤ C

by energy estimates. When the force f is present, the estimate for θ̂ is given by

|θ̂(ξ, t)| ≤ e−|ξ|2αt|θ̂0|+
∫ t

0

e−|ξ|
2α(t−τ)

[
f̂ + |ξ|‖θ‖2L2

]
dτ.

Then the procedures of the proof of Theorem 3.1 can be repeated and the assumptions
(3.7) are sufficient in establishing (3.8).

4. Large time approximation. In this section we intend to understand the
higher-order correction in the large time approximation of the solution θ to the non-
linear equation by the solution Θ to the linear equation. The approach is to study
the difference and the ratio

‖θ(·, t)−Θ(·, t)‖L2 ,
‖θ(·, t)‖L2

‖Θ(·, t)‖L2

.

We start with some estimates for the linear equation. The solution of the linear
equation on Rn

∂tθ + Λ2αθ = 0, θ |t=0 = θ0(4.1)

is given by

Θ(t) = kαt ∗ θ0,(4.2)

where the kernel kαt is defined by its Fourier transform

k̂αt (ξ) = e−|ξ|
2αt.(4.3)

Proposition 4.1. Assume that α > 0 and the initial data θ0 ∈ L1(Rn). Then
we have

lim
t→∞ t

n
2α ‖Θ(·, t)‖2L2 = A(n, α)

[∫
Rn
θ0(x)dx

]2

,(4.4)

lim
t→∞ t

n+2
2α ‖∇Θ(·, t)‖2L2 = B(n, α)

[∫
Rn
θ0(x)dx

]2

,(4.5)
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where the constants A(n, α) =
∫
Rn e

−2|η|2dη and B(n, α) =
∫
Rn |η|2e−2|η|2dη.

Especially for n = 2, the L2 decay rates of Θ and ∇Θ are t−
1

2α and t−
1
α , respec-

tively.
Proof. We first prove (4.4). By Plancherel’s theorem,

lim
t→∞ t

n
2α ‖Θ(·, t)‖2L2 = lim

t→∞ t
n
2α ‖Θ̂(·, t)‖2L2

= lim
t→∞ t

n
2α

∫
Rn
e−2|ξ|2αt|θ̂0|2(ξ)dξ = lim

t→∞

∫
Rn
e−2|η|2 |θ̂0|2(ηt−

1
2α )dη.

Since for any t ∈ [0,∞) ∫
Rn
e−2|η|2 |θ̂0|2(ηt−

1
2α )dη

≤ ‖θ̂0‖2L∞
∫
Rn
e−2|η|2dη ≤ A(n, α)‖θ0‖2L1 ,

we can apply the dominated convergence theorem, which leads to (4.4).
The proof of (4.5) is similar to that of (4.4). We have

lim
t→∞ t

n+2
α ‖∇Θ(·, t)‖2L2 = lim

t→∞ t
n+2
α

∫
Rn
|ξ|2e−2|ξ|2αt|θ̂0|2(ξ)dξ

= lim
t→∞

∫
Rn
|η|2e−2|η|2 |θ̂0|2(ηt−

1
2α )dη = B(n, α)

[∫
Rn
θ0(x)dx

]2

.

Proposition 4.2. Let α ∈ (0, 1] and θ0 ∈ L2(R2). Then the solution Θ of (4.1)
satisfies

‖∇Θ(t)‖L∞(R2) ≤ Ct− 1
α ,

where the constant C depends only on the L2 norm of θ0.
Proof. We have by (4.2) and (4.3)

‖∇Θ‖L∞ ≤
∫
R2

|ξ||Θ̂(ξ)|dξ =

∫
R2

|ξ|e−|ξ|2αt|θ̂0(ξ)|dξ

≤ ‖θ0‖L2

(∫
R2

|ξ|2e−2|ξ|2αtdξ
) 1

2

≤ C
(∫ ∞

0

r3e−2r2αtdr

) 1
2

≤ Ct− 1
α ,

where the constant C depends only on the L2 norm of θ0.
Theorem 4.3. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2). Then the difference

θ−Θ between a weak solution θ of the QGS equation and the solution Θ of the linear
QGS equation with the data θ0 satisfies

‖θ(t)−Θ(t)‖L2(R2) ≤ C(1 + t)
1
2− 1

α ,

where the constant C depends only on the L1 and L2 norms of θ0.
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Remark 4.4. By comparing the rates in Theorems 3.1 and 4.3, we see that θ−Θ
decays faster than θ does for large time for α < 1.

Proof. We will present only a formal argument. The justification process can be
done similarly as in the proof of Theorem 3.1. The difference w = θ −Θ satisfies

∂tw + Λ2αw = −u · ∇θ.(4.6)

Taking the scalar product of (4.6) with w and using the fact that∫
R2

(u · ∇θ)θdx = 0,

we obtain

d

dt

∫
R2

|w|2 + 2

∫
R2

|Λαw|2 =

∫
R2

Θ(u · ∇θ)dx.

Using the results of Proposition 4.2 and Theorem 3.1, we bound the right-hand term
by ∣∣∣∣∫

R2

Θ(u · ∇θ)dx
∣∣∣∣ ≤ ‖∇Θ‖L∞‖θ‖2L2 ≤ C(1 + t)−

2
α .

As in the proof of Theorem 3.1,

d

dt

∫
R2

|ŵ|2 + 2g2α(t)

∫
R2

|ŵ|2 ≤ 2g2α(t)

∫
|ξ|≤g(t)

|ŵ|2 + C(1 + t)−
2
α ,(4.7)

where g(t) remains to be decided.
We need an estimate of ŵ, which can be obtained by taking the Fourier transform

of (4.6) and proceeding as in Lemma 3.3. By Theorem 3.1 and noticing α ≤ 1,

|w(ξ, t)| ≤ |ξ|
∫ t

0

‖θ(τ)‖2L2dτ ≤ |ξ|
∫ t

0

(1 + τ)−
1
α dτ ≤ C|ξ|.

Taking g2α = β
2(1+t) , we obtain, by integrating (4.7),

(1 + t)β
∫
R2

|ŵ|2 ≤ C
[∫ t

0

(1 + τ)β−
2
α dτ +

∫ t

0

(1 + τ)βg4(τ)dτ

]
.

Therefore,

‖w‖2L2 ≤ C(1 + t)1− 2
α .

This completes the proof of Theorem 4.3.
We can consider lower bounds for the decay of θ with the aid of Theorem 4.3. It

is easy to see that Θ can decay exponentially fast. For example, if θ̂0 = 0 for |ξ| ≤ γ,
then

‖Θ(t)‖2L2 =

∫
e−2|ξ|2αt|θ̂0(ξ)|2 ≤ ‖θ0‖2L2e−2γ2t.

However, for those θ0 satisfying

|θ̂0(ξ)| ≥ λ for |ξ| ≤ γ,(4.8)

we have the following.
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Proposition 4.5. Let α ∈ (0, 1] and θ0 ∈ L2(R2) satisfy (4.8). Then if Θ is a
solution of the linear QGS equation,

‖Θ(t)‖L2(R2) ≥ C(1 + t)−
1

2α ,

where C is a constant depending only on λ, γ, and the L2 norm of θ0.
As a corollary of Theorem 4.3 and Proposition 4.5, we have the following.
Theorem 4.6. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2) satisfy (4.8). Then for

a weak solution θ of the QGS equation with data θ0,

‖θ(·, t)‖L2(R2) ≥ C(1 + t)−
1

2α ,

where C depends on λ, γ, and the L1 and L2 norms of θ0.
The following theorem reveals more detailed aspects of the higher-order correc-

tion.
Theorem 4.7. Let α ∈ ( 1

2 , 1] and δ > 0 such that 2α − 1− δ ≥ 0. Assume that
θ is a weak solution of the 2D QGS equation

∂tθ + u · ∇θ + Λ2αθ = 0

with initial data θ0 ∈ L1(R2) ∩ L2(R2) and that satisfies

‖Λ2−2α+δθ(·, t)‖L2 ≤ Ct−ε(4.9)

for some constant C and ε > 0. Let Θ be the solution of the linear equation with the
same initial data θ0. Then

‖θ(·, t)‖L2

‖Θ(·, t)‖L2

= 1 +O(t−min{ 1
2α ,ε}),(4.10)

t
1

2α+min{ 1
2α ,ε}‖θ(·, t)−Θ(·, t)‖L2 = O(1).(4.11)

Proof. By taking the Fourier transform of the equation for θ

∂tθ + Λ2αθ = −u · ∇θ,
we obtain

θ̂(ξ, t) = e−|ξ|
2αtθ̂0(ξ)−

∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds.

Then the ratio

‖θ(·, t)‖2L2

‖Θ(·, t)‖2L2

=
‖θ̂(·, t)‖2L2

‖Θ̂(·, t)‖2L2

= 1 + 2J (t) + J 2(t),

where J is given by

J (t) =

∫
R2

∣∣∣∫ t0 e−|ξ|2α(t−s)û · ∇θ(ξ, s)ds
∣∣∣2 dξ

‖Θ‖2L2

.

To prove (4.10), it suffices to show that

J (t) = O(t−min{ 1
2α ,ε}).
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The difference w = θ −Θ satisfies

∂tw + Λ2αw = −u · ∇θ.

Since w(x, 0) = θ(x, 0)−Θ(x, 0) = 0,

ŵ(ξ, t) = −
∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds,

‖w(·, t)‖2L2 = ‖ŵ(·, t)‖2L2 =

∫
R2

∣∣∣∣∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣2 dξ.
Thus, to prove (4.10) and (4.11), we need only to estimate the integral

I ≡
∫
R2

∣∣∣∣∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣2 dξ.
To this end, we divide the integral I into the following two parts:

II =

∫
R2

∣∣∣∣∣
∫ t/2

0

· · ·
∣∣∣∣∣
2

dξ and III =

∫
R2

∣∣∣∣∣
∫ t

t/2

· · ·
∣∣∣∣∣
2

dξ.

Since ∇ · u = 0, û · ∇θ = iξ · ûθ and we obtain, by setting η = t
1

2α ξ,

II = t−
2
α

∫
R2

e−2|η|2α
∣∣∣∣∣
∫ t/2

0

e
s
t |η|2η · ûθ(ηt− 1

2α , s)ds

∣∣∣∣∣
2

dη.

Since

‖ûθ(·, s)‖L∞ ≤ ‖uθ(·, s)‖L1 ≤ ‖u(·, s)‖L2‖θ(·, s)‖L2 ≤ C‖θ(·, s)‖2L2 ,

we have the bound

II ≤ Ct− 2
α

∫
R2

|η|2e− 7
4 |η|2

[∫ ∞
0

‖θ(·, s)‖2L2ds

]2

dη

≤ Ct− 2
α

(∫
R2

|η|2e− 7
4 |η|2dη

)
‖θ‖4L2([0,∞);L2).

The estimate of III seems tricky. Intuitively, the idea is to split the whole deriva-
tive ∇ into two fractional parts Λ2α−1−δ and Λ2−2α+δ:

III =

∫
R2

∣∣∣∣∣
∫ t

t/2

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣∣
2

dξ

≤
∫
R2

e−2|ξ|2αt|ξ|2(2α−1−δ) sup
t/2≤s≤t

| ̂u · Λ2−2α+δθ|2(ξ, s)

[∫ t

t/2

es|ξ|
2α

ds

]2

dξ.
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Using the assumption (4.9), we obtain

| ̂u · Λ2−2α+δθ|(ξ, s) ≤ ‖ ̂u · Λ2−2α+δθ(·, s)‖L∞

≤ ‖(u · Λ2−2α+δθ)(·, s)‖L1 ≤ C‖u(·, s)‖L2‖Λ2−2α+δθ(·, s)‖L2 ≤ Cs− 1
2α−ε,

where C is a constant. Therefore

III ≤ Ct− 1
α−2ε

∫
R2

|ξ|−2−δ(1− e− 1
2 |ξ|2αt)2dξ ≤ Ct− 1

α−2ε.

Combining the estimates for II and III, we conclude that

I ≡
∫
R2

∣∣∣∣∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣2 dξ ≤ Ct− 1
α−min{ 1

α ,2ε},

and (4.10), (4.11) are therefore established.
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Abstract. This work describes the location of large eigenvalues for Sturm–Liouville operators
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1. Introduction. Although ordinary differential operators do not have a trace
in the usual sense, it was observed some time ago [2] that one could often make sense
of
∑
n(µn−νn), where {µn} and {νn} are the eigenvalues of two differential operators.

Moreover, these traces are often given by explicit expressions in the coefficients of the
operators. Beyond their aesthetic appeal, trace formulas play an important role in
inverse spectral theory [4, 6, 10, 12].

Several authors [5, 11] have raised the problem of establishing and analyzing trace
formulas for the one-dimensional matrix Schrödinger equation

−Y ′′ +Q(x)Y = λY, Y ∈ CK , λ ∈ C,(1a)

subject to certain boundary conditions. In particular, Papanicolaou [11] established a
trace formula for the Dirichlet boundary conditions Y (0) = 0 = Y (1) when the K×K
matrix Q(x) is real symmetric, subject to a conjectured asymptotic behavior of the
eigenvalue sequence.

In this work we will show how to establish eigenvalue estimates of any order using
classical asymptotic expansions for solutions of (1a). Eigenvalues for (1a) subject to
certain separated boundary conditions are identified with the vanishing of detT (λ),
where T (λ) is an entire K × K matrix-valued function. A novel feature of our ap-
proach is the use of perturbation theory to analyze the location of the eigenvalues of
T (λ) or a closely related matrix. This approach appears to offer advantages over the
direct consideration of the equation det T (λ) = 0. We also extend some old ideas for
computing (higher order) traces. These techniques downplay the role of self-adjoint
operators.

2. Regularized traces. It is common to use infinite product representations
[1] to relate the eigenvalue sequence for an ordinary differential operator to an entire
function having the eigenvalues as zeroes. The first lemma considers the computation
of power sums

∞∑
n=1

(νkn − µkn)
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electronically June 29, 1999.
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based on the asymptotic behavior of such entire functions. A similar treatment is
given in [8, pp. 84–88], where the ideas are attributed to F. Schäfke.

Lemma 2.1. Suppose that f(λ) and g(λ) are entire functions not vanishing on a
real half line (−∞, b), which are given by absolutely convergent products

f(λ) =
∞∏
n=1

(
1− λ

µn

)
, g(λ) =

∞∏
n=1

(
1− λ

νn

)
.

(For notational convenience we assume that f(0)g(0) 6= 0.)
If all but finitely many µn, νn lie in the right half plane, and∑

|µn − νn|[|µn|K−1−ε + |νn|K−1−ε] <∞, 0 ≤ ε < 1,

for an integer K ≥ 2, then as λ→ −∞ along the real axis,

log

(
f(λ)

g(λ)

)
= C +

K−1∑
k=1

[ 1

kλk

∞∑
n=1

(νkn − µkn)
]

+O(λ−K+ε).

Proof. For λ ∈ (−∞, b) define

h(λ) = ∂λ log

(
f

g

)
= ∂λ log

(∏ λ− µn
λ− νn

)
=
∑
n

(
1

λ− µn −
1

λ− νn

)
=
∑
n

1

λ

(
1

1− µn/λ −
1

1− νn/λ
)
.

Use of the identity 1/(1− x) = 1 + x+ · · ·+ xK−1 + xK/(1− x) gives

h(λ) =
∑
n

[
1

λ

K−1∑
k=1

µkn − νkn
λk

+
1

λ

[
(µn/λ)K

1− µn/λ −
(νn/λ)K

1− νn/λ
]]
.

A rearrangement of these sums is justified if the sums∑
n

|µkn − νkn|, k = 1, . . . ,K − 1,(2a)

and ∑
n

∣∣∣∣ µKn
1− µn/λ −

νKn
1− νn/λ

∣∣∣∣(2b)

are convergent. Using the fundamental theorem of calculus to write the difference
µkn − νkn as a contour integral over the line segment joining the endpoints, we find∑

n

|µkn − νkn| =
∑
n

∣∣∣∣∫ µn

νn

kzk−1 dz

∣∣∣∣ ≤ k∑
n

|µn − νn|[|µn|k−1 + |νn|k−1].

There are only finitely many µn, νn inside the unit disk. Except for this finite collection
we have

|µn − νn|[|µn|k−1 + |νn|k−1] ≤ |µn − νn|[|µn|K−2 + |νn|K−2], 1 ≤ k ≤ K − 1.
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Thus the sums in (2a) are absolutely convergent.
As for (2b) the same technique gives

∑
n

∣∣∣∣ µKn
1− µn/λ −

νKn
1− νn/λ

∣∣∣∣ =
∑
n

∣∣∣∣λ ∫ µn

νn

KzK−1

λ− z +
zK

(λ− z)2
dz

∣∣∣∣ .(2c)

If µn, νn have positive real parts, 0 ≤ ε < 1, and λ ∈ (−∞, 0), then

|λ− z|−1 ≤ |λ|−1+ε|z|−ε, |λ− z|−2 ≤ |λ|−1+ε|z|−1−ε.

Thus after dropping finitely many terms, the right-hand side of (2c) is bounded by

[K + 1]|λ|ε
∑
n

|µn − νn|[|µn|K−1−ε + |νn|K−1−ε].

Rearrangement now gives

h(λ) = ∂λ log

(
f

g

)
=
K−1∑
k=1

[
λ−k−1

∑
n

(µkn − νkn)
]

+O(λ−K−1+ε),

and integration gives the desired result.

3. Asymptotic expansions for solutions of (1a). Estimates for solutions
to the initial value problem for (1a) may be established using familiar techniques
from the scalar case. With the exception of some minor notational changes, and the
rearrangement of some terms which do not commute in the vector case, the form of
our estimates is very close to that of [3]. Since the arguments from the scalar case
are also applicable, the reader may consult this reference for the proof of Lemmas 3.1
and 3.2. Related problems are treated with a somewhat different approach in [9, pp.
50–100].

It will be helpful to establish some notational conventions. For λ ∈ C let ω =
√
λ,

the root chosen continuously for −π ≤ arg(λ) < π and positive for λ > 0. The
imaginary part of ω is denoted by =ω. An element Y ∈ CK will have the usual norm

|Y | =
[
K∑
k=1

|yk|2
]1/2

, Y =

 y1
...
yK

 ,

and a K ×K matrix Q will have the operator norm

‖Q‖ = sup
|Y |=1

|QY |.

The K ×K identity matrix is IK , and the zero matrix is 0K .
A brief discussion will introduce the ideas. The model equation −Y ′′ = λY has

a basis of 2K solutions which are the columns of the K ×K diagonal matrix-valued
functions cos(ωx)IK , ω−1 sin(ωx)IK . Adapting the variation of parameters formula
to this setting, a solution of (1a) satisfying Y (0, λ) = α, Y ′(0, λ) = β, with α, β ∈ CK ,
may be written as a solution of the integral equation

Y (x, λ) = cos(ωx)α+ ω−1 sin(ωx)β + ω−1

∫ x

0

sin(ω[x− t])Q(t)Y (t, λ) dt.(3a)
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Differentiation with respect to x gives

Y ′(x, λ) = −ω sin(ωx)α+ cos(ωx)β +

∫ x

0

cos(ω[x− t])Q(t)Y (t, λ) dt.

When Q(x) is sufficiently differentiable an expansion of Y (x, λ), together with
error estimates, may be obtained by an iteration scheme based on (3a) and integration
by parts. For J ≥ 1 let CJ denote the Banach space of K×K matrix-valued functions
Q(x) whose components have J continuous derivatives on [0, 1]. We can equip CJ

with the norm

‖Q‖J = max ‖Q(j)(x)‖, 0 ≤ j ≤ J, 0 ≤ x ≤ 1.

For notational convenience define Aj(x) = Q(x)Aj(x) and Bj(x) = Q(x)Bj(x).
Lemma 3.1. Suppose that Q ∈ CJ , and Y (x, λ) is the solution of (1a) satisfying

Y (0, λ) = α and Y ′(0, λ) = β, with |α|+ |β| ≤ 1, 0 ≤ x ≤ 1, and |ω| ≥ 1. Then there
are CK valued functions Aj(x) and Bj(x) such that∣∣∣∣∣∣Y (x, λ)−

J∑
j=0

ω−j [cos(ωx)Aj(x) + sin(ωx)Bj(x)]

∣∣∣∣∣∣ = O(ω−J−1e|=ω|x).

The coefficients Aj(x), Bj(x) satisfy

A0(x) = α, A1(x) = 0,

A2(x) = 2−2[Q(x)−Q(0)]α− 2−1

∫ x

0

Q(t)

[
β + 2−1

∫ t

0

Q(s)α ds

]
dt,

B0(x) = 0, B1(x) = β + 2−1

∫ x

0

Q(t)α dt, B2(x) = 0,

and for j ≥ 3, the coefficients satisfy the recursion relations

Aj(x) =

b(j−2)/2c∑
k=0

(−1)k2−2k−2[A(2k)
j−2k−2(x)−A(2k)

j−2k−2(0)]

− 2−1

∫ x

0

Bj−1(t) dt+

b(j−3)/2c∑
k=0

(−1)k2−2k−3[B(2k+1)
j−2k−3(x)− B(2k+1)

j−2k−3(0)],

Bj(x) = −
b(j−3)/2c∑
k=0

(−1)k2−2k−3[A(2k+1)
j−2k−3(x) +A(2k+1)

j−2k−3(0)]

+ 2−1

∫ x

0

Aj−1(t) dt+

b(j−2)/2c∑
k=0

(−1)k2−2k−2[B(2k)
j−2k−2(x) + B(2k)

j−2k−2(0)].

The function Y ′(x, λ) has a similar expansion obtained from that of Y (x, λ) by
termwise differention.

Lemma 3.2. Under the hypotheses of Lemma 3.1 there are CK valued functions
Cj(x) and Dj(x) such that∣∣∣∣∣∣Y ′(x, λ)−

J−1∑
j=−1

ω−j [cos(ωx)Cj(x) + sin(ωx)Dj(x)]

∣∣∣∣∣∣ = O(ω−Je|=ω|x).
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The coefficients Cj(x), Dj(x) satisfy C−1(x) = 0, D−1(x) = −α, and

Cj(x) = A′j(x) +Bj+1(x), Dj(x) = B′j(x)−Aj+1(x), j = 0, . . . , J − 1.

In particular, one has the following expression:

Y ′(x, λ) = −ω sin(ωx)α+ cos(ωx)β + 2−1 cos(ωx)

∫ x

0

Q(t) dt α

+ 2−2ω−1 sin(ωx)[Q(x) +Q(0)]α+ 2−1ω−1 sin(ωx)

∫ x

0

Q(t) dt β

+ 2−2ω−1 sin(ωx)

∫ x

0

Q(t)

∫ t

0

Q(s) ds dt α

+ 2−3ω−2 cos(ωx)[Q′(x)−Q′(0)]α− 2−2ω−2 cos(ωx)[Q(x)−Q(0)]β

− 2−3ω−2 cos(ωx)Q(x)

∫ x

0

Q(t) dt α

+ 2−3ω−2 cos(ωx)

∫ x

0

Q(t)[Q(t)−Q(0)] dt α

− 2−2ω−2 cos(ωx)

∫ x

0

Q(t)

∫ t

0

Q(s) ds dt β

− 2−3ω−2 cos(ωx)

∫ x

0

Q(t)

∫ t

0

Q(s)

∫ s

0

Q(u) du ds dt α

+ O(ω−3 exp(|=(ω)|)).
It will be convenient to introduce the K ×K matrix solutions C(x, λ), S(x, λ) of

(1a) which satisfy

C(0, λ) = IK , C ′(0, λ) = 0K ,

S(0, λ) = 0K , S′(0, λ) = IK .

The columns of these matrices are a basis of solutions to (1a). The asymptotic expan-
sions for Y (x, λ) and Y ′(x, λ) specialize to give expansions for the matrix functions
C(1, λ), C ′(1, λ), S(1, λ), and S′(1, λ).

Defining Q0 =
∫ 1

0
Q(t) dt, the following explicit formulas will be needed:

(3b)

C(1, λ) = cos(ω)IK + 2−1ω−1 sin(ω)Q0

+ 2−2ω−2 cos(ω)
[
Q(1)−Q(0)−

∫ 1

0

Q(t)

∫ t

0

Q(s) ds dt
]

+O(ω−3e|=ω|).

S(1, λ) = ω−1 sin(ω)IK − 2−1ω−2 cos(ω)Q0

+ 2−2ω−3 sin(ω)
[
Q(1) +Q(0)−

∫ 1

0

Q(t)

∫ t

0

Q(s) ds dt
]

+O(ω−4e|=ω|),

C ′(1, λ) = −ω sin(ω)IK + 2−1 cos(ω)Q0

+ 2−2ω−1 sin(ω)
[
Q(1) +Q(0) +

∫ 1

0

Q(t)

∫ t

0

Q(s) ds dt
]

+O(ω−2e|=ω|),

S′(1, λ) = cos(ω)IK + 2−1ω−1 sin(ω)Q0

− 2−2ω−2 cos(ω)

[
Q(1)−Q(0) +

∫ 1

0

Q(t)

∫ t

0

Q(s) ds dt

]
+O(ω−3e|=ω|).
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4. Eigenvalues and traces. Eigenvalue problems given by (1a), together with
separated boundary conditions, will be considered next. For simplicity the eigenvalue
problem is assumed to have the form

−Y ′′ +Q(x)Y = λY, Y ∈ CK , λ ∈ C,(4a)

Y
(j(i))
i (0) = 0 = Y

(k(i))
i (1), i = 1, . . . ,K, j(i), k(i) ∈ {0, 1},

so that for each component either the value of the function or its derivative vanishes
at each endpoint. To further facilitate the development, assume that the matrix Q0 is
diagonal, Q0 = diag[q1, . . . , qK ]. Each of the expansions (3b) now has diagonal matrix
coefficients for the first two terms. Under the weaker assumption that Q0 is similar
to a diagonal matrix, a simple linear change of variables reduces (1a) to the case of
diagonal Q0. Some of the results below would require modifications to account for
this transformation.

For each λ there is a K-dimensional space of solutions to the eigenvalue equation
satisfying the boundary conditions at 0. A basis for these solutions is given by the
columns of the K × K matrix T (x, λ), obtained by selecting K columns from the
K × 2K matrix (C(x, λ) S(x, λ)), where the ith boundary condition at 0 dictates
the selection of column i if the derivative vanishes and the (K + i)th column if the
function vanishes. The problem (4a) will have an eigenvalue at λ if and only if some
nontrivial linear combination of these basis functions satisfies the boundary conditions
at 1.

Define the K×K matrix T (λ) whose entries T
(k(i))
ij (1, λ) are obtained by applying

the ith boundary functional at 1 from (4a) to the jth column of T . The ijth entry
of T (λ) is, therefore, the ijth entry of one of the matrices C(1, λ), S(1, λ), C′(1, λ),
or S′(1, λ). The problem (4a) has an eigenvalue at λ if and only if detT (λ) = 0 or,
equivalently, if one of the eigenvalues of T (λ) is 0.

The eigenvalues of (4a) will be compared to the eigenvalues of −D2 +Q0 with the
same boundary conditions. Since Q0 is diagonal and the boundary conditions respect
the decoupling of the system of equations, we may partition the eigenvalues into K
subsequences λ0

n,k which are the eigenvalues of the kth component problem. For each k

the subsequence is listed with increasing real parts. The eigenvalues λ0
n,k are the roots

of one of the functions cos(
√
λ− qk), sin(

√
λ− qk)/

√
λ− qk, or

√
λ− qk sin(

√
λ− qk),

respectively, giving

λ0
n,k =

{
[n− 1

2 ]2π2 + qk,
n2π2 + qk,

[n− 1]2π2 + qk,

}
n = 1, 2, 3, . . . .

Theorem 4.1. Suppose that Q0 is a diagonal matrix and Q(x) ∈ C2. There is
a sequence dn,k of disks containing the λ0

n,k with radii αn,k = O(n−1) such that every
disk contains at least one eigenvalue of (4a) and every eigenvalue of (4a) lies inside
a disk.

If the off-diagonal entries of the matrices Q(1), Q(0), and
∫ 1

0
Q(t)

∫ t
0
Q(s) ds dt

vanish, or if the boundary conditions have the form Y
(j)
i (0) = 0 = Y

(k)
i (1) for j, k ∈

{0, 1} (not depending on i), then this estimate improves to αn,k = O(n−2).

Proof. For ω 6= 0 define diagonal matrices Ω1,Ω2 as follows. Ω1 has ith diagonal
entry 1 (respectively, ω−1) if the ith boundary condition at 1 requires the function
(respectively, derivative) to vanish. Ω2 has ith diagonal entry ω (respectively, 1) if the
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ith boundary condition at 0 requires the function (respectively, derivative) to vanish.
Now define R = Ω1T Ω2.

The matrix R = (rij) has off-diagonal entries which are O(ω−2e|=ω|). The kth
diagonal entry rkk of R has one of the forms

rkk = cos(ω) + 2−1qkω
−1 sin(ω) + ckω

−2 cos(ω) +O(ω−3e|=ω|)

or

±rkk = sin(ω)− 2−1qkω
−1 cos(ω) + ckω

−2 cos(ω) +O(ω−3e|=ω|).

The constant ±ck, which may be obtained from (3b), is the kth diagonal entry of one
of the matrices

Q(1)±Q(0)±
∫ 1

0

Q(t)

∫ t

0

Q(s).

Since

cos(
√
λ− qk) = [1− 2−3ω−2q2

k] cos(ω) + 2−1ω−1qk sin(ω) +O(ω−3 exp(|=ω|)),
sin(

√
λ− qk) = [1− 2−3ω−2q2

k] sin(ω)− 2−1ω−1qk cos(ω) +O(ω−3 exp(|=ω|)),
the diagonal entries of R may be written as ρk +O(ω−3e|=ω|), where

ρk =
(

1 + ω−2[2−3q2
k + ck]

)
cos(

√
λ− qk)

or

±ρk =
(

1 + ω−2[2−3q2
k + ck]

)
sin(

√
λ− qk).

If λ 6= 0, the matrix T (λ) has an eigenvalue 0 if and only if R(λ) does. Write
R = R0 + R1, where R0 is diagonal with entries ρk and R1 = O(ω−2e|=ω|). If Σ(R)
denotes the set of eigenvalues of R, then since R0 is normal, we have the estimate [7,
p. 291]

dist(Σ(R),Σ(R0)) ≤ ‖R1‖.
Now if |=z| > 1, we have

| sin(z)| ≥ exp(|=z|)
4

, | cos(z)| ≥ exp(|=z|)
4

,

and for |=z| ≤ 1, there is a C > 0 such that

| sin(z)| ≥ C dist(z, {mπ}), | cos(z)| ≥ C dist

(
z,

{[
m+

1

2

]
π

})
, m = 0,±1,±2, . . . .

These estimates show that if R(λ) has 0 as an eigenvalue for |λ| ≥ 1, then |=ω| ≤ C,
and for some k the diagonal entry ρk(λ) ≤ C|ω|−2. Suppose ρk ' sin(

√
λ− qk) and

consider λ satisfying (n− 1/2)2π2 ≤ |λ| < (n+ 1/2)2π2. If such a λ is an eigenvalue,
then

√
λ− qk = nπ + O(n−2), or λ = n2π2 + qk + O(n−1). The result is similar if

ρk ' cos(
√
λ− qk). This shows that if λ is an eigenvalue, then |λ − λ0

n,k| = O(n−1)

for some λ0
n,k.
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A perturbation argument [7, pp. 368–371] will show that for some C and n ≥ 1,
every disk |λ − λ0

n,k| ≤ Cn−1 contains at least one eigenvalue. Consider the family

of operators L(t) = −D2 + Q0 + t[Q − Q0] for 0 ≤ t ≤ 1 whose domain is deter-
mined by the boundary conditions of (4a). Each of these operators on ⊕KL2[0, 1] has
compact resolvent. The spectrum consists of the eigenvalues λ0

n,k when t = 0, and
by the previous discussion, there is a family of open disks such as in the statement
of the theorem whose complement is in the resolvent set for the entire family L(t).
If necessary, this sequence of disks may be modified so that any two disks dn,k are
either the same or disjoint. Since the boundary of each disk is in the resolvent set for
0 ≤ t ≤ 1, the corresponding family of spectral projections, which is continuous in t,
has constant rank, and so each disk contains at least one eigenvalue.

The additional hypotheses provide improved estimates since they guarantee that
R1 = O(ω−3e|=ω|). This is clear from (3b) in case the off-diagonal entries of the

matrices Q(1), Q(0), and
∫ 1

0
Q(t)

∫ t
0
Q(s) ds dt vanish. In the cases of Dirichlet and

Neumann boundary conditions, the trigonometric function in the third term of (3b)
is O(n−1) when |λ− λ0

n,k| = O(n−1).
The conclusion of the previous theorem may be strengthened if Q(x) = Q∗(x),

since the operators −D2 +Q0 +t[Q(x)−Q0] associated to the eigenvalue problem (4a)
form a self-adjoint holomorphic family on ⊕KL2[0, 1], each operator having compact
resolvent. In this case [7, p. 392], the eigenvalues λ0

n,k, counted with multiplicity, may
be extended from t = 0 to t = 1, yielding the next result.

Corollary 4.2. Suppose that Q0 is a diagonal matrix, Q(x) = Q∗(x), and
Q(x) ∈ C2. Then the eigenvalues of the problem (4a), counted with multiplicity, may
be indexed as λn,k such that

|λn,k − λ0
n,k| ≤ Cn−1.

The supplementary conditions in Theorem 4.1 will again improve these estimates
to

|λn,k − λ0
n,k| ≤ Cn−2.

The next goal is to refine the eigenvalue estimates of Theorem 4.1 and Corollary
4.2. If Q(x) ∈ CJ , then a more precise description of R(λ) may be obtained using the
expansions of Lemmas 3.1 and 3.2. This expansion has the form

R(λ) =
J∑
j=0

ω−j [αj cos(ω) + βj sin(ω)] +O(ω−J−1e|=ω|),

where αj , βj are constant K ×K matrices. If Q0 is a diagonal matrix with distinct
diagonal entries, and Q(x) ∈ CJ , J ≥ 2, then by Theorem 4.1 eigenvalues of (4a) with
sufficiently large magnitude will be simple and may be indexed as λn,k such that

|λn,k − λ0
n,k| ≤ Cn−1.

The same remarks apply also for the large zeroes λJn,k of the function detRJ(λ), where

RJ(λ) =
J∑
j=0

ω−j [αj cos(ω) + βj sin(ω)].
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According to Theorem 4.1, the eigenvalues of (4a) are contained in disks δm of
the form δm = {|λ−m2π2| ≤ C} or disks of the form {|λ− [m+1/2]2π2| ≤ C}. Since
the cases are similar we will examine only the first case.

Consider the diagonal matrix R0(λ) with diagonal entries ρk(λ) for λ inside a
disk δm. Since

√
λ− qk = mπ +O(m−1), the eigenvalues ρk of R0 are ±1 +O(m−2)

or O(m−1). For λ ∈ δm the matrices R(λ) and RJ(λ) are perturbations of R0(λ)
satisfying

R(λ)−R0(λ) = O(m−2), RJ(λ)−R0(λ) = O(m−2).

Since R0(λ) is normal, the spectra of the matrices R(λ) and RJ(λ) satisfy [7, p. 94]

dist(Σ(R),Σ(R0)) = O(m−2), dist(Σ(RJ),Σ(R0)) = O(m−2), λ ∈ δm.(4b)

For m sufficiently large, and λ ∈ δm, these eigenvalues may be partitioned into
three groups, lying, respectively, in the disks |ζ| ≤ 1/4 and |ζ ± 1| ≤ 1/4. For each
of the matrices R(λ), R0(λ), and RJ(λ), the number of eigenvalues in each group,
counted with algebraic multiplicity, is the same. For l = 1, . . . , L, denote by τl(λ),
τ0
l (λ), and τJl (λ), respectively, the corresponding eigenvalues of R(λ), R0(λ), and
RJ(λ) in the disk |ζ| ≤ 1/4.

Lemma 4.3. Suppose that Q0 has distinct diagonal entries, and Q(x) ∈ CJ ,
J ≥ 2. For λ ∈ δm with m sufficiently large, the eigenvalues τl(λ), τ0

l (λ), and τJl (λ)
are simple and analytic in λ. In addition

τl(λ)′ =
±1

2mπ
+O(m−2)

in the disks δ̃m centered at m2π2 with half the radius of δm.
Proof. By definition of R0

±τ0
l (λ) = (1 + ω−2[2−3q2

l + cl]) sin(
√
λ− ql).

A Taylor expansion of the sine function near λ = m2π2 shows that for m sufficiently
large and λ ∈ δm

|τ0
k − τ0

l | ≥
|qk − ql|

4m
.

By (4b) the same type of estimate holds for τl(λ) and τJl (λ) as well. The analyticity
now follows from the analyticity of the matrices R, R0, and RJ .

The derivative estimate follows from the Cauchy integral representation

τl(λ)′ − τ0
l (λ)′ =

1

2πi

∫
∂δm

τl(z)− τ0
l (z)

(z − λ)2
dz.

Since

|τl(λ)− τ0
l (λ)| = O(m−2)

for λ ∈ δm, it follows that

|τl(λ)′ − τ0
l (λ)′| = O(m−2)
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inside the disks δ̃m. The desired estimate follows from the elementary calculation
τ0
l (λ)′ = ±1/(2mπ) +O(m−3).

Theorem 4.4. Suppose that Q0 is a diagonal matrix with distinct diagonal en-
tries, and Q(x) ∈ CJ , J ≥ 2. For n sufficiently large the eigenvalues λn,k of (4a)
satisfy

|λn,k − λJn,k| ≤ Cn−J .

Proof. Our main goal is to show that the resolvent [R(λ) − ζ]−1 satisfies an
estimate

‖[R(λ)− ζ]−1‖ ≤ C

dist(ζ,Σ(R))

for |ζ| ≤ 1/4, the estimate holding uniformly for λ ∈ δ̃m for m large (and in corre-
sponding disks centered at [m+ 1/2]2π2).

Define the projections

P0 =
−1

2πi

∫
|ζ|=1/4

[R(λ)− ζ]−1 dζ, P±1 =
−1

2πi

∫
|ζ±1|=1/4

[R(λ)− ζ]−1 dζ.

These projections may be used to decompose the operator R [7, pp. 40–43]. Since
R(λ)−R0(λ) = O(m−2) and ‖[R0(λ)− ζ]−1‖ = 1/dist(ζ,Σ(R0)), the expression

[R(λ)− ζ]−1 = [R0(λ)− ζ]−1[I + (R−R0)[R0 − ζ]−1]−1(4c)

shows that the projections P0, P±1 converge to the corresponding orthogonal projec-

tions P̃0, P̃±1 for R0. The convergence is uniform for large m and λ ∈ δm.
Decompose X ∈ CK as X = X0 +X1 +X−1 where Xi is in the range of Pi. Since

R(λ) is bounded in the disks δm, and Pi(λ)→ P̃i(λ), we have, for i = ±1,

‖(R− ζ)Xi‖ ≥ ‖(R− ζ)P̃iXi‖ − ‖(R− ζ)(Pi − P̃i)Xi‖
→ |i− ζ|‖P̃iXi‖, |ζ| ≤ 1

4
.

The convergence Pi(λ)→ P̃i(λ) then implies

‖(R− ζ)Xi‖ ≥ 1

4
‖Xi‖

for m large, or

‖[R(λ)− ζ]−1Pi‖ ≤ 4, λ ∈ δm, |ζ| ≤ 1

4
.

We next consider ‖[R(λ) − ζ]−1P0‖, for λ ∈ δm, and |ζ| ≤ 1/4. The proof of
Lemma 4.3 shows that for m large and λ ∈ δm, the eigenvalues τ0

l of R0 are distinct
and |τ0

k − τ0
l | ≥ C/m. Let γl be a collection of circular contours centered at τ0

l with
radius C/(4m). Define projections

Pl =
−1

2πi

∫
γl

[R(λ)− ζ]−1 dζ, P̃l =
−1

2πi

∫
γl

[R0(λ)− ζ]−1 dζ.



TRACE FORMULAS 959

Since ‖R(λ)−R0(λ)‖ = O(m−2) the expression (4c) leads to the estimate

‖Pl − P̃l‖ =

∥∥∥∥−1

2πi

∫
γl

[R(λ)− ζ]−1 − [R0(λ)− ζ]−1 dζ

∥∥∥∥ = O(m−1), λ ∈ δm.

Thus, the part of the operator R(λ) on the L-dimensional range of P0 has L
distinct eigenvalues and may be diagonalized with a matrix S whose columns are
eigenvectors of R(λ). The comparison of Pl with P̃l shows that these eigenvectors
may be chosen to converge to standard basis vectors, so that ‖S(λ)‖ and ‖S−1(λ)‖
converge to 1 as λ→∞. This easily gives the estimate

‖[R(λ)− ζ]−1P0‖ ≤ C

dist(ζ,Σ(R(λ))
, |ζ| ≤ 1

4
.

Putting the pieces together we find

‖[R(λ)− ζ]−1‖ = ‖[R(λ)− ζ]−1[P0 + P1 + P−1‖
≤ ‖[R(λ)− ζ]−1P0‖+ ‖[R(λ)− ζ]−1P1‖+ ‖[R(λ)− ζ]−1P−1‖
≤ C

dist(ζ,Σ(R(λ))

as desired.
To conclude the proof, recall that R(λ) − RJ(λ) = O(m−J−1). Similar to the

argument about perturbations of the normal matrix R0, we find that |τl − τJl | =

O(m−J−1). Now Lemma 4.3 states that τl(λ)′ = ±1/(2mπ) + O(m−2) for λ ∈ δ̃m.
For some l, τl(λn,k) = 0, which implies τJl (λn,k) = O(m−J−1) or

|λn,k − λJn,k| = O(m−J).

The eigenvalue estimate of Corollary 4.2 for the Dirichlet boundary conditions
Y (0) = 0 = Y (1) was conjectured in [11] and served as the basis for development of
a trace formula. We develop an alternative approach to trace formulas of any order
based on Lemma 2.1 and some observations about the entire function det(T (λ)).

Suppose first that Q0 is diagonal and Q(x) ∈ C2. Since the determinant of R has
the form

det(R) =
∑
σ

K∏
k=1

(−1)sgn(σ)rk,σ(k),

the sum taken over permutations σ of 1, . . . ,K, each summand is either the product
of all the diagonal entries or has two off-diagonal factors. Each off-diagonal entry of R
is O(ω−2e|=ω|), so that any product in the determinant with two off-diagonal factors
is O(ω−4eK|=ω|).

This analysis may be improved when Q(x) ∈ CJ , and the expansions of Lemmas
3.1 and 3.2 refine the estimates (3b). Recall that pj(ω) is a trigonometric polynomial
of degree at most K if

pj(ω) =
K∑

k=−K
cke

ikω.

The next result summarizes the nature of det(T (λ)).
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Theorem 4.5. The function det(T (λ)) is an entire function of order 1/2. The
zeroes of det(T (λ)) are precisely the eigenvalues of (4a), and their orders agree with
the algebraic multiplicity of the eigenvalue. If Q(x) ∈ CJ , then for some integer L

det(T (λ)) = ωL
[ J∑
j=0

ω−jpj(ω) +O(ω−J−1eK|=ω|)
]
,

where the functions pj are trigonometric polynomials of degree at most K whose coef-
ficients are determined by the coefficients Aj(1), . . . , Dj(1), for j ≤ J of Lemmas 3.1
and 3.2. In particular if J ≥ 2, then

det(T (λ)) = ωL
[ K∏
k=1

ρk +O(ω−3eK|=ω|)
]
.

The only claim in Theorem 4.5 that requires further comment is that the order of
the zeroes of det(T (λ)) agrees with the algebraic multiplicity of the eigenvalues of (4a).
We sketch the argument. The claim is easy to check directly if Q(x) is diagonal and
all eigenvalues are simple. In the general case connect Q(x) to a diagonal coefficient
Q1(x) with all eigenvalues simple by an analytic path Q1(x) + z[Q(x)−Q1(x)]. The
eigenvalues (depending now on z) for (4a) may be partitioned into finite systems, and
for each system [7, p. 370] the eigenvalues are simple except for a finite set of z with
|z| < 2. As long as all the eigenvalues in a finite system remain simple, the result
holds by analytic continuation, and the exceptional points are handled by continuity.

We are now prepared to compute the traces appearing in Lemma 2.1.
Theorem 4.6. Suppose that Q(x), Q̃(x) ∈ CJ , J ≥ 2, and that the matrices

RJ(λ) and R̃J(λ) agree. The matrix Q0 is assumed to have distinct diagonal entries.
The respective eigenvalues µn and νn of the problems (4a) may be ordered such

that ∑
n

|µln − νln| <∞, l = 1, . . . ,

⌊
J

2

⌋
.

Moreover, the traces ∑
n

µln − νln

may be expressed as polynomials in the coefficients of the trigonometric polynomials
pj of Theorem 4.5.

Proof. The arguments of Theorem 4.4 show that there is a C1 > 0 such that the
eigenvalues µn and νn with magnitude greater than C1 may be paired by choosing the
closest member from the other sequence. In addition C1 may be chosen so that the
circle |λ| = C1 is in the resolvent set for all the operators −D2 +Q̃(x)+t[Q(x)−Q̃(x)]
for 0 ≤ t ≤ 1. It follows that the algebraic multiplicity for the system of eigenvalues
inside the circle is independent of t, and these eigenvalues µn and νn, represented
with algebraic multiplicity, may be paired arbitrarily.

With this indexing scheme Theorem 4.4 shows that

|µn − νn| = O(n−J).
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Since |µn| ≤ Cn2 we have∑
n

|µn − νn|[|µn|j−1−ε + |µn|j−1−ε] <∞,

as long as j ≤ (J + 2)/2 and ε > 1/2. Lemma 2.1 now applies to give the existence of
the traces.

By Theorem 4.5 and the Hadamard product theorem [1], the functions det(T (λ))

and det(T̃ (λ)) play the role of the functions f and g of Lemma 2.1. What remains,
then, is to compute the asymptotics for

log
(det(T (λ))

det(T̃ (λ))

)
as λ→ −∞ along the real axis. Divide det(T (λ)) and det(T̃ (λ)) by ωL exp(K|=ω|).
By Theorem 4.5 the expression

det(T (λ))

ωL exp(−iK=ω)

and the corresponding expression for T̃ are a sum of a polynomial in ω−1 of degree J
and terms that decay like O(ω−J−1) as λ → −∞. In addition, the order zero coeffi-
cients are not zero. The computations are completed using a power series expansion
for log(1 + z).

These techniques may be used to resolve a question [11] about the computation
of traces for systems of the form (4a) with the Dirichlet boundary conditions Yi(0) =
0 = Yi(1). In this case it is sufficient to assume that Q0 is similar to a diagonal matrix
since the application of the similarity transformation to (4a) will leave the boundary
conditions fixed.

Theorem 4.7. Suppose that Q ∈ C2 is real symmetric and the boundary con-
ditions Yi(0) = 0 = Yi(1) are used for the problem (4a). Let λn,k be the eigenvalues
with coefficient Q(x) and λ0

n,k be the eigenvalues with coefficient Q0. Then∑
n

∑
k

(λn,k − λ0
n,k) = tr

Q(1) +Q(0)− 2Q0

4
.

Proof. Consider the two functions T (λ) and T0(λ) associated, respectively, with
the coefficients Q(x) and its integral Q0. From (3b) the constants ck in the diagonal
entries ρk of R0(λ) are the diagonal entries αk of

2−2
[
Q(1) +Q(0)−

∫ 1

0

Q(t)

∫ t

0

Q(s) ds dt
]
,

for Q(x), and they are the diagonal entries βk = 2−1qk − 2−3q2
k of 2−1Q0− 2−3Q2

0 for
the diagonal matrix Q0. Theorem 4.5 shows that

det(T (λ))

det(T0(λ))
=

∏
k(1 + ω−2[2−3q2

k − αk]) +O(ω−3)∏
k(1 + ω−2[2−3q2

k − βk]) +O(ω−3)
,

and a Taylor expansion gives

log
( det(T (λ))

det(T0(λ))

)
= λ−1

∑
k

(βk − αk) +O(ω−3).
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By Corollary 4.2, the Dirichlet boundary conditions imply that |λn,k − λ0
n,k| =

O(n−2). Lemma 2.1 applies with 1/2 < ε < 1 to give∑
n

∑
k

(λn,k − λ0
n,k) =

∑
k

(βk − αk).

Notice that if A and B are symmetric matrices, then

(AB)ii =
∑
j

aijbji =
∑
j

ajibij =
∑
j

bijaji = (BA)ii.

Thus, if Q(t) is symmetric, the diagonal entries of
∫ 1

0
Q(t)

∫ t
0
Q(s) ds dt will agree

with those of
∫ 1

0

∫ t
0
Q(s) dsQ(t) dt. Differentiation gives

∂x

(∫ x

0

Q(t) dt

)2

= Q(x)

∫ x

0

Q(t) dt+

∫ x

0

Q(t) dtQ(x),

and integration shows that the diagonal entries of
∫ 1

0
Q(t)

∫ t
0
Q(s) ds dt are 2−1q2

k.
These common contributions drop out of the differences αk − βk, showing that∑

n

∑
k

(λn,k − λ0
n,k) = tr

Q(1) +Q(0)− 2Q0

4
.
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Abstract. In this paper we study the existence and stability properties of certain solutions
of a semilinear parabolic equation with Robin boundary conditions. We are actually interested
in solutions that exhibit both boundary and internal layers. We give an extension of the Sturm–
Liouville theory to treat this problem and compute the number of stable solutions. We also completely
determine the attractor for a few examples. Finally, we show that our results are robust and that,
in particular, the structure of these attractors persist under small perturbations.
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1. Introduction. If u(x, t) is a smooth function, we let u̇ = ∂u/∂t, u′ = ∂u/∂x,
u′′ = ∂2u/∂x2. We are interested in the study of the flow defined by the scalar
reaction diffusion equation

u̇ = ε2u′′ + f(x, u), 0 < x < 1, t ≥ 0, ε > 0,(1)

with the boundary conditions{
α0u(0, t)− (1− α0)u′(0, t) = β0,
α1u(1, t) + (1− α1)u′(1, t) = β1,

(2)

where 0 ≤ α0, α1 ≤ 1 and β0, β1 are real constants.
The function f is assumed to be smooth in u and we consider the solutions of (1)

with initial value in H1(0, 1). We suppose also that f satisfies a dissipative condition
for large u which will ensure that there is a compact global attractor. This will be
the case, for example, if f and u have opposite signs for large values of |u|. A typical
example and the one that will be the center of our attention in this paper is the case
where f is a cubic polynomial in u and is given explicitly by

f(x, u) = u(1− u)(u− c(x)), 0 < c(x) < 1.(3)

Zelenyak [14] proved that the ω-limit set of each solution of (1) is an equilibrium
point; that is, a solution of the equation

ε2u′′ + f(x, u) = 0, 0 < x < 1, t ≥ 0, ε > 0,

with the boundary conditions (2).
For homogeneous boundary conditions (2) (β0 = β1 = 0) and f(x, u) independent

of x, it is a consequence of results of Yanagida [13] that any nonconstant equilibrium
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solution u of (1) is unstable if it has the property that there are two values in [0, 1]
for which u′ = 0.

In particular, if we take homogeneous Neumann boundary conditions (α0 = α1 =
0), we deduce that any nonconstant equilibrium solution is unstable. Therefore, the
stable solutions of (1) with homogeneous Neumann boundary conditions are the zeros
of f(u) which are stable as solutions of the ODE u̇ = f(u). In particular, for the
cubic in (3) with c(x) = c0 ∈ (0, 1) with c0 constant, the only stable solutions are the
constant functions 0 and 1.

If we consider (1) and (3) with homogeneous Neumann boundary conditions and
allow c(x) to depend upon x but still belong to the open interval (0, 1), then the
problem becomes much more complicated, and there are situations where it is possible
to obtain stable nonconstant equilibrium solutions. In fact, suppose that c ∈ C1([0, 1])
with c 6= 0, c′ 6= 0 at x = 0, x = 1 and, if c(x) = 1/2, then c′(x) 6= 0. If c(x) = 1/2 at
M points in the interval (0, 1), then there is an ε0 > 0 such that, for every ε ∈ (0, ε0);
there is exactly the Mth Fibonacci number of stable solutions (Angenent, Mallet-
Paret, and Peletier [1]). A stable nonconstant solution u has the property that, if it
takes the value 1/2 near some point x0 where c(x0) = 1/2, then it develops a sharp
transition layer at x0 as ε→ 0 and c′(x0)u′(x0) < 0. There are equilibrium solutions
u0 for which there is a sharp transition layer as above at x0 and c′(x0)u′(x0) > 0 (Hale
and Sakamoto [6]). Kwapisz [8] has obtained some extensions to the case where the
graph of c and the graph of the constant function 1/2 are not transversal. Kurland
[7] proved that there could be highly oscillatory solutions (automatically unstable) at
the points where c = 1/2.

If the function c(x) is a step function, Rocha [12] has obtained the same result
as Angenent, Mallet-Paret, and Peletier [1] with the number M being the number of
times that the function c jumps across 1/2. His method also allows one to obtain
all of the equilibrium solutions since it is based upon phase plane methods. In this
case, under certain conditions on the jumps, the number of equilibrium solutions is
bounded independently of ε in contrast to the situation for smooth functions c.

In this paper, we consider the case with c a step function and the general bound-
ary conditions (2). The objective is to understand how the index of an equilibrium
point depends upon the boundary conditions. As we will see, there are limitations on
the number of stable equilibrium solutions as well as the total number of equilibrium
solutions. We follow the methods of Rocha [11, 12], making the appropriate gener-
alizations to the more general boundary conditions. The main result is contained in
Theorem 3.3. We also give numerical results which indicate the method used to obtain
the solutions as well as yield the permutation matrix of Fiedler and Rocha [4] which
gives the manner in which the equilibrium points are connected by heteroclinic orbits.
Fiedler and Rocha [3] also have shown that this connection matrix characterizes the
topological properties of the flow on the compact global attractor; that is, if c1, c2
have the same connection matrix, then the flows on the compact global attractors are
topologically equivalent.

Although our cubic nonlinearity (3) depends on x, we have that for every value
of x, f(x, 0) = f(x, 1) = 0. Also note that since

fu(x, u) = −3u2 + 2(c(x) + 1)u− c(x),

the derivatives with respect to u of f at u = 0 and at u = 1 are

fu(x, 0) = −c(x) and fu(x, 1) = c(x)− 1,

so they are both negatives due to (3).
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As we said before, this problem has a gradient structure that guarantees that the
attractor consists of equilibrium solutions and their unstable manifolds. Also, it is
known that the ω-limit set of any bounded solution is a singleton [9, 14]. Thus, in order
to gain information about the dynamics of this problem, we are going to concentrate
our attention on the stationary solutions. They verify the following boundary value
problem for u = u(x) (0 ≤ α0, α1 ≤ 1; β0, β1 ∈ R): ε2u′′ + f(x, u) = 0, 0 < x < 1, ε > 0,

α0u(0)− (1− α0)ux(0) = β0,
α1u(1) + (1− α1)ux(1) = β1.

(4)

2. Sturm–Liouville properties. Following Rocha [11, 12], we are going to
characterize the existence and hyperbolic nature of the equilibria of (1) in the case
of homogeneous conditions, by defining some appropriate angles in the phase planes
corresponding to (4) and its variational equation as is done is the classical Sturm–
Liouville theory. For the nonhomogeneous case, we will be able to define only the
angle corresponding to the variational equation. Since the results are identical, we
will write a(x) instead of ε2, where a : [0, 1]→ R with a(x) > 0.

Thus, in most of this section we are going to be concerned with the study of the
equilibria of the problemut = (a(x)ux)x + f(x, u), 0 < x < 1,

α0u(0)− (1− α0)ux(0) = 0,
α1u(1) + (1− α1)ux(1) = 0.

(5)

Let us represent by E the set of stationary solutions of (5). Thus, if u = u(x) ∈ E ,
then u will have to satisfy (a(x)u′)′ + f(x, u) = 0, 0 < x < 1,

α0u(0)− (1− α0)ux(0) = 0,
α1u(1) + (1− α1)ux(1) = 0

(6)

for 0 ≤ α0, α1 < 1. The cases in which α0 or α1 are equal to 1 will be considered in
a remark at the end of this section.

In order to study this boundary value problem, we are going to set up a shooting
method and for that we will work with the equivalent first-order system of equations{

ux = v/a(x), vx = −f(x, u);
u(0) = u0, v(0) = α0u0/(1− α0).

(7)

The maximum principle allows us to conclude that the equilibria are in the interval
[0, 1]. Therefore, we need only consider u0 ∈ [0, 1]. Changing to polar coordinates
u := p cos q, v := −p sin q, the angle q := q(x, u0) will satisfy{

qx = sin2 q/a(x) + (1− u)(u− c(x)) cos2 q, 0 < x < 1,
q(0, u0) = q0,

(8)

where −π/2 < q0 < 0 is the corresponding initial angle that verifies tan q0 = −α0/(1−
α0).

If we define σ(u0) := q(1, u0), then σ : [0, 1]→ (−π/2,+∞) and we arrive at the
following proposition.
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Proposition 2.1. The set of nontrivial equilibria of (5) is in one-to-one corre-
spondence with the set

{u0 : σ(u0) = q1 + kπ, k ∈ N ∪ {0}},

where tan q1 = α1/(1− α1).
Proof. This is a simple consequence of the flow direction of (8) and the general

Sturm–Liouville theory.
We can apply a similar analysis to the variational equation{

ηx = µ/a(x), µx = −fu(x, u)η;
η(0) = 1, µ(0) = α0/(1− α0),

(9)

where η := du/du0 and µ := a(x)ηx. If we make the change to the polar coordinates
η := ψ cosφ, µ := −ψ sinφ, then the angle φ will verify{

φx = sin2 φ/a(x) + fu(x, u) cos2 φ, 0 < x < 1,
φ(0, u0) = q0.

(10)

Now we define the function θ(u0) := φ(1, u0), so θ : [0, 1] → (−π/2,+∞). This
function will allow us to determine the stability properties of the equilibria of (5) as
stated in the following theorem.

Theorem 2.2. An equilibrium point u = u(·, u0) of (5) is hyperbolic if and only
if θ(u0) 6= q1 + kπ for any k ∈ N ∪ {0}. Moreover, if Wu(u) denotes the unstable
manifold of u = u(·, u0) ∈ E and u is hyperbolic, then

dimWu(u) = 1 +

[
θ(u0)− q1

π

]
,

where [·] represents the integer part. Consequently, u = u(·, u0) ∈ E is hyperbolic and
asymptotically stable if and only if θ(u0) < q1.

Proof. These results are a consequence of comparing the variational problem (9)
with the eigenvalue problem for λ = 0 around an equilibrium solution u = u(x, u0)
(u 7−→ u+ w)  (a(x)w′)′ + fu(x, u)w = λw, 0 < x < 1,

α0w(0)− (1− α0)wx(0) = 0,
α1w(1) + (1− α1)wx(1) = 0;

(11)

written as a first-order system with ν = a(x)wx,{
wx = ν/a(x), νx = (λ− fu(x, u))w;
w(0) = w0, ν(0) = α0w0/(1− α0),

and then changed to polar coordinates (w := z cos ζ, ν := −z sin ζ) to obtain{
ζx = sin2 ζ/a(x) + (λ− fu(x, u)) cos2 ζ, 0 < x < 1,
ζ(0, λ) = q0, ζ(1, λ) = q1 + nπ.

Thus for λ = 0 the eigenvalue angle equation is identical to (10).
In order to prove the rest of the theorem, we have to recall from the Sturm–

Liouville theory (see [2]) that ζ(1, λ) is a strictly decreasing function of λ and that
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the eigenvalues are ordered by the number of zeros of their corresponding eigenfunc-
tions.

Additionally, we can obtain the following characterizations of the nonhyperbolic
equilibria in terms of the end-point angles σ and θ.

Lemma 2.3. Let u = u(·, u0) be an equilibrium point not identically zero. Then
θ(u0) = q1 + kπ if and only if σ′(u0) = 0.

Lemma 2.4. A critical point u0 of σ (that is, σ′(u0) = 0) is nondegenerate (so
σ′′(u0) 6= 0) if and only if θ′(u0) 6= 0.

Proof. If we make the following changes to polar coordinates: for u = u(x, u0),
v = a(x)ux, η = du/du0, and µ = a(x)η, we have{u = p cos q,

v = −p sin q,

{
η = ψ cosφ,
µ = −ψ sinφ.

Differentiating the first two equations with respect to u0 and equating them with
respect to the second ones, we deduce that

∂p

∂u0
cos q − p sin q

∂q

∂u0
= ψ cosφ,

∂p

∂u0
sin q + p cos q

∂q

∂u0
= ψ sinφ,

which, eliminating ∂p/∂u0 in these equations and setting x = 1, leads us to

rσ′ = ρ sin(θ − σ),(12)

where r(u0) := p(1, u0) and ρ(u0) := ψ(1, u0). Because (0, 0) is an equilibrium point
of (7) and (9), r and ρ cannot be zero if u(x, u0) is not identically zero. Thus if
u(x, u0) is an equilibrium point then σ(u0) = q1 + kπ; if we assume θ(u0) = q1 + kπ
also, then sin(θ − σ) = 0 and vice versa. From here we can obtain the conclusion of
Lemma 2.3.

If now we differentiate (12) with respect to u0, we will get

rσ′′ = ±ρθ′

for any critical point of σ. From here, the conclusion of Lemma 2.4 is clear.
Let us now define the lifted manifold M to be the solution manifold M =

{(x, u, v) : u = u(x, u0), v = v(x, u0) for u0 ∈ [0, 1]}. Let us also define Ly to be
the section curve ofM at x = y. Then the function σ is the angle that a point of the
curve L1 makes with the u-axis and θ corresponds to the angle of the tangent at that
point. See Figure 1.

We can obtain similar results to the previous ones if we consider the backward
shooting method {

ūx = v̄/a(x), v̄x = −f(x, u);
ū(1) = u0, v̄(1) = −α1u0/(1− α1).

(13)

Then if we define M̄ and L̄y relative to problem (13), we can prove the following
proposition.

Proposition 2.5. There is a one-to-one correspondence between the set of equi-
libria E and the set Ly ∩ L̄y for any y ∈ [0, 1].
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1 u

v

1

0

σ

θ

x

L1

Fig. 1. Time map L1.

Finally, we obtain stability information about a particular equilibrium u = u(·, u0)
by looking at the intersection Ly ∩ L̄y. Actually, let φ̄ = φ̄(x, u0) be the angle
corresponding to the backward version of the variational problem (10) which has the
initial value φ̄(1, u0) = q1. If we now define Ω(y, u0) = φ(y, u0) − φ̄(y, u0), we can
conclude the following.

Theorem 2.6. An equilibrium point u = u(·, u0) of (5) is hyperbolic if and only
if Ly transversally intersects L̄y for any y ∈ [0, 1]. Moreover, if Wu(u) denotes the
unstable manifold of u = u(·, u0) ∈ E and u is hyperbolic, then

dimWu(u) = 1 +

[
Ω(y, u0)

π

]
at any y ∈ [0, 1], where [·] represents the integer part. Consequently, u = u(·, u0) ∈ E
is hyperbolic and asymptotically stable if and only if Ω(y, u0) < 0 at any y ∈ [0, 1].

Proof. Observe that Ω(1, u0) = θ(u0)−q1. Let us prove first that if the intersection
is not transversal at a certain y ∈ [0, 1], then Ω is constant in y.

We can rewrite the equation for Ω

Ωy =
sin2 φ− sin2 φ̄

a(x)
+ fu(x, u)(cos2 φ− cos2 φ̄)

in the following way:

Ωy =

[
fu(x, u)− 1

a(x)

]
[cos2 φ− cos2(φ− Ω)].

If for any point y, Ω(y, u0) = kπ, then Ωy = 0. Thus the angle Ω will be constant
in y. But then θ(u0) = kπ + q1, which implies that u is not hyperbolic, against our
assumptions. Consequently, [

Ω(y, u0)

π

]
=

[
Ω(1, u0)

π

]
for any y ∈ [0, 1]. Now we can get the rest of the stated conclusion by applying
Theorem 2.2.
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Remark. For the nonhomogeneous case, we cannot define an angle similar to σ.
But the variational equation (9) remains unchanged and (11) is still the eigenvalue
problem in this case. Thus we can still claim the thesis of Theorems 2.2 and 2.6.

On the other hand, for Dirichlet boundary conditions, the maximum principle
again tells us that the equilibria are in the interval [0, 1]. Thus if α0 = 1 or α1 = 1
then we will assume that β0 ∈ [0, 1] or β1 ∈ [0, 1], respectively.

If α0 = 1, we should change the initial values for our shooting method to

u(0) = β0, v(0) = v0.(14)

Then v0 would substitute u0 as our “shooting” parameter (which would imply that
the initial values for the variational equation (9) now would be η(0) = 0, µ(0) = 1).
The results presented in this section would still hold true for q0 = −π/2.

If α1 = 1, we would have to impose an initial value like

u(1) = β1, v(1) = v1

to the backward initial value problem (13). Then q1 = π/2 and the results presented
in this section would be unchanged otherwise.

In the next section we are going to study a case in which c(x) is a discontinuous
function. That will not alter Propositions 2.1 and 2.5 or Theorems 2.2 and 2.6,
because they are based on comparisons between angle equations.

3. Discrete space dependence. Let us now assume that c = c(x) : [0, 1]→ R
is a step function defined in the following way: c takes the value ci ∈ (0, 1) r {1/2}
in the intervals [xi, xi+1], i = 0, 1, . . . ,m; where 0 = x0 < x1 < · · · < xm < xm+1 = 1.

In each interval [xi, xi+1], the boundary value problem (4) is a Hamiltonian
system, so the orbits of the stationary solutions correspond to the level curves of
H = H(u0, u1, ci):

H(u0, u1, ci) =
1

2
(u′)2 +

∫ u1

u0

u(1− u)(u− ci) du.(15)

The linearization of (4) in each interval [xi, xi+1] is given by the matrix(
0 1

−fu(x, u) 0

)
,

so the eigenvalues λ(u) and eigenvectors at u = 0 and u = 1 are

λ(0) = ±√ci : (1,±√ci)T ,(16)

λ(1) = ±√1− ci : (1,±√1− ci)T .(17)

The typical phase portraits (u, u′) for different values of ci are shown in Figure 2.
As we can see, for ci = 1/2, there is a heteroclinic orbit connecting the saddle points
0 and 1. For other values of ci, there is a homoclinic orbit connecting 0 (resp., 1)
with itself if ci < 1/2 (resp., ci > 1/2). We will label γ(ci) the point at which the
homoclinic orbit crosses the axis u′ = 0.

It is easy to compute γ(c) as a function of c by using the expression (15). In fact,
it can be shown that

γ(c) =

{
(2 + 2c−√4− 10c+ 4c2)/3 if c < 1/2,
(−1 + 2c+

√
2
√−1 + c+ 2c2)/3 if c > 1/2.

(18)
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(a) c < 1/2 (b) c = 1/2 (c) c > 1/2

Fig. 2. Phase portraits for different values of c.

We now want to discuss the existence and stability implications of boundary
layers at x = 0 and x = 1. If α0 and α1 are different from 1 and ε is small enough,
the situation is basically the same as that of homogeneous Neumann conditions. We
can see this by making the change x = εy, in which case the left boundary condition
becomes

ε α0 u(0)− (1− α0)uy(0) = ε β0.

Therefore, as in the Neumann case, we can have solutions of (4) which do not
exhibit any boundary layer; we also can have solutions with a boundary layer if
u0 = γ(c1), as it is obvious from Figure 2 (namely, the boundary layer would be the
upper half of the homoclinic solution).

Nevertheless, the presence of a boundary layer will make the solution unstable.
Proposition 3.1. If α0 6= 1 (resp., α1 6= 1), for any δ > 0 there is ε0 > 0

such that for ε ∈ (0, ε0) all the equilibria u = u(·, u0) ∈ E with u0 ∈ [δ, 1 − δ] (resp.,
u(1, u0) ∈ [δ, 1− δ]) are unstable.

Proof. Let us assume α0 6= 1 and c1 > 1/2. (The case c1 ≤ 1/2 can be discussed
in a similar way.) In order to analyze what happens in the left boundary layer, let
us make the change of variables x = εy in which case we are dealing with the initial
value problem: {

uyy + u(1− u)(u− c1) = 0, 0 < y < x1/ε,
ε α0u(0)− (1− α0)uy(0) = ε β0.

(19)

Since u(0) must be a number between 0 and 1, if ε is very small, then uy(0) must
be very small in order to verify the initial condition of (19). Also, the initial conditions
of the variational equation (9) are going to be

η(0) = 1, µ(0) = ε α0/(1− α0).

Thus, for ε small enough, µ(0) is going to be as small as we wish.
Following Rocha [12], we are going to denote by U a small neighborhood of (1, 0),

and by Γu and Γs the connected components of the unstable and stable manifolds
of (1, 0) inside U . The λ-lemma shows us (see [10]) that, for y = x1/ε with ε small
enough, the curve Ly has a nonempty intersection with U and that Ly ∩ U and Γu
are Ck-close manifolds for any k ≥ 1. Let us denote by (ζ0, ζ1), with ζ0 = ζ0(ε) and
ζ1 = ζ1(ε), the interval of initial values corresponding to the set Ly ∩U that includes
γ(c1).
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Now, it is clear from (10) that for u0 ∈ (ζ0, ζ1), we have φ(y, u0) > π/2 and
consequently, by Theorem 2.2, the stationary solution u(x, u0) is unstable. On the
order hand, the solutions with u0 ∈ [δ, ζ0] leaves the interval [0, 1] for x ∈ [0, x1) if ε
is small enough. Finally, the solutions with u0 ∈ [ζ1, 1 − δ], wind around (c1, 0) and
therefore cannot be stable (φ(y, u0) > π/2, again).

The situation for Dirichlet boundary conditions (α0 = 1 or α1 = 1) is richer,
because a solution must have boundary layers if β0 and β1 are not 0 or 1. Actually,
if α0 = 1, for any β0 ∈ (0, 1), we may have solutions that exhibit a boundary layer
on the left end point of the interval that goes from β0 to 0 (resp., from β0 to 1) if
c1 ≥ 1/2 (resp., c1 ≤ 1/2); namely, a piece of the stable manifold of 0 (resp., 1).
Analogous things can happen at the right end of the interval (0, 1) but in the reverse
sense. In addition to this, if c > 1/2 (resp., c < 1/2), we can also have a left boundary
layer that is a piece of the corresponding homoclinic orbit and starts at β0 and ends
at 1 (resp., 0), or in the reverse sense for a right boundary layer. These layers may
exist if we have the following.

1. Condition D0: For a left boundary layer,
(i) c1 > 1/2 and γ(c1) < β0 < 1, or
(ii) c1 < 1/2 and 0 < β0 < γ(c1).
2. Condition D1: For a right boundary layer,
(i) cm > 1/2 and γ(c1) < β1 < 1, or
(ii) cm < 1/2 and 0 < β1 < γ(c1).

They can be monotone or reach γ(c1) before getting at 1 (resp., 0), but now, only the
nonmonotone layers introduce instability.

Lemma 3.2. If u ∈ E is such that it has a nonmonotone boundary layer at x = 0
or x = 1 or both, then u is unstable.

Proof. As it was discussed in the proof of Proposition 3.1, just observe that if
u has to wind around the homoclinic orbit, then the angle φ(x, u0) corresponding to
the variational equation (9) would be greater than π/2, so the solution u = u(x, u0)
would be unstable.

Now let us analyze what happens in the interior part of the interval (0, 1). At the
beginning, after a possible boundary layer, the solutions that we are considering are
located close to u = 0 or u = 1. Let us study the case of a solution that jumps between
0 and 1, n times in (0, 1). Let us denote by {x̄1, x̄2, . . . , x̄n} ⊂ {x1, x2, . . . , xm} the
jumping points. Let us also call x̄0 := 1 and x̄n+1 := 1. Then we can prove the
following result.

Theorem 3.3. There is an ε0 > 0 such that for every ε ∈ (0, ε0) the number Nn
of stable solutions of (1) follows a Fibonacci sequence (that is, Nk = Nk−1+Nk−2, k =
2, 3, . . .) that starts with

1. N0 = 2, N1 = 3; if α0 6= 1 and α1 6= 1 or if αi = 1 then the condition Di is
verified, for i = 0, 1.

2. N0 = 1, N1 = 2; if either
(i) α0 = 1 and the condition D0 is not verified but if α1 = 1 then condition D1

is verified; or
(ii) α1 = 1 and the condition D1 is not verified but if α0 = 1 then condition D0

is verified.
3. N0 = 1, N1 = 1; if α0 = α1 = 1 and neither D0 nor D1 are verified.

Furthermore, as ε ↓ 0, u approaches 0 or 1 in each open interval (x̄i, x̄i+1) with
i ∈ {0, . . . , n} and it has a monotone transition layer at x̄i only if

[c(x̄+
i )− c(x̄−i )] ux(x̄i) < 0.
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Proof. As before, let us assume that c1 > 1/2. The other case can be dealt with
by a similar analysis. Also, we are going to consider only the subcase (i) in 2 because
we can apply the same analysis to (ii) by going backwards in time.

In situations 2 and 3 of Theorem 3.3, we have a unique stable solution that may
exhibit a left boundary layer that goes from β0 to 0 or may just stay around zero,
depending on the initial condition. If there are no changes in the value of c = c(x),
there cannot be other stable solutions, so N0 = 1 (in both cases, there may be an
end-point boundary layer from 0 to β1). In case 1, in addition to the previous one, we
have another stable solution that may exhibit a left boundary layer that goes from β0

to 1 monotonically or just remains close to 1, depending also on the initial condition.
Thus N0 = 2 in this case.

We can now consider a small neighborhood V of (0, 0) similar to U , the small
neighborhood of (1, 0) used in the proof of Proposition 3.1. If at x1 < 1 the function
c jumps to a value c2 > 1/2, no new stable solutions are introduced. But if c2 < 1/2,
then we can have a stable solution that exhibits an internal layer from 0 to 1, because
the new stable manifold of the equilibrium (1, 0) has a transversal intersection to the
previous unstable manifold of the origin (and the point of intersection is unique). The
λ-lemma shows us that for y = x̄2/ε, Ly∩U is nonempty and it is Ck-closed to Γu∩U ,
the piece of the unstable manifold of (1, 0) inside U .

This solution with an internal transition will be stable because the angle cor-
responding to its variational equation is negative. (Observe that Ly ∩ U intersect
transversally with L̄y ∩ U .)

If there are no more jumps in c, we have that N2 = 3 if we are in situation 1, and
N2 = 2 if we are in situation 2; in both cases, there actually exists a solution that
exhibits an internal layer because it can satisfy any boundary condition at the end
point either by staying at 1 or by having a left homoclinic boundary layer to β1 (by
the hypothesis in 2, if we have a Dirichlet end-point condition, the line x = β1 must
cross the homoclinic orbit of (1, 0)). But there is no way of getting to β1 from 0 in
case 3. Thus the only stable solution in 3 is the one with the internal transition from
0 to 1.

We can proceed doing the same analysis at every jumping point. Actually, at
each x̄k, there will be a new transversal intersection between the unstable manifold
of one of the equilibrium points (0, 0) or (1, 0), and the stable manifold of the other
one. This allows the solutions that are close to the first equilibrium point either to
stay there or cross to the other equilibrium point without losing their stability.

Thus let us denote by NU
k and NV

k the number of intersections existing at the
jump point x̄k in the neighborhoods U and V , respectively. Let us assume that the
jump crosses 1/2 positively, that is, c(x̄+

k )− c(x̄−k ) > 0. Then

NV
k+1 = NV

k +NU
k ,

NU
k+1 = NU

k .

Moreover, since the jump at x̄k−1 has the opposite sign, we have

NV
k = NV

k−1,

NU
k = NU

k−1 +NV
k−1.

Now, in cases 1 and 2, we can verify the end-point boundary condition either from 0
or 1. Thus Nk = NU

k +NV
k , and then we have

Nk+1 = NU
k+1 +NV

k+1 = NU
k +NV

k +NU
k = Nk +NU

k−1 +NV
k−1.
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Consequently, Nk+1 = Nk + Nk−1. In case 3 only the solutions that are close to 0
after the jump k + 1 will be able to verify the end-point boundary condition. Thus

Nk+1 = NV
k+1 = NV

k +NU
k = NV

k−1 +Nk = Nk−1 +Nk,

and this finishes the proof.
We can also study the existence of solutions that exhibit nonmonotone boundary

layers. They are going to exist in cases 1 and 2 of Theorem 3.3. Their Morse index
(dimension of the unstable manifold) is at least 1, due to the nonmonotonicity of the
boundary layer. In case 1 of Theorem 3.3, we can even have solutions that exhibit
two nonmonotone boundary layers (consequently, their Morse index will be at least
2).

4. Some examples. It is very difficult to determine the existence and stability
properties of the unstable solutions of (1) in the same way that we did with the stable
ones in Theorem 3.3, because in these problems there are several sources of unstable
solutions. Thus we are going to study some particular examples taken from [11], in
order to determine completely both the attractors and the flow in them.

The first example analyzed in [11] has as c(x) the step function (n = 1)

c(x) =

{
1/2 + c1, x < c3,
1/2− c2, x ≥ c3,(20)

where c1, c2 ∈ (0, 1/2) and c3 ∈ (0, 1). Thus c(x) has a negative jump at x = c3 from
1/2 + c1 to 1/2− c2. A similar example can be constructed by using a c̄(x) = c(−x)
which exhibit a positive jump.

Across this jump at x = c3, the phase diagram changes from having a homoclinic
orbit around u = 1 to having another one around u = 0. As we did before, we are
going to denote the intersection of the homoclinic orbit, that exists around zero for
x ≥ c3, with the u-axis by γ(c2). But for x < c3, we will represent the corresponding
intersection by 1−γ(c1). Thus if we have that γ(c1) +γ(c2) ≤ 1 then there is at most
a contact point between the two homoclinic orbit. Having this in mind, we state the
following theorem.

Theorem 4.1. Consider the equation (1), with boundary conditions (2) and c(x)
defined as in (20). If c1 and c2 satisfy the condition γ(c1) + γ(c2) ≤ 1, then there
exists ε0 such that for every ε ∈ (0, ε0) the attractor of this problem can be represented
by a linear segment (see Figure 3) and is described as follows:

1. For the case in which α0 6= 1 and α1 6= 1 or if αi = 1, then the condition Di
is verified for i = 0, 1; we have that the attractor has exactly 5 stationary solutions:
3 stable ones and 2 unstable ones. The unstable ones have Morse index 1, and the
unstable manifolds of each unstable solution are made of two heteroclinic orbits, one
connecting to the equilibrium that exhibits a monotone internal transition from 0 to
1, and the other to one of the other stable solutions.

2. For the case in which either
(i) α0 = 1 and the condition D0 is not verified, but if α1 = 1, then condition

D1 is verified, or
(ii) α1 = 1 and the condition D1 is not verified, but if α0 = 1, then condition

D0 is verified;
the attractor has exactly 3 stationary solutions: 2 stable ones and 1 unstable one. One
of the stable solutions exhibits a monotone internal transition from 0 to 1, and the
unstable solution has Morse index 1. The unstable manifold of the unstable solution
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is made of two heteroclinic orbits, one connecting to the equilibrium that exhibits a
monotone internal transition layer from 0 to 1, and the other one to the other stable
solution.

3. For the case in which α0 = α1 = 1 and neither D0 nor D1 are verified,
the attractor is made of a unique stable solution that exhibits a monotone internal
transition from 0 to 1.

S

S

S

S

S S

U

U

U

Case 2(a)

Case 1

Case 3

Fig. 3. Attractors of Theorem 4.1.

Proof. Let us analyze the last case first. In case 3, we have Dirichlet boundary
conditions at both ends of the interval and both of the end points are outside the
homoclinic orbits of their corresponding phase portraits (see Figure 4). By the λ-
lemma, the time maps Ly and L̄y are Ck-close to the unstable manifold of 0 before
the jump in c(x) and the stable manifold of 1 after the jump, respectively. Thus Ly
and L̄y have only one intersection that is going to be close to the intersections of these
invariant manifolds. Consequently, the intersection angle Ω(y, v0) is going to be very
close to the angle of the intersection of the invariant manifolds.

In order to determine the sign of the intersection angle between the unstable
manifold of 0 before the jump in c(x) and the stable manifold of 1 after the jump, let
us write down the orbital equation that can be obtained from (7),

dv

du
= −f(x, u)

v
.

Thus the difference in the derivatives at an intersection point (u∗, v∗) of the invariant
manifolds is

dv1

du1
− dv2

du2
= −f2(x, u∗)− f1(x, u∗)

v∗
=
u∗(1− u∗)

v∗
(c2 + c1) > 0.(21)

The angle at the intersection point of the two invariant manifolds is negative in the
sense defined by Theorem 2.6. Then the stationary solution corresponding to the
unique intersection of Ly and L̄y is stable (thus this is the only stationary solution
in this case, which we already knew from Theorem 3.3). This solution exhibits an
internal transition layer between 0 and 1.
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Fig. 4. Numerical approximations of the time maps Ly (dashed line) and L̄y (dotted line) in
case 3 with β0 = 0.55, β1 = 0.45, and c1 = c2 = 0.25.

This solution also is going to exist in the other cases and is always going to be
stable (this can be proven in the same fashion as before). In case 2, say (i), the initial
condition is also of Dirichlet type, but the initial point β0 is now inside the homoclinic
orbit that exists around 1 for c(x) = c1. This produces a more complicated geometry
for the forward time map. By again using the λ-lemma, we can conclude Ly is still
going to be Ck-close to the unstable manifold of 0 before the jump in c(x), but then it
will have to curve around, get close to the unstable manifold of 1 before the jump, turn
around again inside the homoclinic orbit, and get close again to the unstable solution
of 1 before the jump (see Figure 5). This introduces two new crossings between Ly
and L̄y because the backward time map L̄y is Ck-close to the unstable manifold of 1
for c(x) = c2 (it will include the point (1, 0) if the end-point boundary condition is of
Neumann type).

The closest intersection to zero corresponds to a stable equilibrium while the
other intersection nearby corresponds to an equilibrium that is unstable (it exhibits a
nonmonotone boundary layer). We can see this by using formulas (16) and (17) that
directly give us

arctan
√

1/2− c1 − arctan
√

1/2 + c2,

as the angle between the two corresponding invariant manifolds at their intersection
point, which is negative in the sense defined by Theorem 2.6. Thus the first inter-
section corresponds to a stable solution. The second one is unstable because the
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Fig. 5. Numerical approximations of the time maps Ly (dashed line) and L̄y (dotted line) in
case 2(i) with β0 = 0.65, β1 = 0.45, and c1 = c2 = 0.25.

intersection angle is increased at least by 2π with respect to the previous one. We
could have gotten the same conclusion by analyzing (21).

Finally, in case 1, we have a similar situation to the right side of case 2(i), but now
in both ends. Consequently, we have a total of 5 equilibria: 3 stable and 2 unstable
(see Figure 6). If the boundary conditions are of Neumann type, then two of the
stable intersections between Ly and L̄y happen at the points (0, 0) and (1, 0), which
are the end points of Ly and L̄y. Otherwise, they happen nearby and they are true
crossings.

To determine the connections, we can use the method describe in [4]. In this case,
we have to use a permutation matrix formed by the derivatives of the solutions at
x = 0 and x = 1. The computation is straightforward.

As ε decreased, the geometry of the time maps inside the homoclinic orbits be-
comes more complicated. But we know that there are at most two intersections
between a time map and the corresponding homoclinic orbit. Outside the homo-
clinic orbits, the time maps behave much more nicely, approaching the corresponding
invariant manifolds of 0 and 1, more and more as ε ↓ 0.

An example with two jumps in c(x) can be also analyzed. Let c(x) be the step
function (n = 2)

c(x) =

 1/2 + c1, x < c3,
1/2− c2, c3 ≤ x < c5,
1/2 + c4, c5 ≤ x,

(22)
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Fig. 6. Numerical approximations of the time maps Ly (dashed line) and L̄y (dotted line) in
case 1 with β0 = 0.65, β1 = 0.3, and c1 = c2 = 0.25.

where c1, c2, c4 ∈ (0, 1/2) and c3, c5 ∈ (0, 1). Therefore c(x) has a negative jump at
x = c3 from 1/2 + c1 to 1/2 − c2 and a positive jump at x = c5 from 1/2 − c2 to
1/2 + c4. We can now state the following theorem. (Here, γ(c3) is defined as γ(c1) in
Theorem 4.1.)

Theorem 4.2. Consider (1), with boundary conditions (2) and c(x) defined as in
(22). If c1, c2, and c4 satisfy the conditions γ(c1) + γ(c2) ≤ 1 and γ(c2) + γ(c4) ≤ 1,
then there exists ε0 such that for every ε ∈ (0, ε0) the attractor of this problem can be
represented as in Figure 7 and is described as follows:

1. For the case in which α0 6= 1 and α1 6= 1 or if αi = 1 then the condition Di
is verified for i = 0, 1; we have that the attractor has exactly 11 stationary solutions:
5 stable ones, 5 unstable ones of Morse index 1, and 1 unstable one of Morse index
2. The unstable manifolds of the unstable stationary solutions of Morse index 1 are
made of two heteroclinic orbits which connect them with the stable solutions next to
them. The unstable stationary solution of Morse index 2 is connected with all the
other equilibria except two of them, forming a “racquet”-like attractor (see Figure 7).

2. For the case in which either
(i) α0 = 1 and the condition D0 is not verified but if α1 = 1 then condition D1

is verified, or
(ii) α1 = 1 and the condition D1 is not verified but if α0 = 1 then condition D0

is verified,
we have that the attractor has exactly 5 stationary solutions: 3 stable ones and 2
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Fig. 7. Attractors of Theorem 4.2.

unstable ones. The unstable ones have Morse index 1 and the unstable manifolds
of each unstable solutions are made of two heteroclinic orbits, one connecting to the
equilibrium that exhibits two monotone internal transitions (one from 0 to 1 and the
other back from 1 to 0), and the other one connecting to one of the other stable
solutions.

3. For the case in which α0 = α1 = 1 and neither D0 nor D1 are verified; we
have that the attractor is made of 3 stationary solutions: 2 stable ones and 1 unstable
one. One of the stable ones exhibits two monotone internal transitions (one from
0 to 1 and the other back from 1 to 0), and the unstable one has Morse index 1.
The unstable manifold of the unstable solution is made of two heteroclinic orbits that
connect it to the stable solutions.

Proof. Observe that since now we have two jump points (which, once we make the
change of variable y = x/ε, will be represented by y1 and y2), it may be interesting to
look at the intersections between the time maps Ly and L̄y at the points y = y1 and
y = y2. As in the proof of Theorem 4.1, we start now by the simplest case, which is
the last one.

Case 3 is very similar to case 2(i) in Theorem 4.1. Because the line u = β0 does
not intersect the homoclinic orbit around 1 that exists for x < c3, Ly1

is Ck-close to
the unstable manifold of 0 for ε small enough by the λ-lemma. Therefore Ly1 does
intersect the homoclinic solution that exists around 0 for c3 ≤ x < c5. That means
that Ly2

will exhibit a “finger” that would go inside the homoclinic orbit around
zero. That finger will cross the homoclinic orbit exactly twice and it will have to turn
around and join the rest of the curve Ly2

that will be now Ck-close to the unstable
manifold of 1. On its left side, the finger will leave the interval [0, 1] by being Ck-close
to the unstable manifold of 0. See Figure 8.
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Fig. 8. Numerical approximations of the time maps Ly2 (dashed line) and L̄y2 (dotted line) in
case 3 with β0 = 0.55, β1 = 0.45, and c1 = c2 = c4 = 0.25.

The curve L̄y2
, on the other hand, will be Ck-close to the stable manifold of 0

(inside the interval [0, 1]). Thus it will intersect Ly2 three times. Numbering those
intersections in increasing order as one progress along L̄y2

from u = 0 to u = 1, we
have that the first intersection corresponds to a stable solution (the intersection angle
gets close to the value

arctan
√

1/2 + c4 − arctan
√

1/2− c2,

as ε goes to 0), the second to an unstable solution, and the third to a stable solution.
(The angle at this last intersection gets close to the angle of intersection between the
stable manifold of 0 for c3 ≤ x < c5 and the unstable manifold of 1 for x > c5, which
is negative—to see this requires a computation similar to (21).)

The first solution stays close to 0 most of the time but exhibits two monotone
boundary layers connecting 0 with β0 and β1. The other two stationary solutions
exhibit the same boundary layers, but the unstable one exhibits a “bump” between
y = y1 and y = y2 (it goes around the homoclinic orbit of 0 for c3 ≤ x < c5; that
is what makes it unstable) and the other stable solution exhibits two internal jumps:
one form 0 to 1 at y = y1 and the other back from 1 to 0 at y = y2. These three
solutions also exist in all the other cases.

In case 2 (i), Ly1
will also be Ck-close to the unstable manifold of 0 for x < c3,

but then it will turn around and have a finger that goes inside the homoclinic orbit
around 1 because the line u = β0 does now intersect that homoclinic orbit. The time
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Fig. 9. Numerical approximations of the time maps Ly1 (dashed line) and L̄y1 (dotted line) in
case 2(i) with β0 = 0.65, β1 = 0.45, and c1 = c2 = c4 = 0.25.

map L̄y1
, on the other hand, will have a similar finger that goes inside the homoclinic

orbit around 0 that exist for c3 ≤ x < c5 (as in the previous case but backwards in
time). This introduces two new crossings. Numbering all intersections consecutively
as we progress along L̄y1 from u = 0 to u = 1, the three first correspond to the
same equilibria as that in the previous case. The number 4 is unstable of index 1 (it
exhibits a nonmonotone boundary layer at x = 0) and the number 5 is stable (similar
argument that for number 3 in the previous case). This last equilibrium point exhibits
an internal transition layer from 1 to zero at y = y2. See Figure 9.

If we now look at the situation for y = y2, we will see that Ly2 has a finger going
inside the homoclinic orbit around 0 that exists for c3 ≤ x < c5, then turns around
and gets Ck-close to the unstable manifold of 1. But now, it has three pleats along
that unstable manifold. They are elongations of the finger that Ly1

has close to 1.
The five intersections that Ly2

and L̄y2
have, when look at along L̄y2

from u = 0 to
u = 1, correspond to the stationary solutions 1, 2, 5, 4, and 3. Thus the order is not
preserved. But this intersection (and this ordering) is preserved in case 1, as we can
see in Figure 10.

Actually the diagram for case 1 at y = y2 looks very much the same than in the
previous case except that now L̄y2

also has a finger that goes inside the homoclinic
orbit that exists around 1 for x ≥ c5 (see Figure 10).

This new finger introduces six new intersections. The properties and layers of
these new equilibria can be deduced by looking at which side of the finger in L̄y2 and
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Fig. 10. Numerical approximations of the time maps Ly2 (dashed line) and L̄y2 (dotted line)
in case 1 with β0 = 0.65, β1 = 0.7, and c1 = c2 = c4 = 0.25. Ly2 folds three times along the
unstable manifold of 1.

which pleat of Ly2
they are. For example, along the same pleat as solution number

5 we find two new intersections, corresponding to solution numbers 6 and 7. That
means that until y = y2, solutions 5, 6, and 7 behave very much alike. But while
solution number 5, being outside the finger, makes a transition at y = y2 from 1 to
zero, solution number 6 exhibits a nonmonotone layer from 1 to β1 (becoming unstable
of Morse index 1 as a consequence), and solution number 7 exhibits a monotone layer
from 1 to β1 (resulting in a stable solution; this can be checked in a similar fashion
as before).

In the same side of the finger as solution number 7 we find solution numbers 8
and 9. Because they occupy such positions, solution numbers 8 and 9 also exhibit
monotone boundary layers from 1 to β1. But they are in the two consecutive pleats of
Ly2 after solution number 7, so solution number 8 exhibits a nonmonotone boundary
layer from β0 to 1 (becoming unstable of index 1) and solution number 9 exhibits a
monotone layer from β0 to 0; it follows an internal transition layer from 0 to 1 at
y = y1. Thus solution number 9 is stable.

On the same pleat as solution number 9 on the other side of the finger we find
solution number 10. The only difference between these two solutions is that the left
boundary layer of solution number 10 is nonmonotone. Consequently, solution number
10 is unstable of index 1.

Finally, on the second pleat of Ly2 and on the left side of the finger of L̄y2 , we find
solution number 11. From this location we conclude that solution number 11 must
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behave like solution numbers 4 and 8 before y = y2 (therefore having a nonmonotone
left boundary layer) and like solution numbers 6 and 10 afterwards (therefore having
a nonmonotone right boundary layer). Thus solution number 11 must be unstable of
Morse index 2.

The method given in [4] allows us again to prove that solution number 11 is
connected to all the other solutions except numbers 1 and 2. The cascading property
then implies all the other stated connections.

5. Persistence of solutions after smoothing c. We would like to prove that
close to every stationary solution u = u(x) of the discrete case—where c = c(x)
is a step function—there is a stationary solution ũ = u + v for the continuous case
c̃ = c+χδ. We also would like to prove that the stability properties of u are preserved.

Consequently we want v to verify ε2D2v + gε(δ, v) = 0 in (0, 1),
α0 v(0)− (1− α0) v′(0) = 0,
α1 v(1) + (1− α1) v′(1) = 0,

(23)

where D2 stands for the second derivative and

gε(δ, v) = ε2D2u+ fδ(x, u+ v),

with

fδ(x, u) = u(1− u)(u− c(x)− χδ).

In order to use the Implicit Function theorem (IFT), let ε ∈ (0, ε0), and let us
define the operator F ε : [0, δ0]×W 2, p

0 ([0, 1]) −→ Lp([0, 1]) as

F ε(δ, v) = ε2v +D−2gε(δ, v).

Observe that if v belongs to W 2, p
0 ([0, 1]), it verifies the boundary conditions in (23).

Also notice that we can always invert the operator D2 in W 2, p
0 ([0, 1]).

For simplicity’s sake, let us study the case in which c has only one jump at the
point x = x1. Then c will look like

c(x) =

{
c0 > 1/2, x ∈ [0, x1],
c1 < 1/2, x ∈ (x1, 1].

The functional χδ is a perturbation of c such that

χδ(x) = χ

(
x− x1

δ

)
,

where χ ∈ Z = Lp(−∞,+∞). Actually, we are particularly interested in a perturba-
tion like

χ(x) =

{ −Jex, x ∈ (−∞, 0),
Je−x, x ∈ [0,+∞)

(24)

for J = (c0 − c1)/2 (see Figure 11) that would make c + χδ a continuous function,
although we will treat all perturbations in Y = Lp([0, 1]).
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-J

J

Fig. 11. Desired perturbation function χ(x).

The functional gε(δ, v) : [0, δ0]× Lp([0, 1]) −→ Lp([0, 1]) is C∞ with respect to v
and is Hölder continuous of exponent 1/p with respect to δ, because

‖χδ‖pY =

∫ 1

0

∣∣∣∣χ(x− x1

δ

)∣∣∣∣p dx =

∫ 1−x1
δ

− x1
δ

|χ(y)|p δdy ≤ δ‖χ‖pZ .

Since F ε is then Hölder continuous of exponent 1/p with respect to δ and differ-
entiable with respect to v, F ε(0, 0) = 0, and F εv is invertible because u is hyperbolic,
we can apply the IFT and obtain δ1 = δ1(ε) > 0, such that for every δ ∈ [0, δ1),
ũ(δ) = u + v(δ) is a stationary solution of (1) that is close to u and is a Hölder
continuous function of δ of exponent 1/p.

Now, since v(δ) belongs to the space W 2, p
0 , then by the general Sobolev inequali-

ties, v ∈ C1, q([0, 1]) with q = 1−1/p if p > 1 and v(δ) ∈ C0, q([0, 1]) for any 0 < q < 1
if p = 1. Thus if in addition to p > 1, we choose the perturbation χδ such that c+χδ

is a continuous function—selecting it as in (24), for example—then ũ ∈ C2([0, 1]).
We can execute a similar procedure for every discontinuous term c. We will

represent by E(0) = E the set of stationary solution for each c and by E(δ) the set of
stationary solutions that arise from the perturbation χδ.

Due to the continuity of the functional χδ with respect to δ, the eigenvalues of
the linearization of (1) around ũ are continuous functions of δ. Thus there exists a
δ2 = δ2(ε) > 0 such that for δ ∈ [0, δ2), the stability properties of ũ are the same as u.

Finally, we want to prove that there exists a δ3 > 0, such that for δ ∈ [0, δ3), all
the stationary solutions of (1) are in E(δ). For that, we will need the following result.

Lemma 5.1. Let u be a stationary solution of (1) for ε ∈ (0, ε0). Then |u(x)| ≤ 1
for all x ∈ [0, 1] and if ∃x ∈ [0, 1] such that u(x) = 0 (resp., u(x) = 1), then u is
constant equal to 0 (resp., equal to 1) in [0, 1].

Proof. Let us assume that ∃x0 ∈ [0, 1] such that u(x0) = 0. If u′(x0) = 0, then
by uniqueness of solutions of the initial value problem, u ≡ 0.

If u′(x0) < 0, then in order for u to be a stationary solution, u′′(x) < 0 for all
x ∈ (x0, 1] because f(x, u) > 0 for all u < 0. Then u could not arrive at x = 1
to a value in [0, 1]. This implies that for ε0 small enough, u cannot be a stationary
solution. The other case could be discussed similarly.

Let us now assume that there is no such δ3. Then we can construct a sequence
{δn}∞n=1 such that for every δn, there is a stationary solution un 6∈ E(δn). By the IFT,
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this implies that all the un are outside the uniqueness neighborhoods of the functions
in E(δn). For simplicity’s sake, let us assume that un is a classical solution, that is,
un ∈ C2, although the following argument would still be true with weaker smoothness
assumptions after making the appropriate corrections.

Consequently, {un}∞n=1 is a sequence of continuous functions defined in [0, 1],
which is a compact subset of R. This sequence is equibounded by Lemma 5.1. Their
first and second derivatives are also equibounded, because

|u′′n| ≤
|f(x, un)|

ε2
≤M(ε).

Thus both {un}∞n=1 and {u′n}∞n=1 converge uniformly when n → ∞, by the Arzelà–
Ascoli theorem. The limit function u0 is a C2 stationary solution that is not in E .
This is a contradiction. Therefore, taking δ0(ε) = min{δ1, δ2, δ3}, we have proved the
following.

Theorem 5.2. There exists an ε0 > 0 such that for every ε ∈ (0, ε0), there exists
a δ0 = δ0(ε) such that for every δ ∈ [0, δ0), the attractor A of (1) for a discrete c and
the attractor Aδ of (1) for c+ χδ are topologically equivalent. That is, A ∼= Aδ.

This theorem also could have been deduced from more general results proven in
[5].
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Abstract. We investigate a class of free boundary problems for scalar conservation laws, which
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1. Introduction. There is a very rich literature about Stefan problems for
parabolic and elliptic equations and systems (e.g., see [Da] and references therein).
On the other hand, free boundary problems for hyperbolic equations and systems are
much less investigated.

Nevertheless, many physical models (for instance, in gas dynamics or in heat
conduction; see [Hi], [Ge], [SG], [FH], [SAWD], [SW], [Sh]) give rise to very interesting
hyperbolic free boundary problems, which call for a thorough investigation. Problems
of this kind also arise for systems of conservation laws, when existence and stability
of multidimensional shock waves are addressed (see [Ma1], [Ma2], [Me]). In this
connection, let us mention that quasi-linear and linear first-order hyperbolic problems
with unknown boundaries are investigated in [LY], [Li], [KM].

In all the above references only smooth solutions are considered. On the other
hand, it is well known that for first-order conservation laws we cannot expect to
have global classical solutions (see [La], [Ol]). Hence in these cases a weak entropy
formulation is unavoidable, both for Cauchy and for initial-boundary value problems
(e.g., see [Kr], [BLN]).

To our knowledge, no entropy formulation of free boundary problems involving
first-order conservation laws has been given so far. This is our concern in the present
paper. More precisely, we consider the following Stefan problem:

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = u0(x) in R+ × {0},
s′(t) = K(u(s(t), t), s(t)),

s(0) = 0,

(1.1)

where f , u0, K are given and u, s must be determined; here

Λ(s(·), T ) := {(x, t) ∈ R× (0, T ) : 0 ≤ t < T, s(t) < x} .
To understand the nature of the problem some other comments are in order.

As is well known, a typical feature of the entropy formulation of initial-boundary
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value problems for scalar conservation laws is that the data are not strongly achieved;
instead, boundary conditions have to be formulated as compatibility conditions in a
suitable sense (see [BLN]). Roughly speaking, such compatibility conditions involve
properties both of the flux function f and of the boundary (see Definition B.1 in
Appendix B). Clearly, giving an entropy formulation for a free boundary problem like
(1.1), where the boundary is a priori unknown, raises interesting, nontrivial questions.

Since the equation for the boundary {(s(t), t)} in problem (1.1) involves the func-
tion K, we cannot expect this problem to be well defined unless the function has
suitable properties. Investigating this point for a general Stefan problem like (1.1)
appears to be a very difficult task. In this paper we limit ourselves to the following
choice:

K(u, v) =
f(u)

u− g′(v)
,(1.2)

which is suggested by a model for ion-etching proposed in [Ro] (see Appendix A). Here
f is the flux and g is a regular decreasing function; in [Ro] the case was considered

g(x) ≡ −cx, c > 0,(1.3)

with a constant initial datum u0(x) ≡ p, p > 0.
Problem (1.1) with the function K given in (1.2) will be referred to as problem

(FB) in the following. It is the purpose of this paper to investigate thoroughly this
case, regarded as a “case study” toward the investigation of the general Stefan problem
(1.1). As we shall see, some results concerning the general free boundary problem (1.1)
can be proved using the same ideas (Proposition 2.4).

The main technical tool used in this paper is the comparison principle for mixed
valued problems of scalar conservation laws which will be recalled in Appendix B.

2. The main results. In this section we introduce our mathematical framework
and state the main results of the paper.

Concerning the flux f the following assumptions will be used:
(f1) f ∈ C2(R);
(f2) f > 0;
(f3) f(x) = f(−x) for any x ∈ R;
(f4) f(x) →

|x|→∞
−→0;

(f5) f has a finite number of inflection points.
As for g, we assume that
(g) g ∈ C1(R+) is decreasing.
We also assume u0 ≥ 0.
Let us first state a local existence result concerning classical solutions of problem

(1.1).
Proposition 2.1. Let u0 ∈ C1(R+), K ∈ C1(R×R). Then there is T > 0 such

that for t ∈ (0, T ) there exists at least one regular solution (s, u) of the free boundary
problem (1.1).

It was observed in [Ro] that even smooth solutions of problem (1.1) need not be
unique. Hence the class of solutions we consider has to be restricted using a criterion
of physical admissibility, which was introduced in [Ro] assuming (1.3) and constant
initial data. Define

Fc(p) := inf

{
q ∈ (p,∞) :

f(q)

q + c
≥ f(r)

r + c
for any r ∈ (q,∞)

}
.(2.1)
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Then an admissible solution of problem (1.1)–(1.3) is given by a couple (s, u), such
that s(t) ≡ Fc(p)t and u solves the initial-boundary value problem:

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = p in R+ × {0},
u(Fc(p)t, t) = Fc(p) for every t ∈ (0, T ).

This characterizes the admissible solution as the one for which the speed of the inter-
face is maximal. Observe that the function Fc is well defined, due to the properties of
the flux function f . In some intervals this is equal to the identity; in other intervals it
is constant. Since the flux f is decreasing for large x, the same is true for the function
f(p)
p+c—hence the function Fc is equal to the identity for large x.

Similar ideas can be used to obtain the weak entropy formulation of problem
(FB). We recall that in the standard space BV of functions with (locally) bounded
total variation it is possible to define the notion of trace; see, for instance, [EG]. For
simplicity we denote by u(s(t), t) the trace (in the L1 sense) of the boundary value
function u along the (smooth) curve s = s(t).

Let us introduce the following definition.
Definition 2.1. Let u0 ∈ BV (R+) ∩ L∞(R+). We say that the couple s(t) ∈

Lip(0, T ), u ∈ BVloc(Λ(s(·), T )) ∩ L∞(Λ(s(·), T )), u ≥ 0, is an entropy solution of
problem (FB) if it is an entropy solution of the initial-boundary value problem

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = u0(x) in R+ × {0},
u(s(t), t) = F|g′(s(t))|(u(s(t), t)),

s′(t) =
f(F|g′(s(t))|(u(s(t), t)))

F|g′(s(t))|(u(s(t), t)) + |g′(s(t))| .

(2.2)

The definition of entropy solution of an initial-boundary value problem for scalar
conservation laws is recalled in Appendix B (see Definition B.1).

In particular, the boundary condition is satisfied in the following sense: For almost
any t ∈ (0, T ) there holds

f(u(s(t), t))− f(k)

u(s(t), t)− k ≤ f(F|g′(s(t))|(u(s(t), t)))

F|g′(s(t))|(u(s(t), t)) + |g′(s(t))|
for any k ∈ (u(s(t), t), F|g′(s(t))|(u(s(t), t))].

Consider the set

S(c) := {p ∈ R : Fc(p) = p}.(2.3)

The above set plays a crucial role in the entropy formulation of problem (FB), as the
following proposition shows.

Proposition 2.2. Let u0 ∈ BV (R+) ∩ L∞(R+). The couple s(t) ∈ Lip(0, T ),
u ∈ BVloc(Λ(s(·), T )) ∩ L∞(Λ(s(·), T )) is an entropy solution of the problem (FB) if
and only if this couple is an entropy solution of

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = u0(x) in R+ × {0},
u(s(t), t) ∈ S(|g′(s(t))|) almost everywhere (a.e.) in (0, T ),

s′(t) =
f(u(s(t), t))

u(s(t), t) + |g′(s(t))| .

(2.4)
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It follows that the trace u(s(t), t) of any entropy solution of problem (FB) takes
values in the set S(c) . This implies that no characteristic starting from the boundary
and pointing inwards toward the domain exists (Proposition 3.1 (v)).

The following proposition gives a maximality property of the entropy solutions of
the free boundary problem in Λ(s(·), T ).

Proposition 2.3. Let (s, u) be an entropy solution of problem (FB). Let v be
any entropy solution of the conservation law in Λ(s(·), T ), which satisfies the same
initial condition as u. Then v ≤ u a.e. in Λ(s(·), T ).

In the spirit of the previous proposition we can prove the following theorem, which
gives an a priori estimate for the entropy solutions of problem (FB).

Theorem 2.1. Let u0 ∈ BVloc(R+)∩L∞(R+). Let the couple (s, u) be an entropy
solution of the free boundary problem (FB). Then

ess inf(u0) ≤ u ≤ FJ(T )(ess supu0) for a.e. (x, t) ∈ Λ(s(·), T ),(2.5)

where

J(T ) := sup
t∈(0,T )

|g′(s(t))|.

Moreover, the function u is an entropy solution of the following boundary value
problem: 

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = u0(x) in R+ × {0},
u(s(t), t) = FJ(T )(ess supu0).

As discussed in section 1, it is natural to ask whether the previous results are still
true for the general Stefan problem (1.1). In this connection let us make the following
definition.

Definition 2.2. Let u0 ∈ BV (R+) ∩ L∞(R+). We say that the couple s(t) ∈
Lip(0, T ), u ∈ BVloc(Λ(s(·), T )) ∩ L∞(Λ(s(·), T )) is an entropy solution of problem
(1.1) if

(i) the function u is an entropy solution in Λ(s(·), T ) of problem (1.1);
(ii) s′(t) = K(u(s(t), t), s(t));
(iii) u(s(t), t) ∈ S(s(t)), where the set S(s(t)) is a finite union of closed intervals

and verifies the following property:

u ∈ S(s(t))⇔ K(u, s(t)) ≥ f(u)− f(p)

u− p for every u, p ∈ S(s(t)).(2.6)

Following the proof of Proposition 2.3 (see section 3) we obtain the proposition
below.

Proposition 2.4. Let (s, u) be an entropy solution of problem (1.1). Then the
conclusion of Proposition 2.3 holds. Moreover,

sup{q > ess inf u0 : q ∈ S(s(t)) ∀t ∈ [0, T ]} ≤ u ≤
inf{q > ess supu0 : q ∈ S(s(t)) ∀t ∈ [0, T ]} a.e. in Λ(s(·), T ).

Let us now restrict ourselves to the case g(x) = −cx, c > 0, which is easier since
the admissible set of free boundary value S(|g′(s(t))|) does not depend on t. The
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general case, namely, for any g satisfying assumption (g), will be the object of further
investigation.

Let us introduce the following classes of initial data:

Class A: u0 takes values in an interval [a, b] ⊂ S(c);

Class B: u0 takes values in an interval (p, q) ⊂ R+ \ S(c);

Class C: u0 has a finite number of oscillations outside a set of zero Lebesgue
measure, namely, there exist a null set E and n ∈ N such that for any n + 1 points
{xi}, xi < xi+1 (i = 1, . . . , n) in R+ \ E, u0(xj) 6= u0(x(j+1)) there holds

sgn(u0(xi+1)− u0(xi)) = −sgn(u0(xi+2)− u0(xi+1)), 1 ≤ i ≤ n− 2,

implying

sgn(u0(xn+1)− u0(xn)) = sgn(u0(xn)− u0(xn−1)).

Let us observe that S(c) = R+ when f ′ ≤ 0 (see Proposition 3.1 (i) below), in
which case all the data belong to Class A.

The following existence and uniqueness theorem for problem (FB) can be proved
(see sections 4–6).

Theorem 2.2. Let (1.3) hold. Let u0 ∈ BV (R+)∩L∞(R+) be in any Class A, B,
or C. Then there exists a unique entropy solution of the free boundary problem (FB).

If the initial data are in Class A, the following estimates can be proved.

Theorem 2.3. Let (1.3) hold. Let (s1, u), (s2, v) be solutions of the free boundary
problem (FB) with data u0, v0, respectively, of Class A. Then

‖s1 − s2‖L∞(0,T ) ≤ 2

c
‖u0 − v0‖L1((0,RT )),

and for any C ∈ R+ and almost any t∫ s(t)+C

s(t)

|u(x, t)− v(x, t)| dx ≤ ‖u0 − v0‖L1((0,C+RT )),

where

s(t) = max{s1(t), s2(t)},

RT :=

(
sup
|u|≤M

|f ′(u)|+ ‖s′‖L∞(0,T )

)
T,

and

M := max(‖u0‖L∞ , ‖v0‖L∞).

Moreover, suppose u0 ≤ v0 a.e. Then

s1 ≥ s2 in (0, T ) ,

u ≤ v a.e. in Λ(s1(t), T ).
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3. Proofs of general results. In this section we prove local existence of clas-
sical solutions of the general free boundary problem (1.1) (Proposition 2.1), as well
as the characterization of the entropy solutions of the free boundary problem (FB)
(Proposition 2.3) and the a priori estimates stated in Proposition 2.4 and Theorem
2.1, respectively.

Proof of Proposition 2.1. Let us extend u0, in an arbitrary way, to a function
u0 ∈ C1(R).

By the method of characteristics, there exists a time T0 and a regular solution u
to the Cauchy problem{

ut + f(u)x = 0 in R× (0, T0),

u(x, 0) = u0 in R× {0}.

We look for a solution s(t) of

s′(t) = K(u(s(t), t), s(t)).

Set

B := {s ∈ Lip(0, T ) : s(0) = 0, 0 ≤ s ≤M , 0 ≤ s′ ≤ L a.e.},
where T < T0 is a constant to be fixed later,

L := max
|u|≤‖u0‖L∞ (R)

|v|≤1

|K(u, v)| and M := min{LT, 1}.

Observe that B is a closed subspace of the Banach space C(0, T ); consider the
following operator G from B into itself:

G(s)(t) :=

∫ t

0

K(u(s(t), t), s(t)) dτ.

Let us choose T such that G is a contraction. We have

‖G(s)−G(s)‖L∞ = sup
t∈[0,T ]

∣∣∣∣∫ t

0

K(u(s(τ), τ), s(τ))−K(u(s(τ), τ), s(τ)) dτ

∣∣∣∣ .
Since K and u are smooth functions there exists a constant k such that

|K(u(x, t), x)−K(u(x, t), x)| ≤ k|x− x|
for every −M ≤ x, x ≤M , 0 ≤ t ≤ T0.

Thus we have

‖G(s)−G(s)‖L∞ ≤ Tk‖s− s‖L∞ .
Choosing T < 1

k we obtain that T is a contraction operator and we can apply the
contraction fixed point theorem.

Observe that the above result cannot give any information about uniqueness,
since we consider an arbitrary extension of u0. However, the following holds.

Lemma 3.1. Suppose u0 ∈ C1(R+). Let u be a local regular solution given in the
previous proof such that the trace u(s(t), t) lies in the set S(s(t)) given by (2.6). Then
the function u does not depend on the arbitrary extension of u0.
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Proof. Let us prove that s(t) depends only on the data on the positive semiaxis.
For any x0 ≥ 0 the characteristic issued from x0 is given by the solution of the

problem {
x′ =f(u), u′ = 0,

x(0) =x0, u(0) = u(x(0)) = u(x0).

Then we have

x(t) = x0 + tf ′(u0(x0)), u(x(t), t) = u0(x0).

Let (x(t), 0) be the starting point of the characteristic reaching the point (s(t), t);
then

s(t) = x0(t) + tf ′(u0(x0(t))) s(0) = 0 = x0(0).(3.1)

Let us derive (3.1) obtaining

s′(t) = x′0(t) + f ′(u0(x0(t))) + tf ′′(u0(x0(t)))x′0(t)u′0(x0(t)).

Since s′(t) = K(u(s(t), t), s(t)), we obtain by (2.6)

x′0(1 + tf ′′u′0) = s′(t)− f ′(u0(x0(t))) = K(u(s(t), t), t)− f ′(u(s(t), t)) ≥ 0.

Thus for small time x′0 ≥ 0 and x0(t) ≥ 0.
Let us now state some properties of the function Fc and of the set S(c) (see (2.1),

(2.3)), which are needed in the following. The elementary proofs are omitted.
Proposition 3.1. Assume (f1)–(f5) for the flux function f . Then
(i) Fc(p) ≥ p for any p ≥ 0;

(ii) let Fc(p) > p. Then f(Fc(p))
Fc(p)+c

= f ′(Fc(p)) and f(Fc(p))
Fc(p)+c

> f(p)
p+c ;

(iii) there exists a finite number of points n, 0 = p0 ≤ p1 < p2 < · · · < pn = +∞,
such that

F (p) =

{
p in (p2j , p2j+1],

F (p2j+2) in (p2j+1, p2j+2];

(iii) F is continuous from the left;
(iv) let u ∈ S(c), u < v. Then

min

{
f(u)

u+ c
,
f(v)

v + c

}
≥ f(u)− f(v)

u− v ;

(v) for any given interval (a, b) ⊂ S(c), the function f(x)
x+c is nonincreasing in (a, b)

and

f(x)

x+ c
− f ′(x) ≥ 0.

Let us discuss a more precise characterization of the set S(c). For this purpose,
let 0 < p1 < · · · < pk local strictly positive maximum of f ′. Define the functions

L(x) = x− f(x)

f ′(x)
,

pj(c) :=

{
min{x ≥ pj :L(c) = −c, f ′′(x) ≥ 0}, j = 1, . . . , k,
0, j = 0.
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Set also

N(c) := {j ∈ {0, . . . , k} : pj(c) ∈ S(c)},

and for any j ∈ K(c) \ {0}

pj(c) := max

{
pj−1(c) ≤ x < pj(c) :

f(x)

x+ c
= f ′(pj(c))

}
.

The following result can be proved.
Proposition 3.2. (i) If f ′ ≤ 0, then S(c) = R+ for every c.
(ii) The function pj(c) is an increasing function of c for every j = 1, . . . , k.
(iii) The function pj(c) is a decreasing function of c for every j ∈ N(c) \ {0}.
(iv) There holds

S(c) =
⋃

j∈N(c)\{max{k∈N(c)}}
[pj(c), p(c)min{k∈N(c), k>j}] ∪ [p(c)max{k∈N(c)},∞).

(v) S(c1) ⊂ S(c2) for any c1 > c2.
We can now prove Propositions 2.2 and 2.3.
Proof of Proposition 2.2. If u is an entropy solution of (2.4), then it is obviously

an entropy solution of (2.2). Now suppose that the function u is an entropy solution
of (2.2). We want to show that the trace u(s(t), t) ∈ S(|g′(s(t))|) a.e.

For simplicity set u(s(t), t) = ũ for a fixed t. If ũ < F|g′(s(t))|(ũ) then for the
compatible boundary conditions we have

f(ũ)− f(k)

ũ− k ≤ s′(t) =
f(F|g′(s(t))|(ũ))

F|g′(s(t))|(ũ) + |g′(s(t))| for every k ∈ (ũ, F|g′(s(t))|(ũ)].

Taking k = F|g′(s(t))|(ũ), we obtain by computations

f(F|g′(s(t))|(ũ))

F|g′(s(t))|(ũ) + |g′(s(t))| ≤
f(ũ)

ũ+ |g′(s(t))| .

This is in contradiction with Proposition 3.1 (iv).
Let us associate with any given function s ∈ Lip(0, T ) and u ∈ BV (Λ(s(·), T )) ∩

L∞(Λ(s(·), T )), the function

us(x, t) := u(x+ s(t), t)(3.2)

defined in Π+
T := R+ × (0, T ).

Proof of Proposition 2.3. We have to compare the functions u and v in Λ(s(·), T ).
Consider the functions us, vs associate, respectively, to (s(t), u) and (s(t), v) (see
(3.2)). Using the inequality (B.4) of Theorem B.1 (see Appendix B), we obtain∫

R+

[vs(x, t)− us(x, t)]+ dx

≤
∫ t

0

H(vs(0, τ)− us(0, τ))(f(vs(0, τ))− f(us(0, τ))(3.3)

− f(us(0, τ))

us(0, τ) + |g′(s(t))| (v
s(0, τ)− us(0, τ))) dτ.
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Let us show that the right-hand side of inequality (3.3) is negative. In fact,
for the values of τ such that vs(0, τ) ≤ us(0, τ) the integrand is negative. Suppose
vs(0, τ) > us(0, τ). Since us ∈ S(|g′(s(τ))|), we have from Proposition 3.1 (iv)

f(vs(0, τ))− f(us(0, τ))

vs(0, τ)− us(0, τ)
≤ f(us(0, τ))

us(0, τ) + |g′(s(τ))| .

Therefore also in this case the integrand is negative. This completes the proof.

Let us prove Theorem 2.1.

Proof of Theorem 2.1. Set p := FJ(T )(ess supu0). Consider in Λ(s(·), T ) the
functions u and v ≡ p and the associated functions us and vs given by (3.2). Since
vs ≡ p is an entropy solution of the problem with initial data v0 ≡ p, we can compare
the functions us and vs by inequality (B.4). In this case we have∫

R+

[us(x, t)− p]+ dx ≤
∫
R+

[u(x, 0)− p]+ dx

+

∫ t

0

H(us(0, τ)− p)
(
f(us(0, τ))− f(p)− f(us(0, τ))

us(0, τ) + c
(us(0, τ)− p)

)
dτ.(3.4)

Again using Proposition 3.1 (iv) and Proposition 3.2 (v) we obtain that the right-hand
side of inequality (3.4) is negative. In the same way we can prove that us ≥ ess inf u0.

The rest of the proof is a consequence of Theorem B.2 (see Appendix B), Propo-
sition 2.3, and estimate (2.5).

Let us prove for future reference a further result. Set

M0 = max{‖u0‖L∞ , FJ(T )(ess supu0)},

where

J(T ) := sup
t∈(0,T )

|g′(s(t))|.

Then the following holds.

Proposition 3.3. Let u0 ∈ BVloc(R+) ∩ L∞(R+). Let (s, u) be an entropy
solution of the free boundary problem (FB). Let u0 ∈ BVloc(R+) ∩ L∞(R+) such that
‖u0‖L∞ ≤ ‖u0‖L∞ and

u0 ≡ u0 in [0, R]

for some R > (sup|u|≤M0
|f ′(u)|+‖s′‖L∞(0,T ))T. Then a solution of the free boundary

problem with initial data u0 is given by (s, u), where u is the solution of the following
mixed value problem: 

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = u0(x) in R+ × {0},
u(s(t), t) = FJ(T )(ess supu0).

Proof. Using Proposition B.1, Theorem B.2, Proposition 2.3, and Theorem 2.1
we easily obtain u(s(t), t) = u(s(t), t) for almost any t in (0, T ).
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4. Initial data of Class A. In this section we prove Theorem 2.2 for initial
data u0 in the Class A, as well as Theorem 2.3. Observe that by Theorem 2.1 any
entropy solution of problem (FB) takes values in the interval [a, b] ⊂ S(c).

We first prove the uniqueness claim of Theorem 2.2, as well as stability and
comparison results which imply plainly Theorem 2.3 (see subsection (a)). Then the
existence part of Theorem 2.2 is proved by a suitable adaptation of the Godunov
method (see subsection (b)).

(a) Uniqueness and comparison results.
Proposition 4.1. Let (1.3) hold; let u0 ∈ BV (R+) ∩ L∞(R+) belong to Class

A. Then there is at most one entropy solution of problem (FB).
Proof. Let (s1, u1), (s2, u2) be two entropy solutions of problem (FB). Let s(t) =

max{s1(t), s2(t)}. Obviously s(t) ∈ Lip(0, T ).
Consider the associate functions u1

s, u2
s relative to u1, u2 with respect to the

function s (see (3.2)). Then by Proposition B.1, functions u1
s, u2

s are both entropy
solutions of the problem{

ut + f(u)y − s′(t)uy = 0 in Π+
T ,

u(y, 0) = u0(y) in R+ × {0}.
Now, using Theorem B.1, we have for almost any t ∈ (0, T )∫

R+

|u1
s(x, t)− u2

s(x, t)| dx(4.1)

≤
∫ t

0

sgn(u1
s(0, τ)− u2

s(0, τ))(f(u1
s(0, τ))

− f(u2
s(0, τ))− s′(τ)(u1

s(0, τ)− u2
s(0, τ))) dτ.

Let us show that the right-hand side in inequality (4.1) is negative.

For almost any t ∈ (0, T ) there is i ∈ {1, 2} such that s′(t) = f(ui
s(0,t))

uis(0,t)+c
. Fix a t

in the set in which the previous equality holds.
The integrand of the right-hand side of inequality (4.1) can be written

|u1
s(0, t)− u2

s(0, t)|
(
f(u1

s(0, t))− f(u2
s(0, t))

u1
s(0, t)− u2

s(0, t)
− s′(t)

)
.(4.2)

Since u1
s(0, t), u2

s(0, t) lay in S(c), we have that (4.2) is negative by Proposition
3.1 (iv). Then u1

s and u2
s coincide. Therefore u1 ≡ u2 in Λ(s(t), T ).

Hence (s, u1(≡ u2)) is another entropy solution of problem (FB).
Let us show that such a solution is equal to (si, ui) (i = 1, 2). To obtain this, it is

enough to prove that s1 ≡ s2 ≡ s. By Proposition 3.3 it is not restrictive to assume
u0 ∈ BV (R+) ∩ L∞(R+) ∩ L1(R+).

Using conservation formula (B.6) in the cases s(t) = si(t) and s(t) = s(t), we
have ∫ ∞

s1(t)

u1(x, t) dx =

∫
R+

u0(x) dx+ cs1(t)− tf(0)

and ∫ ∞
s(t)

u1(x, t) dt =

∫
R+

u0(x) dx+ cs(t)− tf(0).
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Subtracting the previous equalities, we obtain∫ ∞
s1(t)

u1(x, t) dx−
∫ ∞
s(t)

u1(x, t) dx = c(s1(t)− s(t)).

Hence

0 ≥ c(s1(t)− s(t)) =

∫ s(t)

s1(t)

u1(x, t) dx ≥ 0,

which implies s ≡ s1. The same is true for i = 2 and so s2 ≡ s1 and u2 = u1.
By using a similar argument we can prove the following stability result. Let us

set, for any u0, v0 ∈ BVloc(R+) ∩ L∞(R+),

M := max(‖u0‖L∞ , ‖v0‖L∞)

and

RT :=

(
sup
|u|≤M

|f ′(u)|+ ‖s′‖L∞(0,T )

)
T.

Proposition 4.2. Let (1.3) hold; let u0, v0 ∈ BVloc(R+)∩L∞(R+) and belong to
Class A. Let (s1, u), (s2, v) be solutions of problem (FB) with data u0, v0, respectively.
Then

‖s1 − s2‖L∞(0,T ) ≤ 2

c
‖u0 − v0‖L1((0,RT )).

Moreover, for any C ∈ R+ we have for almost any t∫ s(t)+C

s(t)

|u(x, t)− v(x, t)| dx ≤ ‖u0 − v0‖L1((0,C+RT )),

where s(t) = max{s1(t), s2(t)}.
Proof. Proceeding as in the proof of Proposition 4.1 and using Theorem B.1 we

obtain ∫ s(t)+C

s(t)

|u(x, t)− v(x, t)| dx ≤ ‖u0 − v0‖L1((0,C+R)).

Let u0 ≡ χ(0,RT )u0, v0 ≡ χ(0,RT )v0, where χ(0,RT ) is the characteristic function of
the interval (0, RT ). Then by Proposition 3.3 we see that there exist (s1, u), (s2, v),
respectively, solutions of the free boundary with initial data u0, v0, respectively.

Obviously for the functions u, v the previous inequality is still true. Moreover we
have the conservation equalities∫ ∞

s1(t)

u(x, t) dx =

∫
R+

u0(x) dx+ cs1(t)− tf(0),

∫ ∞
s2(t)

v(x, t) dx =

∫
R+

v0(x) dx+ cs2(t)− tf(0).

Fix t and suppose, for example, that s1(t) > s2(t). Subtracting the previous equalities
we have
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c(s1(t)− s2(t))

=

∫ ∞
s1(t)

u(x, t)− v(x, t) dx−
∫ s1(t)

s2(t)

v(x, t) dx

+

∫
R+

v0(x)− u0(x) dx ≤ 2‖u0 − v0‖L1(R+) = 2‖u0 − v0‖L1((0,R)).

From the arbitrariness of t we obtain the assert.
Finally, let us state a comparison result.
Proposition 4.3. Let (1.3) hold; let u0, v0 ∈ BVloc(R+) ∩ L∞(R+) belong to

Class A with u0 ≤ v0 a.e. Then s1 ≥ s2 and u ≤ v a.e. in Λ(s1(t), T ), where
(s1, u), (s2, v) are the solutions of the free boundary problem (FB) with data u0, v0,
respectively.

Proof. Let s(t) = max{s1(t), s2(t)}. As was shown previously we compare u and
v in Λ(s(t), T ).

Using inequality (B.4) and proceeding as in the proof of Proposition 2.3 we con-
clude that u ≤ v a.e. in Λ(s(t), T ).

It remains to prove that s1 ≥ s2. As in the proof of Proposition 4.1 we can reduce
ourselves to the case u0, v0 ∈ BV (R+) ∩ L∞(R+) ∩ L1(R+).

Let t ∈ (0, T ) and suppose s2(t) > s1(t). Considering the conservation equalities
for u, v we have

c(s2(t)− s1(t)) +

∫
R+

v0(x)− u0(x) dx

=

∫ ∞
s2(t)

v(x, t)− u(x, t) dx−
∫ s2(t)

s1(t)

u(x, t) dx ≤
∫
R+

v0(x)− u0(x) dx.

Hence we conclude that s2(t) ≤ s1(t), which is a contradiction.
(b) Existence.
Let us introduce the following standard notations. Let Vn be the space of the

functions which are constant on any interval of the type[
i

n
,
i+ 1

n

)
(i ∈ N).

Define for any n ∈ N
Pn : BV (R+) ∩ L∞(R+)→ Vn,

Pn(u)(t) := n

∫ i+1
n

i
n

u(τ) dτ, t ∈
[
i

n
,
i+ 1

n

)
.

The following lemma gives some interesting properties of Pn (see [Le1], [Le2], [Te2]).
Lemma 4.1. For any n ∈ N, u0 ∈ BV (R+)∩L∞(R+)∩L1(R+), the operator Pn

has the following properties:
(i) ‖Pn(u0)‖L∞(R+) ≤ ‖u0‖L∞(R+);

(ii) TV (Pn(u0), R+) ≤ TV (u0, R+);
(iii) ‖Pn(u0)‖L1(R+) ≤ ‖u0‖L1(R+);

(iv) ‖Pn(u0)− u0‖L1(R+) ≤ 1
2nTV (u0, R+).
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Let us prove the following proposition.
Proposition 4.4. Let (1.3) hold; let u0 ∈ BV (R+) ∩ L∞(R+) be initial data of

Class A. Then there exists an entropy solution of problem (FB).
Proof. It is not restrictive to assume u0 ∈ BV (R+) ∩ L∞(R+) ∩ L1(R+).
By Proposition 2.2 it is enough to look for an entropy solution of the problem ut + f(u)x − f(u(0,t))

u(0,t)+c ux = 0 in Π+
T ,

u(0, t) ∈ S(c) a.e.,
u(x, 0) = u0(x) in R+ × {0}.

(4.3)

Namely, we search u ∈ BV (Π+
T ) ∩ L∞(Π+

T ) such that for any φ ∈ C1
0 ((0,∞) ×

(0, T )), φ ≥ 0, for any k ∈ R,∫
Π+
T

|u− k|φt + sgn(u− k)(f(u)− f(k))φx − |u− k| f(u(0, t))

u(0, t) + c
φx dtdx ≥ 0;(4.4)

ess lim
t→0

∫
I

|u(x, t)− u0(x)| dx = 0.

Let us consider the following scheme.
Let u0n = Pnu0. Let

l := sup
p∈R+

|f ′(p)|+ sup
p∈R+

∣∣∣∣ f(p)

p+ c

∣∣∣∣ ;
r :=

1

2l
, ∆t =

r

n
;

we denote with u0
i the constant value of the function Pn(u0) on the interval ( in ,

i+1
n ).

Let us solve the following problem until time t1 = ∆t:
ut + f(u)x − f(u0

0)

u0
0+c

ux = 0 in R+ × (0, t1),

u(x, 0) = Pnu0 in R+ × {0},
u(0, t) = u0

0 in {0} × (0, t1).

Denote the solution of such problems with u1n. For the given choice of t1, we observe
that the solution is obtained by solving Riemann problems between the constant
values. Such problems are not interacting within the definition of ∆t.

At time t1 we consider a new boundary value problem with initial data Pn(u1n(x, t1)).
More precisely we consider the following problem:

ut + f(u)x − f(u1
0)

u1
0+c

ux = 0 in R+ × (t1, t2),

u(x, 0) = Pn(u1n(x, t1)) in R+ × {t1},
u(0, t) = u1

0 in {0} × (t1, t2),

where u1
0 is the value of Pn(u1n(x, t1)) in the interval (0, 1

n ) and t2 = 2t1. We call the
solution of such problem u2n.

By induction we can define a function un until time T .
Set

uji := Pn(u(j−1)n(·, tj)) in the interval

(
i

n
,
i+ 1

n

)
.
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Moreover we denote with uj
i+ 1

2

the constant value of ujn in the points ( i+1
n , t) (the

dependence on n is understood in the previous notations).
Finally define

un|R+×(tj ,tj+1)
:= ujn, j = 0, 1, . . . .

We obtain the proof in three steps:
(i) there exists a subsequence of {un}, still denoted by {un}, converging in the

L1 norm to a function u ∈ BV (Π+
T ) ∩ C([0, T ], L1

loc(R+)) ∩ L∞(Π+
T );

(ii) un(0, ·) ∈ BV (0, T ), with ‖un(0, ·)‖BV (0,T ) ≤ C, where C is a constant inde-
pendent of n;

(iii) the function u is an entropy solution of the free boundary problem (FB).
To prove (i), let us consider the total variation of ujn(·, tj),

TV (ujn(·, tj),R+) =

∞∑
i=0

|uji+1 − uji |.

Since the function u(j−1)n is given by solving the Riemann problem we have the
following estimate by standard results on the Godunov scheme (see [Le1], [Te2]):

∞∑
i=0

|uji+1 − uji | ≤
∞∑
i=0

|uj−1
i+1 − uj−1

i | ≤ TV (u0)

for any j.
Then, for any t in (0, T ), there exists j such that tj ≤ t ≤ tj+1 and

TV (un(·, t)) = TV (ujn(·, t)) ≤ TV (ujn(·, tj)) ≤ TV (u0)(4.5)

obtaining an estimate independent of n.
In the same way we can prove the following estimate:

∞∑
i=0

|uj+1
i − uji | ≤

∞∑
i=0

|uji+1 − uji | ≤ TV (u0).(4.6)

Let t, s ∈ (0, T ). Let us estimate ‖un(·, t)− un(·, s)‖L1(R+).
Suppose t ∈ (tj , tj+1), s ∈ (tl, tl+1), l > j. Then by (4.6)

‖un(·, t)− un(·, s)‖L1(R+) ≤ ‖un(·, t)− un(·, tj+1)‖L1(R+)

+
l−1∑

k=j+1

‖un(·, tk+1)− un(·, tk)‖L1(R+) + ‖un(·, tl)− un(·, s)‖L1(R+)

≤ ‖un(·, t)− ujn(·, tj+1)‖L1(R+) + ‖ujn(·, tj+1)− un(·, tj+1)‖L1(R+)

+
l−1∑

k=j+1

∞∑
i=0

∫ i+1
n

i
n

|uki − uk+1
i | dx+ ‖un(·, tl)− un(·, s)‖L1(R+)

≤ ‖un(·, t)− ujn(·, tj+1)‖L1(R+) +
1

2n
TV (u0)

+
(l − j − 1)r

rn
TV (u0) + ‖un(·, tl)− un(·, s)‖L1(R+).
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Since ujn, uln are piecewise smooth solutions, respectively, of the conservation laws

ut + f(u)x − f(uj0)

uj0 + c
= 0 in R+ × (tj , tj+1),

ut + f(u)x − f(ul0)

ul0 + c
= 0 in R+ × (tl, tl+1),

we see that the first and the fourth addendum in the last term of the previous in-

equality can be estimated by
(tj+1−t)

r TV (u0), respectively, (s−tl)
r TV (u0) (see [Le2]).

Therefore we have

‖un(·, t)− un(·, s)‖L1(R+)

≤ (tj+1 − t)
r

TV (u0) +
(s− tl)

r
TV (u0) +

(l − j − 1)r

rn
TV (u0) +

1

2n
TV (u0)

=
TV (u0)

r

(
tj+1 − t+ s− tl + (l − j − 1)

r

n

)
TV (u0) +

1

2n
TV (u0)

= (s− t)TV (u0)

r
+

1

2n
TV (u0).

(4.7)

The estimates (4.5)–(4.7) ensure us that step (i) holds. Moreover by the previous
estimates we see that un ∈ BV (Π+

T ) for any n. Observe that it is not restrictive to
suppose that the sequence converges a.e. in Π+

T to u.
Let us consider assertion (ii). Fix n and consider un(0, ·); then

TV (un(0, ·)) =

k(n)∑
i=1

|ui0 − ui−1
0 |,

where k(n) is the last step to reach T .
Let us prove the following estimate. For every l, s ∈ N

s∑
k=1

|ulk − ulk−1|+ |ul0 − ul−1
0 | ≤

s+1∑
k=1

|ul−1
k − ul−1

k−1|.(4.8)

Consider the following Cauchy problem:
ut + f(u)x − f(ul−1

0 )

ul−1
0 +c

ux = 0 in R+ × (tl−1, tl),

u(x, tl−1) =

{
ul−1

0 , x ≤ 0,
un(x, tl−1), x > 0,

in R× {tl−1}.

We know that

TV (u(·, tl−1, R)) =

∞∑
k=1

|ul−1
k − ul−1

k−1|;

moreover, by standard arguments (see, for instance, [Df]), we have

TV
(
u(·, tl),

(
−∞, s

n

))
≤ TV

(
u(·, tl−1),

(
−∞, s+ 1

n

))
.

Let us observe that u(·, tl) = ul−1
0 when x < 0.
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Moreover

s∑
k=1

|ulk − ulk−1|+ |ul0 − ul−1
0 |

= TV
(
Pn(u(·, tl)),

(
−∞, s

n

))
≤ TV

(
u(·, tl),

(
−∞, s

n

))

≤ TV
(
u(·, tl−1),

(
−∞, s+ 1

n

))
=

s+1∑
k=1

|ul−1
k − ul−1

k−1|

and then inequality (4.8) holds.
Let us show now that for any s ∈ N, 0 ≤ s ≤ k(n),

k(n)∑
k=k(n)−s

|uk0 − uk−1
0 | ≤

s+1∑
m=1

|uk(n)−s−1
m − uk(n)−s−1

m−1 |.(4.9)

We prove inequality (4.9) by induction.
By the explicit solution of Riemann problem we have

|uk(n)
0 − uk(n)−1

0 | ≤ |uk(n)−1
0 − uk(n)−1

1 |,

which corresponds to the case s = 0. Suppose that inequality (4.9) is true for s − 1;
then we have

k(n)∑
k(n)−s

|uk0 − uk−1
0 | =

k(n)∑
k(n)−s+1

|uk0 − uk−1
0 |+ |uk(n)−s

0 − uk(n)−s−1
0 |

≤
s∑

m=1

|uk(n)−s
m − uk(n)−s

m−1 |+ |uk(n)−s
0 − uk(n)−s−1

0 |.

Now applying inequality (4.8) with l = k(n)− s, we see that

k(n)∑
k(n)−s

|uk0 − uk−1
0 | ≤

s+1∑
m=1

|uk(n)−s−1
m − uk(n)−s−1

m−1 |

and (4.9) holds.
Putting s = k(n)− 1 in (4.9) we obtain

k(n)∑
k=1

|uk0 − uk−1
0 | ≤

k(n)∑
m=1

|u0
m − u0

m−1| ≤ TV (u0).

Since we estimate TV (un(0, ·), (0, T )) independently on n, we see that there exists
a subsequence that converges in L1 norm and a.e. to a function w ∈ L1((0, T )) ∩
L∞((0, T )) and w(t) ∈ S(c) for almost any t.

Let us consider step (iii). We have to prove that u verifies (4.4) for any nonnegative
φ ∈ C1

0 ((0,∞)× (0, T )) and any k ∈ R.
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For any n, j, φ ∈ C1
0 ([0,∞)× (0, T )) we obtain∫

R+

∫ tj+1

tj

|ujn − k|φt + sgn(ujn − k)(f(ujn)− f(k))φx − f(uj0)

uj0 + c
|ujn − k|φx dtdx

+

∫ tj+1

tj

(
sgn(uj0 − k)(f(uj0)− f(k))− f(uj0)

uj0 + c
|uj0 − k|

)
φ(0, t) dt

≥
∫
R+

|ujn(x, tj+1)− k|φ(x, tj+1)− |ujn(x, tj)− k|φ(x, tj) dx.

Then summing on j∫
Π+
T

|un − k|φt + sgn(un − k)(f(un)− f(k))φx − f(un(0, ·))
un(0, ·) + c

|un − k|φx dtdx

+

∫ T

0

(
sgn(un(0, ·)− k)(f(un(0, ·))− f(k))− f(un(0, ·))

un(0, ·) + c
|un(0, ·)− k|

)
φ(0, t) dt

≥
k(n)∑
j=1

∫
R+

(|u(j−1)n(x, tj)− k| − |Pn(u(j−1)n)(x, tj)− k|)φ(x, tj) dx.(4.10)

Consider inequality (4.10) for the converging subsequence given in (i), (ii) and take
the limit. Then the first member of the inequality (4.10) tends to∫

Π+
T

|u− k|φt + sgn(u− k)(f(u)− f(k))φx − f(w)

w + c
|u− k|φx dtdx(4.11)

+

∫ T

0

sgn(w − k)(f(w)− f(k))φx − f(w)

w + c
|w − k|φdt.

Moreover (see, for example, [Le2], [Te2]) we see that

lim sup
n→∞

k(n)∑
j=1

∫
R+

(|u(j−1)n(x, tj)− k| − |Pn(u(j−1)n)(x, tj)− k|)φ(x, tj) dx ≥ 0.

Therefore the expression (4.11) is positive. To conclude the proof, we have to prove
that u(0, t) = w(t) for almost every t ∈ (0, T ). Using a suitable test function we
obtain

sgn(w(t)− k)(f(w(t))− f(k))− f(w(t))

w(t) + c
|w(t)− k|

≥ sgn(u(0, t)− k)(f(u(0, t))− f(k))− f(w(t))

w(t) + c
|u(0, t)− k| for almost every t.

Choosing k > max{u(0, t), w(t)} we have

f(u(0, t))− f(w(t)) ≥ f(w(t))

w(t) + c
(u(0, t)− w(t)),
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whereas k < min{u(0, t), w(t)} gives

f(u(0, t))− f(w(t)) ≤ f(w(t))

w(t) + c
(u(0, t)− w(t)).

Thus we conclude f(w(t))
w(t)+c = f(u(0,t))

u(0,t)+c , since w and u are in S(c) this implies w(t) =

u(0, t) for almost any t.
Observe that the uniqueness result in Proposition 4.1 ensures that all the sequence

{un}, constructed in the previous proof, converges to the solution u.

5. Initial data of Class B. In this section we prove Theorem 2.2 for initial
data of Class B. Due to Theorem 2.1, any solution of problem (FB) now takes values
in the interval [q, Fc(p)].

Proposition 5.1. Let (1.3) hold; let u0 be of Class B. Then there exists a unique

entropy solution of problem (FB) with the free boundary given by s(t) = f(p)
p+c t.

Proof. Since u(s(t), t) ∈ {p, q} ∩ S(c), we have s′(t) = f(p)
p+c (= f(q)

q+c if q ∈ S(c)).
Let u be the entropy solution of the following free boundary problem:

ut + f(u)x − f(p)

p+ c
ux = 0 in Π+

T ,

u(x, 0) = u0(x) in R+ × {0},
u(0, t) = p in {0} × (0, T ).

Let us prove that the function u = u(x − s(t), t) is an entropy solution of the free
boundary problem (FB). This follows by proving that for almost every t ∈ ((0, T ))
u(0, t) ∈ {q, p} when q ∈ S(c) and u(0, t) = p when q /∈ S(c).

For the compatibility condition along the boundary we have for almost every
t ∈ (0, T )

f(u(0, t))− f(k)

u(0, t)− k ≤ f(p)

p+ c
for every k ∈ (u(0, t), p].

If q ∈ S(c) and u(0, t) = q the previous inequality holds. Otherwise, reasoning as in
the proof of Proposition 4.2 we obtain u(0, t) = p. When q /∈ S(c) we necessarily have
u(0, t) = p.

We prove uniqueness using the estimate (4.1). In such a case the free boundary is
a priori known. Consider two solutions (s, u1) and (s, u2). Let us1, u

s
2 be the associate

functions (see (3.2)) defined in Π+
T . We obtain∫

R+

|us1(x, t)− us2(x, t)| dx

≤
∫ t

0

sgn(us1(0, τ)−u2
s(0, τ))(f(us1(0, τ))− f(us2(0, τ))− s′(τ)(us1(0, τ)−us2(0, τ))) dτ

= 0.

Since for almost every t ∈ (0, T ), we have

f(us1(0, t))

us1(0, t) + c
=

f(us2(0, t))

us2(0, t) + c
= s′(t).
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6. Initial data of Class C. In this last section we prove Theorem 2.2 for initial
data in Class C, using the results of sections 4 and 5 and the finite speed of propagation
of the characteristics.

Proposition 6.1. Let (1.3) hold; let u0 ∈ BV (R+) ∩ L∞(R+) be of Class C.
Then for any entropy solution u of the free boundary problem (FB), u(·, t) is in the
Class C for any t in (0,T).

Proof. This can be shown by observing that any entropy solution of the free boun-
dary problem (FB) is the solution of an opportune mixed value problem (Theorem
2.1) that can be thought in Π+

T by Proposition B.1. Then using a Godunov-type
approximation method for mixed value problems (as in the proof of Proposition 4.4),
we can approximate the solution u of the problem in the C([0, T ], L1

loc(R+)) norm by
functions having a bounded number of oscillations for any fixed t (solving Riemann
problem the number of oscillations do not increase). Therefore the solution u has, for
any fixed t, a finite number of oscillations outside a set of null measure.

Lemma 6.1. Let v be a function from R+ to R+ belonging to Class C. Let {Ik},
{k = 0, . . . , n}, some intervals of R+ such that Ij 6= Il when j 6= l, and R+ =

⋃n
k=0 Ik.

Then there exists k ∈ {0, . . . , n} and ε > 0 such that v((0, ε)) ⊂ Ik for almost any
x ∈ (0, ε).

Proof. Consider the interval [0, 1). There exists k1 such that µ{x ∈ [0, 1) : v(x) ∈
Ik1} > 0, where µ is the Lebesgue measure; hence there exists j1 such that

µ({x ∈ [2−j1 , 1) : v(x) ∈ Ik1}) > 0.

If

µ

x ∈ [0, 2−j1) : v(x) ∈
⋃
l 6=k1

Il


 = 0

the claim is proved; otherwise there exists k2 6= k1 such that

µ({x ∈ [0, 2−j1) : v(x) ∈ Ik2
}) > 0,

and analogously we can find j2 such that

µ({x ∈ [2−j2 , 2−j1) : v(x) ∈ Ik2
}) > 0.

Suppose that the claim is false. Then proceeding as above, we can construct a sequence
of integers {js}, js < js+1 and a sequence of sets {Iks}, ks 6= ks+1 such that

µ({x ∈ [2−js , 2−js−1) : v(x) ∈ Iks}) > 0.

Since the interval Ik are only n+ 1, this implies that v does not belong to the Class
C, hence the contradiction.

Proposition 6.2. Let u0 ∈ L∞(R+) ∩ BV (R+) be an initial data in Class C.
Then there exists at most one entropy solution of problem (FB).

Proof. Suppose there exists two entropy solutions (u1, s1), (u2, s2). Let

t1 = sup{t ∈ [0, T ) : s1 ≡ s2 in (0, t)}.

Let us show that t1 = T . Suppose that t1 < T ; we see that u1(·, t1) = u2(·, t1), and
there exists a finite number of points n, 0 = p0 ≤ p1 < p2 < · · · < pn = +∞ such
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that S(c) = ∪ni=1[p2i, p2i+1] (Proposition 3.1 (iii) and Proposition 3.2 (iii)). From
Proposition 6.1 the function u1(·, t1) is in Class C. Therefore, from Lemma 6.1 there
exists i ∈ {0, . . . , n− 1} and ε > 0 such that

u1(·, t1) ∈ (pi, pi+1] a.e. in (s1(t1), s1(t1) + ε).

In this way, near the boundary we are either in the situation of Proposition 4.1 or in
that of Proposition 5.1.

Let us change u1(·, t1) outside the interval (s1(t1), s1(t1) + ε) in such a way that
the function takes values in the interval (pi, pi+1] and preserves its regularity. Let us
call this function ũ1(·, t1).

To simplify the notations we assume that t1 = 0.
Let

M = sup
p∈R+

|f ′(p)|,

where M is an upper bound for the speed of the characteristics. Let

Ci := Λ(si(t), T ) ∩ {(x, t) ∈ Π+
T : x− si(t) < ε−Mt}, i = 1, 2.

We see that u1 ≡ u2 in C1 ∩ C2. In fact, let v be the solution of the following mixed
value problem:  vt + f(v)x = 0 in Λ(s1(t), T ),

v(x, 0) = ũ1(x, 0) in R+ × {0},
v(s1(t), t) = u1(s1(t), t).

From the finite speed of propagation of characteristics u1 ≡ v in C1. Then the function
v is a solution of the free boundary problem.

On the other hand, let w be the solution of the problem wt + f(w)x = 0 in Λ(s2(t), T ),
w(x, 0) = ũ1(x, 0) in R+ × {0},
w(s2(t), t) = u2(s2(t), t).

In the same way we see that w ≡ u2 in C2. Therefore w is an entropy solution of
the free boundary problem. Hence, from Propositions 4.1 and 5.1 we have (v, s1) ≡
(w, s2). Then u1 ≡ u2 in C1 ∩ C2 and there exists a positive δ such that s1 ≡ s2 in
(0, δ). This is a contradiction with the definition of t1.

Proposition 6.3. Let u0 ∈ BV (R+) ∩ L∞(R+) be an initial data in Class C.
Then there exists an entropy solution of the free boundary problem (FB) in R+×R+.

Proof. Since u0 is in Class C, we can construct a local entropy solution of problem
(FB). In fact, as in the proof of Proposition 6.2 there exists an ε > 0 such that for
almost any x ∈ (0, ε), u0(x) ∈ (pi, pi+1] using the existence theorem of the previous
sections and the finite propagation of characteristics, we obtain that there exists the
entropy solution of the free boundary problem until a time t > 0.

Let

T := sup{t ∈ R+ : there exists a solution of the free boundary problem in Π+
t }.

Then T > 0. Assume T <∞, and define a solution u in Π+
T such that u(·, t) = u(·, t),

where for every t < T function u is a solution of the free boundary problem in Π+
t+δ

(t+ δ < T ).
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This function is well defined for the uniqueness result and is a solution of the free
boundary problem (FB). Therefore u verifies for time T the condition of the Case C.
Then T = +∞ by standard continuation arguments.

Proof of Theorem 2.2. The proof follows by Propositions 4.1–4.4, Proposition 5.1,
and Propositions 6.2–6.3.

Appendix A. As we said in section 1, the present study is motivated by a model
introduced in [Ro] (see also [Fr]). In this appendix we introduce briefly the model for
convenience to the reader.

Consider a homogeneous material exposed to ion beams (this procedure is called
ion etching). Denote by y = y(x, t) the surface of the material at time t. This function
satisfies the following Hamilton–Jacobi equation:

yt = −f(yx) ,(A.1)

where the function f—referred to as sputtering function—depends in general on the
material.

It is interesting for the applications to study the situation when different mate-
rials with different “sputtering functions” are masked together. For example, in the
construction of semiconductor devices the technique of ion etching is used to shape
the material in a proper way. To this aim, the semiconductor material is masked with
photoresistant materials.

In [Ro] the problem of two materials with surface equation, respectively, y1, y2,
was considered (see Figure 1). Such materials are separated by an interface which is
given by a function g(x). Using the continuity condition along the interface we have

y1(s(t), t) = g(s(t)) = y2(s(t), t),(A.2)

where the function s(t) denotes the separation point of the materials at time t.
Let f1 (respectively, f2) be the sputtering functions of the materials with surface

equation y1(x, t) (respectively, y2(x, t)). Let p1 = y1x, p2 = y2x, s(0) = 0. Deriving
the Hamilton–Jacobi equation (A.1) for each material the problem can be written as
follows: 

p2t + f2(p2)x = 0 in Λ(s(·), T ),

p1t + f1(p1)x = 0 in R× (0, T ) \ Λ(s(·), T ),

f1(p1(s(t), t))

p1(s(t), t)− g′(s(t)) = s′(t) =
f2(p2(s(t), t))

p2(s(t), t)− g′(s(t)) ,

p1(x, 0) = p0
1(x) in R− × {0},

p2(x, 0) = p0
2(x) in R+ × {0},

s(0) = 0.

(A.3)

Observe that the interface condition is obtained by deriving (A.2).
Problem (A.3) is a free boundary problem in which the unknowns are the functions

s, p1, p2.
Let us point out that problem (A.3) is a generalization of a Cauchy problem

(g′ =∞, s(t) ≡ 0) {
ut + F (u, x)x = 0 in R× R,
u(x, 0) = u0(x),
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Fig. 1.

where

F (u, x) =

{
f1(u) per x < 0,
f2(u) per x ≥ 0.

This problem arises in several applications: in continuous sedimentation of solid
particles in a liquid [GR], [DW], [Ca], in two phase flow in porous media [GHR], and
in traffic flow analysis [Mo].

To simplify the free boundary problem (A.3) we suppose that the second material
lays over the first material (i.e., g′(x) < 0). In this way, following [Ro], by physical
considerations, we expect that the evolution of the boundary is affected only by the
second material.

Therefore, we can divide problem (A.3) into two separate problems. In the first
one, we look for s, p2 such that


p2t + f2(p2)x = 0 in Λ(s(·), T ),

f2(p2(s(t), t))

p2(s(t), t)− g′(s(t)) = s′(t),

p2(x, 0) = p0
2(x) in R+ × {0}.

(A.4)
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In the second one we search for p1 such that
p1t + f1(p1)x = 0 in R× (0, T ) \ Λ(s(·), T ),

f1(p1(s(t), t))

p1(s(t), t)− g′(s(t)) = s′(t),

p1(x, 0) = p0
1(x) in R− × {0}.

(A.5)

Observe that problem (A.4) is the free boundary problem (FB), while problem
(A.5) is a moving boundary problem. The latter can be easily solved using the exist-
ing theory of initial-boundary value problems for scalar conservation laws, when the
interface s(t) is known solving the previous problem (see [BLN], [Te1], [Te2]).

Appendix B. In this appendix we collect some results concerning entropy solu-
tions of initial-boundary value problems for conservation laws in noncylindrical do-
mains. We refer the reader to [Te1] for a more complete discussion of this topic.

We denote by u(s(t), t) the trace of the BV function u along the (smooth) curve
s = s(t).

Definition B.1. Let s ∈ Lip(0, T ), s(0) = 0. Let u0 ∈ BVloc(R+) ∩ L∞(R+),
a0 ∈ BV ((0, T )). We say that u ∈ BVloc(Λ(s(·), T )) ∩ L∞(Λ(s(·), T )) is an entropy
solution of the problem

ut + f(u)x = 0 in Λ(s(·), T ),

u(x, 0) = u0(x) in R+ × {0},
u(s(t), t) = a0(t) in (0, T ),

(B.1)

if (i) for any φ ∈ C1
0 (Λ(s(·), T )), φ ≥ 0, and any k ∈ R∫

Λ(s(·),T )

|u− k|φt + sgn(u− k)(f(u)− f(k))φx dxdt

+

∫
R+

|u0 − k|φ(x, 0) dx ≥ 0 ;

(ii) for almost every t ∈ (0, T ) the trace u(s(t), t) verifies

f(u)− f(k)

u− k ≤ s′ k ∈ [min{a0(t), u},max{a0(t), u}] \ {u} .

According to the above definition, the boundary condition in problem (A.1) is
not assumed in the strong sense—instead, it is only a compatibility condition for the
valued assumed by the solution on the boundary. More precisely, condition (ii) in the
previous definition means that the admissible discontinuities between the boundary
value and the trace of the solution are those for which the characteristics of the
discontinuity point outwards.

It is worth noting that we can reduce ourselves to an initial-boundary problem in
a cylindric domain by a suitable change of coordinates. We associate with any given
function s ∈ Lip(0, T ) and u ∈ BV (Λ(s(·), T )) ∩ L∞(Λ(s(·), T )), the function

us(x, t) = u(x+ s(t), t)(B.2)

defined in Π+
T = R+ × (0, T ).
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Proposition B.1. The function u is an entropy solution of problem (B.1) if and
only if the associate function us(y, t) = u(y + s(t), t) is an entropy solution of the
problem 

ust + f(us)y − s′(t)usy = 0 in Π+
T ,

us(y, 0) = u0(y) in R+ × {0},
us(0, t) = a0(t) in {0} × (0, T ).

(B.3)

This equivalence follows easily by changing the x coordinate in the integral formu-
lation of the problem (B.1) and by observing that it is not restrictive to use Lipschitz
continuous functions vanishing at the boundary instead of C1

0 functions.
We refer the reader to [BLN] for existence and uniqueness results concerning

initial-boundary problems.
Let us mention the following comparison result that is used in the paper.
Theorem B.1. Let u0, v0 ∈ BV (R+) ∩ L∞(R+). Let u (respectively, v) be the

entropy solution of problem (A.3) with initial data u0, a0 (respectively, v0, b0). Then
for any fixed R > 0 the following inequality holds for almost any t ∈ (0, T ):∫ R

0

[v(x, t)− u(x, t)]+ dx ≤
∫ R+Mt

0

[v0(x)− u0(x)]+ dx(B.4)

+

∫ t

0

H(v(0, τ)− u(0, τ))(f(v(0, τ))− f(u(0, τ))− s′(τ)(v(0, τ)− u(0, τ))) dτ,

where H is the standard Heaviside function and

M := sup
|u|≤max(‖u‖L∞ ,‖v‖L∞ )

|f ′(u)|+ ‖s′‖L∞(0,T ).(B.5)

Moreover if u0 ∈ BV (R+)∩L∞(R+)∩L1(R+), any entropy solution of the problem
(B.3) verifies the conservation equality

(B.6)∫
R+

us(y, t) dx =

∫
R+

u0(y) dx+

∫ t

0

(f(us(0, τ))− f(0)) dτ −
∫ t

0

s′(τ)u(0, τ) dτ.

For a proof of this result see [Te1, Theorem 1.1 and Proposition 3.4], where
actually we considered only flux functions f(u). The extension to flux of the type
f(u) + h(t)u with h(t) ∈ L∞(0, T ) follows by simple modifications.

The following comparison theorem is a consequence of the previous one (see again
[Te1]).

Theorem B.2. Assume the hypothesis of Theorem B.1. Then for almost every
t ∈ (0, T ) there holds∫ R

0

[u(x, t)− v(x, t)]+dx ≤
∫ R+Mt

0

[u0(x)− v0(x)]+dx

+M

∫ t

0

[a0(τ)− b0(τ)]+dτ,

where the constant M is given by (B.5).
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Abstract. We consider a complex third-order differential operator on a bounded interval with
boundary conditions presenting a mixed aspect of the Dirichlet and the periodic problems. It is
proved that two spectra are sufficient to determine the operator. This result is valid under applying
readily verifiable hypotheses simultaneously to the two spectra.
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1. Introduction and result. Consider the third-order differential operator

Lp,q = iD3 + iDq + iqD + p

defined on [0, 1] with the boundary conditions

(DP+)

 y(1) = 0,
y′(1) = y′(0),
y′′(0) = 0.

Here (p, q) ∈ L2
R[0, 1]×H1

R[0, 1]. When q(0) = 0 this operator is self-adjoint in L2
C[0, 1]

with the scalar product (f, g) =
∫ 1

0
f g dx and has a discrete spectrum. We denote

by µ+(p, q) =
(
µ+
j (p, q)

)
j∈Z

the increasing sequence of eigenvalues. Each eigenvalue

is real and is of multiplicity of at most two.
The same considerations hold when Lp,q is associated with the boundary condi-

tions

(DP−)

 y(1) = 0,
y′(1) = −y′(0),
y′′(0) = 0.

Then we denote by µ−(p, q) =
(
µ−j (p, q)

)
j∈Z

the increasing sequence of eigenvalues,

each eigenvalue being real and of multiplicity of at most two.
Let λ+ = (λ+

j )j∈Z and λ− = (λ−j )j∈Z be two sequences of real numbers. We write

λ+ ∩ λ− = /o if and only if λ+
i 6= λ−j ∀(i, j) ∈ Z× Z.

The main result of the paper is as follows.
Theorem 1.1. Let (p, q) ∈ L2

R×H1
R with q(0) = 0. Suppose µ+(p, q)∩µ−(p, q) =

/o. Then
(i) all eigenvalues µ+

j (p, q) and µ−j (p, q) are of multiplicity one;

(ii) the set (µ+(p, q), µ−(p, q), q(1)) determines uniquely (p, q).

∗Received by the editors October 27, 1997; accepted for publication (in revised form) July 23,
1998; published electronically July 22, 1999.
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Part (i) provides a sufficient condition for having a simple spectra for both DP+

and DP− boundary conditions: each eigenvalue for the DP+ boundary conditions is
not an eigenvalue for the DP− boundary conditions. It is proved in Theorem 3.1.

Given µ+ (resp., µ−), the additional knowledge of µ− (resp., µ+) gives the mul-
tiplicity number (one) of all the µ+

j (resp., µ−j ) when µ+ ∩ µ− = /o.

Part (ii) says the following. Let (p, q) ∈ L2
R ×H1

R and (p̃, q̃) ∈ L2
R ×H1

R, suppose
µ+(p, q)∩µ−(p, q) = /o, if µ+(p, q) = µ+(p̃, q̃), µ−(p, q) = µ−(p̃, q̃), q(1) = q̃(1), q(0) =
q̃(0) = 0; then p = p̃ a.e. in [0, 1] and q = q̃ in [0, 1].

Theorem 1.1 is not valid, replacing the DP+ and DP− boundary conditions with
the boundary conditions y(0) = y(1) = 0, y′(1) = y′(0), and y(0) = y(1) = 0, y′(1) =
−y′(0). It easy to check that Lp(x),q(x) and Lp(1−x),q(1−x) associated with one of these
boundary conditions give the same spectrum.

Let us mention here that the indexation of the µj(p, q)’s follows from the count-
ing lemma (Lemma 3.4). Furthermore we have µ±(p, q) = µ±(r, s) ⇐⇒ µ±j (p, q) =

µ±j (r, s)∀j ∈ Z. The counting lemma yields also that only a finite number of eigen-

values are of multiplicity two, with or without the hypothesis µ+(p, q)∩µ−(p, q) = /o.

For the second-order case −y′′ + qy = λy with boundary conditions of the type
cosαy(0) + sinαy′(0) = 0, cosβy(1) + sinβy′(1) = 0, the determination of q from two
of its spectra has been extensively studied, giving numerous results through various
methods. These are mainly based on Volterra operator transformations and contour
integrations, using spectral functions or norming constants (see, for example, [Bo],
[Ma], [Ge-Le], [Le-Ga], [Da-Tr]). The problem is solved for first-order differential
systems in [Am]. The fourth-order case is also largely studied; see [Ca-Pe-Sc] for
recent results and references. Two sequences of spectral data are not sufficient to
determine the two coefficients of a self-adjoint fourth-order operator with separated
boundary conditions. This can be seen from the exact solution reconstructive method
given in [McLa1] and [McLa2]. Let us mention [Gl] and [Ba] where conditions are
given for three sequences to be spectral data for a fourth-order self-adjoint boundary
value problem with separated boundary conditions.

For the third-order operator the unique result in this direction is given by Leiben-
zon [Le] in 1966. The equation y′′′+p1y+p2y = λy is associated with three boundary
conditions of the type y(a)+αy′(a)+βy′′(a) = 0, a = 0 or 1. This is not a self-adjoint
problem. It is proved that p1 and p2 are determined by two spectra also with the
so-called matrix functions. It is supposed as in Theorem 1.1 that the two sets of
eigenvalues do not intersect. It is also assumed that some other weight numbers exist.
The result is actually generalized for nth-order differential equations, n > 2.

In Theorem 1.1 the two boundary conditions are of a different kind than those of
Leibenzon. They allow the determination of the operator from only two spectra and
use only one of the assumptions of Leibenzon. The proof of Theorem 1.1(ii) is mainly
based on the methods of Pöschel and Trubowitz [P-Tr], a contour integration and a
counting lemma.

A first generalization of the boundary conditions DP+ or DP− should be y(1) =

0, y′(1) = eiφy′(0), y′′(0) = 0 for some φ ∈ R/2πZ and one may expect that two
sequences of spectral data for two different φ determine the operator together with
the boundary conditions. This is a problem.

The counting lemma gives a rough asymptotic expansion of the µ±j (p, q)’s. Namely,

µ+
j (p, q)− (2jπ)

3
and µ−j (p, q)− (2(j + 1)π)3 are bounded as |j| → ∞. More precise

asymptotic expansions are given in the following theorem.
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Theorem 1.2. Suppose (p, q) ∈ L2
R ×H1

R with q(0) = 0 and let [q] =
∫ 1

0
q(t) dt:

µ+
j (p, q) = (2jπ)3 − 2jπ[q] +O(1)

and

µ−j (p, q) = ((2j + 1)π)3 − (2j + 1)π[q] +O(1),

as |j| → ∞.
Let us mention the work of McKean [McKe] devoted to the Boussinesq equation

but give numerous results in inverse spectral theory for the non-self-adjoint operator
D3 +qD+Dq+p for the periodic case and also for the conditions y(0) = y(1) = y(2),
p and q being sufficiently small.

This article is organized as follows. In section 2 the estimates used in sections
3 and 4 are established. Then in section 3, Theorem 1.1(i) is proved. Next the
counting lemma is derived. This involves the construction of Z1(1, ·, p, q) (resp.,
Y1(1, ·, p, q)), the analytic extensions of the function vanishing at the µ+

j (p, q)’s (resp.,

the µ−j (p, q)’s). Theorem 1.1(ii) is proved in section 4. Finally, the proof of Theorem
1.2 is given in section 5.

2. Notations, estimates, analyticity. Consider (p, q) ∈ L2
R × H1

R and let
λ ∈ C. The purpose of this section is to give estimates and analyticity results for the
fundamental basis of the solutions to Lp,qy = λy.

We will often use the abbreviated notation ′ = ∂/∂x.
The functions y1(x, λ, p, q), y2(x, λ, p, q), y3(x, λ, p, q) are defined as the unique

solutions to Lp,qy(x) = λy(x), for a.e. x ∈ [0, 1], satisfying the initial conditions y1(0) y2(0) y3(0)
y′1(0) y′2(0) y′3(0)
y′′1 (0) y′′2 (0) y′′3 (0)

 = Identity.

In particular, every solution to Lp,qy = λy can be expressed as y(x) = a y1(x, λ, p, q)+
b y2(x, λ, p, q) + c y3(x, λ, p, q), where (a, b, c)= (y(0), y′(0), y′′(0)).

Since there is no second-order derivative in the definition of Lp,q, the Wronskian
of y1, y2, and y3 is independent of x. Therefore, for a.e. x ∈ [0, 1],

∣∣∣∣∣∣
y1(x) y2(x) y3(x)
y′1(x) y′2(x) y′3(x)
y′′1 (x) y′′2 (x) y′′3 (x)

∣∣∣∣∣∣ = 1.(2.1)

In particular,

∀x0 ∈ [0, 1], (y(x0), y′(x0), y′′(x0)) 6= (0, 0, 0).(2.2)

Let ω = e
2iπ
3 and k3 = λ. When (p, q) ≡ (0, 0) it is easy to obtain

y1(x, λ, 0, 0) =
1

3

(
eikx + eiωkx + eiω

2kx
)
,

y2(x, λ, 0, 0) =
1

3ik

(
eikx + ω2eiωkx + ωeiω

2kx
)
,

y3(x, λ, 0, 0) =
1

3(ik)2

(
eikx + ωeiωkx + ω2eiω

2kx
)
.

(2.3)
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Note that λ = 0 is a removable singularity for y2(x, λ, 0, 0) and y3(x, λ, 0, 0).
Lemma 2.1. We have that

y1(x, λ, 0, 0) =
1

3

(
4 cos

(
kx

2

)
cos

(
ωkx

2

)
cos

(
ω2kx

2

)
− 1

−4i sin

(
kx

2

)
sin

(
ωkx

2

)
sin

(
ω2kx

2

))
,

y2(x, λ, 0, 0) =
1

3ik

(
4 cos

(
kx

2

)
cos

(
ωkx

2
− π

3

)
cos

(
ω2kx

2
+
π

3

)
− 1

−4i sin

(
kx

2

)
sin

(
ωkx

2
− π

3

)
sin

(
ω2kx

2
+
π

3

))
,(2.4)

y3(x, λ, 0, 0) =
1

3(ik)2

(
4 cos

(
kx

2

)
cos

(
ωkx

2
+
π

3

)
cos

(
ω2kx

2
− π

3

)
− 1

−4i sin

(
kx

2

)
sin

(
ωkx

2
+
π

3

)
sin

(
ω2kx

2
− π

3

))
.

Lemma 2.1 is elementary but fundamental in achieving all estimates in the whole
complex plane. Combining (2.4) and the inequality | sin z| ≤ e|=mz|, z ∈ C, the
functions y1, y2, and y3 for (p, q) ≡ (0, 0) can be estimated as follows.

Lemma 2.2. On [0, 1]×C,

|y1(x, λ, 0, 0)| ≤ 3e

(
|=m k

2 |+|=mωk
2 |+|=mω2k

2 |
)
x
,

|y2(x, λ, 0, 0)| ≤ 3

|k|e
(
|=m k

2 |+|=mωk
2 |+|=mω2k

2 |
)
x
,(2.5)

|y3(x, λ, 0, 0)| ≤ 3

|k|2 e
(
|=m k

2 |+|=mωk
2 |+|=mω2k

2 |
)
x
.

Let us define for x ∈ [0, 1] and λ ∈ C

Ξ(x, λ) = e

(
|=m k

2 |+|=mωk
2 |+|=mω2k

2 |
)
x
.(2.6)

We also have Lemma 2.3.
Lemma 2.3. Let j = 1, 2, 3 and suppose n ≤ j − 1. On [0, 1]×C,∣∣∣∣ ∂n∂xn yj(x, λ, 0, 0)

∣∣∣∣ ≤ 3Ξ(x, λ).(2.7)

Proof. Clearly, for x ∈ [0, 1] and λ ∈ C,

y2(x, λ, 0, 0) =

∫ x

0

y1(t, λ, 0, 0) dt, y3(x, λ, 0, 0) =

∫ x

0

y2(t, λ, 0, 0) dt.(2.8)

Equalities in (2.8) show successively with Lemma 2.2 that

|y2(x, λ, 0, 0)| ≤ Ξ(x, λ), |y3(x, λ, 0, 0)| ≤ Ξ(x, λ).(2.9)

Besides,

y′3(x, λ, 0, 0) = y2(x, λ, 0, 0), y′3(x, λ, 0, 0) = y′2(x, λ, 0, 0) = y′1(x, λ, 0, 0).(2.10)
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Then (2.9) and (2.10) finish the proof.
The L2

R ×H1
R norm is chosen for convenience as

‖(p, q)‖2L2
R
×H1

R
= 2‖q‖2L2

R
+ ‖q′‖2L2

R
+ ‖p‖2L2

R
.

Theorem 2.4. For (x, λ, p, q) ∈ [0, 1]×C× L2
R ×H1

R with q(0) = 0,

|yj(x, λ, p, q)| ≤ 3

|k|j−1
Ξ(x, λ)e

√
x‖(p,q)‖

L2
R
×H1

R , j = 1, 2, 3.(2.11)

Proof. For j = 1, 2, 3 we have the integral equation

yj(x, λ, p, q) = yj(x, λ, 0, 0) +

∫ x

0

y3(x− t, λ, 0, 0)
(−2q(t)y′j(t, λ, p, q)

+(−q′(t) + ip(t))yj(t, λ, p, q)
)
dt.(2.12)

Integrating (2.12) by parts gives

yj(x, λ, p, q) = yj(x, λ, 0, 0) +

∫ x

0

(
−2y′3(x− t, λ, 0, 0)q(t)

+y3(x− t, λ, 0, 0)(q′(t) + ip(t))
)
yj(t, λ, p, q) dt

− [2y3(x− t, λ, 0, 0)q(t)yj(t, λ, p, q)] |t=xt=0 .(2.13)

The last term in (2.13) is zero since q(0) = 0.
Following Picard’s iteration we write

yj(x, λ, p, q) = yj(x, λ, 0, 0) +
∑
n≥1

cjn(x, λ, p, q),(2.14)

where

cj0(x, λ, p, q) = yj(x, λ, 0, 0),

cjn(x, λ, p, q) =

∫ x

0

(
−2y′3(x− t, λ, 0, 0)q(t) + y3(x− t, λ, 0, 0)(q′(t)

+ip(t))
)
cjn−1(t, λ, p, q) dt.(2.15)

From (2.15) we have for each n ≥ 1,

cjn(x, λ, p, q) ≤
∫
t1≤t2≤···≤tn+1=x

yj(t1, λ, 0, 0)
n∏

m=1

(
−2y′3(tm+1 − tm, λ, 0, 0)

q(tm) + y3(tm+1 − tm, λ, 0, 0)(q′(tm) + ip(tm)
)
dt1 · · · dtn.

(2.16)

From Lemma 2.3

|y3(x, λ, 0, 0)| ≤ 3Ξ(x, λ), |y′3(x, λ, 0, 0)| ≤ 3Ξ(x, λ), (x, λ) ∈ [0, 1]×C.(2.17)
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Then using (2.17) and |yj(t1, λ, 0, 0)| ≤ 3|k|1−jΞ(x, λ) (2.16) gives

|cjn(x, λ, p, q)| ≤ 3
Ξ(x, λ)

n!|k|j−1

(∫ x

0

2|q(t)|+ |q′(t) + ip(t)| dt
)n

≤ 3
Ξ(x, λ)

n!|k|j−1

(√
x‖(p, q)‖L2

R
×H1

R

)n
, n ≥ 1.(2.18)

Inequalities of Lemma 2.3 and (2.18) together with (2.14) finish the proof.
Theorem 2.5. Let j = 1, 2, 3. For (x, λ, p, q) ∈ [0, 1] × C × L2

R × H1
R with

q(0) = 0,

|yj(x, λ, p, q)− yj(x, λ, 0, 0)| ≤ 3

|k|j Ξ(x, λ)e
√
x‖(p,q)‖

L2
R
×H1

R .(2.19)

Proof. It is a repetition of the proof of Theorem 2.4 except that in (2.16) we
replace once in the product, say, for m = 1, the inequalities (2.17) by the inequalities

|y3(x, λ, 0, 0)| ≤ 3

|k|Ξ(x, λ), |y′3(x, λ, 0, 0)| ≤ 3

|k|Ξ(x, λ), (x, λ) ∈ [0, 1]×C.(2.20)

Inequalities (2.20) can be easily derived in a similar way as those in Lemma 2.3.
Theorem 2.6. Let j = 1, 2, 3. For each x ∈ [0, 1] and each (p, q) ∈ L2

R × H1
R

with q(0) = 0,

yj(x, λ, p, q), y′j(x, λ, p, q), y′′j (x, λ, p, q)(2.21)

are entire functions of λ.
Remark. It can be proved that these functions are also analytic functions of

(λ, p, q).
Proof. Fix j = 1, 2, 3. The coefficient cjn(x, λ, p, q), nth term in the power series

of yj(x, λ, p, q) is an entire function of λ. The convergence in (2.14) is locally uniform
in λ by (2.18). Then yj(x, λ, p, q) is an entire function of λ according to Weierstrass’s
theorem.

The first derivative with respect to x of the integral equation (2.13) is

y′j(x, λ, p, q) = y′j(x, λ, 0, 0) +

∫ x

0

(
−2y′′3 (x− t, λ, 0, 0)q(t)

+ y′3(x− t, λ, 0, 0)(q′(t) + ip(t))
)
yj(t, λ, p, q) dt.(2.22)

The analyticity of yj(x, λ, p, q) gives the analyticity of y′j(x, λ, p, q). Similarly,

y′′j (x, λ, p, q) = y′′j (x, λ, 0, 0) +

∫ x

0

(
−2y′′′3 (x− t, λ, 0, 0)q(t)

+ y′′3 (x− t, λ, 0, 0)(q′(t) + ip(t))
)
yj(t, λ, p, q) dt− 2q(x)

(2.23)

proves the analyticity result of y′′j (x, λ, p, q).
The estimates for the derivatives of yj(x, λ, p, q) are given in Theorem 2.7.
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Theorem 2.7. Let j = 1, 2, 3. For (x, λ, p, q) ∈ [0, 1] × C × L2
R × H1

R with
q(0) = 0,

|y′j(x, λ, p, q)− y′j(x, λ, 0, 0)| ≤ 3
‖(p, q)‖L2

R
×H1

R

|k|j−1
Ξ(x, λ)e

√
x‖(p,q)‖

L2
R
×H1

R

(2.24)

and

|y′′j (x, λ, p, q) + 2q(x)− y′′j (x, λ, 0, 0)| ≤ 3
‖(p, q)‖L2

R
×H1

R

|k|j−2
Ξ(x, λ)

×e
√
x‖(p,q)‖

L2
R
×H1

R .(2.25)

The proof of (2.24) and (2.25) is a consequence of (2.22) and (2.23), respec-
tively.

3. Proof of Theorem 1.1(i) and the counting lemma. We begin this section
by proving Theorem 1.1(i). It is Theorem 3.1(iii).

Theorem 3.1. Let (p, q) ∈ L2
R ×H1

R satisfying q(0) = 0.

(i) µ+(p, q) ∩ µ−(p, q) = /o if and only if y1(1, λ, p, q) has no zero in C.

(ii) Any λ ∈ R is a simple eigenvalue of Lp,q associated with the DP+ boundary
conditions if and only if{ =m y1(1, λ, p, q) = 0

<e y1(1, λ, p, q) 6= 0
or

{ =m y1(1, λ, p, q) = 0
<e y′′1 (1, λ, p, q) 6= 0

.

Any λ ∈ R is a simple eigenvalue of Lp,q associated with the DP− boundary conditions
if and only if { <e y1(1, λ, p, q) = 0

=m y1(1, λ, p, q) 6= 0
or

{ <e y1(1, λ, p, q) = 0
=m y′′1 (1, λ, p, q) 6= 0

.

(iii) If µ+(p, q)∩µ−(p, q) = /o, then µ+(p, q) and µ−(p, q) are both simple spectra.

The proof uses the following preliminary observations.

Let [y, z] = y′z − yz′.
Lemma 3.2. Let λ ∈ C and suppose (p, q) ∈ L2

R ×H1
R. Then

[y3(x, λ, p, q), y2(x, λ, p, q)] = ȳ3(x, λ̄, p, q),

[y3(x, λ, p, q), y1(x, λ, p, q)] = ȳ2(x, λ̄, p, q),(3.1)

[y2(x, λ, p, q), y1(x, λ, p, q)] = ȳ1(x, λ̄, p, q)− 2q(0)ȳ3(x, λ̄, p, q).

This result is given by McKean [McKe].

Proof. Check that the left- and right-hand sides of each identity in (3.1) satisfy
L−p,qy = −λy and the same initial conditions at x = 0.

Let

M±(λ, p, q) =

(
y1(1, λ, p, q) y2(1, λ, p, q)
y′1(1, λ, p, q) y′2(1, λ, p, q)∓ 1

)
.(3.2)
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Lemma 3.3. Fix (p, q) in L2
R×H1

R and suppose q(0) = 0. For all λ ∈ R we have

(i)

{
y1(1, λ, p, q) = 0,
<e y′′1 (1, λ, p, q) = 0

⇐⇒M+(λ, p, q) = 0,(3.3)

(ii)

{
y1(1, λ, p, q) = 0,
=a y′′1 (1, λ, p, q) = 0

⇐⇒M−(λ, p, q) = 0.(3.4)

Proof. Suppose q(0) = 0 and fix λ ∈ R. We omit (p, q) from the notation for
brevity. From ȳ1(1, λ) = y′2(1, λ)y1(1, λ) − y2(1, λ)y′1(1, λ) we have y1(1, λ) = 0 ⇒
y′1(1, λ) = 0 or y2(1, λ) = 0. The equality ȳ2(1, λ) = y′3(1, λ)y1(1, λ)− y3(1, λ)y′1(1, λ)
gives y1(1, λ) = y′1(1, λ) = 0⇒ y2(1, λ) = 0. Therefore,

y1(1, λ) = 0⇒ y2(1, λ) = 0.(3.5)

Similarly, ȳ′1(1, λ) = y′′2 (1, λ)y1(1, λ)−y2(1, λ)y′′1 (1, λ) yields y1(1, λ) = y2(1, λ) = 0⇒
y′1(1, λ) = 0. Thus, with (3.5) we obtain

y1(1, λ) = 0⇔ y1(1, λ) = y′1(1, λ) = y2(1, λ) = 0.

Since y′′1 (1, λ) 6= 0 when y1(1, λ) = y′1(1, λ) = 0, the proof is finished using
ȳ′′1 (1, λ) = y′′2 (1, λ)y′1(1, λ)− y′2(1, λ)y′′1 (1, λ).

Proof of Theorem 3.1. Looking for a solution y(x) to Lp,qy = λy, for a.e. x ∈ [0, 1]
and satisfying the DP± boundary conditions, we write

y(x) = a y1(x, λ, p, q) + b y2(x, λ, p, q) + c y3(x, λ, p, q)

with (a, b, c) ∈ C3\0.
Clearly  a y1(1, λ, p, q) + b y2(1, λ, p, q) + c y3(1, λ, p, q) = 0,

a y′1(1, λ, p, q) + b y′2(1, λ, p, q) + c y′3(1, λ, p, q) = ±b,
c = 0,

(3.6)

that is to say,

M±(λ, p, q)

(
a
b

)
=

(
0
0

)
, (a, b)6=(0, 0).

Then any real λ is an eigenvalue of Lp,q associated with the DP± boundary
conditions if and only if dim KerM±(λ, p, q) ≥ 1, i.e., if and only if

detM±(λ, p, q) = 0.(3.7)

Using Lemma 3.2 we have detM±(λ, p, q) = ȳ1(1, λ, p, q)∓ y1(1, λ, p, q). Therefore,

=my1(1, λ, p, q) = 0 (resp., <ey1(1, λ, p, q) = 0)(3.8)

gives the eigenvalues for the DP+ boundary conditions (resp., for the DP− boundary
conditions). This proves (i).
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Any real λ is a simple eigenvalue Lp,q associated with the DP± boundary con-
ditions if and only if dim KerM±(λ, p, q) = 1, i.e., if and only if

detM±(λ, p, q) = 0 and M±(λ, p, q)6=
(

0 0
0 0

)
.(3.9)

This proves (ii) with Lemma 3.3. Then (iii) follows from (i) and (ii).
When λ is a simple eigenvalue, an immediate consequence of (3.2) and (3.9) is

that either the two expressions

y2(1, λ, p, q)y1(x, λ, p, q)− y1(1, λ, p, q)y2(x, λ, p, q)

and(3.10)

(y′2(1, λ, p, q)∓ 1)y1(x, λ, p, q)− y′1(1, λ, p, q)y2(x, λ, p, q)

are equivalent up to a multiplicative constant 6= 0 or one (and only one) of the two
expressions is identically zero. This provides the eigenfunction (up to a multiplicative
constant 6= 0) corresponding to λ.

When λ is a double eigenvalue, y1(·, λ, p, q) and y2(·, λ, p, q) are two linearly inde-
pendent eigenfunctions corresponding to λ.

Now we construct explicitly the analytic extensions in C of λ 7→ =my1(1, λ, p, q)
and λ 7→ <ey1(1, λ, p, q).

For this, just define the operator

lp,q =

(
p −D3 −Dq − qD

D3 +Dq + qD p

)
on the real-valued function space ÃL2

R[0, 1]× ÃL2
R[0, 1] and consider the eigenvalue prob-

lem

lp,q

(
Y (x)
Z(x)

)
= λ

(
Y (x)
Z(x)

)
for a.e. x ∈ [0, 1]

with either the dl+ or the dl− boundary conditions defined by

(dl±)

 Y (1) = Z(1) = 0,
Y ′(1) = ±Y ′(0), Z ′(1) = ±Z ′(0),
Y ′′(0) = Z ′′(0) = 0.

The operator lp,q with the dl+ or dl− boundary conditions is self-adjoint on
ÃL2

R[0, 1]× ÃL2
R[0, 1] with the inner scalar product〈(

Y (x)
Z(x)

)
,

(
Ỹ (x)

Z̃(x)

)〉
=

∫ 1

0

Y (x)Ỹ (x) + Z(x)Z̃(x) dx.

Write y = Y + iZ, Y and Z being real-valued functions, and observe that Lp,qy =
λy is equivalent to

lp,q

(
Y (x)
Z(x)

)
= λ

(
Y (x)
Z(x)

)
for real λ. It is different for all complex λ because of right-hand sides.

The spectrum of Lp,q with the DL+ (resp., DL−) boundary conditions is then
the spectrum of lp,q with the dl+ (resp., dl−) boundary conditions.
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For each λ ∈ C,
(
Y1(x)
Z1(x)

)
denotes the solution to

lp,q

(
Y (x)
Z(x)

)
= λ

(
Y (x)
Z(x)

)
satisfying the initial condition

(Y1 + iZ1)(0, λ, p, q) = 1, (Y ′1 + iZ ′1)(0, λ, p, q) = 0, (Y ′′1 + iZ ′′1 )(0, λ, p, q) = 0.

We have

y1(x, λ, p, q) = Y1(x, λ, p, q) + iZ1(x, λ, p, q) for a.e x ∈ [0, 1] ∀λ ∈ R.(3.11)

Again (3.11) is not satisfied for all λ ∈ C.
Moreover, it is clear that{

µ+
j (p, q), j ∈ Z

}
= {λ ∈ C, Z1(1, λ, p, q) = 0} ,{

µ−j (p, q), j ∈ Z
}

= {λ ∈ C, Y1(1, λ, p, q) = 0} .(3.12)

The same considerations (the integral equation and the Picard iteration) as those for
y1(x, λ, p, q) in section 2 show that Y1(1, λ, p, q) and Z1(1, λ, p, q) are entire functions
of λ (see [Am-Gu, appendix] for a very similar treatment with a first-order system).
They are the analytic extensions in C of λ 7→ =my1(1, λ, p, q) and λ 7→ <ey1(1, λ, p, q).
Moreover, under the same assumptions of Theorem 2.5, it can be seen that

|Y1(x, λ, p, q)− Y1(x, λ, 0, 0)| ≤ 3

|k|Ξ(x, λ)e
√
x‖(p,q)‖

L2
R
×H1

R

and(3.13)

|Z1(x, λ, p, q)− Z1(x, λ, 0, 0)| ≤ 3

|k|Ξ(x, λ)e
√
x‖(p,q)‖

L2
R
×H1

R

∀λ ∈ C.
The final part of this section is concerned with the proof of the counting lemma.
Let

Ω−j =
{
z ∈ C, |ωj−1z − (2j + 1)π| ≥ π

2

}
,

Ω+
j =

{
z ∈ C, |ωj−1z − 2jπ| ≥ π

2

}
(3.14)

for j = 1, 2, 3 and define

Ω± =
3⋂
j=1

Ω±j .(3.15)

Using this notation we have Lemma 3.4.
Lemma 3.4 (the counting lemma). Suppose (p, q) ∈ L2

C ×H1
C with

q(0) = 0.
(i) Let the integer J satisfy (2J + 1)π > 48e‖(p,q)‖. Then Z1(1, λ, p, q) has exactly

2J + 1 roots, counted with multiplicity in the open k-disc

{k ∈ C, |k| < (2J + 1)π}
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and exactly one simple root noted µ+
j (p, q) in each open k-disc {k ∈ C, |k − 2jπ| < π}

for |j| > J.
(ii) Let the integer J satisfy 2Jπ > min(ln 32, 96e‖(p,q)‖). Then Y1(1, λ, p, q) has

exactly 2J roots, counted with multiplicity in the open k-disc

{k ∈ C, |k| < 2Jπ}
and exactly one simple root noted µ−j (p, q) in each open k-disc {k ∈ C, |k − (2j + 1)π| < π}
for |j| ≥ J.

The proof of Lemma 3.4 involves the following inequalities.
Lemma 3.5.

(i) 96|Y1(1, λ, 0, 0)| ≥ Ξ(1, λ) ∀k ∈ Ω−\ {|k| ≤ ln 32} ,
(ii) 48|Z1(1, λ, 0, 0)| ≥ Ξ(1, λ) ∀k ∈ Ω+.(3.16)

The definition of Ξ is given in (2.6).
Proof. (i) Similarly as in Lemma 2.1 it can be seen that

Y1(1, λ, 0, 0) =
1

3

(
4 cos

(
k

2

)
cos

(
ωk

2

)
cos

(
ω2k

2

)
− 1

)
∀λ ∈ C.

Then

|Y1(1, λ, 0, 0)|2 = 16|Λ|2 − 8<eΛ + 1,

where

Λ = cos

(
k

2

)
cos

(
ωk

2

)
cos

(
ω2k

2

)
.

Therefore, for any 0 < ε < 4,

9|Y1(1, λ, 0, 0)|2 ≥ ε2|Λ|2(3.17)

if

(16− ε2)|Λ|2 − 8|Λ|+ 1 ≥ 0,

that is to say, if

|Λ| ≥ (4− ε)−1.(3.18)

Inequality e|=mz| ≤ 4| sin z| in {z ∈ C, |z| ≥ π/4} [P-Tr, Lemma 2.1] yields∣∣∣∣ cos

(
k

2

)∣∣∣∣ ≥ 1

4
e|=m

k
2 | ≥ 1

4
for k ∈ Ω−1 ,∣∣∣∣ cos

(
ωk

2

)∣∣∣∣ ≥ 1

4
e|=mω

k
2 | ≥ 1

4
for k ∈ Ω−2 ,(3.19) ∣∣∣∣ cos

(
ω2k

2

)∣∣∣∣ ≥ 1

4
e|=mω

2 k
2 | ≥ 1

4
for k ∈ Ω−3 .

From (3.19) we have

|Λ| ≥ 1

43
e|=mω

k
2 | and |Λ| ≥ 1

43
e|=mω

2 k
2 | ∀k ∈ Ω−.
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Consequently

|Λ| ≥ 1

2

if k ∈
({∣∣∣∣=mωk2

∣∣∣∣ ≥ ln 32

}
∪
{∣∣∣∣=mω2 k

2

∣∣∣∣ ≥ ln 32

})
∩ Ω−.(3.20)

Therefore, (3.18) is satisfied for ε = 2 and for k ∈ Ω−\ {|k| ≤ ln 32} . Then

|Y1(1, λ, 0, 0)| ≥ 2

3
|Λ| ∀k ∈ Ω−\ {|k| ≤ ln 32} ,(3.21)

and again using (3.19) we have

|Λ| ≥ 1

43
Ξ(1, λ) for k ∈ Ω−.(3.22)

Inequalities (3.21) and (3.22) prove (i).
The proof of (ii) is immediate since

|Z1(1, λ, 0, 0)| = 1

3

∣∣∣∣4 sin

(
k

2

)
sin

(
ωk

2

)
sin

(
ω2k

2

)∣∣∣∣ ∀k ∈ C

≥ 1

48
e

(
|=m k

2 |+|=mωk
2 |+|=mω2k

2 |
)
x ∀k ∈ Ω+.

Proof of Lemma 3.4. (i) Combining (3.13) and (3.16) we obtain

|Z1(1, λ, p, q)− Z1(1, λ, 0, 0)| < |Z1(1, λ, 0, 0)|
∀ k ∈ Ω+ satisfying |k| ≥ 48e‖(p,q)‖.

Consequently, Rouché’s theorem can be applied on the k-circles |k| = (2J+1) and

|k−2jπ| = π for |j| > J . Then Z1(1, λ, p, q) and Z1(1, λ, 0, 0) = 4
3 sin(kx2 ) sin(ωkx2 ) sin(ω

2kx
2 )

have the same number of zeros, counted with multiplicity, in the corresponding open
k-discs, the zeros of Z1(1, λ, 0, 0) being the (2jπ)3 ’s, j ∈ Z.

(ii) Similarly, (3.13) and (3.16) give

|Y1(1, λ, p, q)− Y1(1, λ, 0, 0)| < |Y1(1, λ, 0, 0)|
∀ k ∈ Ω− satisfying |k| ≥ max(ln 32, 96e‖(p,q)‖). Then Y1(1, λ, p, q) and Y1(1, λ, 0, 0)
have the same number of zeros in the open k-discs defined in Lemma 3.3(ii), the zeros

of Y1(1, λ, 0, 0) being the ((2j + 1)π)
3

’s, j ∈ Z, up to an irrelevant additive O(e−c|k|)
term, c being a positive numerical constant.

4. Proof of Theorem 1.1(ii). Let us mention first that the indexing of the
µ∓j (p, q)’s following Lemma 3.4 has the property

µ±(p1, q1) = µ±(p2, q2)⇐⇒ µ±j (p1, q1) = µ±j (p2, q2) ∀ j ∈ Z.

Define

y(x, λ, p, q) = y2(1, λ, p, q)y1(x, λ, p, q)− y1(1, λ, p, q)y2(x, λ, p, q)(4.1)

∀λ ∈ C and a.e. x ∈ [0, 1].
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Let us recall that under the assumptions of Theorem 1.1, y(·, µ±j , p, q) is the

eigenfunction corresponding to the eigenvalue µ±j (p, q).
We will often use the abbreviated notation · = ∂/∂λ. We now have Lemma 4.1.
Lemma 4.1. Let (p, q) ∈ L2

R ×H1
R. Suppose q(0) = 0. Then∫ 1

0

|y(x, µ+
j (p, q), p, q)|2 dx = −2(Y1Ż1)(1, µ+

j (p, q), p, q),∫ 1

0

|y(x, µ−j (p, q), p, q)|2 dx = 2(Z1Ẏ1)(1, µ−j (p, q), p, q)(4.2)

∀j ∈ Z.
Remark. When µ+(p, q)∩µ−(p, q) = /o, the geometric multiplicity of each µ+

j (p, q)

(resp., µ−j (p, q)) is one. Besides, from Lemma 4.1, its algebraic multiplicity, defined
as its order as a root in Z1(1, λ, p, q) (resp., Y1(1, λ, p, q)), is also one.

Proof. Let λ ∈ C. We have

iẏ′′′ + 2iqẏ′ + (iq′ + p)ẏ = λẏ + y(4.3)

and

iȳ′′′ + 2iqȳ′ + (iq′ − p)ȳ = −λ̄ȳ.(4.4)

Combining (4.3) and (4.4) we have for λ ∈ R

|y|2 = 2i(qẏȳ)′ + iẏ′′′ȳ + iẏȳ′′′

= i(ẏȳ′′ − ẏ′ȳ′ + ẏ′′ȳ + 2qẏȳ)′.(4.5)

Suppose λ = µ±j . From (4.5), since q(0) = 0 and y(0) = 0, we obtain∫ 1

0

|y|2 dx = i[ẏȳ′′ − ẏ′ȳ′ + ẏ′′ȳ]|x=1
x=0.(4.6)

Besides, it is easy to compute

ẏ(1) = 0, ẏ′′(0) = 0, ẏ′(0) = −ẏ1(1),

ȳ′(0) = −ȳ1(1), ȳ′(1) = −y1(1), ẏ′(1) = − ˙̄y1(1),(4.7)

where all functions in (4.7) are evaluated at µ±j (p, q), j ∈ Z.
Finally, since

y1(1, λ, p, q) = ȳ1(1, λ, p, q) for λ = µ+
j (p, q),

y1(1, λ, p, q) = −ȳ1(1, λ, p, q) for λ = µ−j (p, q),(4.8)

we have from (4.5), (4.6), and (4.7),∫ 1

0

|y(x, λ, p, q)|2 dx =−iy1(1, λ, p, q)
∂

∂λ
(y1(1, λ, p, q)± ȳ1(1, λ, p, q))

at λ = µ±j (p, q), j ∈ Z.
The proof is finished since <ey1(1, ·, p, q) coincides with Y1(1, ·, p, q) and =my1(1, ·, p, q)

coincides with Z1(1, ·, p, q) on the real axis.
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For g ∈ L2
R[0, 1], g∗ is defined by g∗(x) = g(1− x) for a.e. x ∈ [0, 1].

Lemma 4.2. Let (p, q) ∈ L2
R ×H1

R, λ ∈ C and suppose q(0) = 0. Then y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

 (1, λ, p∗, q∗) =

 y′′3 y′3 y3

y′′2 y′2 y2

y′′1 y′1 y1

 (1, λ, p, q).(4.9)

Remark. The equality y3(1, λ, p, q) = y3(1, λ, p∗, q∗) may be explained. The eigen-
values corresponding to the boundary conditions y(0) = y(1) = 0, y′(0) = eiφy′(1)
with φ ∈ [0, 2π) are the zeros of cos(φ/2)<ey3(1, λ, p, q) − sin(φ/2)=my3(1, λ, p, q).
Take φ = 0. One should expect, using a Weierstrass product for the analytic exten-
sion of <ey3(1, λ, p, q), that these eigenvalues determine <ey3(1, λ, p, q). The sequence
of eigenvalues corresponding to φ = π should determine =my3(1, λ, p, q). These two
sequences of eigenvalues do not change replacing (p, q) by (p∗, q∗), the upshot being
the symmetry of the boundary conditions.

Proof. Since yj(1− x, λ̄, p∗, q∗) solves Lp,qyj = λyj , j = 1, 2, 3, then ȳ1(1− x, λ̄, p∗, q∗)
ȳ2(1− x, λ̄, p∗, q∗)
ȳ3(1− x, λ̄, p∗, q∗)

 = N

 y1(x, λ, p, q)
y2(x, λ, p, q)
y3(x, λ, p, q)

 ,(4.10)

where N is a 3× 3 matrix with complex coefficients independent of x.
At x = 1, (4.10) gives

N

 y1 −y′1 y′′1
y2 −y′2 y′′2
y3 −y′3 y′′3

 (1, λ, p, q) = Identity.

Thus detN = −1,

N =

 y′′3 y
′
2 − y′3y′′2 y′′1 y

′
3 − y′1y′′3 y′′2 y

′
1 − y′2y′′1

y′′3 y2 − y3y
′′
2 y′′1 y3 − y1y

′′
3 y′′2 y1 − y2y

′′
1

y′3y2 − y3y
′
2 y′1y3 − y1y

′
3 y′2y1 − y2y

′
1

 (1, λ, p, q)

and

N =

 ȳ′′3 −ȳ′′2 ȳ′′1
ȳ′3 −ȳ′2 ȳ′1
ȳ3 −ȳ2 ȳ1

 (1, λ̄, p, q)(4.11)

using (3.1) and q(0) = 0. The lemma follows from (4.11) together with (4.10) and its
derivatives evaluated at x = 0.

Next we consider the DP±∗ boundary conditions

(DP±∗ )

 z(0) = 0,
z′(1) = ±z′(0),
z′′(1) = 0.

Using the map (p, q) 7→ (p∗, q∗), Lemma 4.2 and section 2, it is easy to see that
the increasing sequence

(
ν±j (p, q)

)
j∈Z

of eigenvalues of Lp,q with the DL±∗ boundary

conditions are the roots of y′′3 (1, λ, p, q) ± ȳ′′3 (1, λ, p, q). Lemma 3.4 holds for the
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ν±j (p, q)’s with the self-evident changes of notation. In particular, ν±j (p, q) is defined.
Furthermore,

ν±j (p, q) = µ±j (p∗, q∗) ∀ j ∈ Z.

Each ν±j (p, q) is of multiplicity one if y′′3 (1, ν±j (p, q), p, q) 6= 0.
Then, define for a.e. x ∈ [0, 1] and for λ ∈ C,

z(x, λ, p, q) = y′′3 (1, λ, p, q)y2(x, λ, p, q)− y′′2 (1, λ, p, q)y3(x, λ, p, q).(4.12)

For every j ∈ Z, z(·, ν±j (p, q), p, q) is the eigenfunction associated with the eigen-

value ν±j (p, q) if y′′3 (1, ν±j (p, q), p, q) 6= 0.

The DP±∗ boundary conditions will be considered only for the operator Lp∗,q∗ .
Then observe that

y′′3 (1, λ, p∗, q∗) 6= 0⇐⇒ y1(1, λ, p, q) 6= 0 ∀λ ∈ C.

Of course we can replace above the statement ∀λ ∈ C with ∀λ = µ±j (p, q), j ∈ Z. All

these conditions are also equivalent to the basic one µ+(p, q) ∩ µ−(p, q) = /o.
Now fix (p, q) ∈ L2

R ×H1
R and (p̃, q̃) ∈ L2

R ×H1
R with q(0) = q̃(0) = 0. Suppose

µ+(p, q) ∩ µ−(p, q) = /o.(4.13)

Also suppose that

µ+
j (p, q) = µ+

j (p̃, q̃) and µ−j (p, q) = µ−j (p̃, q̃).(4.14)

For all λ ∈ C, define

f(λ) =

[
y(x, λ, p, q)
y1(1, λ, p, q)

− y(x, λ, p̃, q̃)
y1(1, λ, p̃, q̃)

] [
z(1− x, λ, p∗, q∗)
y′′3 (1, λ, p∗, q∗)

− z(1− x, λ, p̃∗, q̃∗)
y′′3 (1, λ, p̃∗, q̃∗)

]
Y1(1, λ, p, q)Z1(1, λ, p, q)

.

(4.15)
The function f(λ) is meromorphic and has simple poles at µ+

j (p, q) and µ−j (p, q),
j ∈ Z.

For λ = µ±j (p, q) = ν±j (p∗, q∗), y(x, λ, p, q), and z(1− x, λ, p∗, q∗) are eigenfunc-

tions of Lp,q for the DL± boundary conditions. Then for some complex number
c±k (p, q),

y(x, µ±j (p, q), p, q)

y1(1, µ±j (p, q), p, q)
= c±j (p, q)

z(1− x, ν±j (p∗, q∗), p∗, q∗)

y′′3 (1, ν±j (p∗, q∗), p∗, q∗)
.(4.16)

Differentiate (4.16) with respect to x, then take x = 1, use y′(1, µ±j (p, q), p, q) =

−y1(1, µ±j (p, q), p, q) and z′(0, ν±j (p∗, q∗), p∗, q∗) = y′′3 (1, ν±j (p∗, q∗), p∗, q∗) to obtain

c±j (p, q) =
y1(1, µ±j (p, q), p, q)

y1(1, µ±j (p, q), p, q)
.(4.17)

Then (4.17) gives

c+j (p, q) = 1, c−j (p, q) = −1
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∀j ∈ Z.
The computation of the residues of f is as follows. From (4.16)

Res
(
f, µ+

j (p, q)
)

=
1

(Y1Ż1)(1, µ+
j (p, q), p, q)

∣∣∣∣∣ y(x, µ+
j (p, q), p, q)

y1(1, µ+
j (p, q), p, q)

− y(x, µ+
j (p̃, q̃), p̃, q̃)

y1(1, µ+
j (p̃, q̃), p̃, q̃)

∣∣∣∣∣
2

(4.18)

and

Res
(
f, µ−j (p, q)

)
= − 1

(Z1Ẏ1)(1, µ−j (p, q), p, q)

∣∣∣∣∣ y(x, µ−j (p, q), p, q)

y1(1, µ−j (p, q), p, q)
− y(x, µ−j (p̃, q̃), p̃, q̃)

y1(1, µ−j (p̃, q̃), p̃, q̃)

∣∣∣∣∣
2

(4.19)

∀j ∈ Z.
Therefore (4.18), (4.19), and Lemma 4.1 give

∀ j ∈ Z, Res
(
f, µ+(p, q)

) ≤ 0, and Res
(
f, µ−(p, q)

) ≤ 0.(4.20)

Besides, the numerator n(λ) of f is bounded from above using

y(x, λ, p, q)

y1(1, λ, p, q)
=

y(x, λ, 0, 0)

y1(1, λ, 0, 0)
+O

e(|=m k
2 |+|=mωk

2 |+|=mω2k
2 |
)
x

|k|2

(4.21)

and

z(x, λ, p, q)

y′′3 (1, λ, p, q)
+ 2q(1)

y3(x, λ, 0, 0)− y2(x, λ, 0, 0)

y′′3 (x, λ, 0, 0)

=
z(x, λ, 0, 0)

y′′3 (1, λ, 0, 0)
+O

e(|=m k
2 |+|=mωk

2 |+|=mω2k
2 |
)
x

|k|2

 .(4.22)

Identities (4.21) and (4.22) are derived using (2.24) and (2.25).
Observe that y1(1, λ, 0, 0) and y′′3 (1, λ, 0, 0) never vanish on C.

From (4.21) and (4.22), if q(1) = q̃(1) we have |n(λ)| = O(Ξ(x,λ)
|k|2 )O(Ξ(1−x,λ)

|k|2 );

thus

|n(λ)| = O

(
Ξ(1, λ)

|k|4
)
.(4.23)

The denominator d(λ) of f(λ) is easily bounded from below as follows.
Combining (3.13) and (4.10) we have

|Y1(1, λ, p, q)| ≥ 1

192
Ξ(1, λ) for k ∈ Ω− with |k| > 192e

‖(p,q)‖
L2
R
×H1

R

and

|Z1(1, λ, p, q)| ≥ 1

96
Ξ(1, λ) for k ∈ Ω+ with |k| > 96e

‖(p,q)‖
L2
R
×H1

R .



1026 L. AMOUR

Therefore,

|d(λ)| > CΞ(1, λ) for k ∈ Ω+ ∩ Ω− with |k| > 192e
‖(p,q)‖

L2
R
×H1

R ,(4.24)

where C is a fixed numerical constant.
Finally (4.23) and (4.24) prove

f(λ) = O

(
1

|k|4
)

for k ∈ Ω+ ∩ Ω− with |k| > 192e
‖(p,q)‖

L2
R
×H1

R .(4.25)

We now conclude that the sum of the residues is zero using the classical integration
contour or, equivalently (see [P-Tr, Lemma 3.2]), by proving that sup|λ|=rn |f(λ)| =
o(1/rn) as n → +∞ for an unbounded sequence of positive real number rn. From
(4.25) this condition is verified by the function f defined in (4.15) with rn = (n+ 1

2 )3π3,
n sufficiently large.

Consequently, using (4.20) all residues of f are zero. In particular, there exists a
function φ satisfying Lp,qφ = µ+

0 (p, q)φ and Lp̃,q̃φ = µ+
0 (p, q)φ. Then

2i(q − q̃)φ′ + (i(q − q̃)′ + (p− p̃))φ = 0.(4.26)

Multiply (4.26) by φ and subtract φ multiplied by the complex conjugate of (4.26) to
have (

(q − q̃)|φ|2)′ = 0.(4.27)

Similarly, multiply (4.26) by φ and add to φ multiplied by the complex conjugate of
(4.26) to obtain

(p− p̃)|φ|2 = 0.(4.28)

Using (2.2), q(0) = q̃(0) = 0 and the continuity of q and q̃, the proof follows (4.28)
and (4.27).

5. Proof of Theorem 1.2. We now prove the asymptotic behavior of µ+
j (p, q)

given in Theorem 1.2. The proof of the asymptotic behavior of µ−j (p, q) is similar and
we will omit it.

From (2.14), (2.16), (3.11), we have

0 = Z1(1, µ+
j (p, q), p, q)

= Z1(1, µ+
j (p, q), 0, 0) + =mc1j (1, µ

+
j (p, q), p, q) +O

(
Ξ(1, kj)

|kj |2
)
,(5.1)

where µ+
j (p, q) = k3

j . Using (2.15)

c1j (1, µ
+
j (p, q), p, q)

= −2

∫ 1

0

y1(t, µ+
j (p, q), 0, 0)y′3(1− t, µ+

j (p, q), 0, 0)q(t) dt+O

(
Ξ(1, kj)

|kj |2
)
.(5.2)

Besides, for p = q ≡ 0, λ ∈ C, and x, t ∈ [0, 1], it is easy to check using (2.3) that

3y1(t)y′3(x− t) = y2(x) + y2 (x− t(1− ω)) + y2

(
x− t(1− ω2)

)
.(5.3)
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Integrating by part (5.2) and using q ∈ H1 and (5.3) at x = 1, we obtain

c1j (1, µ
+
j (p, q), p, q) = −2

3
[q]y2(1, µ+

j (p, q), p, q) +O

(
Ξ(1, kj)

|kj |2
)
.

Then
=mc1j (1, µ+

j (p, q), p, q)

=
2

9kj
[q]

(
cos kj + e−

√
3

2 kj cos

(
kj
2

+
2π

3

)
+ e

√
3

2 kj cos

(
kj
2
− 2π

3

))
+O

(
Ξ(1, kj)

|kj |2
)
.(5.4)

Besides, using Lemma 2.1

Z1(1, µ+
j (p, q), 0, 0) = −4

3
sin

kj
2

∣∣∣∣ sinωkj2
∣∣∣∣2

∼ −1

3
sin

kj
2
e
√

3
2 |kj |.(5.5)

The counting lemma gives kj = 2(πj + δj) with |δj | < π.
Therefore, using (5.4), (5.5), and

O (Ξ(1, kj)) = O
(
e
√

3
2 |kj |

)
,

we obtain from (5.1)

sin δj =
2

3kj
[q] cos

(
± δj − 2π

3

)
+O

(
1

|kj |2
)
.(5.6)

The irrelevant sign before δj in (5.6) depends on the sign of kj . Then δj → 0 as
j → +∞. Furthermore,

δj = − [q]

3kj
+O

(
1

|kj |2
)
,(5.7)

which completes the proof.
Acknowledgments. It is a pleasure to thank J. C. Guillot for many discussions
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Abstract. Orthogonal polynomials are used to construct families of C0 and C1 orthogonal,
compactly supported spline multiwavelets. These families are indexed by an integer which represents
the order of approximation. We indicate how to obtain from these multiwavelet bases for L2[0, 1]
and present a C2 example.

Key words. orthogonal polynomials, multiwavelets, splines
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1. Introduction. Wavelet bases [2] for L2(R) have the nice property that once
one of the basis functions is known the rest may be obtained by dilation and integer
translation of this function. In this case the basis has one generator. Multiwavelets
[1], [5], [9], [11], [13], [14], [19] are similar to wavelets except that the basis is obtained
by the dilation and integer translation of several functions instead of just one. The
construction of most wavelets and multiwavelets is based on multiresolution analysis
(MRA) [17], [16]. Let φ0, . . . , φr be compactly supported L2-functions, and suppose
that V0 = clL2 span{φi(· − j): i = 0, 1, . . . , r, j ∈ Z}. Then V0 is called a finitely
generated shift invariant (FSI) space. Let (Vp)p∈Z be given by Vp = {φ(2p·): φ ∈
V0}. Each space Vp may be thought of as approximating L2 at a different resolution
depending on the value of p. The sequence (Vp) is called a multiresolution analysis
generated by φ0, . . . , φr if (a) the spaces are nested, · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·, and
(b) the generators φ0, . . . , φr and their integer translates form a Riesz basis for V0.
Because of (a) and (b), we can write

(1.1) Vj+1 = Vj ⊕Wj ∀j ∈ Z.

The space W0 is called the wavelet space, and if ψ0, . . . , ψr generate a shift-invariant
basis for W0, then these functions are called wavelet functions. If, in addition,
φ0, . . . , φr and their integer translates form an orthogonal basis for V0, then (Vp)
is called an orthogonal MRA. It has been shown in Lemma 2.1 of [5] that we can
always assume that φj , j = 0, . . . , r can be chosen so that they are minimally sup-
ported on [−1, 1]; i.e., each scaling function has support in [−1, 1], and the nonzero
restrictions of the scaling functions and their integer translates to [0, 1] are linearly
independent. Set Φ = (φ0, . . . , φr)∗. Then (a) and (b) imply that Φ satisfies the
matrix dilation equation

(1.2) Φ(t) =
∑

CiΦ(2t− i).
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In order to obtain orthogonal MRAs it is useful to divide V0|[0,1] into the following
subspaces:

• A0 = span{φ ∈ Φ: supp φ ⊂ [0, 1]} = {g ∈ V0: supp g ⊂ [0, 1]},
• C0 = span{φ(·)χ[0,1]: φ ∈ Φ} ªA0,
• C1 = span{φ(· − 1)χ[0,1]: φ ∈ Φ} ªA0.

Since the functions in A0 are orthogonal to their integer translates and by Gram–
Schmidt may be made mutually orthogonal, it is not difficult to see [5] the following.

Theorem 1.1. (Vp) is orthogonal iff C0 ⊥ C1.
In general it is not possible to obtain an orthogonal basis for V0 by taking finite

linear combinations of the original basis functions that generate it. However, we
can modify V0 by adding appropriate functions so that C0 ⊥ C1. The notion of
intertwining MRAs arises from the observation that some functions can be moved
from one level of an MRA to another without destroying the defining properties of an
MRA. Suppose that (Vp) is an MRA as defined above and that W is an FSI subspace
of V1 with Riesz basis {φr+1(·− j): j ∈ Z} for some compactly supported φr+1. With
this we can generate a new space Ṽ0 = V0+W together with associated dilation spaces
Ṽp = {φ(2p·): φ ∈ Ṽ0}. Then (Ṽp) is also a multiresolution analysis. Indeed, it is clear

that V0 ⊂ Ṽ0. It is also the case that Ṽ0 ⊂ V1, since both V0 and W are subspaces of
V1. From these two inclusions and the definition of the dilated spaces, it follows that

(1.3) · · · ⊂ V−1 ⊂ Ṽ−1 ⊂ V0 ⊂ Ṽ0 ⊂ V1 ⊂ Ṽ1 · · ·

and hence

· · · ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 ⊂ · · · .

It is easy to see how the other conditions necessary for (Ṽp) to be an MRA also follow
from (1.3). Of course this process can be repeated if more functions are needed. Let
A1 = {φ ∈ V1: suppφ ⊆ [0, 1]}. If W ⊂ A1ªA0 such that (I−PW )C0 ⊥ (I−PW )C1,
where PW is the orthogonal projection onto W , then the intertwining MRA will be
an orthogonal MRA. In Theorem 1 of [5] the following theorem was proved.

Theorem 1.2. If (Vp) is a multiresolution analysis generated by compactly sup-
ported scaling functions, then there is some pair of integers (q, n) and some orthogonal
multiresolution analysis (Ṽp) such that

Vq ⊂ Ṽ0 ⊂ Vq+n.

We call (Ṽp) an intertwining MRA and the theorem implies in particular that
for those MRAs generated by splines there exist orthogonal intertwining MRAs also
generated by splines. The main results of this paper give explicit constructions of
orthogonal intertwining MRAs for C0 and C1 spline MRAs with various orders of
approximation. In this paper we will use the notation

(1.4) fi,j = 2i/2f(2i· − j)

and P{f1,f2,...,fk}, fi ∈ L2(R), will denote the orthogonal projection onto the subspace
spanned by f1, . . . , fk. In section 2 we make precise which MRAs we will be studying
and examine the spaces A0, C0, and C1 associated with these MRAs. It is here where
orthogonal polynomials play a role since the A0 spaces for the MRAs we will be
considering will be spanned by subclasses of ultraspherical polynomials (see also [18],
[15], and [10]). Furthermore, we introduce the functions that will span W , which we



ORTHOGONAL POLYNOMIALS 1031

will “borrow” in order to construct an orthogonal intertwining MRA. These functions
are chosen so as to be smooth as possible and symmetric or antisymmetric with respect
to x = 1

2 . In section 3 we derive various properties of these functions needed to carry
out the construction. In section 4 we give a description of how to construct wavelets
from scaling functions. This explicit computation of the multiwavelets functions in
terms of the scaling functions allows us to preserve symmetry or antisymmetry. Also
indicated in this section is how to construct multiwavelet bases for L2[0, 1]. In section 5
we construct families of compactly supported continuous orthogonal scaling functions
having an axis of symmetry. Each family is indexed by an integer which represents
the order of approximation. In section 6 families of C1 scaling functions and wavelets
are constructed. Finally, in section 7, a C2 example is given.

2. Piecewise polynomial MRA. The MRAs we will study are those associated
with piecewise polynomial splines. Let Snk be the space of polynomial splines of degree

n with Ck knots at the integers, and set V n,k0 = Snk ∩ L2(R). With V n,kp as above it
is known that these spaces form a multiresolution analysis [1], [5], [11], [19]; however,
with the exception of Sn−1, which were studied by Alpert, it is not possible to find
compactly supported, orthogonal generators for these spaces. We will consider Snk
when n > 2k + 1.

In order to construct orthogonal intertwining MRAs we examine the spaces An,k0 ,

Cn,k0 , and Cn,k1 , associated with V n,k0 as described above, as well as An,k1 , defined by

analogy with An,k0 to be An,k1 = {g ∈ V1: supp g ⊂ [0, 1]}. Our goal is to find a space

W ⊂ An,k1 ªAn,k0 so that

(2.1) (I − PW )Cn,k0 ⊥ (I − PW )Cn,k1 .

We begin by describing a convenient basis for An,k0 . Note that from the description of

An,k0 , g ∈ An,k0 iff g(t) = tk+1(1 − t)k+1q(t) for some polynomial q of degree at most

n−2k−2. Thus the linear dimension of An,k0 is n−2k−1. If {tk+1(1−t)k+1qj−2k−2: j =

2k + 2, . . . , n} forms an orthogonal basis for An,k0 , then∫ 1

0

t2k+2(1− t)2k+2qi−2k−2(t)qj−2k−2(t) dt = ciδi,j ,

and we see that the qi’s are orthogonal with respect to the measure t2k+2(1− t)2k+2 dt
on [0, 1]. The monic ultraspherical polynomials pλi are monic polynomials of degree

i = 0, 1, . . . , which are orthogonal on [−1, 1] with respect to the measure (1−t2)λ−
1
2 dt

(Szegö [20]). From the above equation, we can choose qi(t) = p
2k+ 5

2
i (2t − 1), i =

0, . . . , n− 2k − 2. This leads to ([7], [8]) the following lemma.

Lemma 2.1. A basis for An,k0 is {tk+1(1−t)k+1p
2k+ 5

2
i (2t−1): i = 0, . . . , n−2k−2},

where each p
2k+ 5

2
i is a monic ultraspherical polynomial of degree i.

The ultraspherical polynomials already have been used in the construction of
wavelets from fractal interpolation functions (Donovan, Geronimo, and Hardin [6],
Donovan [4]). For later computations we define the set {φki }, where φki (t) = (1 −
t2)k+1p

2k+ 5
2

i−2k−2(t) for i ≥ 2k + 2 with φk2k+1 = 0.
Some important properties of the ultraspherical polynomials that we will use later

[20] follow.
(a) The Rodriguez formula:

(1− t2)mp
m+ 1

2
n (t) = (−1)n

(n+ 2m)!

(2n+ 2m)!
Dn(1− t2)n+m.
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(b) The recurrence formula:

p
m+ 1

2
n+1 (t) = tp

m+ 1
2

n (t)− anpm+ 1
2

n−1 (t), n = 1, 2, . . .

with an = (n+2m)n
(2n+2m+1)(2n+2m−1) , p0(t) = 1 and p1(t) = t.

(c)

p
m+ 1

2
n (t) =

1

(n+ 2)(n+ 1)
D2p

m−2+ 1
2

n+2 (t).

The polynomials also have the following useful representation in term of hyper-
geometric functions [20]:

(2.2) p
m+ 1

2
n (t) =

2n(m+ 1)n
(n+ 2m+ 1)n

2F1

(−n n+ 2m+ 1

m+ 1
;

1− t
2

)
,

where formally

pFq

(
a1 . . . ap
b1 . . . bq

; t

)
=
∞∑
i=0

(a1)i . . . (ap)i
(b1)i . . . (bq)i(1)i

ti

with (a)i = (a)(a + 1) . . . (a + i − 1). Since one of the numerator parameters in the
hypergeometric function in (2.2) is a negative integer, the series has finitely many
nonzero terms and the result is a polynomial.

From the recurrence formula is it not difficult to see that

(2.3)

∫ 1

−1

p
m+ 1

2
n (t)2(1− t2)mdt =

2(n+ 2m)!n!

(2n+ 2m− 1)!!(2n+ 2m+ 1)!!
,

where m!! = m(m− 2) . . .. Thus

(2.4) ‖φkn‖2L2 =
2(n+ 2k + 2)!(n− 2k − 2)!

(2n− 1)!!(2n+ 1)!!
.

We now consider the spaces Cn,ki , i = 0, 1. Since the dimension of V n,k0 |[0,1] is n + 1

and the dimension of An,k0 is n−2k−1, the dimension of Cn,k0 is k+1 and the same is

true for Cn,k1 . For computational compatibility with the ultraspherical polynomials,
we scale these spaces so that they are defined on [−1, 1] instead of [0, 1] and denote

them as Cn,ki ( ·+1
2 ) and An,k0 ( ·+1

2 ).
Let rki (t) = (1 − t)i(1 + t)k+1, lki (t) = rki (−t), and Pn,k denote the orthogonal

projection onto An,k0 . Then a basis for Cn,k0 ( ·+1
2 ) is rn,ki = (I − Pn,k)rki , i = 0, . . . , k,

while for Cn,k1 ( ·+1
2 ) the analogous basis is ln,ki = (I − Pn,k)lki . We shall refer to the

families of rki and lki , respectively, as right and left “ramps,” where right and left
denote on which side of the interval [−1, 1] the unprojected functions do not vanish
k + 1 times.

The action of the projection can be readily computed from the following inner
product:

(2.5) 〈rki , φkn〉 =
2k+i+n+2n!(i+ k + 1)!(n− k − i− 2)!(n+ 2k + 2)!

(k − i)!(k + i+ n+ 2)!(2n)!
,
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where k ≥ i and n ≥ 2k + 2 (Gradshteyn and Ryzhik [12, p. 826]). This formula can
be derived for instance by substituting (2.2) into the above inner product, integrating
term by term, then using Saalschutz’s formula for summing a 3F2 hypergeometric
function (Bailey [3, p. 49]). The symmetry between rki and lki and the fact that the
ultraspherical polynomials are of definite parity imply that 〈lki , φkn〉 = (−1)n〈rki , φkn〉.

There are several simple useful relations among the ramp functions which we now
derive. The first is the obvious relation

(2.6) rn,ki = rn−1,k
i − 〈r

k
i , φ

k
n〉

〈φkn, φkn〉
φkn.

Note that for n ≥ 2k + 2, the polynomial rn,ki+1 is uniquely determined by the order

of its zeros at ±1, its orthogonality to An,k0 , its degree, and its leading coefficient.

The polynomial (1 − t)rn,ki vanishes at ±1 the same number of times as rn,ki+1, is of

degree n+ 1, and is orthogonal to An−1,k
0 . Subtracting off φkn+1 times an appropriate

constant then projecting out φkn yields the following relation:

(2.7) rn,ki+1(t) = (1− t)rn,ki (t) +
〈rki , φkn+1〉
〈φkn, φkn〉

φkn(t)− 〈r
k
i , φ

k
n〉

〈φkn, φkn〉
φkn+1(t).

Since (1− t2) ddtr
k
i (t) = (k+1+ i)rki+1−2irki , an argument similar to that given above

leads to

(2.8)

(1− t2)
d

dt
rn,ki (t) = (k + 1 + i)rn,ki+1 − 2irn,ki + (n+ 2)

〈rki , φkn+1〉
〈φkn, φkn〉

φkn(t)

+ n
〈rki , φkn〉
〈φkn, φkn〉

φkn+1(t).

Likewise,

(2.9)

d

dt

(
(1− t2)rn,ki (t)

)
= (k + 3 + i)rn,ki+1 − 2(i+ 1)rn,ki + n

〈rki , φkn+1〉
〈φkn, φkn〉

φkn(t)

+ (n+ 2)
〈rki , φkn〉
〈φkn, φkn〉

φkn+1(t).

Analogous formulas are easily obtained for ln,ki . In the multiresolution analysis given

above, V n,k1 is a spline space with knots at the half-integers. Thus, to do the inter-
twining step, we will borrow from the space of splines supported on [0, 1] with a knot
at 1

2 . Once again, for purposes of compatibility with the φki , we dilate these functions
so that they are supported on [−1, 1] and have a knot at 0. The dilated functions
will be denoted ukn. To construct these, we first define a sequence of spline functions
{ūkn} ∈ Ck(R), where

ūkn(t) =

{
1− |t| tn−1 +

∑k
i=1

(−1)in!!
2ii! (n−2i)!! (1− t2)i if t ∈ [−1, 1],

0 otherwise

for odd n ≥ 2k + 1, and

ūkn(t) =

{
t− |t| tn−1 +

∑k
i=1

(−1)i(n−1)!!
2ii! (n−2i−1)!! t(1− t2)i if t ∈ [−1, 1],

0 otherwise
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for even n ≥ 2k+2. It should be noted that the parity of the function ūkn is always the
opposite of the parity of n. From this sequence, we obtain new sequences by applying
the projection I − Pn,k:

ukn,m = (I − Pn,k)ūkn−m.

The functions to be borrowed from V1( ·+1
2 ) to give an orthogonal multiresolution

analysis are obtained as appropriate linear combinations of this latter class of splines.
To calculate the above projections, it is necessary to find the inner products

ck,n,j =

∫ 1

−1

ūkj (t)φkn(t)dt

for n, j ≥ 2k + 1, which are given in the following lemma.
Lemma 2.2. With n, j ≥ 2k+ 2, if (n− j) is even, then ck,n,j = 0, and if (n− j)

is odd and j > n, then

ck,n,j =
−2

n−j+4k+3
2 (n− 2k − 2)!j!( j−2k−n

2 )k+1

(n+ 1)n(j − n)!!( j−2k+n−1
2 )!

× 3F2

(
−k − 1 j+2

2
j+1

2
j−2k−n

2
j−2k+n+1

2

; 1

)
,

=
−2

n−j+4k+3
2 (n−2k

2 )k+1(−2k−n−1
2 )k+1(n− 2k − 2)!j!

(n+ 1)n(j − n)!!( j+n+1
2 )!

× 3F2

(
−k − 1 j+1

2 k + 1
−n
2

n+1
2

; 1

)
,(2.10)

while if (n− j) is odd and n > j, then

ck,n,j =
2 (−1)

n−j+1
2 +k+1(n− 2k − 2)!j!(n+ 2k − j + 1)!

(n+ 1)n(n−2k+j−1
2 )!(n−j+2k+1

2 )!

× 3F2

(
−k − 1 j+2

2
j+1

2
j−2k−n

2
j−2k+n+1

2

; 1

)

=
(−1)

n−j+1
2 22k+3(n−2k

2 )k+1(−2k−n−1
2 )k+1 (n− 2k − 2)!j!(n− j − 1)!

(n+ 1)n(n+j+1
2 )!(n−j−1

2 )!

× 3F2

(
−k − 1 j+1

2 k + 1
−n
2

n+1
2

; 1

)
.(2.11)

Remark. When n = 2k + 2 the 3F2 in the second part of (2.11) reduces to a
truncated 2F1.

Proof. The fact that ck,n,j = 0 for (n− j) even follows from the parity of ūkj and

φkn. From property (c) above we find the p
2k+ 5

2
n = n!

(n+2k+2)!D
2k+2p

1/2
n+2k+2, where

p
1/2
n is the monic Legendre polynomial of degree n [20]. Therefore from the definition

of φkn we find that φkn(t) = (1− t2)k+1 (n−2k−2)!
n! D2k+2p

1/2
n (t). Substitute this into the

integral for cm,n,j and integrate by parts 2k+2 times. Since j ≥ 2k+2, ūkj has 2k+1
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continuous derivatives in (−1, 1) and Di(1−t2)k+1ūkj = 0 for t = ±1, i = 0, . . . , 2k+1.
Therefore

ck,n,j =
(n− 2k − 2)!

n!

∫ 1

−1

D2k+2[(1− t2)k+1ūkj (t)]p1/2
n (t)dt.

Observe that for i < k + 1, D2k+2(1 − t2)k+i+1 is a polynomial of degree less than

2k + 2. Consequently the orthogonality of p
1/2
n implies that only the term |t|tj−1 in

ūkj will be nonzero in the above integral. Using the parity of ūkj and φkn to integrate

on [0, 1], then expanding (1− t2)k+1 and differentiating yields

ck,n,j = −2
(n− 2k − 2)!

n!

k+1∑
i=0

(
k + 1

i

)
(−1)i

(j + 2i)!

(j + 2i− 2k − 2)!

∫ 1

0

tj+2i−2k−2p1/2
n (t)dt.

With l = j + 2i− 2k − 2 we find, using (2.2) with m = 0, that∫ 1

0

tlp1/2
n (t)dt =

2nn!l!

(n+ 1)n(l + 1)!
2F1

(−n n+ 1

l + 2
; 1

2

)
=

2nn!l!Γ( l+3
2 )Γ( l+2

2 )

(n+ 1)n(l + 1)!Γ( l+3+n
2 )Γ( l+2−n

2 )
,

where Kummer’s Theorem has been used in summing the 2F1 [3, p. 11]. If n is even,
l is odd and we find

Γ( l+3+n
2 )

Γ( l+3
2 )

=
( l+n+3−2i

2 )i(
l+n−2i+1

2 )!

( l+1
2 )!

and

Γ( l+2
2 )

Γ( l+2−n
2 )

=
( l−2i+2−n

2 )k+1l!!2
j−n−l

2

( l−2i+2−n
2 )i(j − n)!!

.

The above formulas and the substitutions (j + 2i)! = 22ij!( j+1
2 )i(

j+2
2 )i and

(−1)i
(
k+1
i

)
= (−k−1)i

(1)i
yield the first line of (2.10) for n even. To obtain the sec-

ond line of (2.10), use the transformation formula [3, p. 85]

3F2

(−(k + 1) a b

e f
; 1

)
=

(e− b)k+1(f − b)k+1

(e)k+1(f)k+1
3F2

(−(k + 1) b a+ b− k − e− f
b− e− k b− f − k ; 1

)
.

To arrive at the first line of (2.11) for n odd perform manipulations similar to those

described above on
Γ( l+3+n

2 )

Γ( l+2
2 )

and
Γ( l+3

2 )

Γ( l+2−n
2 )

. The second line of (2.11) is obtained in a

similar manner.
The above formulas show that the hypergeometric functions have a fixed number

of terms for fixed smoothness. Furthermore, the hypergeometric functions given in
the second lines of (2.10) and (2.11) are a sum of positive terms. Any zero appearing
in the denominator of the above formulas cancels with a zero in the numerator.
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3. Recurrence formulas and inner products. As in the case of the ramp
functions there are useful difference and differential difference equations relating the
ukn,m’s. The spline ukn,m is uniquely defined in terms of the degree of its zeros at
±1, the n − m − 1 continuous derivatives at zero, the values of the left and right
(n − m)th derivatives at zero, its degree, and its orthogonality to An,k0 . Denoting
by “rem” the remainder of integer division (i.e., p rem q ≡ q(pq − bpq c)), we find from

the definition of ūkn−m that tūkn−m−1 = ūkn−m + ((n − m) rem 2)Kk,n,m(1 − t2)k+1.

Furthermore,
∫ 1

−1
tukn−1,m(t)φki (t)dt = 0 for i ≤ n− 2. The recurrence formula for φkn,

the fact that (1 − t2)k+1 ∈ An,k0 ( ·+1
2 ), and parity considerations now imply that for

n−m− 1 ≥ 2k + 1

(3.1) ukn,m = tukn−1,m − εk,n,mφkn−1+(m rem 2),

where

(3.2) εk,n,m =
ck,n+(m rem 2),n−1−m

〈φkn−1+(m rem 2), φ
k
n−1+(m rem 2)〉

.

Analogues of (2.8) and (2.9) can also be derived. To this end, note that (1 −
t2)Dūkn−m = −(n−m)ūkn+1−m + (n−m)ūkn−1−m and that

〈(1− t2)Dukn,m(t), φki (t)〉 = 〈ukn,m(t), D
(
(1− t2)φki (t)

)〉
= 0, i ≤ n− 1

since ukn,m is orthogonal to all functions of the form (1−t2)k+1πn−2k−2, where πn−2k−2

is an arbitrary polynomial of degree less than or equal to n − 2k − 2. The parity of
Dukn,m now implies that

(3.3) (1−t2)Dukn,m(t) = −(n−m)ukn+1,m(t)+(n−m)ukn−1,m(t)+δk,n,mφ
k
n+(m rem 2),

where

(3.4)

δk,n,m = −(n−m)
ck,n+(m rem 2),n+1−m

〈φkn+(m rem 2), φ
k
n+(m rem 2)〉

+ (n− 1 + (m rem 2))
ck,n−1+(m rem 2),n−m

〈φkn−1+(m rem 2), φ
k
n−1+(m rem 2)〉

.

Another similar formula is
(3.5)
D
(
(1− t2)ukn,m(t)

)
= −(n−m+ 2)ukn+1,m(t) + (n−m)ukn−1,m(t) + γk,n,mφ

k
n+(m rem 2)

with

(3.6)

γk,n,m = (n+ 1 + (m rem 2))
ck,n−1+(m rem 2),n−m

〈φkn−1+(m rem 2), φ
k
n−1+(m rem 2)〉

+ (n+ 2−m)
ck,n+(m rem 2),n+1−m

〈φkn+(m rem 2), φ
k
n+(m rem 2)〉

.

One final useful formula is

(3.7) ukn,n−m = ukn−2,n−m−2 −
ck,n−1,n−m+(m rem 2)

〈φkn−1+(m rem 2), φ
k
n−1+(m rem 2)〉

φkn−1+(m rem 2).
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Note that the above formulas hold for k ≥ 0 and n −m ≥ 2k + 3. In order to find
appropriate linear combinations of {ukn,m} that solve (2.1) we need to compute the
inner products of the various functions defined above. We begin with the following
lemma.

Lemma 3.1. Given rn,ki and ln,kj , i, j ≤ k, as above,

〈rn,ki , ln,kj 〉 = (−1)n+122k+i+j+3(k+i+1)!(k+j+1)!(n−k−i−1)!(n−k−j−2)!(n+2k+3)!
(k−i)!(k−j)!(k+n+j+3)!(k+n+i+2)!(n−2k−2)!

× 3F2

( −(k − j) 2k + i+ j + 4 1

−(n− k − j − 2) k + n+ j + 4
; 1

)
.(3.8)

Proof. Multiply (2.8) by ln,kj and integrate by parts to find

−〈rn,ki , D
(
(1− t2)ln,kj

)〉 = (k + 1 + i)〈rn,ki+1, l
n,k
j 〉 − 2i〈rn,ki , ln,kj 〉

+ (n+ 2)
〈rki , φkn+1〉〈lkj , φkn(t)〉

〈φkn, φkn〉
,

where the fact that 〈ln,kj , φkn+1〉 = 〈lkj , φkn+1〉 has been used. Now eliminate D
(
(1 −

t2)ln,kj
)

using the analogue of (2.9) for ln,kj and collect terms to get

0 = (k + i+ 1)〈rn,ki+1, l
n,k
j 〉+ 2(j + 1− i)〈rn,ki , ln,kj 〉 − (k + j + 3)〈rn,ki , ln,kj+1〉

+ n
〈rki , φkn〉〈lkj , φkn+1〉

〈φkn, φkn〉
+ (n+ 2)

〈rki , φkn+1〉〈lkj , φkn〉
〈φkn, φkn〉

.

Multiply (2.7) by ln,kj and integrate to obtain

〈rn,ki+1, l
n,k
j 〉 = −〈rn,ki , ln,kj+1〉+ 2〈rn,ki , ln,kj 〉+

〈rki , φkn+1〉〈lkj , φkn〉
〈φkn, φkn〉

+
〈rki , φkn〉〈lkj , φkn+1〉

〈φkn, φkn〉
.

Using the above two equations to eliminate 〈rn,ki+1, l
n,k
j 〉, solving for 〈rn,ki , ln,kj 〉, and

then using (2.5) gives

〈rn,ki , ln,kj 〉 = (2k+i+j+3)
2(k+j+2) 〈rn,ki , ln,kj+1〉
+ (−1)n+122k+i+j+3(n+2k+3)!(k+j+1)!(k+i+1)!(n−k−j−2)!(n−k−i−1)!

(k−j)!(k−i)!(k+j+n+3)!(k+i+n+2)!(n−2k−2)! .

Iterating this formula from j+ 1 to k and utilizing the fact that lkk+1 is in An,k0 yields
the formula

〈rn,ki , ln,kj 〉 =
(−1)n+122k+i+j+3(k + i+ 1)!(k + j + 1)!(n− k − i− 1)!(n+ 2k + 3)!

(k − i)!(k + n+ i+ 2)!(n− 2k − 2)!

×
k−j∑
m=0

(n− k −m− j − 2)!(2k + i+ j + 4)m
(k −m− j)!(n+ k +m+ j + 3)!

.

Finally, with the substitutions (n+ k+m+ j+ 3)! = (n+ k+ j+ 3)!(n+ k+ j+ 4)m,
(a− j)! = (−1)j a!

(−a)j
, and a ∈ {k −m,n− k −m− 2} we obtain (3.8).
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An analogous argument gives

(3.9)

2(i+ j + 1)〈rn,ki , rn,kj 〉 = (k + i+ 1)〈rn,ki+1, r
n,k
j+1〉+ (k + j + 3)〈rn,ki , rn,kj+1〉

+ (n+ k + 1 + i)
〈rn,ki , φkn〉〈rn,kj , φkn+1〉

〈φkn, φkn〉

+ (n− k − i+ 1)
〈rn,ki , φkn+1〉〈rn,kj , φkn〉

〈φkn, φkn〉
.

Since 〈rn,ki , ukn,m〉 = 〈rki , ukn,m〉 the following recurrence formula is easily obtained

from (3.1) using the relation rki (t) = (1− t)rki−1:

(3.10) 〈rn,ki , ukn,m〉 = 〈rn−1,k
i , ukn−1,m〉 − 〈rn,ki+1, u

k
n,m〉+ εk,n,m〈rki , φkn+(m rem 2)〉.

To obtain the next formula we will need the following lemma.
Lemma 3.2. Formally

3F2

(
a b c

d e
; 1

)
=
c(e− a)

de
3F2

(
a b+ 1 c+ 1

d+ 1 e+ 1
; 1

)
+
d− c
d

3F2

(
a b+ 1 c

d+ 1 e
; 1

)
.

Proof. The proof will be based on the contiguous relations for 3F2 hypergeometric
functions found in Wilson’s paper [21]. Although the proof will be formal in practice
we will apply the result when one of the numerator parameters is a negative integer,
in which case the series has only a finite number of nonzero terms.

Term by term subtraction yields

3F2

(
a b c

d e
; 1

)
=
bc

de
3F2

(
a b+ 1 c+ 1

d+ 1 e+ 1
; 1

)
+ 3F2

(
a− 1 b c

d e
; 1

)
,

and equation 8 in [21] implies that

de 3F2

(
c d a− 1

d e
; 1

)
= c(d+ e− a− b− c)3F2

(
c+ 1 b+ 1 a

d+ 1 e+ 1
; 1

)
+ (d− c)(e− c)3F2

(
c b+ 1 a

d+ 1 e+ 1
; 1

)
.

Finally equation 7 in [21] gives

3F2

(
c b+ 1 a

d+ 1 e+ 1
; 1

)
=

e

e− c 3F2

(
c b+ 1 a

d+ 1 e
; 1

)
− c

e− c 3F2

(
c+ 1 b+ 1 a

d+ 1 e+ 1
; 1

)
.

Utilizing the above formulas and simplifying yields the result.
Lemma 3.3. Let rn,ki and ukn,m be as above. Then for n− 2m ≥ 2k+ 1, k = 0, 1,

or 2,

(3.11)

〈rn,kk , ukn,2m〉 =
(−1)m+k22k+2−n(n− 2k − 1)!(2k + 1)!(n− 2m)!(2m+ 2k)!

(n+ 2k + 1)!(n− k −m)!(m+ k)!

× 3F2

(
−k n−2m+2

2
n−2m+1

2
−2m−2k+1

2 n−m− k + 1
; 1

)
.
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Proof. Although this result is true more generally we will use it only for the cases
indicated, which simplifies the proof considerably. The above formula can be verified
by hand for m = 0, k ∈ {0, 1, 2} and n ∈ {2k + 1, 2k + 2}. With m even set i = k in
(3.10) to obtain

(3.12) 〈rn+1,k
k , ukn+1,m〉 = 〈rn,kk , ukn,m〉 − εk,n+1,m〈rkk , φkn+1〉.

From (3.1) and (2.10) we find that

εk,n+1,m〈rkk , φkn〉 =
(−1)

m
2 +k+222k+1−n(n− 2k − 1)!(2k − 3)!(n−m)!(m+ 2k + 2)!

(n+ 2k + 2)!( 2n−2k−m
2 )!(m+2k+2

2 )!

× 3F2

(
−k − 1 n−m+2

2
n−m+1

2
−m−2k−1

2
2n−m−2k+2

2

; 1

)
.

Set a = n−m+2
2 , b = −k − 1, c = a − 1

2 , and d = −m−2k−1
2 . Then the hy-

pergeometric functions associated with 〈rn,kk , ukn,m〉, 〈rn+1,k
k , ukn+1,m〉, and εk,n+1,m

are 3F2

(
a b+1 c
d+1 e ; 1

)
, 3F2

(
a b+1 c+1
d+1 e+1 ; 1

)
, and 3F2

(
a b c
d e ; 1

)
, respectively.

From Lemma 3.2 we find that (3.11) satisfies (3.12) for n ≥ 2k + 1 + 2m. Multiply
(3.7) by rkk and integrate to obtain

(3.13) 〈rn,kk , ukn,2m〉 = 〈rn−2,k
k , ukn−2,n−2m−2〉 −

ck,n−1,n−2m

〈φkn−1, φ
k
n−1〉

〈rkk , φkn−1〉.

Since

ck,n−1,n−2m
〈rkk , φkn−1〉
〈φkn−1, φ

k
n−1〉

=
(−1)m+k22k−n+3(2n− 1)(2k + 1)!(n− 2k − 3)!(2k + 2m)!

(n− 2k + 1)!(n− k −m− 1)!(m+ k)!

× 3F2

(
−k − 1 n−2m+2

2
n−2m+1

2
−2m−2k+1

2 n−m− k ; 1

)
,(3.14)

it is not difficult to show that (3.11) satisfies (3.13). To see this interchange d and e in

Lemma 3.2, eliminate 3F2

(
a b+1 c+1
d+1 c+1 ; 1

)
and make the substitutions a = n−2m+2

2 ,

b = −k − 1, c = n−2m+1
2 , d = n−m− k, and e = −2m−2k+1

2 . Now multiply by

(−1)m+k22k−n+3(2n− 1)(2k + 1)!(n− 2k − 3)!(2k + 2m)!

(n− 2k + 1)!(n− k −m− 1)!(m+ k)!

and use (3.11) and (3.14). The result follows since (3.11) satisfies (3.12), (3.13), and
the initial conditions mentioned above.

The relation

(3.15) 〈rn,ki , ukn,2m+1〉 = 〈rn+1,k
i , ukn+1,2m+2〉

shows that we need only compute the above inner products for m even. This relation
can be obtained by observing that ūkn−(2m+1) = ūk(n+1)−(2m+2) and that from the

parity of ūkn+1−2m−2, 〈ūkn+1−2m−2, φ
k
n+1〉 = 0. Since lki (t) = rki (−t) the parity of ukn,m

implies that

(3.16) 〈ln,ki , ukn,m〉 = (−1)n+m+1〈rn,ki , ukn,m〉.
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We finish this section by obtaining a recurrence formula for the inner products
〈ukn,j , ukn,i〉. We will do this only for i and j even since the same reasoning as above

shows 〈ukn,2j+1, u
k
n,2i+1〉 = 〈ukn+1,2j+2, u

k
n+1,2i+2〉. Set m = 2i and increment n by one

in (3.3). Then multiply by ukn,2j and integrate by parts to get

− 〈ukn+1,2i(t), D[(1− t2)ukn,2j(t)]〉
= −(n− 2i)〈ukn+2,2i, u

k
n,2j〉+ (n− 2i)〈ukn,2i, ukn,2j〉+ δk,n+1,2ick,n+1,n−2j .

From (3.5) we find that the term on the left-hand side of the above equation can be
eliminated, giving

− (n− 2j)〈ukn+1,2i, u
k
n−1,2j〉+ (n− 2j + 2)〈ukn+1,2i, u

k
n+1,2j〉

= −(n− 2i)〈ukn+2,2i, u
k
n,2j〉+ (n− 2i)〈ukn,2i, ukn,2j〉+ δk,n+1,2ick,n+1,n−2j .

Another useful equation is

〈ukn+2,2i, u
k
n,2j〉 = 〈ukn+1,2i, u

k
n+1,2j〉+ εk,n+2,2ick,n+1,n−2j ,

which can be obtained from (3.1). The above two equations can be combined to give

(3.17) (2n−2j−2i+3)〈ukn+1,2i, u
k
n+1,2j〉 = (2n−2j−2i+1)〈ukn,2i, ukn,2j〉+κk,n,2i,2j ,

where
(3.18)
κk,n,2i,2j = (δk,n+1,2i− (n− 2i+ 1)εk,n+2,2i)ck,n+1,n−2j + (n− 2j)εk,n+1,2ick,n,n−1−2j .

4. Wavelets. Before we begin the actual construction of spline wavelets some
general results will be given that will help in the construction and also show how
to modify the bases constructed to obtain wavelet bases for compact intervals. Let
the multiresolution analysis (Vp) be generated by n orthonormal scaling functions
φ0, . . . , φn−1 minimally supported on [−1, 1], with exactly k of these functions,
φ0, . . . , φk−1 not having support in [0, 1]. Then from the theory of paraunitary oper-
ators there are n orthonormal wavelet functions ψ0, . . . , ψn−1, which we may assume
are also minimally supported on [−1, 1]. Below, we give a method for constructing
the wavelet functions from the scaling functions. In the case of symmetric or an-
tisymmetric scaling functions, this method allows the construction of symmetric or
antisymmetric wavelet functions.

Using the notation given in (1.4), define Q0 = span{φ0, . . . , φk−1},
Q1 = span{φ0

1,0, . . . , φ
k−1
1,0 }, Y = Q0 ∩Q1, and dimY = m. Also, let Y0 = Q0χ[−1,0] ∩

Q1χ[−1,0] and Y1 = Q0χ[0,1] ∩Q1χ[0,1] with dimensions m0 and m1, respectively.
Lemma 4.1. The number of wavelet functions ψj such that PQ1

ψj 6= 0 is at least
k −m.

Proof. Suppose that there are k̂ < k − m such wavelet functions ψ0, . . . , ψk̂−1.
Suppose then that v ∈ Q1 ª Y is chosen to have unit length and to be orthogonal to

PQ1span{ψ0, . . . , ψk̂−1}. Such a choice is possible because Q1ªY has k − m dimen-

sions while PQ1
span{ψ0, . . . , ψk̂−1} has at most k̂ dimensions. Let y = (I − PQ0

)v ∈
V1 ª V0. Since span{φk, . . . , φn−1} ⊥ Q1, (1.1) implies that y ∈W0.

On the other hand, we claim that y cannot be written as a linear combination of
the wavelet functions. Indeed, suppose y can be expressed as a linear combination of
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wavelet functions. Then in particular PQ1
y must be in PQ1

span{ψ0, . . . , ψk̂−1} and
hence orthogonal to v. That is,

0 = PvPQ1y

= PvPQ1(I − PQ0)v

= Pv(PQ1 − PQ1PQ0)v

= Pv(v − PQ1PQ0v)

= v − PvPQ1PQ0v

or

v = PvPQ1
PQ0

v.

Because these projections are orthogonal, the above equality is possible only if v ∈ Q0,
which is not the case since v ∈ Q1 ª Y .

Lemma 4.2. The number of wavelet functions not supported on [0, 1] is at least
j = 2k −m0 −m1.

Proof. Suppose that there are fewer than j such wavelet functions. By the above
lemma, there must be at least k−m of them, whose span will be denoted by Ψs, such
that PQ1

ψ 6= 0 for ψ ∈ Ψs \ {0}. In addition, there are ̂ < k −m0 −m1 +m others,
spanning Ψa. We assume that Ψs has exactly k −m dimensions and PQ1

Ψa = {0}.
Since every wavelet function is orthogonal to the generators of V0,

PQ1
(Ψs ⊕Ψa) = PQ1ªY (Ψs ⊕Ψa),

where Q1 ª Y has at most k −m dimensions. Thus, by taking linear combinations if
necessary, one can always arrange for this assumption to be correct. Let Ψ1 be the
span of the remaining wavelets supported on [0, 1].

We begin by defining the following five spaces:

T = (I − PQ1
)Q0,

T0 = {t ∈ T : supp t ⊂ [−1, 0]},
T1 = {t ∈ T : supp t ⊂ [0, 1]},
U = T ª T0 ª T1,

Z = (χ[0,1] − χ[−1,0])U

for which the dimensions are k − m, m0 − m, m1 − m, k − m0 − m1 + m, and
k−m0−m1 +m, respectively. Note that since U ⊥ Q1, multiplying by characteristic
functions to construct Z does not destroy the membership of these functions in V1.
Also, since the supports of T0 and T1 are [−1, 0] and [0, 1], it follows that these spaces
are orthogonal to U on each of said intervals and thus are orthogonal to Z.

Next, we observe that Q0 ⊕ Ψs = T ⊕ Q1. It is easy to show that both spaces
have dimension 2k −m. Furthermore, T ⊕Q1 = Q0 +Q1 ⊂ Q0 ⊕Ψs because among
the wavelet functions and their translates, only those in Ψs are not orthogonal to Q1.

Now, by its construction, Z is orthogonal to any translates of Ψ1 as well as
nonzero translates of Ψs, Ψa, and Q0. It is also orthogonal to arbitrary translates of
the scaling functions supported on [0, 1]. However, Z ⊂ V1, so we have

Z ⊂ Q0 ⊕Ψs ⊕Ψa

= T ⊕Q1 ⊕Ψa

= U ⊕ T0 ⊕ T1 ⊕Q1 ⊕Ψa,
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and since Z ⊥ T0 ⊕ T1 ⊕Q1, it follows that

Z ⊂ U ⊕Ψa.

But Z has more dimensions than Ψa, so there exists a nonzero z ∈ Z which is also
in U . By the definition of Z, there is some u ∈ U such that (χ[0,1] − χ[−1,0])u = z.
Finally, consider the function x = u + z. Since both u and z are in U , we know
that x ∈ U ⊥ T1. On the other hand, x ∈ U ⊂ T , and clearly suppx ⊂ [0, 1], so
x ∈ T1. The only way for both of these to be true is to have x = 0, which yields a
contradiction.

For the scaling vectors constructed in the next section, we find that m0 = m1 =
m = 0. In this event we have the following corollary.

Corollary 4.3. If m0 = m1 = m = 0, then the number of wavelet functions
not supported on [0, 1] is at least 2k.

From the above lemmas we have the following theorem.
Theorem 4.4. Let the multiresolution analysis (Vp) be generated by n orthonor-

mal scaling functions φ0, . . . , φn−1 minimally supported on [−1, 1]. Let k, m, m0,
and m1 be defined as above. Then there exists n orthonormal wavelet functions
ψ0, . . . , ψn−1 minimally supported on [−1, 1] such that exactly 2k −m0 −m1 are not
supported in [0, 1].

Proof. As indicated above, k − m wavelets Ψs not supported in [0, 1] may be
constructed as an orthonormal basis for (I − PQ0

)Q1 since this basis is in V1 and is
orthogonal to V0. We construct k−m0−m1 +m more functions in the following way.
As indicated in Lemma 4.2, Z is orthogonal to V0 ª

(
Q0 ª (Q0 ∩Q1)

)
as well as any

wavelet functions supported on [0, 1]. Thus the wavelet functions we seek are found
by taking an orthonormal basis for span(I − PQ0∪Ψs)Z.

We now show that the remaining n−2k+m0 +m1 may be chosen so that they are
supported in [0, 1]. Since the dimensions ofA0 andA1 are n−k and 2n−k, respectively,
A1 ª A0 is n-dimensional. From this space we select a subspace K perpendicular to
{φi|[0,1]}k−1

i=0 and {φi(· − 1)|[0,1]}k−1
i=0 . The dimension of this space will determine the

maximum number of wavelets with support contained in [0, 1]. If after an appropriate
change of basis φ0|[0,1] is in Y0, then φ0 is perpendicular to A1ªA0. Thus K needs to

be chosen perpendicular only to a (k − 1)-dimensional subspace of span{φi|[0,1]}k−1
i=1

and a k-dimensional subspace of span{φi(· − 1)|[0,1]}k−1
i=0 . Proceeding in this way we

find that the dimension of K is n− 2k +m0 +m1, which completes the proof.
Suppose Φ is a set of n scaling functions all supported on [−1, 1] and let Ψ be

a set of wavelet functions constructed as above. Since the wavelet functions are all
supported on [−1, 1] they satisfy the following equation:

(4.1) Ψ(t) =

1∑
i=−2

DiΦ(2t− i),

where each Di is an n× n matrix.
The above decomposition of the wavelet basis allows a description of how to obtain

a basis when the multiresolution analysis is restricted to [0, 1]. To this end let Ψs, Ψa,
and Ψ1 be as above and set Ψn,j = Ψ(2n· − j).

Theorem 4.5. Let the multiresolution analysis (Vp) be generated by orthogonal
scaling functions Φ = {φ0, . . . , φn−1}, minimally supported on [−1, 1], and let k,
m, m0, and m1 be defined as above. If Φχ[0,1] is an orthogonal set, then for q ≥ 0
{φiq,jχ[0,1]: i = 0, . . . , n−1, j = 0, . . . , 2q}\{0} is an orthogonal basis for V̄q = Vqχ[0,1].
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Furthermore, there exist orthogonal bases

(4.2) Ψ̄q =

2q−1⋃
j=0

Ψ1
q,j ∪

2q⋃
j=0

Ψ2
q,j ∪

2q−1⋃
j=0

Ψ3
q,j ∪

2q⋃
j=1

Ψ4
q,j ∪

2q−1⋃
j=1

Ψ5
q,j

χ[0,1]

for the wavelet spaces W̄q = Wqχ[0,1] such that V̄0 ⊕
⊕

q≥0 W̄q = L2[0, 1].
Proof. First note that if Φχ[0,1] is orthogonal, then Φχ[−1,0] is as well. From this

it is easy to see that {φiq,jχ[0,1]: i = 0, . . . , n− 1, j = 0, . . . , 2q} \ {0} is an orthogonal

basis for V̄q.
Now, for the wavelet spaces, we know that W̄q = V̄q+1 ª V̄q. Thus, if Ψ̄ is any

orthogonal basis for Ψa ⊕Ψs, a basis for W̄q may include

2q−1⋃
j=0

Ψ1
q,j ∪

2q−1⋃
j=1

Ψ̄q,j .

To complete the basis, however, it is necessary to see what happens near the ends of
the interval [0, 1] and to choose a suitable Ψ̄.

Consider first the left endpoint. Since the remaining basis functions must be
orthogonal to those given above as well as the generators for V̄q, it is clear that
they must be obtained from span Ψ̄q,0 by truncation to the interval [0, 1]. In addi-
tion, they must be orthogonal to Φq,0χ[0,1]. The number of functions needed can
be found by counting the dimensions associated with their support and subtract-
ing the number of orthogonality restrictions. For the former, note that q ≥ 0
Ψ̄q,0χ[0,1] ⊂ span(Φq+1,0χ[0,1] ∪ Φq+1,1), a 2n-dimensional space. For the latter,
note that these functions must be orthogonal to span(Φq,0χ[0,1] ∪ Ψ1

q,0), which has
2n−2k+m0 +m1 dimensions, as well as a (k−m0)-dimensional subspace of span Φq,1.
Thus 2n− (2n−2k+m0 +m1)− (k−m0) = k−m1 wavelet functions are required to
complete the basis on the left. Similar arguments show that there are k −m0 on the
right and that these two groups have k̂ = max{k−m0 −m1, 0} functions in common
(before truncation). We remark that while it is unusual for an MRA to have nonzero
m, m0, or m1, it is even more unusual, but still possible, to have k −m0 −m1 < 0.

Finally, we choose Ψ̄ so that it can be partitioned into four sets:
• Ψ2, with k̂ functions used on both ends,
• Ψ3, with k −m1 − k̂ functions used only on the left,
• Ψ4, with k −m0 − k̂ functions used only on the right, and
• Ψ5, with k̂ functions not used on either end.

With Ψ2, Ψ3, Ψ4, and Ψ5 defined in this fashion, (4.2) gives an orthogonal basis for
W̄q.

5. Construction of continuous spline wavelets. We now set k = 0 so that
Sn0 is the space of piecewise C0 polynomials with knots at the integers and V n,00 =
Sn0 ∩ L2(R). By Lemma 2.1, {φ0

2, . . . , φ
0
n} forms an orthogonal basis for An,00 ( ·+1

2 ),

where φ0
n(t) = (1 − t2)p

5/2
n−2(t). In this case r0

0(t) = 1 + t while l00(t) = 1 − t, and

Cn,00 ( ·+1
2 ) and Cn,01 ( ·+1

2 ) are each one dimensional. Hence from Theorem 1.1 we see
that an orthogonal intertwining MRA can be constructed if we can find a function
w ∈ An,01 ( ·+1

2 )ªAn,00 ( ·+1
2 ) satisfying 〈(I − Pw)rn,00 , (I − Pw)ln,00 〉 = 0, which for non-

zero w is equivalent to

(5.1) 〈rn,00 , ln,00 〉〈w,w〉 = 〈rn,00 , w〉〈w, ln,00 〉.
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As a member of An,00 ( ·+1
2 ), w must be a spline of degree n with knots at the integers.

Since we would like to construct wavelets that are symmetric or antisymmetric we
shall choose w so that it is symmetric or antisymmetric and also so that the knot at
zero is as smooth as possible. Since the dimension of the space of piecewise polynomial
functions in An,01 ( ·+1

2 ) ª An,00 ( ·+1
2 ) that are Cn−2 at zero is two, there exists a basis

x1, x2 for this space where x1 is symmetric and x2 is antisymmetric (one of them being
a multiple of un,0). Thus if we wish to find a symmetric or antisymmetric w satisfying
(5.1), it will be at most Cn−3 at zero. Naturally, if symmetry is not important, a
smoother w may be constructed from the space spanned by x1 and x2. Because of
(5.3) below we see that w must be chosen having the same parity as (−1)n+1. Thus
for symmetry and the greatest possible smoothness we are forced to choose

(5.2) w0
n = α0(n)u0

n,0 + u0
n,2

for n ≥ 3. From (3.8), (3.11), and (3.16) we have

(5.3) 〈rn,00 , ln,00 〉 =
(−1)n+18

(n+ 2)(n+ 1)n
,

(5.4) 〈rn,00 , u0
n,2m〉 =

(−1)m(n− 1)!(n− 2m)!(2m)!

2n−2(n+ 1)!(n−m)!(m)!
,

and

(5.5) 〈ln,00 , u0
n,m〉 = (−1)m+n+1〈rn,00 , u0

n,m〉.
Also from (3.9) we find

(5.6) 〈rn,00 , rn,00 〉 = (n+ 1)
〈r0

0, φ
0
n〉〈r0

0, φ
0
n+1〉

〈φ0
n, φ

0
n〉

=
8

n(n+ 2)
.

With this (5.1) becomes

0 =

∣∣∣∣ 〈u0
n,0, u

0
n,0〉 〈rn,00 , u0

n,0〉
〈rn,00 , u0

n,0〉 |〈rn,00 , ln,00 〉|
∣∣∣∣α0(n)

2
+ 2

∣∣∣∣ 〈u0
n,0, u

0
n,2〉 〈rn,00 , u0

n,2〉
〈rn,00 , u0

n,0〉 |〈rn,00 , ln,00 〉|
∣∣∣∣α0(n)

+

∣∣∣∣ 〈u0
n,2, u

0
n,2〉 〈rn,00 , u0

n,2〉
〈rn,00 , u0

n,2〉 |〈rn,00 , ln,00 〉|
∣∣∣∣ ,(5.7)

where we have used the sign structure of (5.3) and (5.5). In order to find solutions to
this equation we need the following formula, for n ≥ 2 max{i, j}+ 1 with i, j ∈ {0, 2}:
(5.8)

〈u0
n,2i, u

0
n,2j〉 =

(−1)i+j(n− 2i)!(n− 2j)!(2i)!(2j)!(n− 1)!(n2 + 5n+ 2− 2i− 2j)

22n−1i!j!(n− i)!(n− j)!(n+ 1)!(2n+ 1− 2i− 2j)
.

For the cases n > 2 max{i, j}+ 1 the above formula follows by induction using (3.17)
with

κ0,n,2i,2j =
(−1)i+j+1(2i)!(2j)!(n− 2i)!(n− 2j)!(n− 1)!

2(2n− 1)i!j!(n+ 1− i)!(n+ 1− j)!(n+ 2)!
Πn,

where

Πn = 3n5 + (27− i− j)n4 + (85− 14(i+ j))n3 + (117− 51(i+ j) + 2(i+ j)2)n2

+ (72− 62(i+ j) + 10(i2 + j2) + 24ij)n

+ 16− 24(i+ j)− 4ij(i+ j) + 20ij + 8(i2 + j2),
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as well as the initial conditions 〈u0
2,0, u

0
2,0〉 = 1

15 , 〈u0
4,2, u

0
4,0〉 = − 17

13440 , and 〈u0
4,2, u

0
4,2〉 =

1
960 . For n = 3, i = 0, j = 1 and n = 3, i = 1, j = 1 (5.8) can be verified by hand.

Substituting the above formulas into (5.7) and solving for α0(n) yields two solu-
tions,

(5.9) α0(n) = 2

(n−2)(2n+1)
(n−1) ± 2

√
3
√

(2n+1)(n+1)
(2n−3)(n−1)

n(2n− 1)
,

either of which will suffice to give w as in (5.2). This w is then used to construct
orthogonal the scaling functions. For j = 2, . . . , n, set

φ̃j =

{
φ0
j (2· − 1) if t ∈ [0, 1),

0 otherwise,

φ̃1 =

{
w(2· − 1) if t ∈ [0, 1),

0 otherwise,

and φ̃0 = (I − P{φ̃1,...,φ̃n,φ̃1(·+1),...,φ̃n(·+1)})h, where

h(t) =

{
(1− |t|) if t ∈ [−1, 1),

0 otherwise,

where Px is the orthogonal projection onto the subspace spanned by x.
Theorem 5.1 (see [7], [8]). For n ≥ 3 and α0(n) given by (5.9), Φ̃ = {φ̃0, . . . , φ̃n}>

generates an orthogonal multiresolution analysis {Ṽ n,0k }. Furthermore, the last n func-
tions are symmetric or antisymmetric about 1

2 while the first function is symmetric
about 0.

Proof. Since V n,00 = clL2 span{h(· − i), φ̃2(· − i), . . . , φ̃n(· − i) ∀i ∈ Z} and Ṽ n,00 =
clL2 span{φ̃0(· − i), . . . , φ̃n(· − i) ∀i ∈ Z} we find that V n,00 ⊂ Ṽ n,00 . The result now
follows from the above construction.

Remark. As we have shown, the generators of Φ̃ are the smoothest functions
derived from Φ having the support, symmetry, and orthogonality properties indicated
above.

With the scaling functions above we may now construct the coefficients C0
n,i,

i = −2,−1, 0, 1 in the matrix refinement equation. In light of Theorem 4.4, two of
the wavelets will not be supported only in [0, 1] while the remaining n − 1 will be
supported on [0, 1]. In particular, the following holds.

Corollary 5.2. Let

ψ̃0 =
√

2(I − Pφ̃0)φ̃0
1,0,

ψ̃1 =
√

2(χ[0,1] − χ[−1,0])(I − Pφ̃0
1,0

)φ̃0,

and {ψ̃i: i = 2, . . . , n} be an orthonormal basis for Ψ1 consisting of functions that
are symmetric or antisymmetric with respect to 1

2 . Then {ψ̃0, . . . , ψ̃n} generates a

shift-invariant orthonormal basis for W0. Furthermore, ψ̃0(0) = φ̃0(0).
Proof. Up to the constants, the formulas for ψ̃0 and ψ̃1 follow directly from

Theorem 4.4. It is true in general that 〈φ̃0, φ̃0
0,1〉 = 1√

2
, and hence the normalization

factors for both ψ̃0 and ψ̃1 are as shown. To see why this is the case, observe that
φ̃0

1,0 is the only generator of V1 that does not vanish at 0, and φ̃0
1,0(0) =

√
2φ0(0). It

is also for this reason that ψ̃0(0) = φ̃0(0).
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Fig. 1. Selected C0 scaling functions with approximation order 4 (n = 3).

Table 1
Formulas for the scaling functions.

φ̃0(t) =



√
30
√

327+56
√

14(1855−256
√

14)
25235210

(2002t3 − (645
√

14 + 658)t2

−(1106− 285
√

14)t+ 322− 16
√

14) for 0 ≤ t < 1
2√

30
√

327+56
√

14(−6433+1040
√

14)
25235210

(20818t2 + (1835
√

14− 17024)t

+2254− 1176
√

14)(t− 1)
for 1

2
≤ t ≤ 1

φ̃0(−t) for − 1 ≤ t < 0
0 elsewhere

φ̃1(t) =

{
3
√

15(
√

7+21
√

2)
1750

(280t2 − (75
√

14 + 665)t+ 322 + 54
√

14)t for 0 ≤ t ≤ 1
2

φ̃1(1− t) for 1
2
< t ≤ 1

0 elsewhere

φ̃2(t) =
√

30t(1− t)χ[0,1]

φ̃3(t) =
√

210t(1− t)(2t− 1)χ[0,1]

In the examples given by Theorem 5.1, Ψ1 is symmetrical about 1
2 , and hence

it must have an orthonormal basis consisting of symmetrical and antisymmetrical
functions.

An example is given in Figure 1, where the minus sign is chosen in (5.9), and
the analytic formulas associated with this example can be found in Table 1.1 The
wavelets with support [−1, 1] may be computed using Corollary 5.2 while those sup-
ported in [0, 1] can be obtained by finding n− 1 orthogonal functions, symmetrical or
antisymmetrical with respect to 1

2 , from the space (I−P{φ̃0,φ̃0(·−1)})A
n,0
1 ªAn,00 . The

matrix coefficients in the refinement equation for the scaling function may be easily
calculated using the orthogonality of these functions. This also holds for the matrix
coefficients in the expansion for the wavelets.

As a final remark to this section we note that because of the symmetry of the
scaling functions and wavelets, these bases can easily be modified to bases for compact
intervals. Using the notation φ̃ik,j(x) = φ̃i(2kx−j), let φ̄ik,j = φ̃ik,j |[0,1], ψ̄

m
k,j = ψ̃mk,j |[0,1]

1Wavelets and the matrices in the refinement equation for this and other examples can be found
at www.math.gatech.edu/∼geronimo.
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for m 6= 1, and

ψ̄1
k,j =

{
0 if supp ψ̃1

k,j ∩ [0, 1]c 6= Ø,

ψ̃1
k,j otherwise;

we find the following theorem.
Theorem 5.3. The set {φ̄ik,j : k ≥ 0, i = 1, . . . , n, 0 ≤ j ≤ 2k − 1 + δ0,i} is an

orthogonal basis for V̄ n,0k = Ṽ n,0k ∩ L2[0, 1] while {ψ̄ik,j : k ≥ 0, i = 1, . . . , n, δ1,i ≤
j ≤ 2k−1 + δ0,i} forms an orthogonal basis for W̄n,0

k = W̃n,0
k ∩L2[0, 1]. Furthermore,

clL2 V̄ n,00 ⊕⊕k≥0 W̄
n,0
k = L2[0, 1].

6. Construction of differentiable spline wavelets. For differentiable splines,
we take k = 1 and consider the space V n,01 = Sn1 ∩ L2(R). Lemma 2.1 says that

{φ1
4, . . . , φ

1
n} forms an orthogonal basis for An,10 ( ·+1

2 ), where φ1
n(t) = (1− t2)2p

9/2
n−4(t).

In this case we have r1
i (t) = (1 + t)2(1− t)i and l1i (t) = (1− t)2(1 + t)i, i = 0, 1. The

spaces Cn,10 ( ·+1
2 ) and Cn,11 ( ·+1

2 ) are each two dimensional. Hence from Theorem 1.1
we see that an orthogonal intertwining MRA can be constructed if we can find two
functions w1, w2 ∈ An,11 ( ·+1

2 )ªAn,10 ( ·+1
2 ) such that

(6.1) 〈(I − P{w1,w2})r
n,1
i , (I − P{w1,w2})l

n,1
j 〉 = 0, i ≤ j = 0, 1.

In order to construct scaling functions with a symmetry axis one of these functions
will be constructed symmetric and the other antisymmetric. From (3.8) we find

(6.2) 〈rn,10 , ln,10 〉 =
128(−1)n+1(n2 + 2n− 9)(n− 2)!

(n+ 3)!
,

〈rn,10 , ln,11 〉 =
768(−1)n+1(n− 2)!

(n+ 3)!
,

and

(6.3) 〈rn,11 , ln,11 〉 =
4608(−1)n+1(n− 3)!

(n+ 4)!
.

With k = 1, (3.11) yields

〈rn,11 , u1
n,2m〉 = 〈rn,1, u1

n,2m〉

=
3(−1)m+1(2m)!(n− 2m)!(n2 + 5n+ 2− 8m)(n− 3)!

2(n−5)m!(n−m)!(n+ 3)!
.(6.4)

Combining (6.4) with (3.7) and (3.10) and using initial condition 〈r2,1
0 , u1

2,2〉 = 10
3 , we

obtain

(6.5) 〈rn,10 , u1
n,2m〉 =

(−1)m+1(2m)!(n− 2m)!(n2 + 7n+ 4− 12m)(n− 2)!

2(n−4)m!(n−m)!(n+ 2)!
.

In order to simplify the computations somewhat we biorthogonalize the ramp

functions. Set rn,0 = rn,10 , ln,0 = ln,10 , rn,1 = rn,11 − 〈r
n,1
1 ,ln,0〉
〈rn,0,ln,0〉rn,0, and ln,1 = ln,11 −

〈ln,11 ,rn,0〉
〈rn,01,ln,1〉 ln,1. With the help of the inner products given above, we find

(6.6) 〈rn,1, ln,1〉 =
(−1)n4608(n− 3)!

(n+ 4)!(n2 + 2n− 9)
,
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(6.7) 〈rn,1, u1
n,2m〉 =

96(−1)m(2m)!(n− 2m)!(n− 3)!(n2 − 4mn+ 3n+ 6)

2nm!(n−m)!(n2 + 2n− 9)(n+ 3)!
,

and

(6.8)

〈rn,1, u1
n,2m+1〉 =

96(−1)m(2m+ 1)!(n− 2m− 1)!(n+ 3)(n− 2)!(3n2 − 4mn+ 9n− 8m)

2nm!(n−m)!(n2 + 2n− 9)(n+ 4)!
.

As in the C0 case we can use (3.17) to compute the inner products 〈u1
n,2i, u

1
n,2j〉;

i, j = 0, 1, or 2; and n > 2 max{i, j} + 3. This computation was done using Maple
and yielded

(6.9) 〈u1
n,2i, u

1
n,2j〉 =

(−1)i+j(n− 2i)!(n− 2j)!(2i)!(2j)!(n− 3)!q(n, i, j)

22n−1(2n+ 1− i− j)(n+ 3)!i!j!(n− i)!(n− j)! ,

where

q(n, i, j) = n6 + 19n5 + (131− 8(i+ j))n4 + (368− 112(i+ j))n3

+ (372− 424(i+ j) + 24(i+ j)2)n2

+ (212− 320(i+ j) + 120(i2 + j2) + 432ij)n

+ 2(24− 48((i+ j)(1 + ij) + (i2 + j2)) + 81ij).

We now construct three orthogonal functions v0 = b0,0(n)u1
n,0 + b0,2(n)u1

n,2 + u1
n,4,

v2 = b2,0(n)u1
n,0 + b2,2(n)u1

n,2 + u1
n,4, and v4 = b4,0(n)u1

n,0 + b4,2(n)u1
n,2 + u1

n,4, with
the additional constraints that v0 be orthogonal to rn,0 and rn,1, v2 be orthogo-
nal to rn,1 and v0, and v4 be orthogonal to v0 and v2. Using the inner product
formulas and a symbolic manipulation package such as Maple, we find b0,0(n) =

12
(n−3)(n−2) , b0,2(n) = 12(n−1)

(n−3)(n−2) , b2,0(n) = 12(2n+1)(7n2−17n+18)
(2n−7)(n−2)(n−3)(7n2−n+18) , b2,2(n) =

12(14n2−25n+54)(n−1)2

(2n−7)(n−2)(n−3)(7n2−n+18) ,

b4,0(n) =
4(2n+ 1)(2n− 1)(9n5 + 175n4 + 285n3 − 5695n2 + 12786n− 8280)

(2n− 7)(2n− 5)(n− 3)(n− 2)(n2 + 11n− 6)(3n3 + 28n2 − 67n+ 28)
,

and

b4,2(n) =
4(n− 1)(2n− 1)(9n5 + 179n4 + 477n3 − 4163n2 + 7458n− 4392)

(2n− 7)(n− 3)(n− 2)(n2 + 11n− 6)(3n3 + 28n2 − 67n+ 28)
.

These equations allow us to compute the following inner products between the new
functions with the biorthogonal ramps:

〈v2, rn,0〉 =
18432(n2 + 2n− 9)(n− 4)!

2n(n+ 1)!(2n− 7)(7n2 − n+ 18)
,

〈v4, rn,0〉 =
−7680(n2 + 15n− 24)

2n(2n− 7)(2n− 5)(n+ 2)n(n− 3)(3n3 + 28n2 − 67n+ 28)
,

and

〈v4, rn,1〉 = 3072q(n)(n−1)(n−4)!
2n(2n−7)(2n−5)(n−2)(n+3)!(n2+11n−6)(n2+2n−9)(3n3+28n2−67n+28) ,
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where

q(n) = 107n7 + 1230n6 − 3580n5 − 9546n4 + 21437n3 + 30204n2 − 70956n+ 25920.

Also, we have

〈v0(n), v0(n)〉 =
11052(2n− 9)!!

22n(2n+ 1)!!(n− 2)2(n− 3)2
,

〈v2(n), v2(n)〉 = 11052(2n−9)!!q(n)
22n(2n−1)!!(2n−7)(n−1)n(n+1)(7n2−n+18)2(n−3)2(n−2)2 ,

and

〈v4(n), v4(n)〉 = 2048(n2+13n−18)q(n)q1(n)(n−1)!(2n−3)((2n−9)!!)2

22n(n+3)!(n−2)3((n−3)(2n−3)!!(3n3+28n2−67n+28)(n2+11n−6))2

with

q1(n) = n6 + 39n5 + 445n4 + 585n3 − 7286n2 + 9816n− 2880.

From (6.1) we see that we will need to borrow two functions in order to make an
orthogonal intertwining MRA, and in order for these to be symmetric or antisymmetric
we will set w1,n = α1,0(n)v0 + α1,2(n)v2 + v4 and w2,n = α2,1(n)u1

n,1 + u1
n,3. Taking

note of the sign structure in (6.2), (5.5), and (6.6), (6.1) becomes the three equations

|〈rn,0, ln,0〉| = 〈rn,0, w1,n〉2 − 〈rn,0, w2,n〉2,
0 = 〈rn,0, w1,n〉〈w1,n, rn,1〉 − 〈rn,0, w2,n〉〈w2,n, rn,1〉,

|〈rn,1, l1,n〉| = −〈rn,1, w1,n〉2 + 〈rn,1, w2,n〉2.
These can be solved to give

〈rn,1, w1,n〉√〈w1,n, w1,n〉
=

√
|〈rn,1, l1,n〉| − 〈rn,1, w2,n〉2

〈w2,n, w2,n〉 ,

〈rn,0, w1,n〉√〈w1,n, w1,n〉
=

〈rn,0, w2,n〉〈rn,1, w2,n〉√
|〈rn,1, l1,n〉|〈w2,n, w2,n〉2 − 〈rn,1, w1,n〉2〈w2,n, w2,n〉

,

0 = |〈rn,1, l1,n〉| |〈rn,1, l1,n〉| 〈w2,n, w2,n〉+ |〈rn,1, l1,n〉| 〈rn,0, w2,n〉2
− |〈rn,1, l1,n〉| 〈rn,1, w2,n〉2.(6.10)

With the definition of w2 the last of the above equations can be rewritten as

0 =

∣∣∣∣∣∣
〈u1
n,1, u

1
n,1〉 −〈u1

n,1, rn,0〉 〈u1
n,1, rn,1〉

〈u1
n,1, rn,0〉 〈rn,0, rn,0〉 0
〈u1
n,1, rn,0〉 0 〈rn,1, rn,1〉

∣∣∣∣∣∣α2
2,1

+ 2

∣∣∣∣∣∣
〈u1
n,1, u

1
n,3〉 −〈u1

n,3, rn,0〉 〈u1
n,3, rn,1〉

〈u1
n,1, rn,0〉 〈rn,0, rn,0〉 0
〈u1
n,1, rn,1〉 0 〈rn,1, rn,1〉

∣∣∣∣∣∣α2,1

+

∣∣∣∣∣∣
〈u1
n,3, u

1
n,3〉 −〈u1

n,3, rn,0〉 〈u1
n,3, rn,1〉

〈u1
n,3, rn,0〉 〈rn,0, rn,0〉 0
〈u1
n,3, rn,1〉 0 〈rn,1, rn,1〉

∣∣∣∣∣∣ .
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Given the values of the inner products appearing in this equation, we find that either
of the two values

(6.11) α2,1(n) =
2

(n− 1)(2n− 3)

{
(2n− 1)(3n− 8)

(n− 2)
± 2
√

7

√
(2n− 1)(n+ 2)

(2n− 5)(n− 2)

}

will suffice for α2,1. The first equation in (6.10) can be used to eliminate
√〈w1,n, w1,n〉

in the middle equation, and we have

(6.12) α1,2(n) =
(7n2−n−18)

{
q3(n)(n−1)(n+1)(n+2)+q(n)

√
7
√

(2n−1)(2n−5)(n+2)(n−2)
}

108(2n−5)(n+2)(n2+11n−6)(3n3+28n2−67n+28)(n4−6n3−31n2−22n+72)

with

q3(n) = 152n6 + 3893n5 + 19240n4 − 76625n3 − 105912n2 + 330372n− 129600.

Now we solve for α1,0(n) to find

(6.13) α1,0(n) =
√

10
108

q(n)
{

(n−4)(n−2)(2n+1)
n(n+2)(2n−7)

(
q4(n)+q5(n)

√
7
√

(2n−1)(2n−5)(n+2)(n−2)
)}1/2

(2n−5)(n2+11n−6)(3n3+28n2−67n+28)(n4−6n3−31n2−22n+27)

with

q4(n) = 62n6 + 2n5 + 1480n4 − 4526n3 − 2250n2 + 9774n− 5508

and

q5(n) = 8n4 + 95n3 − 126n2 + 297n− 162.

Knowing w1 and w2, we are now able to construct the orthogonal C1 scaling
functions. Let

h0(t) =

{
2 |t|3 − 3 |t|2 + 1 if t ∈ [−1, 1),

0 otherwise

and

h1(t) =

{
(1− |t|)2t if t ∈ [−1, 1),

0 otherwise.

For j = 4, . . . , n, set

φ̃j(·) =

{
φ1
j (2· − 1) if t ∈ [0, 1),

0 otherwise,

φ̃2(·) =

{
w1(2· − 1) if t ∈ [0, 1),

0 otherwise,

φ̃3(·) =

{
w2(2· − 1) if t ∈ [0, 1),

0 otherwise,

and φ̃i = (I − P{φ̃2,...,φ̃n,φ̃2(·+1),...,φ̃n(·+1)})hi, i = 0, 1. Then the above computations
give the following theorem.
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Theorem 6.1. For n ≥ 6, α1,0(n), α1,2(n), and α2,1(n) given by (5.9), Φ̃ =

{φ̃0, . . . , φ̃n}∗ generates an orthogonal multiresolution analysis {Ṽ n,1k }. Furthermore,
the last n − 1 functions are symmetric or antisymmetric about 1

2 . The first function

φ̃0 is symmetric about 0 while φ̃1 is antisymmetric about 0.
Proof. Since h0 and h1 are linear combinations of similarly scaled versions of

r1
j , j = 0, 1 and l1j , j = 0, 1 the result follows from the computations above.

With the scaling functions above we construct the coefficients C1
n,i, i = −2,−1, 0,

1, in the matrix refinement equation. Theorem 4.4 implies that there will be four
wavelets not supported in [0, 1]. Using arguments similar to Corollary 5.2 leads to the
following.

Corollary 6.2. Suppose ψ̃0, . . . , ψ̃3 are chosen so that

ψ̃0 =
√

2(I − Pφ̃0)φ̃0
1,0,

ψ̃1 ∝ (I − P{ψ̃0,φ̃0})(χ[0,1] − χ[−1,0])(I − Pφ̃1
1,0

)φ̃1,

ψ̃2 ∝ (I − P{ψ̃3,φ̃1})(χ[0,1] − χ[−1,0])(I − Pφ̃0
1,0

)φ̃0,

ψ̃3 =
2
√

2√
7

(I − Pφ̃1)φ̃1
1,0

and ψ̃4, . . . , ψ̃n form a basis for Ψ0 consisting only of functions symmetrical or an-
tisymmetrical about 1

2 . Then {ψ̃0, . . . , ψ̃n} generates a shift-invariant orthonormal

basis for W0. Furthermore, ψ̃0(0) = φ̃0(0), (ψ̃3)′(0) =
√

7(φ̃1)′(0), ψ̃1(0) = 0, and
(ψ̃2)′(0) = 0.

An example is given in Figure 2. In Figure 3 explicit formulas for these functions,
accurate at least to 10 digits, are given. The coefficients in the refinement equation
may be calculated using inner products. The wavelets supported on [−1, 1] can be
computed using Corollary 6.2. The wavelets supported in [0, 1] can be obtained by
finding n−3 orthogonal set of functions, symmetrical or antisymmetrical with respect
to 1

2 , from the space (I − P{φ̃4,...,φ̃n−1})A
n,1
1 ªAn,10 .

Theorem 4.5 shows that in order to construct a wavelet basis for [0, 1] we need
to rotate the scaling functions so that {χ[0,1]φ̃

i}i=0,1 is an orthogonal set as well as

{χ[−1,0]φ̃
i}i=0,1. Exploiting the symmetry of φ̃0 and φ̃1, we find that φ̂0 = − 1√

2
φ̃0 −

1√
2
φ̃1 and φ̂1 = − 1√

2
φ̃0 + 1√

2
φ̃1 have the desired property. Let φ̄ik,j = φ̂ik,j |[0,1],

ψ̄mk,j = ψ̂mk,j |[0,1], m 6= 1, 3, and for m = 1, 3 set

ψ̄mk,j =

{
0 if supp ψ̂mk,j ∩ [0, 1]c 6= Ø,

ψ̂mk,j otherwise.

Then from Theorem 4.5 we have the following theorem.
Theorem 6.3. The set {φ̄ik,j : k ≥ 0, i = 1, . . . , n, 0 ≤ j ≤ 2k−1+χ{0,1}(i)} is an

orthogonal basis for V̄ n,1k = Ṽ n,1k ∩L2[0, 1] while {ψ̄ik,j : k ≥ 0, i = 1, . . . , n, χ{1,3}(i) ≤
j ≤ 2k − 1 + χ{0,2}(i)} forms an orthogonal basis for W̄n,1

k = W̃n,1
k ∩ L2[0, 1]. Fur-

thermore, clL2 V̄ n,10 ⊕⊕k≥0 W̄
n,1
k = L2[0, 1].

Examples of these functions for n = 6 can be found in Figure 4.2

2Wavelets as well as the matrices in the refinement equation for this and other examples may be
found at the web site www.math.gatech.edu/∼geronimo.
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Fig. 2. Selected C1 scaling functions with approximation order 7 (n = 6).

7. A C2 example. The methods of the previous sections can be used to con-
struct C2 multiwavelets as well, although the formulas become extremely complicated.
We will therefore content ourselves with briefly describing the procedure and exhibit-
ing an example which may be of use. We do not prove that the procedure works
for arbitrary n; however, we have verified it for a number of cases. For the C2 case
k = 2, r2

i = (1 + t)3(1 − t)i and l2i (t) = (1 − t)3(1 + t)i, i = 0, 1, 2. The spaces
Cn,20 ( ·+1

2 ) and Cn,21 ( ·+1
2 ) are each three dimensional. Hence we search for three or-

thonormal functions w1, w2, w3 ∈ An,21 ( ·+1
2 )ªAn,20 ( ·+1

2 ) such that

(7.1) 〈(I − P{w1,w2,w3})r
n,2
i , (I − P{w1,w2,w3})l

n,2
j 〉 = 0, i ≤ j = 0, 1, 2.

The above equation yields six nonlinear equations and in order to ease the computation
somewhat we impose that 〈w3, r

n,2
0 〉 = 0. By examining (7.1) we find that w1 must

satisfy four equations, w3 five equations, and w2 two equations. Thus, we choose
w1 = a1,0u

2
n,0 + a1,2u

2
n,2 + a1,4u

2
n,4 + a1,6u

2
n,6, w3 = a3,0u

2
n,0 + a3,2u

2
n,2 + a3,4u

2
n,4 +

a3,6u
2
n,6 + a3,8u

2
n,8, and w2 = a2,1u

2
n,1 + a2,3u

2
n,3 and observe that, as a consequence,

n must be at least 11 for these functions all to have C2 smoothness. For n = 11, we
used Maple to obtain the following solution to 60 digits of accuracy:
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φ̃0(t) =


4067.904397t6 − 3085.517213t5 − 739.5537604t4

+1113.129531t3 − 249.0932934t2 + 2.585173201 for 0 ≤ t ≤ 1
2

(−10946.18252t4 + 29698.96665t3 − 29673.11423t2

+12935.83259t− 2076.394058)(t− 1)2 for 1
2
< t ≤ 1

φ̃0(−t) for − 1 ≤ t < 0
0 elsewhere

φ̃1(t) =


t(−12435.14749t5 + 11555.74525t4 − 175.1583524t3

−2704.493962t2 + 885.9596767t− 79.47577362) for 0 ≤ t ≤ 1
2

(17496.63084t4 − 47730.65634t3 + 47977.37771t2

−21054.27094t+ 3403.826649)(t− 1)2 for 1
2
< t ≤ 1

−φ̃1(−t) for − 1 ≤ t < 0
0 elsewhere

φ̃2(t) =


(2t− 1)t2(−12193.17741t3 + 8033.232335t2

−923.0732055t− 95.73716085) for 0 ≤ t ≤ 1
2

−φ̃2(1− t) for 1
2
< t ≤ 1

0 elsewhere

φ̃3(t) =


(54655.48659t4 − 76071.45058t3 + 37177.81845t2

−7410.133638t+ 493.1155758)t2 for 0 ≤ t ≤ 1
2

φ̃3(1− t) for 1
2
< t ≤ 1

0 elsewhere

φ̃4(t) = 3
√

70t2(t− 1)2χ[0,1]

φ̃5(t) = 3
√

770t2(2t− 1)(t− 1)2χ[0,1]

φ̃6(t) = 3
√

182t2(22t2 − 22t+ 5)(t− 1)2χ[0,1]

Fig. 3. Formulas for the C1 scaling functions.

0 10.50-0.5-1
0

1

0

-2

-3

-1

0 10.50-0.5-1
0

1

0

-1

-2

-3

φ̂0 φ̂1

Fig. 4. Modified C1 scaling functions of degree 6 for truncation to [0, 1].
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φ̃0(t) =



960.8390712t11 − 5925.739238t10 + 13283.80990t9

− 11118.85044t8 − 4083.423604t7 + 15463.88643t6

− 12421.39021t5 + 4470.423870t4 − 629.0433748 ∗ t3 − 1.5t2 + 1 for 0 ≤ t < 1
2

(1− t)3(−1188.938305t8 + 3170.302415t7 − 3222.784994t6

+ 1570.468582t5 − 377.8071111t4 + 37.83633397t3

+ 1.585938501t2 − .6720319852t+ .01241619153) for 1
2
< t ≤ 1

φ̃0(−t) for − 1 ≤ t < 0
0 elsewhere

φ̃1(t) =



t(−43.55084884t10 + 268.8737383t9 − 588.5150956t8

+ 426.0982641t7 + 364.8815486t6 − 923.7069266t5

+ 722.0921528t4 − 265.9177149t3 + 39.49465380t2 + .75t− .5) for 0 ≤ t < 1
2

(1− t)3(55.58117958t8 − 152.6750597t7 + 161.0387487t6

− 81.78617419t5 + 20.22050034t4 − 1.881383443t3

− .1197243402t2 + .03075948978t− .0002283505048) for 1
2
≤ t ≤ 1

−φ̃1(−t) for − 1 ≤ t < 0
0 elsewhere

φ̃2(t) =



−4.290797794t11 + 25.45780265t10 − 49.23874622t9

+ 10.99949461t8 + 96.73006250t7 − 163.9201834t6 + 126.4483297t5

− 52.49395898t4 + 11.30900992t3 − 1.002944440t2 + .001962959931 for 0 ≤ t < 1
2

(1− t)3(5.245026448t8 − 14.95000551t7 + 16.41738822t6

− 8.639953559t5 + 2.137676365t4 − .1611170142t3

− .02104722553t2 + .002877121114t+ .00003155317905) for 1
2
< t ≤ 1

φ̃0(−t) for − 1 ≤ t < 0
0 elsewhere

φ̃3(t) =


t3(837.0653712t8 − 1385.345634t7 + 2498.141505t6

− 19046.31150t5 + 51025.24775t4 − 61978.36348t3

+ 38423.77644t2 − 11768.03455t+ 1393.219445) for 0 ≤ t ≤ 1
2

φ̃3(1− t) for 1
2
< t ≤ 1

0 elsewhere

φ̃4(t) =


(13553.28638t7 − 72947.95448t6 + 155109.9841t5

− 159752.4874t4 + 73088.74021t3 − 2106.644683t2

− 8799.858303t+ 1848.967175)t3(t− 1/2) for 0 ≤ t ≤ 1
2

−φ̃4(1− t) for 1
2
< t ≤ 1

0 elsewhere

φ̃5(t) =


t3(19651.08243t8 − 58017.27598t7 + 17880.79147t6

+ 126264.0351t5 − 207975.2506t4 + 145513.9138t3

− 51576.42468t2 + 8813.779535t− 552.7580636) for 0 ≤ t ≤ 1
2

φ̃5(1− t) for 1
2
< t ≤ 1

0 elsewhere

φ̃6(t) =
√

6006t3(1− t)3χ[0,1]

φ̃7(t) =
√

30030t2(2t− 1)(1− t)3χ[0,1]

φ̃8(t) = 2
√

7293t3(30t2 − 30t+ 7)(1− t)3χ[0,1]

φ̃9(t) = 2
√

40755t3(2t− 1)(34t2 − 34t+ 7)(1− t)3χ[0,1]

Fig. 5. Formulas for the scaling functions.
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Fig. 6. Selected C2 scaling functions with approximation order 12 (n = 11).

a1,0 = 837.065371210437626131768992156281384724545782634651643883901,

a1,2 = 34683.2805853131547547484051801591515443493456004150468616372,

a1,4 = 98577.9464165718483400146101646574256130573895257061737344447,

a1,6 = 23873.2858941591526073330349900845644544457875198167225175943,

a2,1 = 69361.5525108187609792638961429103692940232506514292283577945,

a2,3 = 135633.530246170747066239552110728177870041230865307938249067,

a3,0 = 19651.0824273352067272236935152142143793755548082840043700210,

a3,2 = 518517.565184033631919745869328732529406714729877896561460025,

a3,4 = 968629.606667579619572209561202671860306580349823867383091657,

a3,6 = 236239.020798546376511780424212516703801694760661827446183240,

a3,8 = 3210.54994458080183556006870726795783137235163979326960039700.
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The corresponding functions are given with 10 digits of accuracy in Figure 5, and
their graphs are shown in Figure 6. The orthonormal wavelets can be calculated
using techniques similar to those of sections 5 and 6. One final Gram–Schmidt step
is necessary since two of the three functions in (I−PQ0)Q1 are symmetric. The same
is true of (I − PQ0∪Ψs)Z.

Acknowledgment. J. S. Geronimo would like to thank the members of the
Theoretical Physics Division at Saclay and the Laboratoire d’Analyse Numerique at
the University of Pierre and Marie Curie for their hospitality and support during the
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Abstract. For r ∈ (0, 1) and a ∈ (0, 1) the authors consider the quotient of hypergeometric
functions

µa(r) ≡ cF (a, 1− a; 1; 1− r2)/F (a, 1− a; 1; r2),

where the normalizing coefficient c = π/(2 sin(πa)). With this choice of c, µ(r) ≡ µ1/2(r), where µ(r)

is the modulus of the Grötzsch ring B2 \ [0, r] in the plane. A new infinite product expansion is given
for µ(r). It is shown that several well-known properties of the function µ(r) have their counterparts
for µa(r).

Key words. zero-balanced hypergeometric functions, modulus of Grötzsch ring, infinite product

AMS subject classifications. Primary, 30C62, 33C05; Secondary, 26D15, 11F99
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1. Introduction. As usual, for real numbers a, b, and c with c 6= 0,−1,−2, . . . ,
let

F (a, b; c;x) := 2F1(a, b; c;x) ≡
∞∑
n=0

(a, n)(b, n)

(c, n)

xn

n!
(1.1)

for x ∈ (−1, 1) denote the Gaussian hypergeometric function [AS], [Ask1], [R]. Here
(a, 0) = 1 for a 6= 0 and (a, n) is the shifted factorial function

(a, n) := a(a+ 1)(a+ 2) · · · (a+ n− 1)

for n ∈ N ≡ {k : k is a positive integer}. The function F (a, b; c;x) is said to be zero
balanced if c = a + b. It is well known that F (a, b; c;x) has many important appli-
cations, and many classes of special functions in mathematical physics are particular
or limiting cases of this function. For these and for properties of F (a, b; c;x), see, for
example, [AS], [Ao], [Ask1], [Ask2], [Be1], [Be2], [Be3], [Be4], [CC], [E], [R], [Var],
[Va], [WW], and [WZ]. Here we recall that only in the special cases when a = b = 1/2
and −a = b = 1/2, we have for x ∈ (0, 1) and x′ =

√
1− x2,

K(x) ≡ π

2
F
(1

2
,

1

2
; 1;x2

)
=

∫ π/2

0

(1− x2 sin2 t)−1/2dt, K′(x) ≡ K(x′),(1.2)

and

E(x) =
π

2
F
(
−1

2
,

1

2
; 1;x2

)
=

∫ π/2

0

(1− x2 sin2 t)1/2dt, E′(x) ≡ E(x′),(1.3)
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which are known as the complete elliptic integrals of the first kind and of the second
kind, respectively [Bo], [BF].

Let B2 be the unit disk in the plane and µ(r) the modulus of the plane Grötzsch
ring B2 \ [0, r] for r ∈ (0, 1) [LV]. It is well known that µ(r) has the following explicit
expression [LV, p. 60]:

µ(r) =
π

2

K′(r)
K(r)

, for 0 < r < 1 and r′ =
√

1− r2.(1.4)

The special function µ(r) plays a very important role in geometric function theory,
quasi-conformal theory, and quasi-regular theory (cf. [AVV2], [LV], and [Vu]). It also
has applications in some other mathematical fields such as the theory of analytic func-
tions and number theory. In number theory, for example, it appears in the classical
modular equation of signature 2 and degree p, p > 1, i.e., the equation

µ(s) = pµ(r), 0 < r < 1,

(see [Be3] and [BB]), while in the theory of analytic functions, by [M, Theorem 1.1],
the Schottky upper bound can be expressed in terms of µ(r). Numerous properties of
µ(r) have been obtained (see, for instance, [AV], [AVV2], and [LV]).

A natural generalization of µ(r) is the homeomorphism µa : (0, 1) → (0,∞)
defined by

µa(r) ≡ π

2 sinπa

F (a, 1− a; 1; 1− r2)

F (a, 1− a; 1; r2)
(1.5)

for a, r ∈ (0, 1). Clearly, µ1−a(r) = µa(r). Hence, we may assume that 0 < a ≤ 1/2.
Using the function µa(r), one can write the so-called generalized modular equation of
signature 1/a and degree p, p > 1, as

µa(s) = pµa(r), 0 < r < 1,(1.6)

which was studied by S. Ramanujan (cf. [Ask2] and [Be2]), and was recently studied
in [BBG], [Be5], and [Ga]. In particular, several beautiful identities satisfied by r and
s were obtained in [BBG]. Properties of µa(r), of course, are indispensable in the
study of (1.6).

Since µ1/2(r) ≡ µ(r), and since as a function of the parameter a, µa(r) is analytic
on (0, 1/2], it is natural to ask whether every known result for µ(r) has a counterpart
with µ(r) replaced by µa(r), and how to extend the well-known results for µ(r) to the
function µa(r).

On the other hand, it is well known that [J, p. 146]

exp(µ(r) + log r) = 4
∞∏
n=1

(
1 + q2n

1 + q2n−1

)4

(1.7)

for r ∈ (0, 1), where q = exp(−2µ(r)). By virtue of (1.7), several infinite-product
representations and inequalities have been obtained for µ−1(x) and for the Hersch–
Pfluger ϕ-distortion function [HP]{

ϕK(r) ≡ µ−1(µ(r)/K),
ϕK(0) = ϕK(1)− 1 = 0

(1.8)
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for r ∈ (0, 1) and K ∈ (0,∞) (see [AV], [AVV2], and [VV]). However, since the Jacobi
product on the right side of (1.7) involves µ(r), it is not very convenient for one to
employ (1.7) to do numerical computation for µ(r) and to study some related special
functions such as ϕK(r).

One purpose of the present paper is to find a new infinite-product representation
for µ(r) which involves only r, and to extend this representation to the function µa(r).
We shall prove the following result.

Theorem 1.1. For a ∈ (0, 1/2], let R(a) ≡ R(a, 1− a), where R(a, b) is defined
by (2.5), and for r ∈ (0, 1), n ∈ N, let r0 = r′ =

√
1− r2, and

r1 = ϕ2(r′) =
2
√
r′

1 + r′
, . . . , rn = ϕ2(rn−1) =

2
√
rn−1

1 + rn−1
= ϕ2n(r′).(1.9)

Then

∞∏
n=0

(1 + rn)2−n ≤ exp(µa(r) + log r) ≤ 1

4
exp(R(a)/2)

∞∏
n=0

(1 + rn)2−n ,(1.10)

with equality for all r ∈ (0, 1) in each inequality if and only if a = 1/2. In particular,
for all r ∈ (0, 1),

exp(µ(r) + log r) =

∞∏
n=0

(1 + rn)2−n(1.11)

or equivalently,

µ(r) = log
1

r
+
∞∑
n=0

1

2n
log(1 + rn).

Another purpose of this paper is to extend some well-known properties of µ(r)
to µa(r) and to show that some other properties of µ(r) cannot be extended to µa(r)
for a ∈ (0, 1/2).

Throughout this paper, we let r′ =
√

1− r2 for r ∈ [0, 1], and let arth denote the
inverse of the hyperbolic tangent th and R(a) be as in Theorem 1.1.

We now state some of our other main results, which serve the second purpose of
this paper.

Theorem 1.2. Let a ∈ (0, 1/2]. Then we have the following:
1. The function f(r) ≡ r′µa(r)/ log(1/r) is strictly increasing from (0, 1) onto

(1,∞).
2. The function g(r) ≡ µa(1/r)/ log r is strictly decreasing and convex from

(1,∞) onto (1,∞). However, the function G(r) ≡ g(1/r) is neither concave
nor convex on (0, 1).

3. The function h(r) ≡ µa(r)/{[R(a)/2] + log(1/r)} is strictly decreasing and
concave from (0, 1) onto (0, 1).

4. The function H(r) ≡ h(r)/
√
r′ is strictly increasing from (0, 1) onto (1,∞).

Moreover, for all a ∈ (0, 1/2] and r ∈ (0, 1),[
1

2
R(a)− log r

]√
r′ < µa(r) <

1

2
R(a)− log r.(1.12)

Theorem 1.3. Let a ∈ (0, 1/2]. Then we have the following:
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1. The function f(r) ≡ µa(e−r) is strictly increasing and concave from (0,∞)
onto (0,∞). In particular, for all a ∈ (0, 1/2], and x, y, p ∈ (0, 1),

pµa(x) + (1− p)µa(y) ≤ µa(xpy1−p)(1.13)

and

µa(x) + µa(y) ≤ 2µa(
√
xy).(1.14)

Equality holds in (1.13) and in (1.14) if and only if x = y.
2. The function g(r) ≡ µa(1/r) is strictly increasing and concave from (1,∞)

onto (0,∞). In particular, for all a ∈ (0, 1/2] and x, y, p ∈ (0, 1),

pµa(x) + (1− p)µa(y) ≤ µa
(

xy

(1− p)x+ py

)
,(1.15)

with equality if and only if x = y.
3. For each t ∈ (0, 1), the function h(r) ≡ µa( rt

1+r′t′ )−µa(r) is strictly increasing
from (0, 1) onto (arth t′, µa(t)). Moreover, for all a ∈ (0, 1/2] and r, t ∈ (0, 1),

µa(r) + µa(t)− 1

2
[R(a)− log 4] < µa(r) + artht′

< µa

( rt

1 + r′t′
)
< µa(r) + µa(t).

(1.16)

4. The function G(r) ≡ µa(r)/µa(
√
r) is strictly decreasing from (0, 1) onto

(1, 2). In particular, for all a ∈ (0, 1/2] and r ∈ (0, 1),

µa(r) < µa(r2) < 2µa(r).(1.17)

Theorem 1.4. Let a ∈ (0, 1/2]. Then the following apply:
1. Both of the functions f(r) ≡ µa(r) and 1/f(r) have exactly one inflection

point on (0, 1).
2. The function g(r) ≡ µa(r) + log(r/r′) is strictly increasing and convex from

(0, 1) onto (R(a)/2,∞).
3. The function h(r) ≡ r exp(µa(r)) is strictly decreasing and concave from (0, 1)

onto (1, exp(R(a)/2)).
4. Define the function G on (0, 1) by

G(r) = µa(r) + log(r/
√
r′).

Then we have the following:
i. G is strictly increasing on (0, 1) if and only if a = 1/2.
ii. G is convex on (0, 1) if and only if a = 1/2.
iii. If a ∈ (0, 1/2), then there exists a unique r0 ∈ (0, 1) such that G is strictly
decreasing on (0, r0], and increasing on [r0, 1), with G(0+) = R(a)/2 and
G(1−) =∞. Moreover, G is neither concave nor convex on (0, 1) in this case.

Remark 1. 1. It should be indicated that in addition to (1.7), there is a classical
infinite-product representation [BB, Formula (2.5.15), p. 52]

exp(µ(r) + log r) = 4
√
r′

∞∏
n=1

(an
bn

)3/2n+1

(1.18)
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for r ∈ (0, 1), where

a0 = 1, b0 = r′, an = (an−1 + bn−1)/2 and bn =
√
an−1bn−1

for n ∈ N. However, as we can see, it is more convenient for one to use (1.11) to
obtain some properties of µ(r) and some other related special functions such as ϕK(r)
than to use (1.18). For example, from (1.11) we get

µ(r)− arth r′ =
∞∑
n=1

1

2n
log(1 + rn).(1.19)

It is well known that as a function of r, ϕK(r) is strictly concave on (0, 1) if K > 1
(cf. [AVV2, Exercises 10.18(9)]). Clearly, r′ is concave on (0, 1), and log x is strictly
increasing and concave on (0,∞). Hence, the right side of (1.19) is a sum of strictly
decreasing and concave functions of r on (0, 1) (cf. [AQV, Lemma 2.1(1)]), so that as
we know, µ(r)− arth r′ is strictly decreasing and concave from (0, 1) onto (0, log 2).

2. In the special case when a = 1/2, the results in Theorems 1.2, 1.3, and 1.4 can
be found in [AVV2] and in references therein.

3. Several known results for µ(r) have been generalized to µa(r) in [BPV] and
[QVu2].

4. The inequality (1.14) has been proved by two different methods in [BPV,
Theorem 1.5] and [QVu2, Theorem 1.18(1)]. In Theorem 1.3 item 2, we use a new
method to obtain a more general inequality (1.13). We observe that (1.14) is the
second part of [AVV1, Open Problem 10, p. 80].

5. The results in Theorems 1.1, 1.2, 1.3 and 1.4 enable us to show some properties
of the solution of the generalized modular equation (1.6)

s = ϕa1/p(r) ≡ µ−1
a (pµa(r)).(1.20)

These and some other applications will appear in a separate paper [AQVV].

2. Some properties of F (a, b; c;x). In this section, we study some mono-
tonicity properties of the function F (a, b; c;x) and certain of its combinations. These
are needed in the proofs of the main theorems stated in section 1. But first, we recall
some known results for the function F (a, b; c;x), which will be frequently used in what
follows.

It is well known that the properties of the hypergeometric functions are closely
related to those of the gamma function Γ(x), the psi function Ψ(x), and the beta
function B(x, y). For positive numbers x and y, these functions are defined by

Γ(x) =

∫ ∞
0

e−ttx−1dt, Ψ(x) =
Γ′(x)

Γ(x)
, B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
,(2.1)

respectively (cf. [WW]). It is well known that the gamma function satisfies the dif-
ference equation [WW, p. 237]

Γ(x+ 1) = xΓ(x)(2.2)

if x is not a nonpositive integer and has the so-called reflection property [WW, p. 239]

Γ(x)Γ(1− x) =
π

sinπx
= B(x, 1− x)(2.3)
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if x is not an integer. From (2.2), it follows that [AS, 6.3.6]

Ψ(x+ n) =

n∑
k=1

1

x+ n− k + Ψ(x)(2.4)

for n ∈ N. We shall also need the function

R(a, b) = −2γ −Ψ(a)−Ψ(b), R(1/2, 1/2) = log 16,(2.5)

where γ is the Euler–Mascheroni constant defined by

γ = lim
n→∞

( n∑
k=1

1

k
− logn

)
= 0.577215 . . . .(2.6)

By [QVu2, Lemma 2.14(2)], for a ∈ (0, 1/2],

R(a) ≡ R(a, 1− a) ≥ A[(1/2)− a]2 + log 16,(2.7)

with equality if and only if a = 1/2, where A = 14ζ(3) = 16.82879 . . . and ζ(x) is the
Riemann zeta function.

Two of the important tools we shall need in our work are Ramanujan’s asymptotic
formula (see [Ask1], [Be2], and [E])

B(a, b)F (a, b; a+ b; r) + log(1− r) = R(a, b) + O((1− r) log(1− r))(2.8)

(for a, b ∈ (0,∞)) as r tends to 1, which is a special case of [AS, 15.3.10], and the
following Ramanujan’s derivative formula [Be2, Corollary, p. 86]

d

dx

[
F (a, 1− a; 1; 1− x)

F (a, 1− a; 1;x)

]
= − sinπa

πx(1− x)F (a, 1− a; 1;x)2
(2.9)

for a, x ∈ (0, 1). From (2.9) we immediately get the derivative of µa(r) with respect
to r: For a, r ∈ (0, 1),

dµa(r)

dr
= − 1

rr′ 2F (a, 1− a; 1; r2)2
.(2.10)

By (1.1) we have

d

dx
F (a, b; c;x) =

ab

c
F (a+ 1, b+ 1; c+ 1;x).(2.11)

It follows from (2.9) and (2.11) that

F (1 + a, 2− a; 2; 1− x)F (a, 1− a; 1;x)(2.12)

+F (1 + a, 2− a; 2;x)F (a, 1− a; 1; 1− x) =
sinπa

πa(1− a)x(1− x)

for a, x ∈ (0, 1).
Other important tools in the rest of this paper are the following Landen inequal-

ities.
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Theorem 2.1 (see [QVu1, Theorem 1.9(1)]). For a, b ∈ (0, 1) with c = a+ b ≤ 1
(< 1, respectively), the function

f(r) ≡ (1 + r)F (a, b; c; r2)− F (a, b; c; 4r/(1 + r)2)

is increasing (strictly, respectively) from (0, 1) onto (0, [R(a, b) − log 16]/B(a, b)). In
particular, for all a, b, r ∈ (0, 1) with c = a+ b ≤ 1,

F
(
a, b; c;

( 2
√
r

1 + r

)2)
≤ (1 + r)F (a, b; c; r2)

≤ F
(
a, b; c;

( 2
√
r

1 + r

)2)
+

1

B(a, b)
[R(a, b)− log 16]

(2.13)

and 
1 + r

2
F (a, b; c; 1− r2) ≤ F

(
a, b; c;

(1− r
1 + r

)2)
≤ 1 + r

2

{
F (a, b; c; 1− r2) +

1

B(a, b)
[R(a, b)− log 16]

}
,

(2.14)

with equality in each instance if and only if a = b = 1/2.
In what follows, we let

ma(r) ≡ π

2 sinπa
r′ 2F (a, 1− a; 1; r2)F (a, 1− a; 1; r′ 2)(2.15)

for a ∈ (0, 1/2] and r ∈ (0, 1). This function is the counterpart of the function

m(r) ≡ 2

π
r′ 2K(r)K′(r), 0 < r < 1,(2.16)

which plays an important role in the study of the distortion functions in quasi-
conformal theory (cf. [AVV2] and [Hü]). Clearly, m1/2(r) ≡ m(r). As we shall
see, the function ma(r) has applications in the study of F (a, b; c;x), µa(r), and the
solution s = ϕa1/p(r) (see (1.20)) of the generalized modular equation (1.6). We first

obtain the derivative formula for ma(r).
Lemma 2.2. For a ∈ (0, 1/2], and r ∈ (0, 1),

m′a(r) = −1

r
− πr

sinπa
F (a, 1− a; 1; r′ 2)[F (a, 1− a; 1; r2)(2.17)

− 2a(1− a)F (a, 1− a; 2; r2)].

In particular, for r ∈ (0, 1),

m′(r) = −1

r
− 4

πr
K′(r)[K(r)− E(r)] =

1

r

[
1− 4

π
K(r)E′(r)

]
.(2.18)

Proof. By differentiation, (2.11), and (2.12), we get

m′a(r) = −1

r
− πr

sinπa
F (a, 1− a; 1; r′ 2)[F (a, 1− a; 1; r2)(2.19)

−2a(1− a)r′ 2F (a+ 1, 2− a; 2; r2)].

Hence, (2.17) follows from [R, Theorem 21, p. 60] and (2.19).
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From (1.2), (2.11), and (2.19), we obtain

m′(r) = −1

r
− 4

π
rK′(r)

[
K(r)− π

4
r′ 2F

(
3

2
,

3

2
; 2; r2

)]
= −1

r
− 4

π
rK′(r)

[
K(r)− r′ 2

r

dK(r)

dr

]
.

Hence, (2.18) follows from the well-known derivative formula for K(r) and the Legen-
dre relation [BF, 110.10].

It is well known that the function f(r) ≡ K(r)/ log(4/r′) is strictly decreasing
from [0, 1) onto (1, π/ log 16] (cf. [AVV2, Theorem 3.21(10)] and [QVa, Theorem 1.4]).
The next result provides an analogue of this property for F (a, b; a+ b;x).

Theorem 2.3. Let a, b ∈ (0,∞) with c = a+ b. Then the function

f(x) ≡ F (a, b; c;x)/[R(a, b)− log(1− x)]

is strictly decreasing from [0, 1) onto (1/B(a, b), 1/R(a, b)]. In particular, K(r)/ log(4/r′)
is strictly decreasing from [0, 1) onto (1, π/ log 16].

Proof. Clearly, f(0) = 1/R(a, b). Since

F (a1, b1; c1; 1) =
Γ(c1)Γ(c1 − a1 − b1)

Γ(c1 − a1)Γ(c1 − b1)
(2.20)

if c1 > a1 + b1 and if c1 6= 0,−1,−2, . . . (see [AS, 15.1.20, p. 213] or [R, Theorem 18,
p. 49]), by l’Hôpital’s rule, [R, Theorem 21, p. 60], and by (2.2), we obtain

f(1−) =
ab

c
lim
x→1−

(1− x)F (a+ 1, b+ 1; c+ 1;x)

=
ab

c
F (a, b; c+ 1; 1) =

abΓ(c+ 1)Γ(1)

cΓ(a+ 1)Γ(b+ 1)
=

1

B(a, b)
.

Next, by differentiation, (2.11), and [R, Theorem 21, p. 60], we get

f ′(x) =
F (a, b; c+ 1;x)

(1− x)[R(a, b)− log(1− x)]2
f1(x),(2.21)

where

f1(x) =
ab

c
[R(a, b)− log(1− x)]− F (a, b; c;x)

F (a, b; c+ 1;x)
.

Clearly, f1(0) = [abR(a, b)/c]−1, and (1−x)[R(a, b)−log(1−x)]2 is strictly decreasing
in x on (0, 1) by (2.7). By (2.20) and (2.2), it holds that

F (a, b; c+ 1; 1) = c/[abB(a, b)].(2.22)

By l’Hôpital’s rule, we have

lim
x→1−

1√
1− x

[
ab

c
B(a, b)F (a, b; c+ 1;x)− 1

]
(2.23)

= −2
(ab)2B(a, b)

c(c+ 1)
lim
x→1−

√
1− xF (a+ 1, b+ 1; c+ 2;x) = 0.
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It follows from (2.8), (2.22), and (2.23) that

f1(1−) = lim
x→1−

1

F (a, b; c+ 1;x)

{
ab

c
[R(a, b)− log(1− x)

−B(a, b)F (a, b; c;x)]F (a, b; c+ 1;x) + F (a, b; c;x)

[
ab

c
B(a, b)F (a, b; c+ 1;x)− 1

]}
=

1

F (a, b; c+ 1; 1)
lim
x→1−

{√
1− xF (a, b; c;x) · [abB(a, b)F (a, b; c+ 1;x)/c]− 1√

1− x
}

= 0.

Again we use the formula F (a, b; a+ b+ 1; z) = (1− z)F (a+ 1, b+ 1; a+ b+ 1; z) from
[R, Theorem 21, p. 60], and because c = a+ b we obtain

f ′1(x) =
ab

c(1− x)
− 1

F (a, b; c+ 1;x)2

[
ab

c
F (a+ 1, b+ 1; c+ 1;x)F (a, b; c+ 1;x)

− ab

c+ 1
F (a, b; c;x)F (a+ 1, b+ 1; c+ 2;x)

]
=

ab

c+ 1

F (a, b; c;x)F (a+ 1, b+ 1; c+ 2;x)

F (a, b; c+ 1;x)2
> 0.

Hence f1 is strictly increasing from (0, 1) onto ([abR(a, b)/c] − 1, 0), and the mono-
tonicity of f follows from (2.21).

Take a = b = 1/2. Then R(a, b) = log 16 by (2.7), B(a, b) = π by (2.3), and
hence, the second conclusion follows.

Lemma 2.4. Let a ∈ (0, 1/2]. Then the function f(x) ≡ (2−x)F (a, 1−a; 1;x)2−2
is strictly increasing and convex from (0, 1) onto (0,∞) if and only if a = 1/2. If
a ∈ (0, 1/2), then there exists a unique x0 ∈ (0, 1) such that f is strictly decreasing
on (0, x0], and increasing on [x0, 1), so that f ′ has a unique zero on (0, 1).

Proof. Clearly, f(0) = 0 and f(1−) =∞. Differentiation gives

f ′(x) = F (a, 1− a; 1;x)g(x),(2.24)

where

g(x) = 2a(1− a)(2− x)F (a+ 1, 2− a; 2;x)− F (a, 1− a; 1;x).

Using the series expansion of F (a, b; c;x), we get

g(x) = 4

∞∑
n=0

(a, n+ 1)(1− a, n+ 1)

(n+ 1)!n!
xn

− 2

∞∑
n=0

n(a, n)(1− a, n)

(n!)2
xn −

∞∑
n=0

(a, n)(1− a, n)

(n!)2
xn

=
∞∑
n=0

(a, n)(1− a, n)

(n+ 1)!n!
[2n2 + n+ 4a(1− a)− 1]xn.

Since 2n2 + n + 4a(1 − a) − 1 > 0 for all n ∈ N, we see that g is strictly increasing
on (0, 1). Clearly, g(0) = 4a(1− a)− 1 = −(2a− 1)2. By [R, Theorem 21, p. 60] and
(2.22), we find

g(1−) = lim
x→1−

1

1− x [2a(1− a)(2− x)F (a, 1− a; 2;x)− (1− x)F (a, 1− a; 1;x)] =∞.
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Hence, the result follows from (2.24).
We now prove some properties of the function ma(r) defined by (2.15).
Theorem 2.5. Let a ∈ (0, 1/2], and C = R(a)/2. Then we have the following

conclusions:
1. The function f(r) ≡ ma(r) + log r is strictly decreasing and concave from

(0, 1) onto (0, C). In particular, for all a ∈ (0, 1/2] and r ∈ (0, 1),

C(1− r) < ma(r) + log r < C.(2.25)

2. The function g(r) ≡ {C − [ma(r) + log r]}/r is strictly increasing from (0, 1)
onto (0, C).

3. The function h(r) ≡ ma(r)/ log(1/r) is strictly increasing from (0, 1) onto
(1,∞).

4. For any fixed t ∈ (0, 1), the function G(r) ≡ ma(rt) − ma(r) is strictly in-
creasing from (0, 1) onto (− log t,ma(t)). In particular, for all a ∈ (0, 1/2]
and r, t ∈ (0, 1),

max{ma(r)− log t, ma(t)− log r} < ma(rt) < ma(r) +ma(t),(2.26)

and

ma(r)− log r < ma(r2) < 2ma(r).(2.27)

Proof. 1. It follows from (2.17) that

− sinπa

π
f ′(r) = f1(r)f2(r) ≡ f3(r),(2.28)

where

f1(r) = rF (a, 1−a; 1; r′ 2) and f2(r) = F (a, 1−a; 1; r2)−2a(1−a)F (a, 1−a; 2; r2).

Clearly, f2(0) = 1 − 2a(1 − a) = a2 + (1 − a)2. By (2.22), we see that f2(1−) = ∞.
Using the series expansion of F (a, b; c;x), we get

f2(r) =
∞∑
n=0

(a, n)(1− a, n)

(n+ 1)!n!
[n+ a2 + (1− a)2]r2n,

from which it can be easily seen that f2 is strictly increasing from (0, 1) onto (a2 +
(1− a)2,∞). Hence, by [QVu2, Lemma 2.15(1)], f3 is a product of two positive and
strictly increasing functions on (0, 1) so that the monotonicity and concavity of f
follows from (2.28).

The limiting value f(1−) = 0 is clear. It follows from (2.8) and (2.3) that

f(0+) =
1

2
lim
r→0+

[B(a, 1− a)r′ 2F (a, 1− a; 1; r2)F (a, 1− a; 1; r′ 2) + log r2]

=
1

2
lim
r→0+

{
[B(a, 1− a)F (a, 1− a; 1; r′ 2) + log r2]

+B(a, 1− a)r2F (a, 1− a; 1; r′ 2) · r
′ 2F (a, 1− a; 1; r2)− 1

r2

}

=
1

2
R(a, 1− a) =

1

2
R(a) = C,
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since by l’Hôpital’s rule

lim
r→0+

1

r2
[r′ 2F (a, 1− a; 1; r2)− 1] = a(1− a)− 1.

The double inequality (2.25) is clear.
2. Let g1(r) = C − [ma(r) + log r] = C − f(r) and g2(r) = r. Then g1(0+) =

g2(0) = 0, and

g′1(r)/g′2(r) = −f ′(r),

which is strictly increasing on (0, 1) by part 1. Hence, the monotonicity of g follows
from the monotone version of l’Hôpital’s rule [AVV2, Theorem 1.24].

Clearly, g(1−) = R(a)/2. By l’Hôpital’s rule and (2.28), g(0+) = −f ′(0+) = 0.
3. By (2.22), (2.3), [R, Theorem 21, p. 60], and l’Hôpital’s rule, we have

h(0+) =
π

2 sinπa
lim
r→0+

F (a, 1− a; 1; r′ 2)

log(1/r)
=
a(1− a)π

sinπa
F (a, 1− a; 2; 1) = 1.

Since limr→1 r
′ 2/ log(1/r) = 2, we see that h(1−) =∞.

Next, let h1(r) = log(1/r). Then ma(1−) = h1(1) = 0, and by (2.17),

m′a(r)

h′1(r)
= 1 +

π

sinπa
rf1(r)f2(r) ≡ h2(r),

where f1 and f2 are as in (2.28). From the proof of part 1, we see that h2 is strictly
increasing on (0, 1), and hence, so is h by [AVV2, Theorem 1.24].

4. Let x = rt. Then x < r, and

rG′(r) = xm′a(x)− rm′a(r) = G1(r) = xf ′(x)− rf ′(r),

where f is as in part 1. From the proof of part 1, we see that uf ′(u) is strictly
decreasing on (0, 1). Hence, G1(r) > 0 for all r ∈ (0, 1) so that the monotonicity of G
follows.

Clearly, G(1−) = ma(t). Since

G(r) = [ma(x) + log x]− [ma(r) + log r]− log t,

it follows from part 1 that G(0+) = − log t.
The inequalities in (2.26) and (2.27) are clear.
Remark 2. For a = 1/2, parts 1–3 of Theorem 2.5 reduce to corresponding well-

known results for the function m(r) (cf. [AVV2, Theorem 3.30 parts 1, 2, and 4]).

3. Proofs of the main theorems. In this section, we prove the results stated
in section 1.

3.1. Proof of Theorem 1.1. Consider the function

f(r) ≡ µa(r)− arth r′ = µa(r) + log r − log(1 + r′)(3.1)

for a ∈ (0, 1/2] and r ∈ (0, 1). In [QVu2, Theorem 1.23(1)], it was shown that f is
strictly decreasing and concave from (0, 1) onto (0, [R(a)− log 4]/2).
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Let r1 = ϕ2(r′). Then by [AVV2, Theorem 10.5(4)], r1 = 2
√
r′/(1 + r′), r′ =

ϕ1/2(r1) = (1− r′1)/(1 + r′1) and r = ϕ2(r′1) = 2
√
r′1/(1 + r′1) so that

f(r) = µa

(
2
√
r′1

1 + r′1

)
− 1

2
log

1 + ϕ1/2(r1)

1− ϕ1/2(r1)
= µa

(
2
√
r′1

1 + r′1

)
+

1

2
log r′1.(3.2)

Let g(x) = 2µa(2
√
x/(1 + x))− µa(x) for x ∈ (0, 1) and a ∈ (0, 1/2]. Then (3.2)

can be written as

f(r)− 1

2
log r′1 −

1

2
arth r1 =

1

2
[g(r′1) + f(r′1)],

that is

f(r)− 1

2
log(1 + r1) =

1

2
[g(r′1) + f(r′1)].(3.3)

Similarly, putting r2 = ϕ2(r1) = ϕ4(r′), we get

f(r′1)− 1

2
log(1 + r2) =

1

2
[g(r′2) + f(r′2)],

and hence, by (3.3),

f(r)− 1

2
log(1 + r1)− 1

4
log(1 + r2) =

1

2
g(r′1) +

1

4
g(r′2) +

1

4
f(r′2).

Generally, assuming

f(r)−
n−1∑
k=1

1

2k
log(1 + rk) =

n−1∑
k=1

1

2k
g(r′k) +

1

2n−1
f(r′n−1)(3.4)

for n ∈ N and n ≥ 2, we let rn = ϕ2(rn−1) = ϕ2n(r′), and from (3.4) it follows that

f(r)−
n∑
k=1

1

2k
log(1 + rk) =

n∑
k=1

1

2k
g(r′k) +

1

2n
f(r′n).(3.5)

Hence, by induction, (3.5) holds for all n ∈ N, a ∈ (0, 1/2], and r ∈ (0, 1).
It follows from (3.5), Theorem 2.1, and [QVu2, Theorems 1.14(1) and 1.23(1)]

that

1

2n+1
[R(a)− log 4](1− r′n) < f(r)−

n∑
k=1

1

2k
log(1 + rk)

<
1

2
[R(a)− log 16]

n∑
k=1

1

2k
+

1

2n

[
1

2
R(a)− log 2

]
=

1

2
[R(a)− log 16]

(
1− 1

2n

)
+

1

2n

[
1

2
R(a)− log 2

]
=

1

2
[R(a)− log 16] +

1

2n
log 4.
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Letting n→∞, we get

∞∑
k=1

1

2k
log(1 + rk) ≤ f(r) ≤

∞∑
k=1

1

2k
log(1 + rk) +

1

2
[R(a)− log 16].(3.6)

The double inequality (1.10) now follows from (3.1) and (3.6). Equality (1.11)
follows immediately, if we set a = 1/2 in (1.10) and apply (2.7).

If a ∈ (0, 1/2), then by (2.7) and (1.11), the first equality in (1.10) cannot hold
since as a function of a, µa(r) is strictly decreasing from (0, 1/2] onto [µ(r),∞) by
[QVu2, Theorem 1.22]. Suppose that the second equality in (1.10) holds for some
a ∈ (0, 1/2) and for all r ∈ (0, 1). Then it follows from (1.10) and (1.11) that

µa(r) = µ(r) +
1

2
[R(a)− log 16].(3.7)

Letting r → 1− in (3.7), we obtain

R(a) ≡ log 16, 0 < a < 1/2.

This is a contradiction since R(a) = log 16 if and only if a = 1/2 (see the equality
case of (2.7)). Consequently, the equality holds in (1.10).

The next result follows immediately from Theorem 1.1.
Corollary 3.1. For a ∈ (0, 1/2] and r ∈ (0, 1),

µ(r) ≤ µa(r) ≤ µ(r) +
1

2
(R(a)− log 16),(3.8)

with equality if and only if a = 1/2.

3.2. Proof of Theorem 1.2. 1. First we observe that f(r) can be rewritten as

f(r) =
ma(r)

log(1/r)
· 1

r′F (a, 1− a; 1; r2)2
.(3.9)

Since r′F (a, 1− a; 1; r2) is strictly decreasing in r from (0, 1) onto (0, 1) by [ABRVV,
Theorem 1.7], the right side of (3.9) is a product of two positive and strictly increasing
functions on (0, 1) by Theorem 2.5, part 3. Hence, part 1 follows.

2. The monotonicity and the limiting values of g follows from part 1. In order to
prove the convexity of g, we let x = 1/r for r ∈ (1,∞). Then, by differentiation and
(2.10), we obtain

g′(r) = −g1(x) ≡ x

[log(1/x)]2

{
log(1/x)

[x′F (a, 1− a; 1;x2)]2
− µa(x)

}
(3.10)

= − x

log(1/x)
· 1

[x′F (a, 1− a; 1;x2)]2
·
[
ma(x)

log(1/x)
− 1

]
.

Clearly, x/ log(1/x) is strictly increasing in x on (0, 1). Since x′F (a, 1 − a; 1;x2) is
strictly decreasing in x on (0, 1) by [ABRVV, Theorem 1.7], it follows from Theorem
2.5, part 3 that g1(x) is a product of three positive and strictly increasing functions
of x on (0, 1). Hence, g1 is strictly decreasing in r on (1,∞) so that g′ is strictly
increasing in r on (1,∞), and the convexity of g follows.
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Next, using (3.10), we get

G′(r) = −g′(1/r)/r2 = g1(r)/r2(3.11)

=
1

[r′F (a, 1− a; 1; r2)]2
· ma(r) + log r

r[log(1/r)]2

=
1

r log(1/r)
· 1

[r′F (a, 1− a; 1; r2)]2
·
[
ma(r)

log(1/r)
− 1

]
.

By l’Hôpital’s rule, Theorem 2.5, part 1, and (2.28),

lim
r→0+

[ma(r) + log r]/r

[log(1/r)]2
=

1

2
lim
r→0+

[πrf3(r)/sinπa] +ma(r) + log r

r log(1/r)
=∞,

where f3 is as in (2.28). Hence, from the third equality in (3.11) we see that G′(0+) =
∞. On the other hand, it follows from the fourth equality in (3.11) and Theorem 2.5,
part 3 that G′(1−) =∞. Consequently, G′(r) is neither decreasing nor increasing on
(0, 1), and the assertion about G(r) follows.

3. By differentiation and (2.10), we obtain

−h′(r) = h1(r) ≡ 1

{[(R(a)/2) + log(1/r)]r′F (a, 1− a; 1; r2)}2

· [R(a)/2]− [ma(r) + log r]

r
.

Since r′F (a, 1 − a; 1; r2) is strictly decreasing from (0, 1) onto (0, 1) by [ABRVV,
Theorem 1.7], by Theorem 2.5, part 2, h1(r) is a product of two positive and strictly
increasing functions on (0, 1). Hence, the monotonicity and concavity of h follow.

Clearly, h(1−) = 0, while the limit h(0+) = 1 follows from part 1.
4. The function H(r) can be written as

H(r) =
π

sinπa

1√
r′F (a, 1− a; 1; r2)

· F (a, 1− a; 1; r′ 2)

R(a)− log r2
.(3.12)

Since
√
r′F (a, 1− a; 1; r2) = 4

√
1− r2F (a, 1− a; 1; r2) is strictly decreasing from (0, 1)

onto (0, 1) [ABRVV, Theorem 1.7], the result for H follows from (3.12), Theorem 2.3,
and (2.3).

The first and second inequalities in (1.12) follow from the monotonicity of H and
part 3, respectively.

3.3. Proof of Theorem 1.3. 1. Put x = e−r. Then x ∈ (0, 1), and by differ-
entiation and (2.10), we get

f ′(r) = [x′F (a, 1− a; 1;x2)]−2,

which is strictly decreasing in r on (0,∞) by [ABRVV, Theorem 1.7]. Hence, the
concavity of f follows.

The inequalities (1.13), (1.14) and their equality case are clear.
2. This follows immediately from part 1.
3. Let x = rt/(1 + r′t′). Then x < rt < r and

dx

dr
=

t(r′ + t′)
r′(1 + r′t′)2

=
xx′

rr′
.
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Differentiation and (2.10) give

h′(r) =
x′F (a, 1− a; 1;x2)2 − r′F (a, 1− a; 1; r2)2

rx′[r′F (a, 1− a; 1; r2)F (a, 1− a; 1;x2)]2
,

which is positive for all r ∈ (0, 1) since r′F (a, 1 − a; 1; r2)2 is strictly decreasing on
(0, 1) by [ABRVV, Theorem 1.7] and since x < r. Hence the monotonicity of h follows.

Clearly, h(1−) = µa(t). It follows from [QVu2, Corollary 3.12] that

h(0+) = lim
r→0+

{
[µa(x) + log x]− [µa(r) + log r] + log

1 + r′t′

t

}
= log

1 + t′

t
= arth t′.

The second and third inequalities in (1.16) are clear, while the first inequality in
(1.16) follows from [QVu2, Theorem 1.23(1)].

4. Let x =
√
r. Then by differentiation, (1.5), (2.10), and (2.15), we get

r

2

[ π

sinπa
r′x′F (a, 1− a; 1; r2)F (a, 1− a; 1;x′ 2)

]2
G′(r) = ma(r)− 2ma(x),

which is negative for all r ∈ (0, 1) by (2.27). This yields the monotonicity of G.
By (1.5) and (2.8), we have

G(0+) = lim
r→0+

F (a, 1− a; 1; r′ 2)

F (a, 1− a; 1; 1− r) = lim
r→0+

log r2

log r
= 2,

and

G(1−) = lim
r→1−

F (a, 1− a; 1; r)

F (a, 1− a; 1; r2)
= lim
r→1−

log(1− r)
log(1− r2)

= 1.

The double inequality (1.17) is clear.

3.4. Proof of Theorem 1.4. 1. Let f1(r) = r[r′F (a, 1 − a; 1; r2)]2. Then by
differentiation and [R, Theorem 21, p. 60],

[F (a, 1− a; 1; r2)]−1f ′1(r) = f3(r) ≡ r′ 2F (a, 1− a; 1; r2)− 2rf2(r),

where f2 is as in the proof of Theorem 2.5, part 1. In the proof of Theorem 2.5, part
1, we have shown that f2 is strictly increasing from (0, 1) onto (a2 + (1 − a)2,∞).
Hence, by [ABRVV, Theorem 1.7], f3 is strictly decreasing from (0, 1) onto (−∞, 1),
so that there exists a unique r0 ∈ (0, 1) such that f1 is strictly increasing on (0, r0],
and decreasing on [r0, 1) with range (0, f1(r0)].

Next, by (2.10),

f ′(r) = −1/f1(r),(3.13)

which is strictly increasing on (0, r0], and decreasing on [r0, 1). This yields the asser-
tion about f .

Let f4(r) = r[r′F (a, 1− a; 1; r′ 2)]2, and

f5(r) = r′ 2F (a, 1− a; 1; r2) + 2a(1− a)r2F (a, 1− a; 2; r2).

Then by differentiation, (2.10), and [R, Theorem 21, p. 60], we get

d

dr

(
1

f(r)

)
=

(
2 sinπa

π

)2
1

f4(r)
,(3.14)
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and

[F (a, 1− a; 1; r′ 2)]−1f ′4(r) = f6(r) ≡ r′ 2F (a, 1− a; 1; r′ 2)− 2f5(r′).(3.15)

Using the series expansion of F (a, b; c;x), we obtain

f5(r) = (1− r2)
∞∑
n=0

(a, n)(1− a, n)

(n!)2
r2n + 2a(1− a)

∞∑
n=0

(a, n)(1− a, n)

(n+ 1)!n!
r2(n+1)

=
∞∑
n=0

(a, n)(1− a, n)

(n!)2
r2n −

∞∑
n=1

(a, n− 1)(1− a, n− 1)

[(n− 1)!]2
r2n

+ 2a(1− a)
∞∑
n=1

(a, n− 1)(1− a, n− 1)n

(n!)2
r2n

= 1 +
∞∑
n=1

(a, n− 1)(1− a, n− 1)

(n!)2
{a(1− a)− [a2 + (1− a)2]n}r2n,

which is strictly decreasing on (0, 1) since

a(1− a)− [a2 + (1− a)2]n ≤ 3a(1− a)− 1 < 0

for all n ∈ N. Hence, f6 is strictly decreasing on (0, 1). Clearly, f6(1−) = −2. By
(2.22) and (2.3), f5(1−) = (2 sinπa)/π so that f6(0+) = ∞. Thus, there exists a
unique r1 ∈ (0, 1) such that f4 is strictly increasing on (0, r1] and decreasing on [r1, 1)
with f4(0+) = f4(1−) = 0. Consequently, the assertion about 1/f(r) follows from
(3.14).

2. Differentiation and (2.10) give

g′(r) =
F (a, 1− a; 1; r2) + 1

[r′F (a, 1− a; 1; r2)]2
· F (a, 1− a; 1; r2)− 1

r
,

which is a product of two positive and strictly increasing functions on (0, 1) since
by (1.1)

1

r
[F (a, 1− a; 1; r2)− 1] =

∞∑
n=1

(a, n)(1− a, n)

(n!)2
r2n−1,

and since r′F (a, 1−a; 1; r2) is strictly decreasing on (0, 1) by [ABRVV, Theorem 1.7].
Hence, the monotonicity and convexity of g follow.

The limiting values follow from [QVu2, Corollary 3.12].
3. By differentiation and (2.10), we get

−h′(r) =
[ r
r′

exp(µa(r))
]
· 1

r′F (a, 1− a; 1; r2)2
· 1− [r′F (a, 1− a; 1; r2)]2

r
,

which is a product of three positive and strictly increasing functions on (0, 1) by part
2 and [QVu2, Lemma 2.16 (2) & (3)]. Hence the monotonicity and concavity of h
follow.

Clearly, h(1−) = 1. By part 2, we have h(0+) = exp(R(a)/2).
4. Differentiation gives

G′(r) =
(2− r2)F (a, 1− a; 1; r2)2 − 2

2r[r′F (a, 1− a; 1; r2)]2
,(3.16)
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which is positive for all r ∈ (0, 1) if and only if a = 1/2, by Lemma 2.4. Hence, part 4i
and the piecewise monotonicity stated in part 4iii of Theorem 1.4 follow from (3.16)
and Lemma 2.4.

Next, let

G1(r) = [(2− r)F (a, 1− a; 1; r)2 − 2]/r, G2(r) = (2− r)F (a, 1− a; 1; r)2 − 2,

and G3(r) = r. Then G2(0) = G3(0) = 0, and by (2.24),

G′2(r)/G′3(r) = F (a, 1− a; 1; r)G4(r),(3.17)

where

G4(r) = 2a(1− a)(2− r)F (a+ 1, 2− a; 2; r)− F (a, 1− a; 1; r).

It was proved in the proof of Lemma 2.4 that G4 is strictly increasing from (0, 1)
onto (−(2a − 1)2,∞). Hence, if a = 1/2, then by (3.17), G′2(r)/G′3(r) is strictly
increasing on (0, 1), and so is G1 by [AVV2, Theorem 1.24] with G1(0+) = G4(0) = 0.
Consequently, by (3.16) and [ABRVV, Theorem 1.7], G′ is strictly increasing on (0, 1)
if a = 1/2, so that G is convex on (0, 1).

Now suppose that a ∈ (0, 1/2). By (3.16), (2.24), [R, Theorem 21, p. 60], and by
differentiation, we get

2r′ 4F (a, 1− a; 1; r2)3G′′(r) = G5(r) ≡ 2[r′F (a, 1− a; 1; r2)]2G4(r2)(3.18)

−G1(r2)[(1− 3r2)F (a, 1− a; 1; r2) + 4a(1− a)r2F (a, 1− a; 2; r2)].

Clearly, G5(1−) = ∞. It follows from (3.17), l’Hôpital’s rule, and the discussion in
the previous paragraph that

G5(0+) = 2G4(0)−G1(0+) = 2G4(0)−G4(0) = −(2a− 1)2 < 0.

Therefore, by (3.18), G′ is not monotone on (0, 1) if a ∈ (0, 1/2), so that part 4ii and
the second assertion in part 4iii follow.

Finally, the limiting values of G follow from [QVu2, Corollary 3.12].
Conjecture 1. For a ∈ (0, 1/2), the function g(r) ≡ µa(r)/arth 4

√
r′ is strictly

increasing from (0, 1) onto (1,∞).

4. Open problem. It was proved in [QVa, Theorem 1.4(1)&(2)] that the func-
tion f(r) ≡ K(r)/ log(4/r′) is not only strictly decreasing but also strictly con-
cave on [0, 1), while g(r) ≡ f(r′) is strictly convex on (0, 1]. In Theorem 2.3, we
obtained the analogue of the monotonicity property of f(r) for its generalization
h(r) ≡ F (a, b; a+ b; r2)/[R(a)− log(1− r2)] for a, b ∈ (0,∞). What are the analogues
of the concavity of f(r) and the convexity of g(r) for h(r) and h(r′), respectively?
Our computational work seems to show that for small values of a and b, say a+b < 1,
h(r) and h(r′) are concave and convex on (0, 1), respectively, and for large values of a
and b, say a, b ∈ (1,∞), h(r) and h(r′) are convex and concave on (0, 1), respectively,
while for some values of a and b, both h(r) and h(r′) are neither concave nor convex
on (0, 1).
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ring, Panamer. Math. J., 5 (1995), pp. 41–60.

[QVu1] S.-L. Qiu and M. Vuorinen, Landen inequalities for hypergeometric functions,
Nagoya Math. J., 154 (1999), pp. 31–56.

[QVu2] S.-L. Qiu and M. Vuorinen, Duplication inequalities for the ratios of hypergeometric
functions, Forum Math., 11 (1999), pp. 1–25.

[R] E. D. Rainville, Special Functions, Chelsea Publ. Co., New York, 1960.
[VV] M. K. Vamanamurthy and M. Vuorinen,Functional inequalities, Jacobi products,

and quasiconformal maps, Illinois J. Math., 38 (1994), pp. 394–419.
[Var] V. S. Varadarajan, Linear meromorphic differential equations: A modern point of

view, Bull. Amer. Math. Soc., 33 (1996), pp. 1–42.
[Va] A. Varchenko, Multidimensional hypergeometric functions and their appearance in

conformal field theory, algebraic K-theory, algebraic geometry, etc., in Proceedings
of the International Congr. Math., Kyoto, Japan, 1990, pp. 281–300.

[Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in
Math. 1319, Springer–Verlag, Berlin, New York, 1988.

[WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cam-
bridge University Press, London, l958.

[WZ] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (or-
dinary and “q”) multisum/integral identities, Invent. Math., 108 (1992), pp. 575–
633.



UNSTABLE OSCILLATORY-TAIL WAVES IN COLLISIONLESS
PLASMAS∗
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Abstract. Consider a collisionless relativistic neutral plasma. An oscillatory-tail equilibrium is
a state whose magnetic field connects two different constant states at x = −∞ and x = +∞ and
whose electric field oscillates as x → −∞. We prove that such a state is nonlinearly dynamically
unstable under certain perturbations of the initial data.

Key words. collisionless plasma, instability, BGK mode, oscillatory electric field, relativistic
particles
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1. Introduction. A collisionless plasma of electrons and ions is described by
the Vlasov–Maxwell system. In such a plasma, collisions are relatively rare; here we
assume no collisions at all. In many plasmas, some of the particles are expected to
travel at relativistic speeds. However, in a nonrelativistic Vlasov model, particles can
travel at arbitrarily great speed. We avoid this anomaly by assuming a relativistic
model. Thus we consider the relativistic Vlasov–Maxwell system (RVM):

∂tf± + v̂± · ∇xf± + e±(E + v̂± ×B) · ∇vf± = 0,

∂tE− c curl B = −j = −
∫

R3

[e+v̂+f+ + e−v̂−f−]dv,(1)

∂tB + c curl E = 0,

div E = ρ =

∫
R3

[e+f+ + e−f−]dv, div B = 0,

where m± and e± are the masses and charges of the ions (+) and electrons (−),
respectively. Here f+ is the distribution of the ions, f− the distribution of the electrons
at time t, E the electric field, B the magnetic field, x the position, v the momentum,
and v̂± the velocity.

For notational simplicity, we set all constants equal to 1 and e± = ±1, so that
the velocity is v̂ = v/

√
1 + |v|2. We consider the simplest scenario where there can

be a magnetic field, the so-called 1 1
2 -dimensional system 1 1

2RVM, where the position
is x = (x, 0, 0), the momentum is v = (v1, v2, 0), the electric field is E = (E1, E2, 0),
and the magnetic field is B = (0, 0, B).

A fundamental feature of this collisionless model is the multiplicity of its steady
states. The question of their dynamical stability has played a crucial role in plasma
physics and is related to plasma control and turbulence. We consider equilibria of the
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form

f± = µ±(〈v〉 ∓ Φ(x), v2 ±Ψ(x)), E1 = ∂xΦ, E2 = 0, B = ∂xΨ,(2)

which are a generalization of the Bernstein–Greene–Kruskal (BGK) modes [BGK]. It
was observed in [GR] that such a state satisfies 11

2RVM if Φ and Ψ satisfy the coupled
pair of ODEs

Φxx =

∫
R2

[µ+(〈v〉 − Φ, v2 + Ψ)− µ−(〈v〉+ Φ, v2 −Ψ)]dv,

Ψxx = −
∫

R2

v̂2[µ+(〈v〉 − Φ, v2 + Ψ)− µ−(〈v〉+ Φ, v2 −Ψ)]dv.(3)

Furthermore some of these states are of the oscillatory-tail type, that is, Φ(x) ap-
proaches a periodic solution β(x) as x → −∞ and a constant as x → +∞, while
Ψ approaches two different constants at +∞ and −∞. The periodic function β(x)
satisfies the following ODE:

βxx = ρ =

∫
R2

[µ+(〈v〉 − β, v2)− µ−(〈v〉+ β, v2)]dv1dv2.(4)

We consider quintuples u = [f+, f−, E1, E2, B]. On such quintuples we consider
the sum of the L1 norms of the five components. Let β(x) be a periodic solution to
(4) so that

Γ0 = [µ±(〈v〉 ∓ β(x), v2); ∂xβ, 0; 0](5)

is a periodic solution to (3), where E1 = ∂xβ, E2 ≡ 0, B = 0. Assume a solution
Φ(x),Ψ(x) to (3) so that

Γ ≡ Γ(Φ,Ψ)(x, v) = [µ±(〈v〉 ∓ Φ(x), v2 ±Ψ(x)); ∂xΦ, 0; ∂xΨ],(6)

where E1 = ∂xΦ, E2 ≡ 0, B = ∂xΨ, satisfies

lim
x→−∞{|Φ− β|+ |∂x(Φ− β)|+ |Ψ|+ |∂xΨ|} = 0.(7)

Thus Γ0 is a periodic solution, while Γ has an oscillatory tail. As mentioned above,
such oscillatory-tail solutions exist [GR].

Our goal is to prove the following theorem on the instability of such states Γ. We
will consider the class of solutions of (1) given by Theorem 4 of the appendix.

Theorem 1. Let µ± satisfy µ± = O(〈v〉−l) for some l > 3 and (11), (12),
(14), (61), and (62). Let β(x) in (5) have period Pβ and ‖β‖C2 be sufficiently small.
If Γ satisfies (7), then there exist ε0 > 0 and C1 > 0 and a family of solutions
uδ(t) = [fδ+, f

δ
−, E

δ
1 , E

δ
2 , B

δ] of 1 1
2RVM for 0 < δ < δ0 (with fδ± ≥ 0), as well as a

family of intervals Kδ, each of length 2Pβ, such that

||uδ(0)− Γ||W 1,1(R×R2) < δ

but

sup
0≤t≤C1| ln δ|

‖uδ(t)− Γ‖L1(Kδ×R2) ≥ ε0.
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Notice that the solution escapes from a δ neighborhood of the equilibrium in a
time O(| log δ|). This property characterizes an exponential instability. Conditions
(11), (61), and (62) require that µ± be smooth and positive and satisfy certain decay
conditions at infinity.

A major difficulty of this problem is that the spatial variable is unbounded. There-
fore the growing plane wave solutions do not belong to any natural function space like
Lp and correspond to the continuous spectrum of the linearized operator. Now the
asymptotic solution Γ0 satisfies the reduced system with E2 = B = 0 and periodic
boundary conditions, which system we denote by 11

4RVM. This system is analyzed by
linearization to produce a linear system which we denote by 11

4L. While the periodic
linear problem still has continuous spectrum (because of the unbounded v variable),
it has less of it and we prove that it has some unstable point spectrum. We reduce
the original problem to the periodic one using the causality property of RVM.

Thus there are four levels of instability that appear in this paper. The simplest
level is that of the system linearized around a simple homogeneous state. This level
is easily reduced to a dispersion relation for which explicit sufficient (and almost
necessary) conditions are found following [P]. The second level is that of the system
1 1

4L linearized around the periodic equilibrium β(x). The third level is that of the
nonlinear system 1 1

4RVM. Our goal is to reach the fourth level, the full nonlinear
system 1 1

2RVM which possesses the oscillatory-tail equilibrium solutions. Normally it
is expected that exponential growth of the linearized system (the second level) should
imply the nonlinear instability of the equilibrium (the third level). We are aware of no
previous work other than ours [GS1], [GS2], [GS3], [GS4] that proves the instability
of spatially dependent equilibria either on the linearized or the nonlinear level.

Although this paper is closely related to our previous ones, there are some major
differences. Our earlier papers treated only the one-dimensional case, and there were
no magnetic effects. In this paper there is a second momentum variable v2 as well as a
magnetic field. Furthermore the asymptotic behavior of the equilibrium as x→ −∞
now is oscillatory instead of constant.

Some other related references are the following. Several classes of equilibria are
constructed in [GR]. Stability of a homogeneous equilibrium µ within the Vlasov–
Poisson theory has been discussed since the 1960s, beginning with the linear insta-
bility analysis of [P]. The nonlinear stability has been proven only for monotonically
decreasing distributions µ that do not depend on the space variable. [G1] and [G2]
prove the stability of various spatially dependent states. In particular, [G1] proves
the stability of flat-tail equilibria, which possess nonoscillatory behavior as x→ ±∞.
[G2] proves, for the three-dimensional RVM, the stability of general axially symmet-
ric magnetic equilibria that are given variationally as minimizers of a natural action
functional.

Section 2 of this paper is devoted to the periodic equilibria Γ0 of the periodic
system 1 1

4RVM. In section 3 such an equilibrium is proven to be linearly unstable
due to a point eigenvalue. The analysis is similar to that of [GS3] except that the
variable v2 appears nontrivially in many places. The density profiles µ± are required
to decay in v2 as well as in the energy 〈v〉. Section 4 is devoted to the regularity and
certain pointwise estimates of the unstable eigenfunctions. In section 5 we prove the
nonlinear instability of the periodic equilibrium Γ0. Again, the variable v2 appears
in a significant way in some key places, for instance in the crucial Lemma 15. In
section 6 we finally prove the main theorem by deriving the nonlinear instability of
the oscillatory-tail equilibrium Γ in the 11

2 dimensional system from the nonlinear
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instability of Γ0 within the periodic 11
4 dimensional system. The key property that is

required is that Γ→ Γ0 as x→ −∞.

2. BGK periodic waves. We consider the system that is obtained from 11
2

RVM by letting E2 ≡ 0, B ≡ 0 and by considering functions that are even in v2. This
is the system 1 1

4 RVM:

(∂t + v̂1∂x ± E1∂v1)f± = 0,

∂tE1 = −j1 = −
∫ ∫

v̂1(f+ − f−)dv1dv2,(8)

∂xE1 = ρ =

∫ ∫
(f+ − f−)dv1dv2,

where

f(t, x, v1, v2) = f(t, x, v1,−v2),(9)

f(t, x+ P, v1, v2) = f(t, x, v1, v2)(10)

with P > 0 fixed. We emphasize that 〈v〉 = (1 + v2
1 + v2

2)1/2 and v̂1 = v1〈v〉−1 in (8).
This system is well posed. (See appendix.)

We assume µ± are C2 functions on R2 such that∑
|σ|≤2

|∂σµ±(s, v2)| ≤ Cs−γ〈v2〉−γ̃ , γ > 1, γ + γ̃ > 2, C > 0,(11)

∫
R2

[µ+(〈v〉, v2)− µ−(〈v〉, v2)]dv = 0, µ±(·, v2) = µ±(·,−v2) ≥ 0.(12)

Note that the decay condition (11) implies that

µ±(〈v〉, v2) ∈W 2,1(R2).

We let the potential function H(φ) satisfy

−H ′(φ) =

∫
R2

[µ+(〈v〉 − φ, v2)− µ−(〈v〉+ φ, v2)]dv

and we define H(0) = 0. This integral is easily shown to be finite.
Remark. With slightly more decay assumed on µ±, we derive the following formula

(13) for H. Substituting s = 〈v〉 ∓ φ and letting 〈v2〉 =
√

1 + v2
2 , we obtain

−H ′(φ) =

∫ ∞
−∞

∫ ∞
−∞

[µ+(〈v〉 − φ, v2)− µ−(〈v〉+ φ, v2)]dv1dv2

=2

∫ ∞
−∞

∫ ∞
〈v2〉−φ

µ+(s, v2)
(s+ φ)dsdv2√

(s+ φ)2 − 1− v2
2

−2

∫ ∞
−∞

∫ ∞
〈v2〉+φ

µ−(s, v2)
(s− φ)dsdv2√

(s− φ)2 − 1− v2
2

=2
∂

∂φ

∫ ∞
−∞

∫ ∞
〈v2〉−φ

µ+(s, v2)
√

(s+ φ)2 − 1− v2
2dsdv2

+2
∂

∂φ

∫ ∞
−∞

∫ ∞
〈v2〉+φ

µ−(s, v2)
√

(s− φ)2 − 1− v2
2dsdv2.
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Therefore,

H(φ) =C − 2

∫ ∞
−∞

∫ ∞
〈v2〉−φ

µ+(s, v2)
√

(s+ φ)2 − 1− v2
2dsdv2

−2

∫ ∞
−∞

∫ ∞
〈v2〉+φ

µ−(s, v2)
√

(s− φ)2 − 1− v2
2dsdv2,(13)

where C = 2
∫∞
−∞

∫∞
〈v2〉[µ+(s, v2) + µ−(s, v2)]

√
s2 − 1− v2

2dsdv2. Notice that as φ →
±∞, H(φ)→ −∞ unless µ± ≡ 0.

We also have

H ′′(0) =

∫
R2

[∂eµ+(〈v〉, v2) + ∂eµ−(〈v〉, v2)]dv,

where e represents the first argument of µ±. (In the proof given below, we show this
is finite.)

Lemma 1 (periodic BGK equilibria). Let µ± satisfy (11) and (12), and let(
2π

P0

)2

=

∫
R2

[∂eµ+(〈v〉, v2) + ∂eµ−(〈v〉, v2)]dv > 0.(14)

Then there exists δ0 > 0 such that for all δ < δ0, there exists a periodic function β(x)
with period Pβ satisfying (4), and

|β|∞ = δ, lim
δ→0

Pβ = P0,(15)

β(0) = β(Pβ) = min
0≤x≤Pβ

β(x), β(Pβ/2) = max
0≤x≤Pβ

β(x).

Here P0 is defined by (14) and we can take δ0 = sup{s : H ′′(s) > 0}.
For fixed β, we shall sometimes drop the subscript on Pβ .
Proof. Clearly H(·) is a C3 function, since∫

R2

〈v〉−γ〈v2〉−γ̃dv1dv2 <∞.

Consider the ODE (4). Obviously β ≡ 0 is a solution to (4) by (12). Note that
H ′(0) = 0 and

H ′′(0) =

∫
R2

[∂eµ+(〈v〉, v2) + ∂eµ−(〈v〉, v2)]dv > 0

by (14). Thus the origin is a center for the ODE. In the phase space (β, βx), let (a, 0)
and (b, 0) be two points that lie on a periodic orbit such that a < 0 and b > 0. Then
we have

1

2
Pβ =

∫ b

0

du

(2H(b)− 2H(u))1/2
+

∫ 0

a

du

(2H(a)− 2H(u))1/2
.

In order to prove (15), we shall take the limits as b→ 0 and a→ 0. We have already
proven H ′(0) = 0 and H ′′(0) = (2π/P0)2. Expanding in Taylor series around 0, we
have for |u| ≤ b,

H(b)−H(u) = H ′′(0)(b2 − u2)/2 +O(b3).
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Hence ∫ b

0

{2H(b)− 2H(u)}−1/2du= H ′′(0)−1/2

∫ b

0

(b2 − u2)−1/2du+O(b)

= (P0/2π)(π/2) +O(b) = P0/4 +O(b).

We can handle the second integral similarly. Hence Pβ/2 = P0/2 + O(|b| + |a|). We
finally arrange β to have its minimum at the ends of [0, Pβ ] and its maximum at the
middle by a translation of x. This proves (15).

The linearized form of 11
4 RVM (see (8)) around the homogeneous state [µ±(〈v〉, v2),

E1 ≡ 0] is

(∂t + v̂1∂x)g± = ∓E1∂v1µ±(〈v〉, v2),

∂tE1 = −
∫

R2

v̂1(g+ − g−)dv = −j1,(16)

∂xE1 =

∫
R2

(g+ − g−)dv = ρ.

We emphasize that system (16) is not RVM in (1) linearized around the BGK equi-
librium but only around the corresponding homogeneous state.

Lemma 2 (homogeneous growing modes). Let µ±(e, v2) satisfy conditions (11),
(12), and (14). Then there exists a growing exponential solution for (16) of period
2P0 :

g±(t) = ± v̂1∂eµ±(〈v〉, v2)

v̂1 − ω0/k
eikx−iω0t, E1(t) = −ikeikx−iω0t,(17) ∫ 2P0

0

E1(t, x)dx =

∫ 2P0

0

j1(t, x)dx = 0.

Here k = π
P0
> 0 and ω0 is a pure imaginary number. Moreover,

Im ω0 > 0.(18)

Proof. Notice that the function

Z(iλ) =

∫
R2

v̂1[∂eµ+(〈v〉, v2) + ∂eµ−(〈v〉, v2)]dv

v̂1 − iλ
is real and continuous for 0 ≤ λ < ∞ by integration by parts because ∂eµ± are odd
functions of v1. Moreover, Z(0) = (2π/P0)2 and limλ→∞ Z(iλ) = 0. Hence there
exists λ > 0 such that Z(iλ) = (π/P0)2. It follows directly that the following triple is
a solution of (16):

g± = ± v̂1∂eµ±(〈v〉, v2)

v̂1 − iλ ek[ix+λt], E1 = −ikek[ix+λt].

Here k = π/P0. We deduce the lemma by letting ω0 = ikλ, k 6= 0. Clearly this is a
growing mode since it has the factor exp(kλt) with kλ > 0.

Remark. If Z(iλ0) ≥ (2π/P0)2 for some λ0 > 0, then there is a growing mode
with period P0 instead of 2P0.
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3. Linear instability for periodic BGK waves. In this section, we shall
prove the instability for the linearized Vlasov–Maxwell system around periodic BGK
waves by using a perturbation method. We formulate the linearized problem equiv-
alently in terms of the Poisson equation and a complicated operator C involving the
Vlasov characteristics. Then through detailed estimates along the trajectories, we
conclude that the linear operator is a nice perturbation of the homogeneous case,
whereby it indeed has a growing mode.

Let β = β(x) be any given periodic BGK wave with period P . We study the
linearized Vlasov–Maxwell system around the generalized BGK wave

[µ±(〈v〉 ∓ β, v2), βx, 0, 0] ≡ [f±, E1, E2, B].

In this section, we assume E2 = B = 0, and we denote E1 by E. Thus we have the
system (1 1

4L):

(∂t + v̂1∂x ± β′∂v1
)g± ± E∂v1

µ±(〈v〉 ∓ β, v2) = 0,

∂tE = −
∫

R2

v̂1[g+ − g−]dv1dv2 = −j1,(19)

∂xE =

∫
R2

(g+ − g−)dv1dv2 = ρ,

with the P-periodic boundary condition. We will consider pairs of functions g =
[g+(x, v), g−(x, v)] and triples u = [g+(x, v), g−(x, v), E(x)]. We sometimes write
e = 〈v〉 ∓ β and v = (v1, v2).

Definition. Let M be the Banach space of triples u = [g+(x, v), g−(x, v), E(x)]
of finite measures on RP ×R2, RP ×R2, and RP , respectively, which are periodic
in x with period P , respectively, and satisfy∫ P

0

∫
R2

g−dvdx =

∫ P

0

∫
R2

g+dvdx (neutrality),

∂xE =

∫
R2

[g+ − g−]dv (Poisson equation),(20)

g±(x, v1, v2) = g±(x, v1,−v2) (evenness).

We denote the norm ‖u‖m = ‖g+‖m + ‖g−‖m + |E|m where ‖ · ‖m and | · |m are the
corresponding measure norms in RP ×R2 and RP .

Definition. We define the operator A acting on pairs g = [g+, g−] into pairs
and the operator K acting on E into pairs by

Ag =

(A+(g+)
A−(g−)

)
=

(
v̂1∂xg+ + β′∂v1

g+

v̂1∂xg− − β′∂v1
g−

)
,

KE =

(K+E
K−E

)
=

(
∂v1µ+(〈v〉 − β, v2)E
−∂v1

µ−(〈v〉+ β, v2)E

)
.(21)

Here the domain of A is the set of pairs of measures g such that Ag is a pair of
measures. Furthermore, we define L from triples to triples by

Lu =

 A+g+ +K+E
A−g− +K−E∫

R2 v̂1[g+ − g−]dv

 .(22)
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Lemma 3 (linearized well-posedness). Let µ± satisfy (11), (12) and let β be any
solution of (4) of period P . If u0 ∈M, there is unique solution u(t) ∈M of

du

dt
+ Lu = 0, u(0) = u0.

Sketch of the proof. We split the operator L as

Lu =

( A(g)∫
R2 v̂1[g+ − g−]dv

)
+

(K(E)
0

)
≡ L1u+ L2u.(23)

Notice that the Vlasov operator e−At has norm 1 and |j1|m ≤ ‖g+‖m + ‖g−‖m. The
operator L1 thus generates a strongly continuous semigroup on M with

‖e−L1tu0‖m ≤ C(1 + t)‖u0‖m.(24)

Now

|∂xE|m = ‖ρ‖m ≤ ‖g+‖m + ‖g−‖m,

so that L2 is a compact operator on M and our lemma thus follows.
We introduce the characteristics X±(t; 0, x′, v′1, v

′
2) and V ±(t; 0, x′, v′1, v

′
2) as the

solutions of

dX±

dt
= V̂ ±,

dV ±1
dt

= ±β′(X±),
dV ±2
dt

= 0,

X±(0) = x′, V ±1 (0) = v′1, V ±2 (0) = v′2.

Let L1(RP ) be the space of P -periodic integrable functions of x and let L1(RP ×R2)
be the similar space of functions of x and v = (v1, v2) with the norms

|h(·)|1 =

∫ P

0

|h(x)|dx, ‖h(·, ·)‖1 =

∫ P

0

∫
R2

|h(x, v)|dvdx.

Let W 1,1(RP ) and W 1,1(RP ×R2) be the subspaces of L1(RP ) and L1(RP ×R2)
with the norms |h|1,1 = |∂xh|1 + |h|1 and ‖h‖1,1 = ‖∂xh‖1 + ‖∂vh‖1 + ‖h‖1.

Definition. For Im ω > 0, we define

R± = −
∫ ∞

0

e−sA±eiωsK±Eds,(25)

ρ(x) =

∫
R2

[R+(x, v)−R−(x, v)]dv,(26)

j1(x) =

∫
R2

v̂1[R+(x, v)−R−(x, v)]dv,(27)

[C(ω, β)E](x) =

∫ x

0

ρ(y)dy +
1

P

∫ P

0

{
1

iω
j1(y)dy −

∫ y

0

ρ(z)dz

}
dy.(28)

Lemma 4. Assume (11) and (12).
(a) If Im ω > 0, then C(ω, β) is a bounded linear operator on L1(RP ).
(b) Suppose that E ∈ L1(RP ) satisfies the equation

E = C(ω, β)E
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for some Im ω > 0. Then there exist R±(x, v) ∈ L1(RP ×R2) such that

v̂1∂xR± ± β∂v1
R± ± ∂v1

µ±(〈v〉 ∓ β, v2)E(x) = iωR±,(29)

j1 = iωE, ∂xE = ρ.

That is, −iω is an eigenvalue with a positive real part of the linearized Vlasov–Maxwell
generator −L.

(c) In terms of the characteristics, we have∫ x

0

ρ(y)dy =

∫
R

K(x, x′)E(x′)dx′,(30)

where K = K+ +K−,

K± = −
∫ ∞

0

∫
R2

H∂v1
µ±(e, v′2)eisωdv′ds,

where H = H(x − X±(s; 0, x′, v′)) − H(−X±(s; 0, x′, v′)) and H(·) is the Heaviside
function.

(d) We also have∫ x

0

j1(y)dy =

∫
R2

J(x, x′)E(x′)dx′, J = J+ + J−,

J± = −
∫ ∞

0

∫
R2

V̂ ±1 (s; 0, x, v)H∂v1µ±(e′, v′2)eisωdv′ds,

where e′ = 〈v′〉 ∓ β(x′).
Remark. Notice that for fixed (s; 0, x′, v′) and x, we have

H =

∫ x

0

δ(y −X±(s; 0, x′, v′))dy,

where δ is the Dirac measure. Therefore, C(ω, β) could also be defined equivalently
by

ρ(x) = ∂x[C(ω, β)E](x) =

∫
R

E(x′)k(x, x′)dx′,(31)

where k = k+ + k− and k±(x, x′) = ∂xK
±(x, x′).

Everywhere that k(x, x′) is used in the following proofs, it will appear under an
integral sign, and therefore all the integrals are rigorous classical expressions.

Proof. Notice that A± are unbounded linear operators on L1(RP × R2) that
generate groups of isometries e−sA± on L1(RP ×R2). So by (25) we have

‖R±‖1 ≤
∫ ∞

0

|eiωs|‖E∂v1
µ±‖1ds

≤ (Im ω)−1|E|1 sup
x

∫
R2

|∂eµ±(〈v〉 ∓ β(x), v2)v̂1|dv

≤ 2(Im ω)−1|E|1
∫

R2

|∂eµ±(e, v2)|dedv2 <∞(32)

for any E ∈ L1(RP ). It follows easily that ρ, j1 ∈ L1(RP ) and C(ω, β)E ∈ L1(RP ).
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To prove (b), notice that iω belongs to the resolvent set of A±, so that R± can
be written as

R± = ±(iωI −A±)−1(E∂v1µ±).

That is, R± satisfies A±R± ± E∂v1
µ± = iωR±, which is the first pair of equations

in (29). Integrating (29) over x and v, we have
∫ P

0

∫
R±dvdx = 0. Finally, from the

assumption E = CE, we obtain

∂xE = ∂xCE = ρ =

∫
(R+ −R−)dv.

Notice that by integrating (29) over v, we have ∂xj1 = iωρ = iω∂xE. From the
definition of C, iωE has the same average over P as j1, so that iωE = j1.

We now prove part (c). By (25),∫
R2

R±(x, v)dv = ∓
∫

R2

∫ ∞
0

e−sA±E∂v1
µ±eiωsdsdv.

For any function f(x, v),∫ x

0

∫
R2

(e−sA±f)(y, v)dvdy

=

∫ x

0

∫
R2

f(X±(0; s, y, v), V ±(0; s, y, v))dvdy

=

∫
R

∫
R2

10≤y≤xf(X±(0; s, y, v), V ±(0; s, y, v))dvdy

=

∫
R2

∫
R

[H(x−X±(s; 0, x′, v′))−H(−X±(s; 0, x′, v′))]f(x′, v′)dx′dv′

by making the change of variables

x′ = X±(0; s, y, v), v′ = V ±(0; s, y, v).

The inverse transformation is

y = X±(s; 0, x′, v′), v = V ±(s; 0, x′, v′)

and the Jacobian is 1. Using this identity, we have∫ x

0

∫
R2

R±(y, v)dvdy

= ∓
∫

R

∫ ∞
0

∫
R2

[H(x−X±(s; 0, x′, v′))−H(−X±(s; 0, x′, v′))]E(x′)∂v1
µ±eisωdv′dsdx′.

This immediately implies (c).
To prove (d), we have the similar∫ x

0

∫
R2

v̂1(e−sA±f)(y, v)dvdy =

∫
R2

∫
R

V̂ ±1 (s; 0, x′, v′)Hf(x′, v′)dx′dv′

so that∫ x

0

∫
R

v̂1R±(y, v)dvdy = ∓
∫

R

∫ ∞
0

∫
R2

V̂ ±1 (s; 0, x′, v′)HE(x′)∂v1µ±e
isωdv′dsdx′,
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which immediately implies (d).
In order to analyze the operator C, we have to estimate along the trajectories.

Consider the particle paths given by

dx

dt
= v̂1,

dv1

dt
= ±β′(x),

dv2

dt
= 0,(33)

whose solutions are X±(t; 0, x′, v′), V ±1 (t; 0, x′, v′), v′2. We define the untrapped region
of the + flows as

F+ = {(x′, v′)| 〈v′〉 − β(x′) > 1−min β = a}.

In F+ the trajectories can go from −∞ to +∞. We also define the trapped region of
the + flows as

T+ = {(x′, v′)| 〈v′〉 − β(x′) ≤ 1−min β},

where the flows will never move out of each interval [nP, (n + 1)P ], by our choice of
β in (15). Similarly, we define the untrapped region of the − flows as

F− = {(x′, v′)| 〈v′〉+ β(x′) > 1−max β = b},

where the flows can go from −∞ to +∞ and the trapped region of the − flows as

T− = {(x′, v′)| 〈v′〉+ β(x′) ≤ 1 + max β},

where the flows will never move out of each interval [nP − P/2, nP + P/2], by our
choice of β in (15). Let

Σ±(t, x, x′, v2) = {v′1 ∈ R | X±(t; 0, x′, v′1, v
′
2) = x}

be the initial velocity of a particle travelling from x′ to x in time t. Notice that Σ±

could, inside the trapped region T±, consist of more than one point. The flows with
different initial velocities could come back to the same position in the same time, as
long as the consumed time interval is a common multiple of their different periods.
However, in the untrapped region Σ± is a single point.

Lemma 5. (a) If (x′, v′) ∈ F± and v′1 ∈ Σ±(t, x, x′, v′2), then Σ±(t, x, x′, v′2)
consists of a unique point V1±(t, x, x′, v′2). Moreover

V1±(t, x+ P, x′ + P, v′2) = V1±(t, x, x′, v′2).(34)

(b) C(ω, β) maps P -periodic functions to P -periodic functions.
Notation. We define V± = (V1±, v′2) and

〈V±〉 =
√

1 + V2
1± + |v′2|2.

We also define the free velocity and the free energy by

V̂10(t, x, x′) = (x− x′)/t,(35)

〈V0(t, x, x′, v′2)〉 =
√

1 + |v′2|2
[

1−
(
x− x′
t

)2
]−1/2

.(36)
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Proof. For part (a), without loss of generality we may consider just the + part,
since similar arguments apply to the − part. If v′1 ∈ Σ+(t, x, x′, v′2), then

〈V +〉 − β(X+) = 〈v′〉 − β(x′),(37)

where X+ = X+(0; t, x′, v′), V + = V +(0; t, x′, v′). Notice that for every v = (v1, v2) ∈
R2,

〈v〉2 − v2
2 − 1 = v2

1 , v̂1 = ±
√
〈v〉2 − 1− v2

2

〈v〉 .

Therefore from the characteristic ODEs (33) and from (37), we have

dX+

dt
= V̂ +

1 = ± [(〈v′〉 − β(x′) + β(X+))2 − 1− v2
2 ]1/2

〈v′〉 − β(x′) + β(X+)
.

Because v′1 ∈ Σ+(t, x, x′, v2), we have

t = ±
∫ x

x′

〈v′〉 − β(x′) + β(y)

[(〈v′〉 − β(x′) + β(y))2 − 1− v2
2 ]1/2

dy.(38)

Here we let x = X+(t; 0, x′, v′) and use + if t > 0 and x > x′. If we take x > x′,
then t > 0 and (x′, v′) ∈ F+. Then v′1 > 0. As we choose the plus sign in (38), t is a
strictly decreasing function of 〈v′〉 and a strictly increasing function of x. Hence v′1 is
uniquely determined and we write v′1 = V1+(t, x, x′, v2).

To show the periodicity (34) of V±, notice that X+(t; 0, x′+P, v′)−P satisfies the
same ODE and initial conditions as X+(t; 0, x′, v′), and hence they are equal. Thus

X+(t; 0, x′ + P, v′) = X+(t; 0, x′, v′) + P.(39)

So by the definition of V+,

V+(t;x, x′, v2) = V+(t;x+ P, x′ + P, v2).

Similarly for the − case.
Next we shall prove part (b). By (25), it suffices to show that if E has period P ,

then ∫ x+P

x

dy

∫
R

dx′E(x′)k(y, x′) = 0(40)

for all x. Notice that, by the definitions of k and K, by the periodicity of β, and by
(39),

k±(y, x′) = k±(y + P, x′ + P ).

Hence the x-derivatives of both integrals
∫ x+P

x
dy
∫
R
dx′E(x′)k±(y, x′) are zero. We

thus have for all x,∫ x+P

x

dy

∫
R

dx′E(x′)k±(y, x′) =

∫ P

0

dy

∫
R

dx′E(x′)k±(y, x′).

Therefore, in order to prove (40), it suffices to show∫ P

0

dx

∫
R

dx′E(x′)k(x, x′) = 0.(41)
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Notice that [0, P ] is a period for two connected trapped regions in the + case. If
v′1 ∈ Σ+(τ, x, x′, v2) and (x′, v′) ∈ F+, then v′1 = V1+(τ, x, x′, v2) is also an increasing
function of x. Hence for x′ ≤ 0 and for P ≤ x′, we have

{v′1| 0 ≤ X+(τ ; 0, x′, v′1, v2) ≤ P} = {V+(τ ;x, x′, v2)| 0 ≤ x ≤ P}
= the interval [V+(τ, 0, x′, v2),V+(τ, P, x′, v2)] = J.

Now let 0 < x′ < P . For 0 < x′ < P , there is an interval I of velocities v′1 that
are trapped. Of course for any v′1 ∈ I,

0 < X+(t; 0, x′, v′) < P

for all t. Notice that I ⊂ J . In this case, J is the interval from V1+(τ ; 0, x′, v2) < 0
to V1+(τ ;P, x′, v2) > 0. Notice that for fixed (τ, x′, v2),∫ P

0

δ(x−X+(τ ; 0, x′, v′))dx = 1J(v′1),

where 1 is the standard characteristic function. In order to prove (41), we use the
definitions of k(x, x′) and K(x, x′) below (30). We first treat the + part in (41) as

−
∫ P

0

dx

∫
R

dx′E(x′)k+(x, x′)

=

∫ ∞
0

dτeiωτ
∫

R3

dv′dx′E(x′)∂v′1µ+

[∫ P

0

dx δ(x−X+(τ ; 0, x′, v′))

]

=

∫
R

dx′E(x′)
∫ ∞

0

dτeiωτ
∫

R

dv2

∫
J

dv′1∂v′1µ+(〈v′〉 − β(x′), v2)

=

∫
R

dx′E(x′)
∫ ∞

0

dτeiωτ
∫

R

dv2[µ+(〈V+(τ, P, x′, v2)〉 − β(x′), v2)

−µ+(〈V+(τ, 0, x′, v2)〉 − β(x′), v2)]

= I1 + I2

Letting x′ = z + P in I1, we obtain

I1=

∫
R

dzE(z + P )

∫ ∞
0

dτeiωτ
∫

R

dv2µ+(〈V+(τ, P, z + P, v2)〉 − β(z + P ), v2)

=

∫
R

dzE(z)

∫ ∞
0

dτeiωτ
∫

R

dv2µ+(〈V+(τ, 0, z, v2)〉 − β(z), v2) = −I2,

where we have used the P -periodicity of E and β as well as (34). Therefore we
conclude that the + part of (41) is zero.

The − part is also zero by the same argument. The only difference is that now we
consider the period [P/2, 3P/2] instead of [0, P ]. This is a period for two connected
trapped regions of the − flow. This completes the proof of the lemma.

Let X±(τ ; 0, x′, v′) be the trajectories in (33) and X0(τ ; 0, x′, v′) = x′ + τ v̂′1,
V 0(τ ; 0, x′, v′) = v′ be the unperturbed trajectories (straight lines). Recalling the
definitions of k±, V̂10 and 〈V0〉 in (35) and (36), we also define

k±0 (x, x′)= ∓
∫ ∞

0

[∫
δ(x− x′ − v̂′1τ)∂v′1µ±(〈v′〉, v′2)dv′

]
eiωτdτ(42)

= ∓
∫ ∞

0

∫
R

∂eµ±(〈V0〉, v2)V̂10〈V0〉3(1 + v2
2)−1dv2τ

−1eiωτdτ.
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Recalling the definitions (21), (25), (26), and (27), we similarly define

A0 = v̂1∂x, K0E =

(K0
+E
K0
−E

)
=

(
∂v1

µ+(〈v〉, v2)E
−∂v1µ−(〈v〉, v2)E

)
,

R0
± = −

∫ ∞
0

e−τA
0

eiωτK0
±Edτ,

ρ0 =

∫
R2

(R0
+ −R0

−)dv, j0
1 =

∫
R2

v̂1(R0
+ −R0

−)dv.

Our key estimate is the following.
Lemma 6. Let µ± satisfy (11) and (12), and let β be any solution of (4) of period

P . Let Im ω > 0. With ρ and j1 defined by (26), (27), we have

|ρ− ρ0|1 + |j1 − j0
1 |1 ≤ C‖β‖1/2|E|1

for all E ∈ L1(RP ), where ‖β‖ = |β|C2 .
We shall show that this lemma follows from the next one.
Lemma 7. Under the same conditions,∫ P

0

∣∣∣∣∫
R

∫ ∞
0

∫
R2

{δ(x−X±)∂v1µ±(e′, v′2)− δ(x−X0)∂v1µ±(〈v′〉, v′2)}

× e−ImωτE(x′)dv′dτdx′
∣∣∣∣ dx ≤ C‖β‖1/2|E|1(43)

for all E ∈ L1(RP ), where ‖β‖ = |β|C1 , X± = X±(τ ; 0, x′, v′), and X0 = X0(τ ; 0, x′, v′).
Remark. It is easy to estimate the integral in Lemma 7 by C|E|1, but we will

require the small constant ‖β‖. We first illustrate our technique by estimating the
free part of the integral as∫

R

∫ P

0

∫ ∞
0

∫
R2

|δ(x−X0)∂v′1µ±(〈v′〉, v′2)|e−Imωτ |E(x′)|dv′dτdxdx′(44)

=

∫ ∞
0

∫ P

0

∫
R

∫
R2

e−Imωτ |E(x′)|δ(x− x′ − v̂′1τ)|∂v′1µ+(〈v′〉, v′2)v̂′1|dv′dx′dxdτ

=

∫ ∞
0

∫ P

0

∫ x+τ

x−τ

∫
R

e−Imωτ |E(x′)∂eµ+(〈V0〉, v2)V̂10|〈V0〉3τ−1(1 + v2
2)−1dv2dx

′dxdτ,

where we have integrated v′1 first, and computed ∂v′1 [x−x′− v̂′1τ ] = −τ〈v′〉−3(1+v2
2).

We notice that

∫ x′+τ

x′−τ
〈V0〉3−γ dx

τ
= (1 + v2

2)
3−γ

2

∫ x′+τ

x′−τ

(
1−

∣∣∣∣x− x′τ

∣∣∣∣2
) γ−3

2

τ−1dx

= (1 + v2
2)

3−γ
2

∫ 1

−1

(1− y2)
γ−3

2 dy <∞,(45)

since γ > 1. Thus the free part is bounded by∫ ∞
0

e−Imωτ

∫ P

0

∫ x+τ

x−τ

∫
R

|E(x′)|〈V0〉3−γ〈v2〉−2−γ̃τ−1dv2dx
′dxdτ.
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Since γ̃ + γ > 2 and γ > 1, 〈v2〉1−γ̃−γ is integrable so that we have the bound

C

∫ ∞
0

e−Imωτ

∫ P+τ

−τ
|E(x′)|dx′dτ ≤ C

∫ ∞
0

e−Imωτdτ(τ + 1)|E|1 ≤ C|E|1,(46)

where we have used the fact that
∫ P+τ

−τ |E(x′)|dx′ ≤ C(τ + 1)|E|1.
Proof of Lemma 6. From (31), ρ takes the form∫

R

∫ ∞
0

∫
R2

{−δ(x−X+)∂v′1µ+(e′, v′2) + δ(x−X−)∂v′1µ−(e′, v′2)
}
eisωE(x′)dv′dsdx′

and ρ0(x) is given by a similar expression. Clearly from Lemma 7, |ρ − ρ0|1 ≤
C‖β‖1/2|E|1. Similarly j1(x) takes the form∫

R

∫ ∞
0

∫
R2

{
−V̂ +

1 δ(x−X+)∂v′
1
µ+(e′, v′2) + V̂ −1 δ(x−X−)∂v′

1
µ−(e′, v′2)

}
eisωE(x′)dv′dsdx′

and j0
1(x) is given by a similar expression. Hence (with j1 = j1+−j1−, j0

1 = j0
1+−j0

1−),∫ P

0

|j1+ − j0
1+|dx

≤
∫ P

0

∣∣∣∣∫
R

∫ ∞
0

∫
R2

{V̂ +
1

[
δ(x−X+)∂v′1µ+(e′, v′2)− δ(x−X0)∂v′1µ+(〈v′〉, v′2)

]
+(V̂ +

1 − V̂ 0
1 )δ(x−X0)∂v′1µ+(〈v′〉, v′2)}e−ImωτE(x′)dv′dτdx′

∣∣∣ dx.
Since |V̂ +

1 | ≤ 1, the first term is bounded by C‖β‖1/2|E|1 because of Lemma 7. On
the other hand, since dV +

1 /dτ = β′(X+), dV +
2 /dτ = 0, and V 0(τ ; 0, x′, v′) = v′,

|V̂ +
1 (s; 0, x′, v′)− v̂′1| =

∣∣∣∣∫ τ

0

β′(X+(s; 0, x′, v′))ds
∣∣∣∣ ≤ τ‖β‖.

Thus the second term is bounded by

C‖β‖
∫ P

0

∫
R

∫ ∞
0

∫
R2

δ(x−X0)|∂v′1µ+(〈v′〉, v′2)|τe−Imωτ |E(x′)|dv′dτdx′dx.

This expression is identical to (44) except for the extra factor τ and is therefore
estimated in exactly the same way. This proves Lemma 6, assuming Lemma 7.

Proof of Lemma 7. For notational simplicity, we prove only the case of +, as the
case of − is the same. We split the integral into two major parts according to the
time variable. Let

T = min

{
1

2
|x− x′|1/2, 1

M
|x− x′|

}
‖β‖−1/2,(47)

where M = max{4, 4(P )1/2}. We then split (43) as∫ P

0

∫
R3

∫ ∞
0

dτdv′dx′dx =

∫ P

0

∫
R3

∫ ∞
T

+

∫ P

0

∫
R3

∫ T

0

≡ L+ S.

The large-time estimate L. We further split the integral L into L1 +L2, where

L1=

∫
R3

∫
{|x−x′|≥M2/4}∩[0,P ]

∫ ∞
T

dτdxdx′dv′,

L2=

∫
R3

∫
{|x−x′|<M2/4}∩[0,P ]

∫ ∞
T

dτdxdx′dv′.
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We first consider L1. Since |x| ≤ P and |x−x′| ≥ 2P , we are in the untrapped region
and it follows that |x− x′| ≥ P/2 + |x′|/2. Hence

T ≥ 1

2
|x− x′|1/2‖β‖−1/2 ≥ c(|x′|+ 1)1/2‖β‖−1/2.

We now employ the exponential decay of e−Imωτ as

L1 ≤
∫

R3

∫ ∞
c(|x′|+1)1/2‖β‖−1/2

e−Imωτ |E(x′)|

×
{∫ P

0

[
δ(x−X+)|∂v′1µ+(e′, v′2)|+ δ(x−X0)|∂v′1µ+(〈v′〉, v′2)|] dx} dτdv′dx′

≤ C
∫

R

∫ ∞
c[|x′|+1]1/2‖β‖−1/2

e−Imωτ |E(x′)|
∫

R2

[|∂v′1µ+(e′, v′2)|+ |∂v′1µ+(〈v′〉, v′2)|] dv′dτdx′
≤ C

∫
R

e−c[|x
′|+1]1/2‖β‖−1/2 |E(x′)|dx′ ≤ C

∫
R

[|x′|+ 1]−2‖β‖2|E(x′)|dx′

= C‖β‖2
∑
n

∫ 2(n+1)P

2nP

[1 + |x′|]−2|E(x′)|dx′ ≤ C‖β‖2|E|1,

(48)

since
∫

[|∂v′1µ+(e′, v′2)|+ |∂v′1(〈v′〉, v′2)|]dv is finite because of the decay rate in (11).

For L2, we have |x−x′| ≤M2/4 bounded. Given x and v′2, pick any v′1 such that
X+(τ ; 0, x′, v′) = x. We thus have

x− x′ =

∫ τ

0

V̂ +
1 (θ, x′, v′)dθ.

By the mean value theorem,

V̂10 =
x− x′
τ

=
1

τ

∫ τ

0

V̂ +
1 (θ; 0, x′, v′)dθ = V̂ +

1 (s; 0, x′, v′)

for some s ∈ [0, τ ]. Thus V10 = V +
1 and V20 = v′2 = V +

2 , so that

〈V0〉 = 〈V +(s; 0, x′, v′)〉.
But by energy conservation along the trajectory, we have

〈v′〉+ β(x′) = 〈V +(s; 0, x′, v′)〉+ β(X+(s; 0, x′, v′)).

Therefore

|〈v′〉 − 〈V0〉| ≤ 2‖β‖.(49)

Since τ ≥ T = 1
4 |x− x′|‖β‖−1/2 in the integral L2, we have

|V̂10| =
∣∣∣∣x− x′τ

∣∣∣∣ ≤ 4‖β‖1/2

so that

〈v′〉 ≤ 2‖β‖+ 〈V0〉 = 2‖β‖+

√
1 + v′2

2

1− V̂2
0

≤ (1 + C‖β‖)
√

1 + v′2
2.
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We deduce that
√

1 + v′1
2 + v′2

2 −
√

1 + v′2
2 ≤ C‖β‖

√
1 + v′2

2, so that

v′1
2 ≤ C‖β‖

[√
1 + v′1

2 + v′2
2
√

1 + v′2
2 + 1 + v′2

2
]
≤ C

2
‖β‖

[
v′1

2
+ 5(v′2

2
+ 1)

]
and

|v′1| ≤ C‖β‖1/2
√

1 + v′2
2 ≡ m.

Therefore, employing the smallness of v′1 and the boundedness of x′, we get the term
L2 bounded by∫ ∞

0

∫ C

−C

∫
R

∫ m

−m

{∫ P

0

|∂eµ+||v̂′1|δ(x−X+)dx

}
|E(x′)|e−Imωτdv′1dv

′
2dx
′dτ

plus the same term with X+ replaced by X0. Therefore, we get the bound

C|E|1
∫ ∞

0

∫
R

∫ m

−m
〈v′2〉−γ̃−γdv′1dv′2e−Imωτdτ

≤ C|E|1‖β‖1/2
∫ ∞

0

e−Imωτdτ ≤ C‖β‖1/2|E|1,

since γ̃ + γ > 1. Combining this with (48), we have the large-time estimate

L = L1 + L2 ≤ C|E|1‖β‖1/2.(50)

The small-time estimate S. Now in (43) we consider the case τ ≤ T . Since

0 ≤ τ ≤ 1

2
|x− x′|1/2‖β‖−1/2,

we have∣∣∣∣x− x′τ

∣∣∣∣ ≥ 2|x− x′|1/2‖β‖1/2 ≥ 4τ‖β‖ ≥ 4

∣∣∣∣∣1τ
∫ τ

0

∫ θ

0

β′(X+(s))dsdθ

∣∣∣∣∣ .
Now for any v′ such that x = X+(τ ; 0, x′, v′), we have the trajectory equation

x = x′ + v̂′1τ ±
∫ τ

0

∫ θ

0

〈V +〉−3β′(X+)dsdθ.

Thus,

|v̂′1| ≥
∣∣∣∣x− x′τ

∣∣∣∣−
∣∣∣∣∣1τ
∫ τ

0

∫ θ

0

β′(X+(s))dsdθ

∣∣∣∣∣ ≥ 3

4

∣∣∣∣x− x′τ

∣∣∣∣ ≥ 3‖β‖1/2,

|v̂′1| ≤
∣∣∣∣x− x′τ

∣∣∣∣+

∣∣∣∣∣1τ
∫ τ

0

∫ θ

0

β′(X+(s))dsdθ

∣∣∣∣∣ ≤ 5

4

∣∣∣∣x− x′τ

∣∣∣∣ .(51)

We have used the fact τ ≤ 1
4 |x−x′|‖β‖−1/2 by the definition of T in (47). Therefore,

v′ must lie in the untrapped region. Indeed, by (37), in the trapped region all the
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velocities are bounded by 2‖β‖1/2 and this contradicts (51). By Lemma 5, only one
such V1+ exists. Hence,∫

R

∂v′1µ+(e′, v′2)δ(x−X+)dv′1 = V̂1+∂eµ
′
+(W+, v

′
2)J ,

where W+ = 〈V+〉 − β(X+) and

J =

{[
∂X+

∂v′1

]∣∣∣∣
v′1=V1+

}−1

.

In the free case, V̂10 = (x − x′)/τ , and (∂X0/∂v
′
1)−1 = τ−1〈V0〉3. Therefore, by first

integrating over the v′ variable, we get the small-time integral equal to

S =

∫
|E(x′)|e−Imωτ |V̂1+∂eµ+(W+, v

′
2)J − V̂10∂eµ+(〈V0〉, v′2)τ−1〈V0〉3|

≤
∫
|E(x′)|e−Imωτ |∂eµ+(W+, v

′
2){J − (1 + v′2

2
)−1V̂1+(x− x′)−1〈V+〉3}|

+

∫ |E(x′)|
|x− x′|(1 + v′2

2)
e−Imωτ |∂eµ+(W+, v

′
2)V̂2

1+〈V+〉3 − ∂eµ+(〈V0〉, v′2)V̂2
10〈V0〉3|

≡ S1 + S2,(52)

where
∫

=
∫ P

0

∫
R

∫ T
0

∫
R
dv′2dτdx

′dx.
We now estimate S1. In order to compute J , we take the v′1 derivative in (38)

to get (for t > 0)

0 =
∂X+

∂v′1

〈v′〉 − β(x′) + β(X+(v′))
{[〈v′〉 − β(x′) + β(X+(v′))]2 − 1− v2

2}1/2

−
∫ X+(v′)

x′
[(〈v′〉 − β(x′) + β(y))2 − 1− v2

2 ]−3/2v̂′1(1 + v2
2)dy.

Put v′ = V+(τ, x, x′), so that X+(τ, 0, x′, v′) = x and

J−1 = (1− (1 + v2
2)A(x)−2)1/2V̂1+Q(1 + v2

2),

where A(y) = 〈V+(τ, x, x′)〉 − β(x′) + β(y), V+ = V+(τ, x, x′), and

Q =

∫ x

x′
(A(y)2 − 1− v2

2)−3/2dy.

From (51), we have

|V̂1+| ≥ 3

4

∣∣∣∣x− x′τ

∣∣∣∣ ≥ 3‖β‖1/2.(53)

To estimate Q, notice that |A(y)−〈V+〉| ≤ 2‖β‖ and therefore A(y) is comparable to
〈V+〉. Hence,

A2 − 1− v2
2= V2

1+ + (A− 〈V+〉)(A+ 〈V+〉)
≥ V2

1+ − 2‖β‖(2〈V+〉+ 2‖β‖)
≥ V2

1+ −
4

3
‖β‖1/2|V1+| − 4‖β‖2

≥ 5

9
V2

1+ − 4‖β‖2 ≥ 1

2
V2

1+
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by (53) and the smallness of β. Letting g(A) = (A2 − 1− v2
2)−3/2, we have

|g′(A)| = 3(A2 − v′22 − 1)−5/2A ≤ C|V1+|−5〈V+〉.

Therefore, we have

|Q(τ, x, x′)− (x− x′)|V1+|−3| ≤ C‖β‖|V1+|−5〈V+〉|x− x′|

so that Q is comparable to (x− x′)|V1+|−3 and

|Q−1(τ, x, x′)− (x− x′)−1|V1+|3|
≤ C‖β‖|V1+|−5〈V+〉|x− x′|{(x− x′)−1|V1+|3}2
= C‖β‖|x− x′|−1|V1+|〈V+〉.

Also, inside J we have

(1− (1 + v2
2)A−2)−1/2 = 〈V+〉|V1+|−1 +O[‖β‖(1 + v2

2)|V1+|−3].

We thus estimate J as

|J − (1 + v2
2)−1〈V+〉2V1+(x− x′)−1|

=
1

(1 + v2
2)

∣∣∣(1− (1 + v2
2)−1A−2)−1/2 · V̂−1

1+Q
−1 − 〈V+〉|V1+|−1 · V̂−1

1+ |V1+|3(x− x′)−1
∣∣∣

≤ C‖β‖|x− x′|−1|V̂−1
1+ |[1 + 〈V+〉2(1 + v2

2)−1]

≤ C‖β‖1/2τ−1V̂−1
1+ 〈V+〉2(1 + v2

2)−1.

In the last step, we have used the fact that τ |x − x′|−1 ≤ 1
4‖β‖−1/2 from (47).

Moreover, from the trajectory equation and (51), (49) with v′ = V+, we have

3

4

∣∣∣∣x− x′τ

∣∣∣∣ ≤ |V̂1+| ≤ 5

4

∣∣∣∣x− x′τ

∣∣∣∣ , |V̂1+ − V̂10| ≤ τ‖β‖.

Using the energy conservation along the trajectory, we estimate W+ ≡ 〈V+〉 − β(x′)
as |W+ − 〈V+〉| ≤ ‖β‖. Since 〈V0〉 dominates ‖β‖, we also have

c〈V0〉 ≤ 〈V+〉 ≤ C〈V0〉.(54)

We therefore estimate S1 by∫ P

0

∫ x+τ

x−τ

∫ T

0

∫
R

|E(x′)|e−Imωτ
∣∣∣∂eµ+(W+, v

′
2)V̂1+

{
J − (1 + v2

2)−1V̂1+(x− x′)−1〈V+〉3
}∣∣∣

≤ C
∫ P

0

∫ x+τ

x−τ

∫ T

0

∫
R

e−Imωτ |∂eµ+(W+, v
′
2)
[
‖β‖1/2τ−1〈V+〉2

]
|E(x′)|(1 + v′2

2
)(55)

with the volume element dv′2dτdx
′dx. In this integral we have

|∂eµ+(W+, v
′
2)|〈V+〉2 ≤ C〈V+〉2−γ ≤ C〈V0〉2−γ

with γ > 1 so that
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S1 ≤ C‖β‖1/2|E|1
just as in (46).

From (54) and the decay condition in (11), we now estimate the main part of the
integrand in S2 as

J2 ≡|∂eµ+(W+, v
′
2)V̂2

1+〈V+〉3 − ∂eµ+(〈V0〉, v′2)V̂2
10〈V0〉3|

≤
∣∣∣[∂eµ+(W+, v

′
2)− ∂eµ+(〈V0〉, v′2)] V̂2

1+〈V+〉3
∣∣∣

+
∣∣∣∂eµ(W0, v

′
2)[V̂2

10〈V0〉3 − V̂2
1+〈V+〉3]

∣∣∣ .
Notice that

|V̂2
10〈V0〉3 − V̂2

1+〈V+〉3| = |V2
10〈V0〉 − V2

1+〈V+〉|
= |〈V0〉 − 〈V+〉|(〈V0〉2 + 〈V0〉〈V+〉+ 〈V+〉2 − 1− v′22

)

≤ C|〈V0〉 − 〈V+〉|〈V0〉2.
By (49) and (11), we thus estimate the main part of the integrand in S2 by

J2≤ { sup
θ∈[〈V0〉,W+]

∂eeµ+(θ, v′2)|[W+ − 〈V0〉]V̂2
1+〈V+〉3|

+C|∂eµ+(〈V0〉, v′2)||〈V0〉 − 〈V+〉|〈V0〉2}
≤ C‖β‖〈V0〉3−γ〈v′2〉−γ̃ .

From the definition of T in (47), we have |x − x′|−1 ≤ 1
4τ ‖β‖−1/2. We plug this

into S2 in (52) to get

S2 =

∫ P

0

∫ T

0

∫ x+τ

x−τ

∫
R

e−Imωτ |E(x′)|
|x− x′|(1 + v′2

2)

×
∣∣∣∂eµ+(W+, v

′
2)V̂2

1+〈V+〉3 − ∂eµ+(〈V0〉, v′2)V̂2
10〈V0〉3

∣∣∣ dv′2dx′dτdx
≤ C‖β‖1/2

∫ P

0

∫ T

0

∫ x+τ

x−τ

∫
R

e−Imωτ |E(x′)|〈V0〉3−γ〈v′2〉−2−γ̃τ−1dv′2dx
′dτdx

≤ C‖β‖1/2|E|1,(56)

where we have again used (45) to integrate over x. Thus we deduce the small-time
estimate

S ≤ S1 + S2 ≤ C‖β‖1/2|E|1.(57)

The lemma follows from (50) and (57).
Lemma 8. The same estimate as in Lemma 7 is valid if exp[−Imωτ ] is replaced

by τm exp[−Imωτ ] for any m ≥ 1.
The proof is identical to the preceding one.
Now we are ready for our main theorem about the linear operator C. Recall the

definition of C(ω, β) in (25). We shall write P = 2Pβ . Furthermore, we define C(ω, 0)
from L1(RP ) into itself by

C(ω, 0)E(x) =

∫ x

0

ρ0(y)dy +
1

iωP

∫ P

0

j0
1(y)dy − 1

P

∫ P

0

∫ z

0

ρ0(y)dydz.(58)



1096 YAN GUO AND WALTER A. STRAUSS

We define the closely related operator C0 from L1(R2P0
) to itself, to be given by the

same formula but acting on functions in L1(R2P0
) and with P replaced by 2P0.

Theorem 2 (growing mode for periodic BGK equilibria). Let P = 2Pβ and
Im ω > 0 and γ > 1, and µ± satisfy (11), (12), and (14). Then

(a) C(ω, β) and C(ω, 0) are compact operators from L1(RP ) to L1(RP ) such that

‖C(ω, β)− C(ω, 0)‖L1(RP )→L1(RP ) ≤ C‖β‖1/2C1 ,

where C(ω, 0) is the unperturbed linearized operator. The constant C is uniform for
Im ω > constant > 0.

(b) C(ω, β) is analytic in ω for Im ω > 0.
(c) There exists η > 0 such that if ‖β‖C1 < η, there exists a growing mode

[g±, E] with period P for the linearized Vlasov–Maxwell system (19) around [µ±(〈v〉∓
β(x), v2), β′].

Proof. By definition

(C(ω, β)E − C(ω, 0)E)(x)=

∫ x

0

[ρ(y)− ρ0(y)]dy +
1

iωP

∫ P

0

[j1(y)− j0
1(y)]dy

− 1

P

∫ P

0

∫ z

0

[ρ(y)− ρ0(y)]dydz.

By Lemma 6,

|C(ω, β)E − C(ω, 0)E|1 ≤ C‖β‖1/2|E|1
where C may depend on P and ω. Now by (32)

|∂x{C(ω, β)E}|1 = |ρ|1 ≤ C|E|1
and, by definition of C(ω, β),

|C(ω, β)E|1 ≤ C|ρ|1 + C|j1|1/|ω| ≤ C|E|1.

Since W 1,1(RP ) is compact in L1(RP ), C(ω, β) is a compact operator. This proves
(a).

For part (b), notice that C(ω, β)E is given by an absolutely convergent integral,
in which ω appears as eiωτ . The integral converges uniformly in each half-plane
{Im ω ≥ c > 0}. By Lemma 8 with m = 1 and by repeating the argument in part
(a), we get ∥∥∥∥ ddω [C(ω, β)− C(ω, 0)]

∥∥∥∥ ≤ C‖β‖1/2.
We thus deduce part (b).

To prove part (c), we define the dilation operator Gβ from L1(R2P0) to L1(RP )
as Gβ : E(x) → E(x/λ) where λ = Pβ/P0. Clearly Gβ is a one-to-one and bounded
linear operator from L1(R2P0

) to L1(RP ). We claim that

‖G−1
β C(ω, β)Gβ − C0‖L1→L1 ≤ C‖β‖1/2

for ‖β‖ small.
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Proof of the claim. Notice that

‖G−1
β C(ω, β)Gβ − C0‖

≤ ‖G−1
β {C(ω, β)− C(ω, 0)}Gβ‖+ ‖G−1

β C(ω, 0)Gβ − C0‖
≤ ‖G−1

β ‖‖C(ω, β)− C(ω, 0)‖‖Gβ‖+ ‖G−1
β C(ω, 0)Gβ − C0‖

≤ C‖β‖1/2 + ‖G−1
β C(ω, 0)Gβ − C0‖,

where we have used part (a). Now we consider G−1
β C(ω, 0)Gβ . Notice that by changing

variables x′′ = x′/λ and y = λy′, we have by (28), (31), and (42)

G−1
β C(ω, 0)GβE(x)=

∫ λx

0

∫
R

E(x′/λ)k0(y, x′)dx′dy +
1

iωP

∫ P

0

j0
1(x′/λ)dx′

− 1

P

∫ P

0

∫ z

0

∫
R

E(x′/λ)k0(y, x′)dx′dydz

=

∫ x

0

∫
R

E(x′′)k0(λy′, λx′′)dx′′dy′ +
1

2iωP0

∫ 2P0

0

j0
1(x′′)dx′′

− 1

2P0

∫ 2P0

0

∫ z

0

∫
R

E(x′′)k0(λy′, λx′′)dx′′dy′dz.

Therefore we have

|∂x(G−1
β C(ω, 0)GβE)− ∂x(C0E)|L1 ≤

∫ 2P0

0

∫
R

|E(x′)||k0(λx, λx′)− k0(x, x′)|dx′dx.

We notice that

k±0 (x, x′, ω) = ∓
∫ ∞

0

k̂±0 (x, x′, t)eiωtdt,

where k̂±0 (x, x′, t) =
∫
R2 δ(x− x′ − v̂′1t)∂v′1µ±(〈v′〉, v′2)dv′. Hence,

k±0 (λx, λx′, ω) = ∓
∫ ∞

0

k̂±0 (λx, λx′, t)eiωtdt = ∓
∫ ∞

0

k̂±0 (λx, λx′, λs)eiωλsλds

= ∓
∫ ∞

0

k̂±0 (x, x′, s)eiωλsds = k±0 (x, x′, λω)

since k̂±0 (λx, λx′, λt) = λ−1k̂±0 (x, x′, t). Therefore,

k±0 (λx, λx′, ω)− k±0 (x, x′, ω) = k±0 (x, x′, λω)− k±0 (x, x′, ω)

= ∓
∫ ∞

0

k̂±0 (x, x′, t)[eiλωt − eiωt]dt

≤ |λ− 1|
∫ ∞

0

|k̂±0 (x, x′, t)||ωt|e−λ∗tImωdt,

where λ∗ = max(λ, 1). Hence as in (44)–(46),

|∂x(G−1
β C(ω, 0)GβE)− ∂x(C0E)|L1

≤ |λ− 1||ω|
∫ 2P0

0

∫
R

∫ ∞
0

|E(x′)||k̂±0 (x, x′, t)||t|e−λ∗tImωdtdx′dx
≤ |λ− 1|C|E|L1(R2P0

).
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The claim is proved.
We define for 0 ≤ s ≤ 1, T (ω, s) = C0 + s(G−1

β C(ω, β)Gβ − C0). By parts (a) and

(b), I − T (ω, s) is a compact operator from L1(R2P0
) to itself, is analytic in ω, and

is continuous in s. By Lemma 2, I − C0 has a nontrivial nullspace, so that there is a
pole ω0, fixed, of (I − C0)−1 = (I − T (ω, 0))−1 with Im ω0 > 0. We choose ε0 > 0 so
small that for |ω − ω0| = ε0, the operator (I − T (ω, 0)) is invertible and Im ω > 0. If
‖β‖C1 < η is small enough, then from the claim

‖T (ω, s)− T (ω, 0)‖ ≤ s‖G−1
β C(ω, β)Gβ − C0‖ ≤ Cη1/2.

Hence I − T (ω, s) is also invertible on |ω − ω0| = ε0 for all 0 ≤ s ≤ 1. Since
the poles of (I − T (ω, s))−1 are continuous in s, as is well known [St], there is
a pole of (I − T (ω, 1))−1 in |ω − ω0| < ε0. In particular, let ωβ be a pole of
(I − T (ω, 1))−1 = (I − G−1

β C(ω, β)Gβ) in |ω − ω0| < ε0. Then Im ωβ > 0 and

G−1
β C(ωβ , β)Gβ has the eigenvalue 1. Hence there exists an E0 6= 0 and E0 ∈ L1(R2P0

)

such that G−1
β C(ωβ , β)GβE0 = E0. Therefore

C(ωβ , β)GβE0 = GβE0.

By Lemma 4, part (b), we complete the proof.

4. Properties of periodic eigenfunctions. The following lemma of Vidav [V,
Sh] will be used to obtain the linearized estimate.

Lemma 9. Let Y be a Banach space and A be a linear operator that generates
a strongly continuous semigroup on Y such that ‖e−tA‖ ≤ Meαt for all t ≥ 0. Let
K be a compact operator from Y to Y . Then A+K generates a strongly continuous
semigroup e−t(A+K), and the spectrum of (−A − K) consists of a finite number of
eigenvalues of finite multiplicity in {Reλ > δ} for every δ > α. These eigenvalues can
be labeled by

Reλ1 ≥ Reλ2 ≥ · · · ≥ Reλn ≥ δ.
Furthermore, for every Λ > Reλ1, there is a constant CΛ such that

‖e−t(A+K)‖L(Y,Y ) ≤ CΛe
Λt.

Applying this lemma and Lemma 3 to the linearized periodic Vlasov–Maxwell
system 1 1

4L in (8), we deduce the following.
Lemma 10 (linear Vlasov–Maxwell). Let µ± satisfy (11) and (12), and let β be

any solution of (4) of period P . Then for all δ > 0, the spectrum of −L in {Reλ > δ}
consists of a finite number of eigenvalues of finite multiplicity. If λ1 denotes the
eigenvalue of the maximal real part, and Λ > max{0,Reλ1}, then there exists CΛ > 0
such that

‖e−tLu0‖m ≤ CΛe
Λt‖u0‖m.

Proof. We apply the previous lemma to the space Y = M and the operator
L = L1 + L2 given by (23). By (24) we may take any δ > 0.

Lemma 11 (regularity of eigenfunctions). Let µ± satisfy (11) and (12), and let β
be any solution of (4) of period P . Let λ be any eigenvalue of −L with Reλ > 0 and
[R±, E0] its eigenfunction triple. Assume ‖β‖ < (Reλ)2. Then R± ∈W 1,1(RP ×R2)
and there exists a constant C depending only on λ and µ± such that

|E0|1,1 + ‖R‖1,1 ≤ C‖R‖1.
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Proof. We begin with u = [R±, E0] ∈M. We first claim that

R = −
∫ ∞

0

e−tAe−λtK(E0)dt.(59)

In order to prove this, notice that g(t) = eλtR and E(t) = eλtE0 satisfy ∂tg +Ag =
−KE. Hence

eλtR = e−(t−s)AeλsR+

∫ t

s

e−(t−τ)AKeλτE0dτ.

Letting s→ −∞, we get

eλtR = −
∫ t

−∞
e−(t−τ)A±KE0e

λτdτ = −
∫ ∞

0

e−τAKE0e
λ(t−τ)dτ,

which is the same as (59). The integral converges because Reλ > 0.
Since [R±, E0] ∈ M, we have ∂xE0 = ρ =

∫
(R+ − R−)dv so that E0 ∈ L1(RP )

and K(E0) ∈ L1(RP ×R2). Writing exp(−tA) in terms of the characteristics as in
the proof of Lemma 4(c), we see that exp(−tA) also maps L1 into itself and W 1,1

into itself. So (59) implies that R ∈ L1(RP ×R2). Hence ρ ∈ L1(RP ) and

|E0|1,1 ≤ C‖R‖1.
Next we let h(t) = exp(−tA)(KE0). Since KE0 ∈ W 1,1, it follows that h(t) ∈ W 1,1.
Thus (∂t +A)h = 0, h(0) = KE0. Differentiating this equation with respect to x, we
get

(∂t +A)(∂xh) = [A, ∂x]h =

(−β′′ 0
0 β′′

)
∂v1

h, ∂xh(0) = ∂xKE0,

where [A, ∂x] is the commutator. Hence

∂xh(t) = e−tA∂xKE0 +

∫ t

0

e−(t−τ)A
(−β′′ 0

0 β′′

)
∂v1

h(τ)dτ.

Similarly,

∂v1
h(t) = e−tA∂v1

KE0 −
∫ t

0

e−(t−τ)A〈v〉−3(1 + v2
2)∂xh(τ)dτ,

∂v2
h(t) = e−tA∂v2

KE0 +

∫ t

0

e−(t−τ)Av1v2〈v〉−3∂xh(τ)dτ.

Taking L1-norms, we get

‖∂xh(t)‖1 + ‖∂vh(t)‖1 ≤ (‖∂x(KE0)‖1 + ‖∂v(KE0)‖1)et‖β‖
1/2

C2 .

We put this estimate into the integrand of (59) to get

‖∂xR‖1 + ‖∂vR‖1 ≤
(∫ ∞

0

e[‖β‖1/2
C2 −λ]tdt

)
(‖∂xKE0‖1 + ‖∂vKE0‖1) .

By the definition of (21) of K, the decay condition (11) on µ±, and the boundedness
of β, we deduce that KE0 ∈W 1,1, and we have the desired estimate.
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Lemma 12. Let u be an eigenvector of −L with its eigenvalue λ, Reλ > 0. If λ
is not real, then there is a constant ζ > 0 such that for all t > 0

‖e−Lt(Im u )‖1 ≥ ζeReλt‖Im u ‖1 > 0.

Proof. We prove it by contradiction. Notice that

e−Lt(Im u ) = Im(e−Ltu) = eReλt(sin[Im λt]Re u + cos[Im λt]Im u ).

If the lemma were false, by passing through a convergent subsequence of sin[Im λtn],
and cos[Im λtn] with n → ∞, we would have aIm u + bRe u = 0, with a2 + b2 = 1.
Therefore either Im u or Re u would be a real eigenvector and λ would be real, a
contradiction.

Lemma 13 (pointwise estimate of eigenfunctions). Let µ± satisfy (11), (12) and
let β be any solution of (4) of period P . Let [R+, R−, E0] be an eigenvector with
‖R‖1,1 + |E0|1 = 1 with eigenvalue λ satisfying Reλ > 0. Let h(·) satisfy |h′| ≤ C1h
for some constant C1. If

|∂eµ±(〈v〉 ∓ β, v2)| ≤ C2h(〈v〉)µ±(〈v〉 ∓ β, v2)(60)

and |β|C1 is sufficiently small, then

|R±(x, v)| ≤ C3h(〈v〉)µ±(〈v〉 ∓ β, v2),

where C3 depends only on C1, C2, Reλ, and |β′|∞.
Proof. Omit the subscripts ±. The eigenfunction satisfies

[v̂1∂x ± β′(x)∂v1
]R± E0∂v1µ = −λR

where µ = µ±(〈v〉 ∓ β′(x), v2). Then S = (hµ)−1R satisfies

[v̂1∂x ± β′(x)∂v1
]S ± E0

∂v1
µ

hµ
± β′ ∂v1

h

h
S = −λS,

where we have used the fact that v̂1∂xµ± ± β′∂v1
µ± = 0. As in (25), this may be

written as

S = ∓
∫ ∞

0

e−tAe−λt
[
E0

∂v1
µ

hµ
+ β′

∂v1
h

h
S

]
dt.

Since exp(−tA) has norm one on L∞, for Reλ > 0 we have

‖S‖∞≤
[
|E0|∞

∥∥∥∥∂v1
µ

hµ

∥∥∥∥
∞

+ |β′|∞
∥∥∥∥∂v1

h

h

∥∥∥∥
∞
‖S‖∞

]
(Reλ)−1

≤ [C2|E0|∞ + C1|β′|∞‖S‖∞](Reλ)−1.

Since |E0|∞ ≤ |E0|1,1 ≤ C‖R‖1, the lemma thus follows if |β′|∞ is small.
The following lemma gives an improved bound for a cut-off eigenfunction.
Lemma 14 (approximate eigenfunctions). Let [R±, E0] and β be as in the pre-

ceding lemma. Let h(s) be either sσ or exp(ls), for some σ > 0 or l > 0. Assume
there are constants C2, C5, and m0 > 0 such that for sufficiently large s,

|∂eµ±(s, v2)| ≤ C2h(s)µ±(s, v2),(61)

µ±(s, v2) ≤ C5h
′(s)[h(s)]−(2+m0)s−1.(62)



UNSTABLE OSCILLATORY-TAIL WAVES IN COLLISIONLESS PLASMAS 1101

Then there exists δ0 > 0 such that for 0 < δ < δ0, there exist approximate eigenfunc-
tions Rδ± ∈ L1(RP ×R), Eδ0 ∈ L1(RP ) such that all of the following hold:

δ|Rδ±(x, v)| ≤ µ±(〈v〉 ∓ β(x), v2),(63)

‖Rδ± −R±‖1 + |Eδ0 − E0|1 ≤ δm,(64) ∫ P

0

∫
R

(Rδ+ −Rδ−)dvdx = 0,(65)

∂xE
δ
0 =

∫
R

(Rδ+ −Rδ−)dv,(66)

‖Rδ‖1,1 ≤ C‖R‖1,(67)

where 0 < m < m0. Furthermore, there exists a disk Ωδ independent of x such that
Rδ(x, v) has support in R× Ωδ.

Proof. We prove this lemma in two steps.
Step 1. Cut-off approximation. Let η(〈v〉) be a smooth cut-off function, η(〈v〉) = 1

for 〈v〉 ≤ w, η(〈v〉) = 0 for 〈v〉 ≥ w + 1, with w to be chosen later. Notice that (61)
implies (60). By Lemma 13,

|η(〈v〉)R±(x, v)| ≤ |R±(x, v)| ≤ C3h(〈v〉)µ±(〈v〉 ∓ β(x), v2).

Define w by the equation δ = [2C3h(w + 1)]−1. Then δη(v)|R±(x, v)| ≤ 1
2µ±(〈v〉 ∓

β(x), v2) since h is an increasing function. Now from (62) we have

µ±(s, v2) = o[h′(s)(h(s))−(2+m)]s−1

as s→∞ uniformly in v2. Hence∫ P

0

µ±(〈v〉 ∓ β(x), v2)dx = o

{
h′(〈v〉)

[h(〈v〉)]2+m〈v〉
}

as 〈v〉 → ∞. Integrating this equality, we get∫
〈v〉≥w

∫ P

0

h(〈v〉)µ±(〈v〉∓β(x), v2)dxdv = o

{∫
〈v〉≥w

∫ P

0

h′(〈v〉)
[h(〈v〉)]1+m〈v〉dxdv

}
≤ δm

for sufficiently small δ, by the definition of w. Hence,∫
R2

∫ P

0

|ηR± −R±|dxdv ≤
∫
〈v〉≥w

∫
|R±|dxdv

≤ C
∫
〈v〉≥w

∫ P

0

h(〈v〉)µ±(〈v〉 ∓ β, v2)dxdv ≤ C6δ
m

for sufficiently large w. Reducing m slightly eliminates the constant C6.
Step 2. Neutrality and Poisson conditions. We now further perturb the cut-off

eigenfunctions. Let 0 ≤ Q(v) ∈ C1
0 (R2), P

∫
Q(v)dv = 1. By Step 1, we define for

every δ > 0,

Rδ+ = ηR+ + aQ, Rδ− = ηR−

where a is a complex number satisfying (65)∫ P

0

∫
R

(Rδ+ −Rδ−)dxdv = a+

∫ P

0

∫
R

η(R+ −R−)dvdx = 0.
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By Step 1 and the neutrality condition (20),

|a| =
∣∣∣∣∫ ∫ η(R+ −R−)dxdv

∣∣∣∣ =

∣∣∣∣∫ ∫ (1− η)(R+ −R−)dxdv

∣∣∣∣ ≤ δm.
We also deduce (63) from Step 1 because δ is sufficiently small and µ+ > 0. By an
easy calculation and the bound on a, ‖Rδ±‖1,1 ≤ Cδm + C‖R±‖1,1 ≤ C ′‖R‖1. The
last inequality follows from Lemma 11 and the normalization. We finally define Eδ

to satisfy

∂xE
δ
0 =

∫
R2

(Rδ+ −Rδ−)dv

with the same average as E0:
∫ P

0
Eδ0dx =

∫ P
0
E0dx. Hence

|Eδ0 − E0|1 ≤ C
∣∣∂x[Eδ0 − E0]

∣∣
1
≤ Cδm.

We deduce (64) and (67) for small δ and the lemma follows.
Remark. Conditions (61) and (62) are very general. They allow µ± to go to zero

at a polynomial, exponential, or even super-exponential rate but they exclude µ± of
compact support. An example is µ(s) = exp[−sα] with α ≥ 1 and h(s) = sα−1.
Another example is µ(s) = exp[−exps] and h(s) = exps.

5. Nonlinear instability for periodic BGK waves. Let us abbreviate

f = [f+, f−], µβ = [µ+(〈v〉 − β, v2), µ−(〈v〉+ β, v2)],

u = [f+, f−, E], νβ = [µ+(〈v〉 − β, v2), µ−(〈v〉+ β, v2), ∂xβ].

We define the norm

‖u‖1 =

∫
R2

∫ P

0

(|f+|+ |f−|)dxdv +

∫ P

0

|E|dx.(68)

Our goal is to show that the P -periodic BGK equilibrium νβ is nonlinearly unstable
under ‖ · ‖1 with P = 2Pβ .

Lemma 15. Let µ± satisfy (11), (12), (14), (61), and (62). Let [f+, f−, E] be a
BV solution of the nonlinear Vlasov–Maxwell system as in Theorem 5 in the appendix.
Let ω > 0 and ‖β‖C2 < ω2. Let δ > 0. Assume there are positive constants δ, T , b0,
and C0 such that

‖f(0)− µβ‖1,1 ≤ b0δ,
‖f(t)− µβ‖1 ≤ C0δe

ωt(69)

for 0 ≤ t ≤ T . Then there are positive constants θ and D depending only on b0, C0,
and ω such that

‖∂x[f(t)− µβ ]‖m + ‖∂v1
[f(t)− µβ ]‖m ≤ Dδeωt(70)

in 0 ≤ t ≤ min{T, 1
ω ln(θ/δ)}. Here m denotes the measure norm.

Proof. We let L1 = L1(RP ×R2) throughout this proof for notational simplicity.
Without loss of generality (by a smooth approximation), we may assume f± ∈ W 1,1

so that the measure norms in (70) are replaced by L1 norms. Taking the x derivative
of the Vlasov equation, we get

(∂t + v̂1∂x ± E∂v1
)(∂xf±)± ∂xE∂v1

f± = 0.
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Taking the x-derivative of the stationary Vlasov equation for µ± yields

v̂1∂xxµ± ± βxx∂v1
µ± ± βx∂xv1

µ± = 0.

The difference of these two equations is

(∂t + v̂1∂x ± E∂v1
)[∂x(f± − µ±)]

= ∓Ex∂v1
(f± − µ±)∓ (βxx − Ex)∂v1

µ± ± (E − βx)∂xv1
µ±(71)

where µ± = µ±(〈v〉∓β(x), v2). Notice that
∫

(|∂v1µ±|+ |∂x∂v1µ±|)dv is bounded in x
from (11). Now multiplying (71) by sgn[∂x(f±−µ±)] and integrating over [0, P ]×R2,
we get for some ε > 0,

d

dt
‖∂x[f± − µ±]‖1

≤ |Ex|∞‖∂v1
[f± − µ±]‖1 + C(|βxx − Ex|1 + |βx − E|1)(72)

≤ (|βxx|∞ + |Ex − βxx|∞)‖∂v1
[f± − µ±]‖1 + C(|βxx − Ex|1 + |βx − E|1)

≤ (|βxx|∞ + ‖∂x[f± − µ±]‖1)‖∂v1
[f± − µ±]‖1 + C(‖f± − µ±‖1 + |βx − E|1)

since Ex − βxx has average zero.
Similarly, by taking the v1 derivative of the Vlasov equation, we get

∂t∂v1
f± + v̂1∂v1

∂xf± ± E∂v1
∂v1

f± = −〈v〉−3(1 + v2
2)∂xf±,

v̂1∂x∂v1µ± ± βx∂v1∂v1µ± = −〈v〉−3(1 + v2
2)∂xµ±.

Taking the difference yields

(∂t+v̂1∂x±E∂v1)(∂v1 [f±−µ±]) = −〈v〉−3(1+v2
2)∂x[f±−µ±]∓(E−βx)∂v1∂v1µ±.(73)

We also have

‖(E − βx)∂v1∂v1µ±‖1 ≤ C|E − βx|1.
We have used the fact that supx

∫
R2 |∂v1

∂v1
µ±|dv <∞ by (11). Multiplying (73) by

sgn(∂v1
(f± − µ±)) and integrating over [0, P ]×R, we get

d

dt
‖∂v1 [f± − µ±]‖1 ≤ ‖∂x[f± − µ±]‖1 + C|E − βx|1.

With D to be chosen later larger than b0, define T ′ so that [0, T ′] is the maximal
interval in which (70) is valid. Since ‖β‖C2 < ω2, we may fix 0 < ε < ω − ‖β‖1/2.
Then choose θ so small that ‖β‖+ C1θ < (ω − ε)2 and define T ′′ by δ exp(ωT ′′) = θ.
Then T ′′, T , and θ depend on D but the other constants C and Cε (below) do not.
Then

‖βxx‖∞ + ‖∂x[f± − µ±]‖1 < (ω − ε)2

for 0 ≤ t ≤ min{T, T ′, T ′′}. Therefore, integrating (72) and plugging it into the above
inequality, we have for 0 ≤ t ≤ min{T, T ′, T ′′},

d

dt
‖∂v1 [f± − µ±]‖1 ≤(ω − ε)2

∫ t

0

‖∂v1 [f±(τ)− µ±]‖1dτ + ‖f±(0)− µ±‖1,1

+C

∫ t

0

{‖f±(τ)− µ±‖1 + |E(τ)− βx|1}dτ + C|E(t)− βx|1.
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Because of the identity ∂t(E − βx) = −j, we have d
dt |E − βx|1 ≤ ‖f − µ‖1, so that

|E(t)− βx|1 ≤ Cδeωt by (69). Letting V (t) =
∫ t

0
‖∂v1 [f±(τ)− µ±]‖1dτ , we therefore

have by (69)

V ′′ ≤ (ω − ε)2V +
1

2
Cδeωt

for some constant C. Multiplying by 2V ′ on both sides, we get

[(V ′)2]′ ≤ [(ω − ε)2V 2]′ + CδeωtV ′.

Integrating over time, we get

(V ′)2≤ (V ′(0))2 + (ω − ε)2V 2 + Cδ

[
eωtV − ω

∫ t

0

eωtV (τ)dτ

]
≤ b20δ2 + (ω − ε)2V 2 + CδeωtV

≤ (ω − ε/2)2V 2 + C2
ε δ

2e2ωt.

Taking the square root of both sides, we obtain V ′ ≤ (ω− ε/2)V +Cεδe
ωt. It follows

from this inequality and (72) that

‖∂x[f(t)− µ]‖1 + ‖∂v1 [f(t)− µ]‖1 ≤ C ′εδeωt

in [0,min{T, T ′, T ′′}] for some constant C ′ε independent of D. We choose D > C ′ε.
Then min{T, T ′′} ≤ T ′ and the lemma follows.

We now are ready to prove the nonlinear instability of periodic BGK waves.
Theorem 3. Let µ± satisfy (11), (12), (14), (61), and (62). Let β be a solution

of (4) of period Pβ with ‖β‖C2 ≤ β0, where β0 is sufficiently small. Consider 11
4RVM

with P = 2Pβ. Then there exist positive constants ε0 and C1 and a family of solutions
uδ(t) = [fδ±(t), Eδ1(t)] of 1 1

4 RVM with fδ± ≥ 0 defined for δ sufficiently small, such
that ∑

±
‖fδ±(0)− µ±(〈v〉 ∓ β, v2)‖W 1,1(RP×R2) + |Eδ1(0)− ∂xβ|W 1,1(RP ) ≤ δ

and

sup
0≤t≤C1| ln δ|

‖uδ(t)− νβ‖1 ≥ ε0.

Proof of Theorem 3. We are given nonnegative µ± that satisfy (11), (12), (14),
(61), and (62). Furthermore, β is a solution of (4) of period Pβ with ‖β‖C2 sufficiently
small as in Lemma 1 and νβ = [µβ , βx]. We must find a family of solutions uδ(t) =
[fδ±(t), Eδ(t)] of the nonlinear Vlasov–Maxwell system satisfying the conclusions of
Theorem 5, such that

‖fδ(0)− µβ‖1,1 + |Eδ(0)− βx|1,1 ≤ δ,
sup

0≤t<C1|lnδ|
‖uδ(t)− νβ‖1 ≥ ε0 > 0(74)

with ‖ · ‖1 defined by (68).
By Lemma 1, the BGK equilibria exist because of (11), (12), and (14). By Theo-

rem 2 and Lemma 11 and because of (11) and (12), we may choose Ξ = [R+, R−, E0]
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to be an eigenvector of −L satisfying (29) with ‖R‖1,1 + |E0|1 = 1 such that its eigen-
value λ has the largest (positive) real part. If λ is not real, then ‖Im Ξ‖1 ≡ r > 0 by
Lemma 12. We choose an approximation Ξδ = [Im Rδ±, Im Eδ0 ] to the imaginary part
of Ξ by Lemma 14. In case λ is real we simply do not take the imaginary parts; but
without loss of generality, we will assume λ is not real.

We choose the family of solutions uδ(t, x, v) = [fδ±(t, x, v), Eδ(t, x)] by specifying
the initial data uδ(0, x, v) = νβ + δΞδ. That is,

fδ±(0, x, v) = µ±(〈v〉 ∓ β(x), v2) + δIm Rδ±(x, v), Eδ(0, x) = βx(x) + δIm Eδ0(x).

Because of (63), fδ±(0, x, v) ≥ 0 for all x, v and for all sufficiently small δ. Because of
Lemma 14, all of the conditions of Theorem 5 are satisfied. Note that

|‖u(0)− νβ‖1 − δr| = δ(‖Ξδ‖1 − r) ≤ δ‖Ξ− Ξδ‖1 ≤ δm+1 ≤ δr/2(75)

by (64) for δ sufficiently small. By (67)

‖f(0)− µβ‖1,1 + |E(0)− βx|1 = δ‖Im Rδ‖1,1 + δ|Im Eδ0 |1
≤ Cδ[‖Im Rδ‖1 + |Im Eδ0 |1] = Cδr.(76)

Let uδ(t) = u(t) = [f+(t), f−(t), E(t)] denote the solution, where we drop the super-
script δ.

By the nonlinear Vlasov–Maxwell system

u(t)− νβ = δe−LtΞδ +

∫ t

0

e−L(t−τ)

(∓(E(τ)− βx)∂v1(f±(τ)− µ±)
0

)
dτ.(77)

We choose Λ such that

Reλ < Λ < min(1 +m, 2)Reλ.(78)

Let ‖β‖ < (Reλ)2 = ω2. We define S by

δeReλS = {ζr/(2CΛ)}1/m.
Let CΛ be the constant in Lemma 10 and ζ be the constant in Lemma 12. Let

T = sup

{
s : ‖u(t)− νβ − δe−LtΞδ‖1 ≤ ζ

4
δeReλtr, for 0 ≤ t ≤ s

}
.(79)

For 0 ≤ t ≤ min{S, T}, from Lemma 10 and (64) and (78),

‖e−Lt(Im Ξ− Ξδ)‖1 ≤ CΛe
Λtδm ≤ CΛe

ωt{δeωt}m ≤ 1

2
ζreωt

by choice of S. Hence, by (79) for such t,

‖u(t)− νβ‖1 ≤ δeReλt‖Ξ‖1 + δ‖e−Lt(Im Ξ− Ξδ)‖1 +
ζ

4
δeReλtr

≤ (1 + 3ζr/4)δeReλt.(80)

Hence for such t, from

∂x(E − βx) = ρ− βxx =

∫
R2

[(f+ − µ+)− (f− − µ−)]dv,
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we deduce

|E(t)− βx|∞ ≤ 1

P
|E(t)− βx|1 +

∑
±
‖f±(t)− µ±‖1

≤C‖u(t)− νβ‖1 ≤ CδetReλ.(81)

By Lemma 15, there exist D and θ > 0 such that if δeReT∗ = θ and 0 ≤ t ≤
min{T, S, T ∗}, then

‖∂v1
[f(t)− µβ ]‖m ≤ DδeReλt.

We may assume θ ≤ {ζr/(2CΛ)}1/m so that T ∗ ≤ S. Hence for such t, by Lemma 10
and (77) and (81),

‖u(t)− νβ − δe−LtΞδ‖1
≤ C

∫ t

0

eΛ(t−τ)|E(τ)− ∂xβ|∞
∑
±
‖∂v1 [f±(τ)− µ±]‖mdτ

≤ C
∫ t

0

eΛ(t−τ)(δeτReλ)2dτ ≤ C2(δeReλt)2(82)

since Λ < 2Reλ, with a constant C2 independent of θ, δ, and t. Thus for 0 ≤ t ≤
min{T, T ∗}, we also have

‖u(t)− νβ‖1 ≥ δ‖e−LtΞδ‖1 − ‖u(t)− νβ − δe−LtΞδ‖1
≥ δ‖e−LtImΞ‖1 − δ‖e−Lt(ImΞ− Ξδ)‖1 − C2(δeReλt)2(83)

≥ 1

2
δrζeReλt − C2(δeReλt)2

by Lemma 12 and as in (80).
If T < T ∗, then by (82) with t = T , we have

‖u(T )− νβ − δe−LTΞδ‖1 ≤ C2(δeReλT )2

< C2(δeReλT )θ <
ζ

4
rδeTReλ

by also choosing 0 < θ < ζr
4C2

. This contradicts (79). Therefore T ∗ ≤ T . By (83)
with t = T ∗, we have

‖u(T ∗)− νβ‖1 ≥ rζ

2
δeωT

∗ − C2(δeωT
∗
)2 =

rζ

2
θ − C2θ

2 >
rζ

4
θ

since 0 < θ < rζ
4C2

.

6. Instability of oscillatory-tail solutions. In this section, we study the in-
stabilities of oscillatory-tail solutions of (1). A major difficulty lies in the unbound-
edness of the spatial variable, so that the plane wave growing mode does not decay
as x → ∞. They do not belong in any Lp space, and they correspond to continuous
spectrum. We shall overcome this by employing the finite propagation speed property
of the relativistic model. We approximate the original problem on the whole line by
the asymptotic periodic problem.
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Consider a plasma which consists of electrons and ions in one space dimension
with orthogonal electric and magnetic fields (E1, E2, 0) and (0, 0, B). By normalizing
all the physical constants to be one, we derive the 1 1

2 -dimensional RVM system as

∂tf± + v̂1∂xf± ± [E1 + v̂2B]∂v1f± ± [E2 − v̂1B]∂v2f± = 0,

∂tE1 = −j1, ∂xE1 = ρ,(84)

∂tE2 = −∂xB − j2, ∂tB = −∂xE2.

Here f±(t, x, v1, v2) are the microscopic distribution functions for ions (+) and elec-
trons (−) at time t, position x, and momentum (v1, v2). The relativistic velocity is
v̂ = v√

1+|v|2 . The charge and current densities are defined by

ρ =

∫
R2

[f+ − f−]dv1dv2, jk =

∫
R2

v̂k[f+ − f−]dv1dv2

for k = 1, 2.
For the well-posedness of (84) see Theorem 4 in the appendix. For any interval

A ⊂ R, define the norm

‖u‖A =
∑
±
‖f±‖1,1 + |E|1 + |E2|1 + |B|1,

where the x-norms are taken over the interval A. Recalling Γ and Γ0 in (6) and (5),
we have a lemma.

Lemma 16. Let I be the interval I = [a− b, a+ b]. Then for all b,

lim
a→−∞ ‖Γ− Γ0‖I = 0.

Proof of Lemma 16. We write ‖Γ− Γ0‖L1(I) = I1 + I2 + I3 where we abbreviate
µ± = µ±(〈v〉 ∓ Φ(x), v2 ±Ψ(x)),

I1 =
∑
±

∫
R2

∫
I

|µ± − µ±(〈v〉 ∓ β(x), v2)| dxdv,

I2 =

∫
I

{|∂x(Φ− β)|+ |∂xΨ|}dx,

I3 = sup
x∈I

∣∣∣∣∫
R2

{µ+ − µ+(〈v〉 − β(x), v2)− µ− + µ−(〈v〉+ β(x), v2)}dv
∣∣∣∣ .

By (7) it follows immediately that lima→−∞ I2 = 0. By the decay assumption on µ±
in (11),

∆ = |µ±(〈v〉 ∓ Φ(x), v2 ±Ψ(x))− µ±(〈v〉 ∓ β(x), v2)|
≤ C〈〈v〉 ∓ β(x)± θ1〉−γ〈v2 ± θ2〉−γ̃ |Φ(x)− β(x)|

+C〈〈v〉 ∓ β(x)± θ1〉−γ〈v2 ± θ2〉−γ̃ |Ψ(x)|,
where θ1 lies between 0 and Φ(x)− β(x), and θ2 between 0 and Ψ(x). Hence

∆ ≤ C〈v〉−γ〈v2〉−γ̃(|Φ(x)− β(x)|+ |Ψ(x)|).
By assumption (11), these factors of v are integrable over R2. Hence∫

R2

∆dv ≤ C|Φ(x)− β(x)|+ C|Ψ(x)|(85)
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so that, by (7), lima→−∞(I1 + I3) = 0.
Now we write ‖|Γ− Γ0‖|I = ‖Γ− Γ0‖L1(I) + I4 + I5, where

I4 =
∑
±

∫
R2

∫
I

∑
|σ|=1

|∂σ{µ± − µ±(〈v〉 ∓ β(x), v2)}| dxdv,

I5 =

∫
I

{|∂x(Φ− β)|+ |∂xΨ|}dx.

Now

I5 ≤ 2b sup
I
{|∂x(Φ− β)|+ |∂xΨ|} → 0,

provided a is chosen sufficiently near −∞. This takes care of I5. Now I4 consists of
several terms. The first one is estimated as

|∂v1
{µ± − µ±(〈v〉 ∓ β(x), v2)}| ≤ |∂eµ± − (∂eµ±)(〈v〉 ∓ β(x), v2)|

≤ C〈v〉−γ〈v2〉−γ̃(|Φ− β|+ |Ψ|)
in the same way as we treated ∆ above. Similarly, by (11), the second term is

|∂v2{µ± − µ±(〈v〉 ∓ β(x), v2)}| ≤ sup(|∂2
eµ|+ |∂e∂v2µ|+ |∂2

v2
µ|)(|Φ− β|+ |Ψ|)

≤ C〈v〉−γ〈v2〉−γ̃(|Φ− β|+ |Ψ|).
The third term is

|∂x{µ± − µ±(〈v〉 ∓ β(x), v2)}|
= | ∓ Φ′(x)∂eµ± ±Ψ′(x)∂v2µ± ± β′(x)∂eµ±(〈v〉 ∓ β(x), v2)|
≤ |Φ′ − β′| sup |∂eµ±|+ |Ψ′| sup |∂v2µ±|
+|β′||Φ− β| sup |∂2

eµ±|+ |β′||Ψ′| sup |∂e∂v2µ±|
≤ C〈v〉−γ〈v2〉−γ̃{|Φ′ − β′|+ |Ψ′|+ |Φ− β|+ |Ψ|}.

These terms are treated in the same way as (85) to obtain

I4 ≤
∫
I

{|Φ′ − β′|+ |Ψ′|+ |Φ− β|+ |Ψ|}dx→ 0

provided a→ −∞. This proves the lemma.
Proof of the main theorem. We will break the x-axis into certain intervals. Let N

be a positive integer and δ = exp[−NP/C1], where C1 will be chosen later. We also
choose a number a near −∞ and define intervals

I = {x : |x− a| ≤ (N + 2)P}, J = {x : |x− a| ≤ (N + 1)P},
and K = {x : |x − a| ≤ P/2}. In Theorem 3 on periodic equilibria, we constructed,
for some ε0 > 0, a family of periodic initial data

uδP (0, x, v) = [fδP+, f
δ
P−, E

δ
P1, 0, 0]

with fδP± ≥ 0, Eδ2 = 0, Bδ = 0. This family is defined for all sufficiently small δ > 0
and satisfies

ε0 < sup
0≤t≤C1| ln δ|

‖uδP (t)− Γ0‖L1[0,P ](86)
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but

‖uδP (0)− Γ0‖W 1,1[0,P ] < δ.(87)

We now define nonperiodic initial data for (84) as

uδ(0) = uδP (0) for x ∈ J, uδ(0) = Γ for x /∈ I.(88)

In the transition zones L± = {(N + 1)P < ±(x − a) < (N + 2)P}, we define
the initial data uδ(0) = [fδ±(0), Eδ1(0), 0, Bδ(0)] as follows. It is consistent with (88)
to define Eδ2(0, x) ≡ 0. We define Bδ(0, x) as the linear interpolate between 0 and

∂xΨ. We define f
δ

±(0, x, v) as the linear interpolate between fδ±P (0) and µ±(〈v〉 ∓
Φ(x), v2 ±Ψ(x)). By Theorem 3 and the decay of µ± as in (11),

‖fδ±(0, x, v)− µ±(〈v〉 ∓ β(x), v2)‖W 1,1(L) + |Bδ(0, x)|L1(L)

≤ Cδ + C‖Γ− Γ0‖L.(89)

We then define for x ∈ L+

fδ±(0, x, v) = f̄δ±(0, x, v) + α±Q(x, v),

where 0 ≤ Q ∈ C∞c (L+ ×R2) with
∫
L+

∫
R2 Q = 1. The constants α± ≥ 0 are chosen

so that∫
L+

∫
R2

[fδ+(0)− fδ−(0)]dvdx = Φ′(a+ (N + 2)P )− Eδ1P (0, a+ (N + 1)P ).(90)

This requires

α+−α− = −
∫
L+

∫
R2

[
f
δ

+(0)− fδ−(0)
]
dvdx+Φ′(a+(N+2)P )−Eδ1P (0, a+(N+1)P )

so that by (89)

|α+ − α−| ≤Cδ + C‖Γ− Γ0‖L +

∣∣∣∣∫
L+

∫
R2

[µ+(〈v〉 − β, v2)− µ−(〈v〉+ β, v2)]dvdx

∣∣∣∣
+|Φ′(b+ P )− β′(b+ P )|+ |β′(b)− Eδ1P (0, b)|,

where b = a+ (N + 1)P . The integral vanishes because of the periodicity of β(x). By
(87) and (7) we deduce

|α+ − α−| ≤ Cδ + C‖Γ− Γ0‖L.(91)

Therefore from (89) and (91) we have

‖fδ±(0)− µ±(〈v〉 ∓ β, v2)‖W 1,1(L+) ≤ Cδ + C‖Γ− Γ0‖L.(92)

We then define Eδ1(0, x) in L+ as

Eδ1(0, x) = Eδ1P (0, a+ (N + 1)P ) +

∫ x

a+(N+1)P

∫
R2

(fδ+(0, y, v)− fδ−(0, y, v))dydv.
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It follows that Eδ1(0, x) is continuous at a+ (N + 2)P and that ∂xE
δ
1(0, x) = ρδ(0, x)

for x ∈ L+. Furthermore,

Eδ1(0, x)− ∂xβ(x) = Eδ1P (0, b)− ∂xβ(b)

+

∫ x

b

∫
R2

[
fδ+(0)− µ+(〈v〉 − β, v2)− fδ−(0) + µ−(〈v〉+ β, v2)

]
dydv

so that by (87) we have

|Eδ1(0)− ∂xβ|L1(L+) ≤ Cδ.(93)

We define these functions on L− by the same method. Therefore, by (89), (92), and
(93),

‖uδ(0)− Γ0‖L ≤ Cδ + C‖Γ− Γ0‖L
where C is independent of N and δ.

Then we have

‖uδ(0)− Γ‖R = ‖uδ(0)− Γ0‖J + ‖uδ(0)− Γ0‖L + ‖Γ− Γ0‖I .

By definition and by (87),

‖uδ(0)− Γ0‖J = ‖uδP (0)− Γ0‖J < C(N + 1)δ ≤ Cδ| ln δ|.

From the three preceding inequalities and Lemma 16, it follows that for a sufficiently
near −∞,

‖uδ(0)− Γ‖R ≤ Cδ| ln δ|.

We claim that

‖uδ(0)− Γ‖W 1,1(R) < Cδ| ln δ|.(94)

Proof of the claim (94). It suffices to prove that

|∂x[Eδ1(0)− ∂xΦ]|L1 + |∂x[Eδ2(0)]|L1 + |∂x[Bδ(0)− ∂xΨ]|L1 < Cδ| ln δ|.

Now Eδ2(0, x) ≡ 0. Next, ∂xE
δ
1(0) = ρδ(0) so that

|∂x[Eδ1(0)− ∂xΦ]|L1 =

∫
[fδ+(0)− µ+ − fδ−(0) + µ−]dv,

where µ± = µ±(〈v〉 ∓ Φ(x), v2 ±Ψ(x)). Hence

|∂x[Eδ1(0)− ∂xΦ]|L1 ≤
∑
±
|fδ± − µ±|1 < Cδ| ln δ|.

Finally, ∂x[Bδ(0) − ∂xΨ] = −∂2
xΨ in J , is equal to 0 outside I, and is equal to

±P−1∂xΨ(a± (N + 1)P ) in L±. Then

|∂x[Bδ(0)− ∂xΨ]|L1 ≤
∫
J

|∂2
xΨ|dx+

∑
±
|∂xΨ(a± (N + 1)P )| < Cδ| ln δ|
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by choosing a sufficiently near −∞. This proves (94).
We apply the existence theorem in the appendix to these initial data. By causality

and because NP = C1| ln δ|, we have on K = [a− P/2, a+ P/2] the inequality

sup
0≤t≤NP

‖uδ(t)− Γ0‖L1(K) = sup
0≤t≤C1| ln δ|

‖uδP (t)− Γ0‖L1(K) > ε0

by (86). The instability of Γ follows, since

sup
0≤t≤C1| ln δ|

‖uδ(t)− Γ‖L1(K) > ε0 − ‖Γ− Γ0‖L1(K) ≥ ε0/2

by Lemma 16 for a sufficiently near −∞. Now let δ′ = δ| ln δ|. Then | ln δ′| > 1
2 | ln δ|

so that

sup
0≤t≤2C1| ln δ′|

‖uδP (t)− Γ0‖L1(K) > ε0.

This proves Theorem 1 with δ replaced by δ′ and C1 replaced by 2C1.

7. Appendix. In this appendix we present the well-posedness theorems required
in the body of the paper. We begin with the full 11

2 RVM in (84) on the whole line.
Theorem 4. Let f0

± ∈ BV (Ωx × R2), f0
± ≥ 0, 〈v〉lf0

± ∈ L∞(Ωx × R2) for
l > 3, E0, B0 ∈ W 1,∞(Ωx), for every bounded open set Ωx ∈ R and ∂xE

0
1 =∫

(f0
+ − f0

−)dv. Then there exists a unique solution [f+, f−, E1, E2, B] to (84) with
initial data [f0

+, f
0
−, E

0
1 , E

0
2 , B

0] such that, for any bounded open sets Ωx ∈ R and
Ωt ∈ R, 0 ≤ f± ∈ L∞(Ωt;BV (Ωx ×R2)), 〈v〉lf± ∈ L∞(Ωt;L

∞(Ωx ×R2)), E and
B ∈ L∞(Ωt;W

1,∞(Ωx)).
Remark. Greater regularity can be obtained with extra assumptions on the initial

data.
Proof. By the method of [GSc], there is a unique global solution provided the

initial data are smooth with compact support. So for existence we require only appro-
priate a priori bounds for smooth solutions. Notice that from the causality principle,
we need only to estimate solutions locally in space. By the local energy identity over
the dependent region of [x−A, x+A], at time t, we have∑

±

∫ x+A

x−A

∫
R2

〈v〉f±(t, y, v)dvdy +
1

2

∫ x+A

x−A
[|E(t, y)|2 +B(t, y)2]dy

+
∑
±

∫ t

0

∫
R2

(〈v〉 ∓ v1)[f+ + f−](τ, x∓A∓ [t− τ ], v)dvdτ(95)

≤
∑
±

∫ x+A+t

x−A−t

∫
R2

〈v〉f±(0, y, v)dydv +
1

2

∫ x+A+t

x−A−t
[|E(0, y)|2 +B(0, y)2]dy.

It then follows that f± ∈ L∞(Ωt;L
1(Ωx × R2)) for every Ωt and Ωx, and E,B ∈

L∞loc(L
2
loc). Moreover, ρ ∈ L∞loc(L1

loc) so that E1 ∈ L∞loc(W 1,1
loc ) from ∂xE1 = ρ.

Next we employ the representation formulas for E2 and B (equations (13) and
(14) of [GSc]):

E2(t, x) =
1

2
[E2(0, x− t) + E2(0, x+ t) +B(0, x− t)−B(0, x+ t)]

−
∫ t

0

[j2(τ, x− t+ τ) + j2(τ, x+ t− τ)]dτ,(96)
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B(t, x) =
1

2
[E2(0, x− t)− E2(0, x+ t) +B(0, x− t) +B(0, x+ t)]

−
∫ t

0

[j2(τ, x− t+ τ)− j2(τ, x+ t− τ)]dτ.

Since 〈v〉 ± v1 ≥ |v̂2|, it follows from (95) with A = 0 that∣∣∣∣∫ t

0

j2(τ, x∓ (t− τ))dτ

∣∣∣∣ ≤ C ∫ t

0

∫
R2

(〈v〉 ∓ v1)[f+ + f−](τ, x∓ (t− τ), v)dvdτ

is bounded locally in x and t. Therefore (96) implies that E2(t, x) and B(t, x) are
pointwise bounded locally in x and t.

To obtain the weighted estimates for f±, we multiply the Vlasov equations by
〈v〉l to get

{∂t + v̂1∂x ± (E + v̂ ×B) · ∇v}(〈v〉lf±) = ±l〈v〉l−1v̂ · Ef±
where E + v̂ × B = [E1 + v̂2B,E2 − v̂1B, 0], ∇vf± = [∂v1f±, ∂v2f±, 0], and we have
used the fact that v̂×B ·∇v(〈v〉l) = 0. By the standard L∞ estimate for 〈v〉lf± along
the backward trajectory dx

dt = v̂1,
dv
dt = ±[E + v̂ ×B], we have

sup
R2

{〈v〉lf±(t, x, v)} ≤ sup
[x−t,x+t]×R2

{〈v〉lf±(0, y, v)}

+l

∫ t

0

sup
[x−(t−τ),x+(t−τ)]×R2

{|E(τ, y)|〈v〉lf±(τ, y, v)}dτ.

Since E is bounded on bounded sets, we obtain

〈v〉lf±(t) ∈ L∞(Ωt × Ωx ×R2)

for all Ωt and Ωx. Since l > 2, we deduce

|ρ(t, x)| =
∣∣∣∣∫

R2

(f+ − f−)dv

∣∣∣∣ ≤∑
±

∫
sup
R2

{〈v〉l|f±(t, x, v)|} 〈v〉−ldv
is also bounded on bounded sets. Since ∂xE1 = ρ, it follows that E1 ∈ L∞loc(W 1,∞

loc ).
In order to estimate the derivatives of E2 and B, it suffices by (96) to estimate

∂x
∫ t

0
j2(τ, x∓ t±τ)dτ . To this end, we use the splitting method of Lemma 3 of [GSc].

Define T± = ∂t ± ∂x and S = ∂t + v̂1∂x. From Lemma 3 of [GSc], we obtain

∂x

∫ t

0

j2(τ, x− t+ τ)dτ =

∫ t

0

∫
v̂2

1− v̂1
(T+ − S)[(f+ − f−)(τ, x− t+ τ, v)]dvdτ

= I+ + I−.

Notice that T+f+(τ, x−t+τ, v) = d
dτ f+(τ, x−t+τ, v) and Sf+ = −∇v{(E+v̂×B)f+}.

By integrating along a side of the dependent triangle, we estimate I+ as

I+ =

∫ t

0

d

dτ

∫
v̂2

1− v̂1
f+(τ, x− t+ τ, v)dvdτ

+

∫ t

0

∫
v̂2

1− v̂1
∇v([E + v̂ ×B]f+)(τ, x− t+ τ, v)dvdτ

=

∫
v̂2

1− v̂1
f+(t, x, v)dv −

∫
v̂2

1− v̂1
f+(0, x− t, v)dv

−
∫ t

0

∫
∇v
(

v̂2

1− v̂1

)
([E + v̂ ×B]f+)(τ, x− t+ τ, v)dvdτ.
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Since | v̂2

1−v̂1
)| ≤ 〈v〉, we get | v̂2

1−v̂1
f+(t, x, v)| ≤ C〈v〉−l+1 on bounded sets, thereby

bounding the first term in I+. Notice that

∂v1

(
v̂2

1− v̂1

)
=

v2

〈v〉(〈v〉 − v1)
= O(1)

and

∂v2

(
v̂2

1− v̂1

)
= − 1

〈v〉
[

v1

〈v〉 − v1
− 1

(〈v〉 − v1)2

]
= O(〈v〉)

since 〈v〉 − v1 ≥ 1
2〈v〉 . Since E and B are also bounded locally and 〈v〉lf± is bounded

locally in x and in t, it follows that the last term in I+ is bounded by

C

∫ t

0

∫
R2

〈v〉1−ldvdτ <∞

because l > 3. It follows that I+ is locally bounded and therefore so are |∂xE| and
|∂xB|.

Finally, we take derivatives of the Vlasov equation with respect to x, v1, and v2

to obtain

L±∂xf± = ∓(∂xE + v̂ × ∂xB) · ∇vf±,
L±∂v1

f± = −1 + v2
2

〈v〉3 ∂xf± ∓ ∂(v̂)

∂v1
×B · ∇vf,

L±∂v2f± = −v1v2

〈v〉3 ∂xf± ∓
∂(v̂)

∂v2
×B · ∇vf,

where L± = ∂t+v̂1∂x±(E+v̂×B)·∇v. Let us also denote ‖∂f‖1,A =
∑
±
∫
|x|≤A

∫
(|∂xf±|+

|∇vf±|)dvdx. Then these equations directly lead to the local L1 estimate

‖∂f(t)‖1,A ≤ ‖∂f(0)‖1,A+t

+C

∫ t

0

(1 + |∂xE(τ)|∞,A+t−τ + |∂xB(τ)|∞,A+t−τ ) ‖∂f(τ)‖1,A+t−τdτ.

Since E and B are locally bounded in W 1,∞, Gronwall’s inequality implies the bound-
edness of ‖∂f(t)‖1,A for bounded t and A. Upon passage to the limit we obtain
f± ∈ L∞(Ωt;BV (Ωx ×R2)) for any Ωt and Ωx.

The uniqueness proof is standard.
For 11

4RVM with periodic boundary conditions, we have the following theorem.
Theorem 5. Let f0

±(x, v1, v2) = f0
±(x, v1,−v2). Let f0

± ∈ BV (RP×R2), f0
± ≥ 0,

〈v〉lf0
± ∈ L∞(RP ×R2) for some l > 2, E0

1 ∈W 1,∞(RP ),∫ P

0

∫
R2

(f0
+ − f0

−)dvdx = 0, ∂xE
0
1 =

∫
R2

(f0
+ − f0

−)dv.

Then there exists a unique solution, of period P in x, with initial data [f0
+, f

0
−, E

0
1 ]

such that f± ∈ L∞loc(R;BV (RP ×R2)), 〈v〉lf± ∈ L∞loc(R;L∞(RP ×R2)), and E1 ∈
L∞loc(R;W 1,∞(RP )).

Proof. If l > 3, let u = [f+, f−, E1, E2, B] be the solution of 11
2RVM with the

initial data [f0
+, f

0
−, E

0
1 , 0, 0]. Let f̌±(t, x, v1, v2) = f±(t, x, v1,−v2). It is easy to verify
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that [f̌+, f̌−, E1,−E2,−B] is another solution of 11
2RVM with the same initial data.

By uniqueness in Theorem 4, they are equal. Therefore f+ and f− are even functions
of v2, and E2 ≡ B ≡ 0. Thus Theorem 5 is a special case of Theorem 4. On the other
hand, if 2 < l ≤ 3, we can prove our theorem directly just as in Theorem 4 except
that all the discussion of E2 and B can be eliminated.
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Abstract. We consider a simple model of the motions of a viscoelastic solid. The model consists
of a two-by-two system of conservation laws including a strong relaxation term. We establish the
existence of a BV-solution of this system for any positive value of the relaxation parameter. We
also show that this solution is stable with respect to the perturbations of the initial data in L1. By
deriving the uniform bounds, with respect to the relaxation parameter, on the total variation of the
solution, we obtain the convergence of the solutions of the relaxation system towards the solutions
of a scalar conservation law as the relaxation parameter δ goes to zero. Due to the Lip+ bound on
the solutions of the relaxation system, an estimate on the rate of convergence towards equilibrium is
derived. In particular, an O(

√
δ) bound on the L1-error is established.

Key words. hyperbolic conservation laws, relaxation terms, nonequilibrium, convergence to-
wards equilibrium, viscoelasticity, finite difference schemes

AMS subject classifications. 35L65, 65M99
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1. Introduction. In this paper we study the following system of conservation
laws:

ut + σx = 0,(1.1)

(σ − f(u))t +
1

δ
(σ − µf(u)) = 0,

where the parameters µ and δ satisfy 0 < µ < 1 and 0 < δ � 1. Here µ is a
fixed parameter, while we are, in particular, interested in the limit as the relaxation
parameter δ tends to zero.

If δ → 0, we formally obtain the equilibrium relation

σ̄ = µf(ū),

and hence the equilibrium model

ūt + µf(ū)x = 0.(1.2)

The purpose of this paper is to study the limit process rigorously. We will prove
that under proper conditions on the initial data, the solutions of the nonequilibrium
model converge to the solutions of the equilibrium model in L1, uniformly in δ at a
rate of O(

√
δ).

The system (1.1) arises in the modeling of motions of a viscoelastic solid, where the
relaxation phenomenon presents the strength of memory. The Riemann problem for
the system with δ = 1 is studied by Greenberg and Hsiao [4]. The zero relaxation limit
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of this viscoelasticity model with vanishing memory is analyzed in the fundamental
paper of Chen and Liu [1], where nonlinear stability in the zero relaxation limit is
established for the model. This is achieved by first deriving energy estimates from
proper construction of entropy pairs, and then applying the theory of compensated
compactness. More recent results can be found in the paper by Chen, Levermore,
and Liu [2]. In this paper, we will establish similar results, but in the BV-framework.
For any positive values of the relaxation parameter, we will prove the existence of
a BV-solution of the system. The bound on the total variation of the solution, and
a proper stability estimate with respect to perturbations of the initial data in L1,
are both independent of the relaxation parameter. Furthermore, a uniform Lip+

bound, similar to Oleinik’s entropy condition (cf. [12]), is obtained. By following
the framework of Tadmor, Nessyahu, and Kurganov [15, 11, 6], this bound is used
to establish an O(

√
δ) estimate for the L1 difference between the solution of the

relaxation system (1.1) and the solution of the equilibrium model (1.2).
Hyperbolic conservation laws with relaxation terms arise in modeling of many

physical phenomena, such as chromatography, traffic modeling, water waves, and
viscoelasticity (see, e.g., the book of Whitham [17]). General relaxation effect was
analyzed by Liu [8], and the convergence was studied by Natalini [10]. For a system
modeling chromatography, convergence and rate of convergence towards equilibrium
are proved (cf., [13, 16] for the 1D case and [14] for the 2D case). Sharper estimates
on the rate of convergence for this model have been recently derived by Kurganov and
Tadmor [6]. The approach here resembles the techniques used in [6, 13, 16]. The same
model problem is also studied independently by Yong [18] and Luo and Natalini [9].
However, these papers do not derive a rate for the convergence to equilibrium.

The structure of the paper is as follows. In section 2, we give the preliminaries
for the model, and we also state the main results of the paper. Then the prop-
erties of the finite difference solutions are studied in section 3, where we establish
the uniform bound, the TV bound, and the bound on the deviation from the equi-
librium state. In section 4, we prove that the limit of the finite difference solu-
tion is the entropy solution of the system, and the stability in L1 is then proved by
Kruzkov-type arguments. Finally, the proof of the convergence of the solution of the
nonequilibrium model towards the solution of the equilibrium model is given in sec-
tion 5.

2. Preliminaries and statement of the main results. In this section, we
will give the preliminaries of the paper and state the main result. Throughout this
paper we will assume that the flux function f = f(u) is a smooth function with the
following properties:

f(0) = 0, f ′(u) > 0, f ′′(u) ≥ 0 for all u ≥ 0.

We introduce the variable v = f(u) − σ such that u = g(σ + v), where the
function g = f−1. Under the assumption that u ≥ 0, we obtain a reformulation of
the system (1.1):

g(σ + v)t + σx = 0,(2.1)

vt =
1

δ
R(σ, v),

where R(σ, v) = ((1− µ)σ − µv). The associated equilibrium model is

g

(
σ̄

µ

)
t

+ σ̄x = 0.(2.2)
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We observe that the “reaction function” R has the monotonicity property

R(σ, v)(sgn(σ)− sgn(v)) ≥ 0.(2.3)

We seek solutions of (2.1) in the state space

S = {(σ, v) : 0 ≤ σ ≤ µ , 0 ≤ v ≤ 1− µ}(2.4)

and solutions of (2.2) in [0, µ]. For a scalar function u(x), let TV (u) denote the total
variation defined as

TV (u) := sup
h6=0

∫
R

|u(x+ h)− u(x)|
h

dx,

and the L1 norm is defined as

‖u‖L1 :=

∫
R
|u(x)| dx.

Furthermore, we define

Lip+(u) := max

(
0, ess sup

x6=y

u(x)− u(y)

x− y

)
.

Let p = R(σ, v) denote the residual. We assume the initial data (σ0, v0) satisfies
the following requirements:

i) (σ0(x), v0(x)) ∈ S, ∀x ∈ R,
ii) TV (σ0) + TV (v0) ≤M,

iii)
∥∥p0
∥∥
L1 ≤Mδ,(2.5)

iv) σ0(±∞) = v0(±∞) = 0,

v) Lip+(σ0) ≤M, Lip+(v0) ≤M.

Here, and throughout this paper, M denotes a generic positive finite constant
independent of δ and the grid parameters (∆x,∆t). Let G = G(σ, v, k, q) be defined
as

G(σ, v, k, q) =
g(σ + v)− g(k + q)

(σ + v)− (k + q)
,

and for any T > 0, let D+(T ) be the set of all nonnegative C∞-functions with compact
support in R× [0, T ]. Then the entropy solutions of (2.1) are defined as follows.

Definition 2.1. Let (σ0, v0) be the initial data of (2.1) which satisfies the as-
sumptions in (2.5). Then a pair of functions (σ, v) is called the entropy solution
of (2.1) with initial data (σ0, v0) if the following requirements are satisfied:

i) (σ, v) ∈ S, ∀(x, t) ∈ R× R+
0 ,

ii) TV (σ(·, t)) + TV (v(·, t)) ≤M, ∀t ≥ 0,
iii) ‖σ(·, t)− σ(·, τ)‖L1 + ‖v(·, t)− v(·, τ)‖L1 ≤M |t− τ |, ∀t, τ ≥ 0,
iv) Lip+(σ(·, t)) ≤M, Lip+(v(·, t)) ≤M, ∀t ≥ 0,
v) for any (k, q) ∈ S and any φ ∈ D+(T ), the following inequality is valid for

all T > 0:
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0

∫
R
[G(σ, v, k, q)(|σ − k|+ |v − q|)φt + |σ − k|φx] dx dt(2.6)

+

∫
R
G(σ0, v0, k, q)(

∣∣σ0 − k∣∣+
∣∣v0 − q∣∣)φ(x, 0) dx

−
∫
R
G(σ(x, T ), v(x, T ), k, q)(|σ(x, T )− k|+ |v(x, T )− q|) φ(x, T ) dx

+ M

∫ T

0

∫
R

[|v − q| − (v − q)sgn(σ − k)]φ dx dt

≥ 1

δ

∫ T

0

∫
R
G(σ, v, k, q)R(σ, v)[sgn(σ − k)− sgn(v − q)]φ dx dt.

Note that the entropy inequality in (2.6) is the weak formulation of an inequality
of the form

Et + Fx ≤ −1

δ
G +MH,

where

E = [G(σ, v, k, q)
(|σ − k|+ |v − q|)],

F = |σ − k|,
G = G(σ, v, k, q)R(σ, v)[sgn(σ − k)− sgn(v − q)],
H = |v − q| − (v − q)sgn(σ − k).

Remarks. In order to motivate the weak entropy formulation above, let us assume
that (σ, v) and (σ̄, v̄) are two smooth solutions of the system (2.1). The errors, σ− σ̄
and v − v̄, will then be governed by the system

[G
(
(σ − σ̄) + (v − v̄)

)
]t + (σ − σ̄)x = 0,

(v − v̄)t =
1

δ
R,

where G = G(σ, v, σ̄, v̄) and R = R(σ− σ̄, v− v̄). The system can also be rewritten as

Gt (σ − σ̄) +G (σ − σ̄)t + (σ − σ̄)x = −Gt (v − v̄)− 1

δ
GR,

G(v − v̄)t +Gt (v − v̄) = Gt (v − v̄) +
1

δ
GR.

By multiplying the first equation above by sgn(σ − σ̄) and the second one by
sgn(v − v̄), and summing, we obtain

[G(|σ − σ̄|+ |v − v̄|)]t + (|σ − σ̄|)x(2.7)

= Gt[|v − v̄| − (v − v̄)sgn(σ − σ̄)]− 1

δ
GR(sgn(σ − σ̄)− sgn(v − v̄)).

If the function G = G(x, t) satisfies a one-sided Lipschitz condition of the form

Gt(x, t) ≤M,(2.8)
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then clearly (2.7) implies that

[G(|σ − σ̄|+ |v − v̄|)]t + (|σ − σ̄|)x(2.9)

≤M [|v − v̄| − (v − v̄)sgn(σ − σ̄)]− 1

δ
GR(sgn (σ − σ̄)− sgn(v − v̄)).

The weak entropy formulation above is motivated from this differential inequality.
We also note that since G ≥ 0, it follows from (2.3) and (2.9) that

[G(|σ − σ̄|+ |v − v̄|)]t + (|σ − σ̄|)x ≤ 2M |v − v̄|.

This formal inequality indicates the continuous dependence result which will be
established rigorously in this paper.

The motivation for the entropy formulation above relies on the one-sided bound (2.8).
Since

G(σ, v, σ̄, v̄) =

∫ 1

0

g′(θ(σ + v) + (1− θ)(σ̄ + v̄)) dθ,

and

(g′(σ + v))t = −g
′′(σ + v)

g′(σ + v)
σx ≤Mσx,

the bound (2.8) will follow from an estimate of the form

Lip+(σ(·, t)),Lip+(σ̄(·, t)) ≤M.

As we shall see below, this property for solutions of the system (2.1) will essentially
follow from the corresponding assumption (2.5v) on the initial data. This ends our
discussion on the motivation for the weak entropy formulation.

For the scalar equilibrium equation, the entropy solutions are defined in the sense
of Kruzkov [5]. For a given T > 0, the entropy solutions satisfy the following inequality
for any k ∈ S and any φ ∈ D+(T ),∫ T

0

∫
R

(∣∣∣∣g( σ̄µ
)
− g

(
k

µ

)∣∣∣∣φt + |σ − k|φx
)
dx dt

+

∫
R

[∣∣∣∣g( σ̄0

µ

)
− g

(
k

µ

)∣∣∣∣φ(x, 0)−
∣∣∣∣g( σ̄(x, T )

µ

)
− g

(
k

µ

)∣∣∣∣φ(x, T )

]
dx ≥ 0.

Our main tool in analyzing the system will be a finite difference scheme derived
from the formulation (2.1). Let ∆t and ∆x denote the steplengths in the t and x
directions, respectively. We consider a semi-implicit difference scheme of the form

g
(
σn+1
j + vn+1

j

)− g (σnj + vnj
)

∆t
+
σnj − σnj−1

∆x
= 0,(2.10)

vn+1
j − vnj

∆t
=

1

δ
R
(
σn+1
j , vn+1

j

)
.

Here σnj and vnj denote approximations of σ(x, t) and v(x, t) over the gridblocks

Bnj = [xj−1/2, xj+1/2)× [tn, tn+1),
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where xj = j∆x and tn = n∆t. Let um = g(1) > 0, and let

Mf = max
u∈[0,um]

f ′(u) =

(
min
θ∈[0,1]

g′(θ)
)−1

.

Throughout the paper we shall assume that the CFL-condition

λMf ≤ 1(2.11)

is satisfied, where λ ≡ ∆t/∆x is the mesh ratio which we assume to be a constant.
The discrete initial data is taken to be the cell averages

σ0
i :=

1

∆x

∫ xi+1/2

xi−1/2

σ0(x) dx, v0
i :=

1

∆x

∫ xi+1/2

xi−1/2

v0(x) dx.

The total variation of a grid function ui is defined as

TV (u) :=
∑
i

|ui − ui−1|,

and the discrete L1-norm is

‖u‖L1 := ∆x
∑
i

|ui|.

We assume that the following requirements are satisfied:

i) (σ0
i , v

0
i ) ∈ S, ∀j,

ii) TV (σ0) + TV (v0) ≤M,

iii)
∥∥p0
∥∥
L1 ≤Mδ,(2.12)

iv) σ0
±∞ = v0

±∞ = 0,

v) sup
j

(σ0
j − σ0

j−1) ≤M∆t, sup
j

(v0
j − v0

j−1) ≤M∆t, ∀j.

Note that the requirement (v) follows directly from the assumption in (2.5v).
The existence of an entropy solution of the Cauchy problem can be obtained based

on the properties of the finite different solutions of the scheme (2.10). Furthermore,
the well-posedness of the initial value problem, independent of δ, is also proved.

Theorem 2.2. Let (σ0, v0) be the initial data of (2.1) satisfying the condi-
tions (2.5), and let (σ0

i , v
0
i ) be the discrete initial data for scheme (2.10). Let (σ∆, v∆)

be the piecewise constant representation of the grid data (σni , v
n
i ) generated by scheme

(2.10). Then the family {(σ∆, v∆)} of approximate solutions converge in (L1
loc(R ×

R+
0 ))2 towards a pair of functions (σ, v) as the grid parameters (∆x,∆t) tend to zero.

The limit is the unique entropy solution which satisfies the requirements in Defini-
tion 2.1, and the following bounds are valid:

‖p(·, t)‖L1 ≤Mδ,

Lip+(σ(·, t)) ≤M, Lip+(v(·, t)) ≤M.

Moreover, the solution is stable with respect to perturbations in initial data in
the following sense: Let (σ̄, v̄) be another entropy solution of (2.1) with initial data
(σ̄0, v̄0). Then the following bound holds for all t > 0:

‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1 ≤ M̄eMt
[∥∥σ0 − σ̄0

∥∥
L1 +

∥∥v0 − v̄0
∥∥
L1

]
,
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where M̄ and M are finite constants independent of δ.
This theorem eventually leads to the main result of this paper, i.e., the con-

vergence of the solutions of the nonequilibrium system towards the solutions of the
equilibrium equation as δ tends to zero, and an estimate of the rate of convergence.
The error estimates are derived by following the framework of Tadmor, Nessyahu, and
Kurganov [15, 11, 6]. Hence, we estimate the Lip′-norm of the error. For any function
φ ∈ L1 with

∫
φ = 0, we define

‖φ‖Lip′ := sup
ψ

∫
R φψdx

‖ψ‖W 1,∞
.

Here the supremum is taken over all smooth functions ψ with compact support and

‖ψ‖W 1,∞ := max (‖ψ‖L∞ , ||ψ||Lip) .

The following convergence result will be proved in section 5.
Theorem 2.3. Let (σ0, v0) and σ̄0 be the initial data for (2.1) and (2.2), respec-

tively. We assume that the initial data (σ0, v0) for the nonequilibrium system satisfies
the requirements in (2.5) and that σ̄0 = σ0. Let (σδ, vδ) be the entropy solution of (2.1)
with initial data (σ0, v0) and σ̄ the corresponding entropy solution of (2.2). For each
T > 0 there is a constant M , independent of δ, such that

‖uδ(·, t)− ū(·, t)‖Lip′ ≤Mδ, 0 ≤ t ≤ T,

where uδ = g(σδ + vδ) and ū = g( σ̄µ ).

We note that the variables (uδ, σδ) and (ū, σ̄) in the theorem above correspond
to the solutions of the original models (1.1) and (1.2). The following corollary is a
consequence of Theorem 2.3.

Corollary 2.4. Let (uδ, σδ) and (ū, σ̄) be as stated in Theorem 2.3. For each
T > 0 there is a constant M , independent of δ, such that for any p ∈ [1,∞)

‖uδ(·, t)− ū(·, t)‖Lp ≤Mδ
1
2p , 0 ≤ t ≤ T.

Furthermore,

‖σδ(·, t)− σ̄(·, t)‖L1 ≤M
√
δ, 0 ≤ t ≤ T.

3. Existence of a weak solution. The purpose of this section is to use the
finite difference scheme (2.10) to establish the existence of weak solutions of Cauchy
problem for (2.1) (or (1.1)). We first show that the finite difference solution is well
defined.

Lemma 3.1. Assume that {σ0
j } and {v0

j } for j ∈ Z are given. Then the solutions
{σnj } and {vnj } are uniquely determined by (2.10) for all j ∈ Z and n ≥ 0.

Proof. Assume that {σnj } and {vnj } are computed. Let

rnj = g
(
σnj + vnj

)− λ (σnj − σnj−1

)
.

The solutions {σn+1
j } and {vn+1

j } then satisfy the linear system

A

(
σn+1
j

vn+1
j

)
=

(
f
(
rnj
)

vnj

)
,
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where the 2× 2 matrix A is given by

A =

(
1 1

−(1− µ)∆t
δ 1 + µ∆t

δ

)
.

Since det(A) = 1 + ∆t
δ > 0, the results follows by induction.

The following results show that the state space S defined in (2.4), is an invariant
region for the scheme (2.10).

Lemma 3.2. Assume (σ0
j , v

0
j ) ∈ S for all j ∈ Z. Then (σnj , v

n
j ) ∈ S for all j ∈ Z

and n ≥ 0.
Proof. For given σ̄, σL and v̄, let (σ, v) be the unique solution of the system

g(σ + v) = g(σ̄ + v̄)− λ (σ̄ − σL) ,(3.1) (
1 +

∆t

δ
µ

)
v − ∆t

δ
(1− µ)σ = v̄.

This system defines functions σ = σ(σ̄, σL, v̄) and v = v(σ̄, σL, v̄). Furthermore,
σn+1
j = σ(σnj , σ

n
j−1, v

n
j ) and vn+1

j = v(σnj , σ
n
j−1, v

n
j ). Hence, the lemma can be estab-

lished by studying the functions σ and v.
Assume that (σ̄, v̄) ∈ S and σL ∈ [0, µ]. By differentiating the system (3.1) with

respect to σ̄ and by using the CFL-condition (2.11), we obtain

g′(σ + v)

(
∂σ

∂σ̄
+
∂v

∂σ̄

)
= g′(σ̄ + v̄)− λ > 0,(

1 +
∆tµ

δ

)
∂v

∂σ̄
=

∆t

δ
(1− µ)

∂σ

∂σ̄
.

From this we easily conclude that ∂σ
∂σ̄ ,

∂v
∂σ̄ > 0, and by a similar calculation we

also obtain ∂σ
∂σL

, ∂v
∂σL

> 0.
Assume now that σL = σ̄. Then we obtain from (3.1) that

σ + v = σ̄ + v̄,

and hence

∂σ

∂v̄
+
∂v

∂v̄
= 1.

Furthermore, from the second equation of (3.1) we have

∆t

δ
µ
∂v

∂v̄
=

(
1 +

∆t

δ
(1− µ)

)
∂σ

∂v̄
,

and hence we can conclude that

∂σ

∂v̄
(σ̄, σ̄, v̄) > 0,

∂v

∂v̄
(σ̄, σ̄, v̄) > 0.

From the monotonicity properties derived above we now have for (σ̄, v̄) ∈ S and
σL ∈ [0, µ]

σ(σ̄, σL, v̄) ≥ σ(0, 0, v̄) ≥ σ(0, 0, 0) = 0
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and

σ(σ̄, σL, v̄) ≤ σ(µ, µ, v̄) ≤ σ(µ, µ, 1− µ) = µ.

Similarly, we obtain

0 ≤ v(σ̄, σL, v̄) ≤ 1− µ,

and the invariance of S follows by induction.
We let pnj denote the residual, i.e., pnj = (1− µ)σnj − µvnj .
Lemma 3.3. Assume that ‖p0‖1 , TV (σ0) and TV (v0) are finite. Then

TV (σn) + TV (vn) ≤ TV (σ0) + TV (v0) .(3.2)

Furthermore, there is a constant M1, depending only on µ, g, TV (σ0), and
TV (v0) such that

‖pn‖1
δ
≤ max

(
M1,
‖p0‖1
δ

)
.

Proof. We first establish the total variation estimate. Let

anj =

(
σn+1
j + vn+1

j

)− (σnj + vnj
)

g
(
σn+1
j + vn+1

j

)− g (σnj + vnj
) .

It follows from the monotonicity of g and the CFL-condition (2.11) that

0 ≤ λanj ≤ 1.

Furthermore, the difference scheme (2.10) can be written in the form

σn+1
j = σnj − λanj

(
σnj − σnj−1

)− ∆t

δ
R
(
σn+1
j , vn+1

j

)
,(3.3)

vn+1
j = vnj +

∆t

δ
R
(
σn+1
j , vn+1

j

)
.

Hence, if we let

αnj = σnj+1 − σnj , βnj = vnj+1 − vnj ,

we obtain

αn+1
j = αnj − λanj+1α

n
j + λanj α

n
j−1 −

∆t

δ
R
(
αn+1
j , βn+1

j

)
,(3.4)

βn+1
j = βnj +

∆t

δ
R
(
αn+1
j , βn+1

j

)
.

By multiplying the first equation in (3.4) by sgn (αn+1
j ), the second equation by

sgn (βn+1
j ), using the monotonicity property (2.3), and by summation with respect

to j, we obtain ∑
j

(∣∣αn+1
j

∣∣+
∣∣βn+1
j

∣∣) ≤∑
j

(∣∣αnj ∣∣+
∣∣βnj ∣∣) ,
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and this is exactly the total variation bound.
From (3.3) it also follows that

pn+1
j = pnj − (1− µ)λanj

(
σnj − σnj−1

)− ∆t

δ
pn+1
j .

Therefore, it follows from the total variation estimate above that

‖pn+1‖1 ≤ ‖pn‖1 +M1∆t− ∆t

δ
‖pn+1‖1,

and this implies that

‖pn+1‖1
δ

≤ max

(
M1,
‖pn‖1
δ

)
.

This completes the proof of Lemma 3.3.
We recall that the initial data satisfies

‖p0‖1 ≤Mδ,

where M is independent of δ and the grid parameters ∆t and ∆x. Hence, by induction,
we have

‖pn‖1 ≤Mδ for all n ≥ 0.(3.5)

From the total variation estimate (3.2) and (3.5), we now obtain

‖σn+1 − σn‖1 + ‖vn+1 − vn‖1 ≤M∆t,

and hence we obtain L1-Lipschitz continuity with respect to time, i.e.,

‖σn − σm‖1 + ‖vn − vm‖1 ≤M |n−m|∆t,
where M is independent of δ and the grid parameters.

4. Entropy solutions and stability in L1. The purpose of this section is
to derive bounds for Lip+(σ) and Lip+(v), which can be used to obtain stability
results with respect to perturbations of the initial data which are independent of the
relaxation parameter δ. The extra regularity results will technically be derived for
the finite difference solutions (σnj , v

n
j ).

Define coefficients bnj by

bnj =
anj+1 − anj

αn+1
j + βn+1

j + αnj + βnj
,

where as above αnj = σnj+1 − σnj and βnj = vnj+1 − vnj . Observe that if we let unj =
g(σnj + vnj ), then

anj =

∫ 1

0

f ′
(
unj + θ

(
un+1
j − unj

))
dθ.

Hence, it follows from the monotonicity of f ′ and f that there is a positive constant
Mb such that

0 < bnj ≤Mb.
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We claim that for sufficiently small ∆t and δ, the initial data (σ0
j , v

0
j ) of (2.10)

satisfies the following one-side bound:

sup
j

{
(1− µ)α0

j , µβ
0
j

}
≤ (1− µ)µ2 ∆t

2δ + µ∆t
.(4.1)

Indeed, since α0
j ≤ µ and β0

j ≤ 1−µ for all j, then by (2.12v), there exists a finite
constant M∗ and a sufficiently small ∆t∗ satisfying the relation M∗ · ∆t∗ ≤ 1 such
that

sup
j

{
α0
j

} ≤M∗∆tµ, sup
j

{
β0
j

} ≤M∗∆t(1− µ),

for all ∆t ≤ ∆t∗. Then it follows that

sup
j

{
(1− µ)α0

j , µβ
0
j

} ≤ (1− µ)µM∗∆t,

for all ∆t ≤ ∆t∗. By choosing δ sufficiently small, i.e.,

δ ≤ µ(1−M∗∆t)
2M∗

,

the relation (4.1) follows.
In order to derive the proper results for the solution of the finite difference scheme,

we will need a strengthened CFL-condition. We will assume throughout this section
that

λ (Mf + (2 + µ)Mb) ≤ 1.(4.2)

Lemma 4.1. Assume that the initial data (σ0
j , v

0
j ) of (2.10) satisfies (4.1) for

sufficiently small δ and ∆t. Then

sup
j

{
(1− µ)αnj , µβ

n
j , 0
}
≤ sup

j

{
(1− µ)α0

j , µβ
0
j , 0
}
.

Proof. Define function α = α(ᾱ, β̄, αL) and β = β(ᾱ, β̄, αL) implicitly by

α = ᾱ− λa (ᾱ− αL)− λb (α+ β + ᾱ+ β̄
)
ᾱ− ∆t

δ
((1− µ)α− µβ),(4.3)

β = β̄ +
∆t

δ
((1− µ)α− µβ).

Here a and b are positive constants, bounded by Mf and Mb, respectively.
Recall that it follows from (3.4) that if a = anj and b = bnj , then αn+1

j =

α(αnj , β
n
j , α

n
j−1) and βn+1

j = β(αnj , β
n
j , αnj−1). Recall also that Lemma 3.2 implies

that |αnj | ≤ µ and |βnj | ≤ 1− µ.

We will first show that, under the assumptions that |ᾱ|, |αL| ≤ µ, |β̄| ≤ 1−µ and

ᾱ ≤ µ2 ∆t

2δ + µ∆t
,(4.4)

the functions α and β are monotonically increasing in all three arguments. Observe
that the second equation of (4.3) implies that

β =
δ

δ + µ∆t
β̄ +

(1− µ)∆t

δ + µ∆t
α.(4.5)
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Hence we can eliminate β from the first equation. We obtain the equation

cα = r,(4.6)

where

c = c(ᾱ) = 1 + λb
δ + ∆t

δ + µ∆t
ᾱ+

(1− µ)∆t

δ + µ∆t
= (1 + λbᾱ)

δ + ∆t

δ + ∆tµ

and

r = r(ᾱ , β̄ , αL) = (1− λa)ᾱ+ λaαL − λbᾱ2 − λb2δ + µ∆t

δ + µ∆t
ᾱβ̄ +

µ∆t

δ + µ∆t
β̄.

Note that since ᾱ ≥ −µ, it follows that

c ≥ c(−µ) ≥ δ + ∆t

δ + µ∆t
(1− µλMb) ,

and hence (4.2) implies that c > 0. Observe that

∂r

∂αL
= λa > 0,

which implies that ∂α
∂αL

> 0.
Similarly, by (4.2) and (4.4), we get

∂r

∂β̄
=
µ∆t− λb(2δ + µ∆t)ᾱ

δ + µ∆t
≥ µ∆t

δ + µ∆t
(1− λbµ) ≥ 0,

which implies that

∂α

∂β̄
≥ 0.

Finally, we observe that

c
∂α

∂ᾱ
=
∂r

∂ᾱ
− α dc

dᾱ

= (1− λa)− 2λbᾱ− λb2δ + µ∆t

δ + µ∆t
β̄ − λb δ + ∆t

δ + µ∆t
α

≥ (1− λa)− 2λbµ− λb2δ + µ∆t

δ + µ∆t
(1− µ)− λb δ + ∆t

δ + µ∆t
µ.

This implies that

c
∂α

∂ᾱ
≥ 1− λ(a+ b(2 + µ)).

Hence, it follows from (4.2) that

∂α

∂ᾱ
≥ 0.

We have therefore established that the function α is an increasing function in
all three of its arguments. Furthermore, from (4.5) we easily derive that β has the
corresponding property. We now use induction to complete the proof. Assume that

zn ≡ sup
j

{
(1− µ)αnj , µβ

n
j , 0

}
≤ z0.
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In particular, this implies that (cf. (4.4))

αnj ≤ µ2 ∆t

2δ + µ∆t
.

Hence, the monotonicity property of α implies that

αn+1
j ≤ α

(
zn

1− µ,
zn

µ
,
zn

1− µ
)
.

Furthermore, since zn ≥ 0,

c

(
zn

1− µ
)
≥ δ + ∆t

δ + µ∆t

and

r

(
zn

1− µ ,
zn

µ
,
zn

1− µ
)
≤ zn

1− µ +
∆t zn

δ + µ∆t
=

zn

1− µ
(
δ + ∆t

δ + µ∆t

)
.

We therefore obtain from (4.6) that

αn+1
j =

r
(
zn

1−µ ,
zn

µ ,
zn

1−µ
)

c
(
zn

1−µ
) ≤ zn

1− µ.

Finally, from (4.5), we derive

βn+1
j ≤ β

(
zn

1− µ,
zn

µ
,
zn

1− µ
)
≤ δ

δ + µ∆t

zn

µ
+

(1− µ)∆t

δ + µ∆t

zn

1− µ =
zn

µ
.

Hence, we conclude that zn+1 ≤ zn .
Next we will show that the finite difference solution satisfies a “discrete entropy

inequality.” Recall that the initial data (σ0, v0) satisfies a one-sided bound of the
form (cf. (2.12v))

sup
j

{
σ0
j − σ0

j−1, v
0
j − v0

j−1

}
≤M∆t,(4.7)

where M > 0 is a finite constant independent of δ and the mesh parameters. For
(σ, v), (k, q) ∈ S, we define

G(σ, v, k, q) =
g(σ + v)− g(k + q)

(σ + v)− (k + q)
.

Hence,

G(σ, v, k, q) ≥M−1
f > 0.

For a fixed (k, q) ∈ S, let

Gnj = G
(
σnj , v

n
j , k, q

)
,
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where {(σnj , vnj )} denotes the solution of the difference scheme (2.10). Observe that
it follows from (2.10) that

Gn+1
j −Gnj = −λ Gn+1

j −Gnj(
σn+1
j + vn+1

j

)− (σnj + vnj
) · f (un+1

j

)− f (unj )
un+1
j − unj

(
σnj − σnj−1

)
.

Therefore, since f is increasing and g is concave (because g′′ = −f ′′/(f ′)3 ≤ 0),
it follows that there is a positive constant M , depending only on f (or g), such that

Gn+1
j −Gnj ≤M max

(
0, σnj − σnj−1

)
.(4.8)

Hence, we obtain from (4.8), (4.7), and Lemma 4.1 that

Gn+1
j −Gnj ≤M∆t,(4.9)

where M > 0 is independent of δ and the mesh parameters.
Lemma 4.2. There is a positive constant M , independent of δ and the mesh

parameters such that for any (k, q) ∈ S the solution of (2.10) satisfies

Gn+1
j

(∣∣σn+1
j − k∣∣+

∣∣vn+1
j − q∣∣)

≤ Gnj
(∣∣σnj − k∣∣+

∣∣vnj − q∣∣)− λ (∣∣σnj − k∣∣− ∣∣σnj−1 − k
∣∣)

−∆t

δ
GnjR

(
σn+1
j , vn+1

j

) [
sgn

(
σn+1
j − k)− sgn

(
vn+1
j − q)]

+M∆t
[∣∣vn+1

j − q∣∣− (vn+1
j − q) sgn (σn+1

j − q)] ,
where, as above, Gnj = G(σnj , v

n
j , k, q).

Proof. Let (k, q) ∈ S. From the first equation in (2.10) we directly obtain

Gn+1
j

(
σn+1
j − k) = Gnj

(
σnj − k

)− λ (σnj − σnj−1

)
− (Gn+1

j −Gnj
) (
vn+1
j − q)−Gnj (vn+1

j − vnj
)
.

Hence, by using the second equation of (2.10), this can be written in the form

Gn+1
j

(
σn+1
j − k) = Gnj

(
σnj − k

)− λ [(σnj − k)− (σnj−1 − k
)]

(4.10)

− (Gn+1
j −Gnj

) (
vn+1
j − q)− ∆t

δ
GnjR

n+1
j ,

where Rn+1
j = R(σn+1

j , vn+1
j ).

The next step in the derivation is to multiply (4.10) by sgn (σn+1
j − k). Observe

that since 0 < λ ≤M−1
f ≤ Gnj , the inequality{

Gnj
(
σnj − k

)− λ [(σnj − k)− (σnj−1 − k
)]}

sgn
(
σn+1
j − k)

≤ Gnj
∣∣σnj − k∣∣− λ (∣∣σnj − k∣∣− ∣∣σnj−1 − k

∣∣)
holds. Hence, from (4.10), we obtain

Gn+1
j

∣∣σn+1
j − k∣∣ ≤ Gnj ∣∣σnj − k∣∣− λ (∣∣σnj − k∣∣− ∣∣σnj−1 − k

∣∣)(4.11)

−
[(
Gn+1
j −Gnj

) (
vn+1
j − q)+

∆t

δ
GnjR

n+1
j

]
sgn

(
σn+1
j − k) .
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Next, write the second equation of (2.10) in the form

Gn+1
j

(
vn+1
j − q) = Gnj

(
vnj − q

)
+
(
Gn+1
j −Gnj

) (
vn+1
j − q)

+
∆t

δ
GnjR

n+1
j .

Hence, if we multiply this equation by sgn (vn+1
j − q) and add the result to (4.11)

we obtain the inequality

Gn+1
j

(∣∣σn+1
j − k∣∣+

∣∣vn+1
j − q∣∣) ≤ Gnj (∣∣σnj − k∣∣+

∣∣vnj − q∣∣)
− λ

(∣∣σnj − k∣∣− ∣∣σnj−1 − k
∣∣)(4.12)

− ∆t

δ
GnjR

n+1
j

[
sgn

(
σn+1
j − k)− sgn

(
vn+1
j − q)]

+
(
Gn+1
j −Gnj

) (
vn+1
j − q) [sgn

(
vn+1
j − q)− sgn

(
σn+1
j − k)] .

However, note that

0 ≤ (vn+1
j − q) [sgn

(
vn+1
j − q)− sgn

(
σn+1
j − k)] ;

therefore, it follows from the one-sided bound (4.9) that(
Gn+1
j −Gnj

) (
vn+1
j − q) [sgn

(
vn+1
j − q)− sgn

(
σn+1
j − k)]

≤M∆t
[∣∣vn+1

j − q∣∣− (vn+1
j − q) sgn (σn+1

j − q)] ,
and hence the desired inequality follows from (4.12).

Consider a real valued function E : S 7→ R of the form

E(σ, v) = L(g(σ + v)) +

∫
S
P (k, q)G(σ, v, k, q)(|σ − k|+ |v − q|) dk dq.

Here, L is a linear function and P : S 7→ R is a smooth, nonnegative function.
Define, correspondingly,

F(σ) = L(σ) +

∫
S
P (k, q)|σ − k| dk dq,

G(σ̄, v̄, σ, v) =

∫
S
P (k, q)G(σ̄, v̄, k, q)R(σ, v)[ sgn (σ − k)− sgn (v − q)] dk dq,

H(v) =

∫
S
P (k, q) [|v − q| − (v − q) sgn (σ − k)] dk dq.

It follows from (2.10) and by integrating the inequality of Lemma 4.2 that the
solution of (2.10) satisfies the discrete entropy inequality

E (σn+1
j , vn+1

j

) ≤ E (σnj , vnj )− λ [F (σnj )−F (σnj−1

)]
(4.13)

− ∆t

δ
G (σnj , vnj , σn+1

j , vn+1
j

)
+M∆tH (vn+1

j

)
.

The properties of the entropy solutions of the system (2.1) will be derived from the
corresponding properties of the finite difference solutions generated by the scheme (2.10).
The convergence of the finite difference solutions is first established by a proper ap-
plication of Helly’s theorem, cf., e.g., [16].
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Lemma 4.3. Suppose (σ0, v0) is the initial data which satisfies all the assump-
tions in (2.12) and let (σN , vN )∆ be the piecewise constant representation of the data
generated by the scheme (2.10). Then, as the mesh parameters ∆x and ∆t tend
to zero, there is a subsequence of (σN , vN )∆, which converges in (L1

loc(R × R))2

to a pair of functions (σ, v). Furthermore, σ(·, t), v(·, t) ∈ BV , for all t ≥ 0, and
(σ(x, y), v(x, t)) ∈ S for (x, t) ∈ R× R+

0 , and the following estimates hold:

1. (σ(x, t), v(x, t)) ∈ S, ∀(x, t) ∈ R× R+
0 ,

2. TV (σ(·, t)) + TV (v(·, t)) ≤ TV (σ0) + TV (v0),
3. ‖p(·, t)‖1 ≤Mδ,
4. ‖σ(·, t)− σ(·, τ)‖1 + ‖v(·, t)− v(·, τ)‖1 ≤M |t− τ |,
5. Lip+(σ(·, t)) ≤MLip+(σ0), Lip+(v(·, t)) ≤MLip+(v0), ∀t ≥ 0.

Here, M is a constant independent of t and δ.
From the entropy inequality in (4.13), we derived that the limit solution is the

entropy solution of (2.1).
Lemma 4.4. The limit solution (σ, v) constructed in Lemma 4.3 is the entropy

solution of the system (2.1), which satisfies the following Kruzkov-type inequality:

∫ T

0

∫
R
[G(σ, v, k, q)(|σ − k|+ |v − q|)φt + |σ − k|φx] dx dt(4.14)

+

∫
R
G
(
σ0, v0, k, q

) (∣∣σ0 − k∣∣+
∣∣v0 − q∣∣)φ(x, 0) dx

−
∫
R
G(σ(x, T ), v(x, T ), k, q)(|σ(x, T )− k|+ |v(x, T )− q|)φ(x, T ) dx

+ M

∫ T

0

∫
R

[|v − q| − (v − q)sgn (σ − k)]φ dx dt

≥ 1

δ

∫ T

0

∫
R
G(σ, v, k, q)R(σ, v)[sgn (σ − k)− sgn (v − q)]φ dx dt.

Here, (k, q) ∈ S and φ ∈ D+(T ) is any test function with compact support. We
recall that the function G = G(σ, v, k, q) is defined as

G(σ, v, k, q) =
g(σ + v)− g(k + q)

(σ + v)− (k + q)
.

Proof. Let φ ∈ D+(T ) be a test function with compact support. We multiply the
inequality in (4.13) by φ(xj , tn), then sum over 0 ≤ n ≤ N − 1 and j ∈ Z, and apply
summation by parts with respect to n and j, and we obtain the following:

∆t
N−1∑
n=0

∆x
∑
j∈Z

[
E (σn+1

j , vn+1
j

) φ (xj , tn+1)− φ (xj , tn)

∆t

+ F (σnj ) φ (xj+1, tn)− φ (xj , tn)

∆x

]
+ ∆x

∑
j∈Z
E (σ0

j , v
0
j

)
φ
(
xj , t

0
)−∆x

∑
j∈Z
E (σNj , vNj )φ (xj , tN)
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+ ∆t

N−1∑
n=0

∆x
∑
j∈Z

MH (vn+1
j

)
φ (xj , tn)

≥ 1

δ
∆t

N−1∑
n=0

∆x
∑
j∈Z
G (σnj , vnj , σn+1

j , vn+1
j

)
φ (xj , tn) .

Now, by letting ∆x,∆t→ 0 in the previous inequality, we get∫ T

0

∫
R
[E(σ, v)φt + F(σ)φx +MH(v)φ] dx dt

+

∫
R
[E(σ0, v0)φ(x, 0)− E(σ(x, T ), v(x, T ))φ(x, T )] dx

≥ 1

δ

∫ T

0

∫
R
G(σ, v, σ, v)φdx dt.

Hence, by choosing a sequence of smooth function pairs (Eθ,Fθ,Gθ,Hθ) such that,
as θ → 0,

Eθ → G(σ, v, k, q)(|σ − k|+ |v − q|),
Fθ → |σ − k|,
Gθ → G(σ, v, k, q)R(σ, v)[ sgn (σ − k)− sgn (v − q)],
Hθ → |v − q| − (v − q) sgn (σ − k),

uniformly, and we get the inequality (4.14) in Lemma 4.4 by the dominated conver-
gence theorem.

The uniqueness and continuous dependence with respect to the initial data in L1

is then obtained by the Kruzkov-type argument.
Lemma 4.5. Let (σ, v) and (σ̄, v̄) be two entropy solutions of the system (2.1)

with initial data (σ0, v0) and (σ̄0, v̄0), respectively. Then,

‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1 ≤ M̄eMt
[∥∥σ0 − σ̄0

∥∥
L1 +

∥∥v0 − v̄0
∥∥
L1

]
.

Proof. The uniqueness of the entropy solutions is proved by generalizing the
arguments by Kruzkov [5] for scalar conservation laws. In this paper, only the sketch
of the proof is given, and we refer to [14, 16] for the details in the proof.

For any θ ∈ (0, 1], we introduce the mollifier function ωθ on R as

ωθ(x) =
1

θ
Ω
(x
θ

)
,

where Ω : R → R is a nonnegative, symmetric C∞-function with support in [−1, 1]
and satisfying ∫

R
Ω(x) dx = 1.

Let T > 0. In (4.14), we choose (k, q) = (σ̄(y, τ), v̄(y, τ)) and φ(x, t) = ωθ(x −
y)ωθ(t− τ) for solution (σ, v), and integrate over R× [0, T ] with respect to y and τ ,
and we get an inequality. For the solution (σ̄, v̄), we perform a similar operation, but
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where we reverse the role of the variable (x, t) and (y, τ), we get another inequality.
Now, adding these two inequalities, we get

L(θ) +
1

δ
l(θ) ≤ R(θ) + 2Mr(θ),

where

L(θ) =

∫ T

0

∫
R

∫
R
G(σ(x, T ), v(x, T ), σ̄, v̄)(|σ(x, T )− σ̄|+ |v(x, T )− v̄|)

ωθ(x− y)ωθ(T − τ) dx dy dτ

+

∫ T

0

∫
R

∫
R
G(σ̄(y, T ), v̄(y, T ), σ, v)(|σ̄(y, T )− σ|+ |v̄(y, T )− v|)

ωθ(x− y)ωθ(T − τ) dx dy dτ

and

R(θ) =

∫ T

0

∫
R

∫
R
G(σ(x, 0), v(x, 0), σ̄, v̄)(|σ(x, 0)− σ̄|+ |v(x, 0)− v̄|)

ωθ(x− y)ωθ(τ) dx dy dτ

+

∫ T

0

∫
R

∫
R
G(σ̄(y, 0), v̄(y, 0), σ, v)(|σ̄(y, 0)− σ|+ |v̄(y, 0)− v|)

ωθ(x− y)ωθ(τ) dx dy dτ

l(θ) =

∫ T

0

∫
R

∫ T

0

∫
R
G(σ, v, σ̄, v̄)[ sgn (σ − σ̄)− sgn (v − v̄)]

[R(σ, v)−R(σ̄, v̄)]ωθ(x− y)ωθ(t− τ) dx dt dy dτ

and

r(θ) = 2

∫ T

0

∫
R

∫ T

0

∫
R
|v − v̄|ωθ(x− y)ωθ(t− τ) dx dt dy dτ.

First we note that l(θ) is non-negative. In order to estimate the turns L(θ) and
R(θ), we introduce the function N (t) as

N (t) =

∫
R
G(σ(x, t), v(x, t), σ̄(x, t), v̄(x, t))(|σ(x, t)− σ̄(x, t)|+ |v(x, t)− v̄(x, t)|) dx.

Note that the function N (t) is equivalent to

A(t) := ‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1

in the sense that there exist two positive constants, M1,M2, such that

M1A(t) ≤ N (t) ≤M2A(t).(4.15)

Then, as θ → 0, we get(cf., e.g., [16])

L(θ)→ N (T ), R(θ)→ N (0),
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and

r(θ)→ 2M

∫ T

0

‖v(·, t)− v̄(·, t)‖L1 dt.

Combining these estimates we conclude, in the limit case as θ → 0, that

N (T ) ≤ N (0) +M

∫ T

0

N (t) dt,

where M is a finite constant independent of δ. Thus, it follows that

N (T ) ≤ N (0)eMT ,

and again, using (4.15), we get

‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1 ≤ M̄eMt
[∥∥σ0 − σ̄0

∥∥
L1 +

∥∥v0 − v̄0
∥∥
L1

]
,

where M̄ and M are finite constants independent of δ. This completes the proof of
Theorem 2.2.

5. Rate of convergence towards equilibrium: Proof of Theorem 2.3
and Corollary 2.4. We recall that Lemma 4.3 establishes bounds, uniformly with
respect to δ, on the solutions (σδ, vδ) of the non-equilibrium model (1.1) or (2.1).
By combining these estimates with standard compactness arguments we could have
concluded, more or less directly, that these solutions converge to a solution of the
equilibrium model (1.2) or (2.2) as the relaxation parameter δ tends to zero. However,
we are not only interested in convergence, but also in a rate of convergence. Hence, in
order to prove the error estimates in Theorem 2.3 and Corollary 2.4, we shall follow
the work of Tadmor [15] and Kurganov and Tadmor [6]. First we observe that the
entropy solutions of (1.1) are weak solutions of a scalar equation with an “error term.”

Lemma 5.1. Let (u, σ) (resp., (σ, v)) be the entropy solutions of (1.1) (resp., (2.1)).
Then the solutions u are weak solutions of the following “error equation”

ut + µf(u)x = −R(σ, v)x

in the sense that the following integral equation holds for all test functions φ ∈ D+(T ):∫ T

0

∫
R

(uφt + µf(u)xφx) dx dt+

∫
R
[u(x, 0)φ(x, 0)− u(x, T )φ(x, T )] dx

= −
∫ T

0

∫
R
R(σ, v)φx dx dt.

In addition, u satisfies the Lip+ bound

Lip+(u(·, t)) ≤M, ∀t ≥ 0.

Proof. Let (σ, v) be the entropy solutions of (2.1). Then they satisfy the Kruzkov-
type inequality given in (2.6). Choosing (k = σm, q = vm), where σm = min(σ) and
vm = min(v), (one can use, e.g., k = q = 0), the last terms on the left-hand side and
the right-hand side are 0. Using the definition of G, the relation u = g(σ + v), and
the fact that (k, q) are constants, we get∫ T

0

∫
R

[uφt + σφx] dx dt+

∫
R

(u(x, 0)φ(x, 0)− u(x, T )φ(x, T )) ≥ 0.
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Similarly, by choosing (k = σM , q = vM ), where σM = max(σ) and vM = max(v)
(e.g., k = µ, q = 1− µ), we get∫ T

0

∫
R

[uφt + σφx] dx dt+

∫
R

(u(x, 0)φ(x, 0)− u(x, T )φ(x, T )) ≤ 0.

These two inequalities lead to∫ T

0

∫
R

[uφt + σφx] dx dt+

∫
R

[u(x, 0)φ(x, 0)− u(x, T )φ(x, T )] = 0.

Furthermore, using the relation

σ − µf(u) = σ − µ(σ + v) = (1− µ)σ − µv = R(σ, v),

we get the weak formulation in Lemma 5.1, and thus u is a weak solution of the
error equation. Finally, the Lip+ bound follows from the monotonicity of the
function g.

Let T > 0 be given and define E = −Rx = −px. Hence, u = uδ is a weak solution
of the inhomogeneous equation

ut + µf(u)x = E,

and ū is a solution of the corresponding homogeneous equation (1.2). Furthermore,
these solutions satisfy an Oleinik condition of the form

Lip+(u(·, t)), Lip+(ū(·, t) ≤M, ∀t ≥ 0.

Since the flux function f is convex, we can therefore conclude from the arguments in
Kurganov and Tadmor [6] that the following stability estimate holds:

‖u(·, t)− ū(·, t)‖Lip′ ≤M sup
0≤τ≤t

‖E(·, τ)‖Lip′ , 0 ≤ t ≤ T.

From Lemma 4.3 we obtain that

‖E(·, t)‖Lip′ ≤ ‖p(·, t)‖L1 ≤Mδ.

This completes the proof of Theorem 2.3.

The Lp estimate in Corollary 2.4 can be proved by interpolation between the
Lip′-error estimate in Theorem 2.3 and the BV-boundness of the error, exactly in the
same way as is done in Nessyahu and Tadmor [11]. We therefore omit the details.

The L1 estimate for σ − σ̄ follows from the L1 estimate for u− ū. To be precise,
since σ̄ = µf(ū), we have

‖σ − σ̄‖L1 = ‖σ − µf(u) + µf(u)− σ̄‖L1 ≤ ‖σ − µf(u)‖L1 + ‖µ(f(u)− f(ū))‖L1

≤ ‖p‖L1 +M‖u(·, t)− ū(·, t)‖L1

≤M
√
δ,

which gives the second estimate in Corollary 2.4.
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Abstract. We prove existence of Wk,∞(Ω) solutions to some differential problems related to
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1. Introduction. In this paper we deal with the existence of almost everywhere
(a.e.) solutions to differential problems of the following kind:{

F (x,D[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ω,

u ∈ φ+W k,∞
0 (Ω),

(1.1)

where k is an integer greater than or equal to 1 (for notations and definitions see
the next section) and F is a given function which must satisfy certain coercivity
conditions; in particular our hypotheses will rule out functions F which are linear with
respect to the higher-order derivatives Dku. We shall prove the following theorem.

Theorem 1.1. Let Ω ⊂ Rn be an open Lipschitz set. Let F : Ω×· · ·×((Rn)⊗k)s →
R be a continuous function, quasi-convex and coercive in a rank-1 direction (see Def-
inition 2.3) with respect to the last variable. Let φ: Ω→ R be a Ck(Ω) function such
that

F (x,D[k−1]φ(x), Dkφ(x)) ≤ 0 ∀x ∈ Ω.

Then there exists a function u ∈ φ+W k,∞
0 (Ω) such that

F (x,D[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ω.(1.2)

As we already said, the definition of quasi-convexity is discussed in section 2.
Note however that quasi-convexity in the context of Theorem 1.1 is equivalent to the
usual convexity in the first-order case k = 1.

Theorem 1.1 extends to the higher-order case k ∈ N an analogous result recently
proved by Dacorogna and Marcellini in the first-order case k = 1 (see [7], [6], [8] and
[9]) and in the second-order case k = 2 (see [10]). We will use the same techniques
based on Baire category method, exploited by Dacorogna and Marcellini to study
vector valued problems and originally introduced by Cellina in [3] in the context of
ordinary differential inclusions (see also De Blasi and Pianigiani [11], [12] and Bressan
and Flores [2]).

We should refer also to some previous research for the first- and second-order
cases in the context of viscosity solutions (see, for example, Crandall and Lions [4];

∗Received by the editors March 20, 1998; accepted for publication (in revised form) November 2,
1998; published electronically August 26, 1999.
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see also [10] for some other references). We should also mention the recent works by
Müller and Svërak, [21] and [22] using the method of convex integration introduced
by Gromov [14].

A main difficulty in considering k ≥ 2 instead of k = 1 is the loss of approximating
a given W k,∞(Ω) function u by a sequence of piecewise polynomials of degree k. In
our context of higher-order k ∈ N, the main tool to apply Baire category method is
the density argument obtained in Lemma 3.1. Other parts are treated in similar ways
to [10].

If we consider for a moment the case k = 4 and F = F (D4u(x)), it is evident
that we can’t deal with a linear function F ; in fact the problem{

∆2u(x)− 1 = 0, a.e. x ∈ Ω,

u ∈ φ+W 4,∞
0 (Ω)

(1.3)

(here ∆2 denotes the bilaplacian operator) is over determined, while we shall provide
a solution, for example, to the problem{ |∆2u(x)| − 1 = 0, a.e. x ∈ Ω,

u ∈ φ+W 4,∞
0 (Ω).

(1.4)

Actually we shall deal only with coercive functions F (see Definition 2.3), such as
F (D4u(x)) = |∆2u(x)| in the previous example (1.4). In section 6 we shall deal more
generally with k-order systems of the type{

Fi(x,D
[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ω, i = 1, . . . , N,

u ∈ φ+W k,∞
0 (Ω)

and we will prove an existence theorem for such systems.

2. Notation and definitions. If v ∈ Rn and k ∈ N we denote by v⊗k the

tensor product

k-times︷ ︸︸ ︷
v ⊗ · · · ⊗ v. The symbol ((Rn)⊗k)s will denote the subset of symmetric

tensors of the space (Rn)
⊗k ≡ Rn ⊗ · · · ⊗ Rn︸ ︷︷ ︸

k-times

.

If Ω ⊂ Rn is a Lebesgue measurable set, the symbol |Ω| will denote its n-dimensi-
onal Lebesgue measure. If u: Ω ⊂ Rn → R is a weakly k-differentiable function we
denote Dku = (Dαu)|α|=k and D[k]u = (u,Du, . . . ,Dku).

If ψ is a C0(Ω) function, let ‖ψ‖∞,Ω ≡ supx∈Ω |ψ(x)|, while if φ ∈ Cl(Ω), let

‖φ‖l,∞,Ω ≡
∑l
i=0 supx∈Ω |Diψ(x)|.

The following definitions of convexity are known extensions for the higher-order
case k > 1 of analogous convexity conditions for the first-order vector valued case (see
Morrey [19], [20], Meyers [17], Dacorogna [5], and Ball, Currie, and Olver [1]).

Definition 2.1. We say that Λ ∈ ((Rn)⊗k)s is a rank-1 tensor if there exist
µ ∈ R, v ∈ Rn such that

Λ = µv⊗k .(2.1)

We remark that in Definition 2.1 we can always assume that the Euclidean norm
of v, |v| is 1.

Definition 2.2. We say that a function F : ((Rn)⊗k)s → R is quasi-convex if∫
Ω

F (A+Dkφ(x)) dx ≥ |Ω|F (A) ∀A ∈ ((Rn)⊗k)s(2.2)

∀Ω ⊂ Rn open bounded set and ∀φ ∈ C∞0 (Ω).
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Definition 2.3. Let Y be a metric space. We say that a function F :Y ×
((Rn)⊗k)s → R is coercive in a rank-1 direction Λ if for any bounded subset B of
Y × ((Rn)⊗k)s there exist m, q ∈ R, with m > 0 such that

F (y, ξ + tΛ) ≥ m|t| − q ∀t ∈ R, ∀(y, ξ) ∈ B.(2.3)

Definition 2.4. We denote Pε(Ω) the class of the functions u ∈W k,∞(Ω) such
that there exist Ω0, Ωj, j ∈ N open Lipschitz pairwise disjoint subsets of Ω such that

|Ω0| < ε,⋃
j≥0

Ωj = Ω,

Dku = ξj , a.e. x ∈ Ωj ∀j ∈ N.

Most of the proofs will be carried out by means of Baire’s lemma (see, e.g.,
Kolmogorov and Fomin [16]).

Lemma 2.5 (Baire’s lemma). If V is a complete metric space and V m, m ∈ N
are open dense subsets of V , then also

⋂
m∈N V

m is dense in V .

3. The main approximation lemma. We begin with a fundamental technical
lemma.

Lemma 3.1. Let Ω ⊂ Rn be an open Lipschitz set. Let t ∈ [0, 1] and let A,
B ∈ ((Rn)⊗k)s be such that rank{A− B} = 1. Let φ: Ω → R be such that Dkφ(x) =
tA + (1 − t)B = B + t(A − B) for every x ∈ Ω. Then for any ε > 0 there exist a

function u ∈ φ+W k,∞
0 (Ω) and two open Lipschitz disjoint subsets of Ω, ΩA and ΩB,

such that

‖ΩA| − t|Ω‖ ≤ ε, ||ΩA| − (1− t)|Ω|| ≤ ε,(3.1)

‖u− φ‖k−1,∞ < ε,(3.2)

Dku(x) =

{
A, x ∈ ΩA,
B, x ∈ ΩB ,

(3.3)

dist(Dku(x), co(A,B)) ≤ ε, a.e. x ∈ Ω.(3.4)

Proof. We divide the proof into several steps.
1. Let us assume that A − B = µe⊗k1 , where e1 = (1, 0, . . . , 0) is the first vector

of the canonical basis of Rn.
2. We can write Ω as the disjoint union of cubes whose faces are parallel to the

coordinates axes and of a set of small measure. If we define u = φ in this set, then
up to homotheties and translations we can always assume that Ω = (0, 1)n.

3. Let Ωε ⊂⊂ Ω be such that |Ω \ Ωε| < ε and let η ∈ Ck0 (Ω) be such that

0 ≤ η(x) ≤ 1 ∀x ∈ Ω,
η(x) = 1 ∀x ∈ Ωε,

|Dlη(x)| ≤ L

εl
∀l = 1, . . . , k and ∀x ∈ Ω \ Ωε.
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We now define a new function v: (0, 1) → R v:x1 → v(x1). Let δ > 0, x1 ∈ (0, 1)
and let I, J ⊂ (0, 1) be such that I and J are the disjoint union of open disjoint
intervals and

I ∩ J = ∅, I ∪ J = [0, 1],
|I| = t, |J | = 1− t,
v(k)(x1) =

{
(1− t)µx1 ∈ I,
−tµx1 ∈ J,

|vl(x1)| < δ ∀x1 ∈ (0, 1) and ∀l = 1, . . . , k.

Now let us define u(x) = u(x1, x
′) = φ(x) + η(x)v(x1) = η(x)(v(x1) + φ(x)) + (1 −

η(x))φ(x) and set

ΩA ≡ {x ∈ Ωε:x1 ∈ I} ,
ΩB ≡ {x ∈ Ωε:x1 ∈ J} .

Then the function u satisfies all the requests of our thesis:

Di1,...,inu = Di1,...,inφ+
∑

ls+ms=is
s=1,...,n

Dl1,...,lnηDm1,...,mnv.

If x ∈ ΩA we have

Dl1,...,lnη = 0 whenever l1 + · · ·+ ln > 0,
Dm1,...,mnv = (1− t)µδ1m1

, . . . , δ1mn whenever m1 + · · ·+mn = k,

hence,

Dku = Dkφ+ (1− t)µe⊗k1 = B + t(A−B) + (1− t)(A−B) = A,

while, if x ∈ ΩB we have

Dl1,...,lnη = 0 whenever l1 + · · ·+ ln > 0,
Dm1,...,mnv = −tµδ1m1

, . . . , δ1mn , whenever m1 + · · ·+mn = k,

hence,

Dku = Dkφ− tµe⊗k1 = B + t(A−B)− t(A−B) = B.

To obtain (3.3) we only need to choose δ < C(n, k) min{1, ε, . . . , εk}.
Now let us prove inequality (3.4):

Dkφ(x) = tA+ (1− t)B ∈ co(A,B),

Dkφ+Dkv =

{
tA+ (1− t)B + (1− t)(A−B) = A, x1 ∈ I,
tA+ (1− t)B − t(A−B) = B, x1 ∈ J ,

which belong to co(A,B). But

Di1,...,inu = Di1,...,inφ+
∑

ls+ms=is
s=1,...,n

Dl1,...,lnηDm1,...,mnv

= ηDi1,...,inφ+ (1− η)Di1,...,inφ+ ηDi1,...,inv

+
∑

l1+···+ln>0
ls+ms=is

Dl1,...,lnηDm1,...,mnv,
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which means

Dku = η(Dkφ+Dkv) + (1− η)Dkφ+ Pk

where

(Pk)i1,...,in =
∑

ls+ms=is
l1+···+ls>0

Dl1,...,lsηDm1,...,mnv.

Therefore

dist(Dku, co(A,B)) ≤ ‖Pk‖∞ ≤ C(n, k)Lmax{ε−1, . . . , ε−k+1}δ.
We choose

δ ≤ (C(n, k))−1 min{ε2, . . . , εk}
and obtain inequality (3.4).

4. Let us see why Lemma 3.1 holds also when v 6= e1. Let us define a matrix
R in the following way. We define ri1 = vi ∀i = 1, . . . , n. We can choose the other
elements of R in such a way that R is an orthogonal matrix and v = Re1, hence
A − B = µ(Re1)⊗k . If φ: Ω ⊂ Rn → R is a Ck function, we define φ̃:RtΩ →
R φ̃: y → φ(Ry). If we compute the partial derivatives of order k we have

∂kφ̃

∂yj1 , . . . , ∂yjk
(y) =

n∑
i1,...,ik=1

∂kφ

∂xi1 , . . . , ∂xik
(Ry)ri1j1 , . . . , rikjk .

But, since Dkφ(x) = µv⊗k = µ(Re1)⊗k , we get(
Dkφ

)
i1,...,ik

(x) = µri11, . . . , rik1.

Therefore

∂kφ̃

∂yj1 , . . . , ∂yjk
(y) =

n∑
i1,...,ik=1

µri11, . . . , rik1ri1j1 , . . . , rikjk

=

n∑
i1,...,ik=1

µ(Rt)1i1 , . . . , (R
t)1ik(R)i1j1 , . . . , (R)ikjk

= µδ1j1 , . . . , δ1jk = µ(e⊗k1 )j1,...,jk ,

which means

Dkφ̃(y) = µ(e1)⊗k .

So, applying the previous steps, we can find a function ũ and two open disjoint
Lipschitz subsets Ω̃

Ã
and Ω̃

B̃
that solve the problem in Ω̃ for the datum φ̃ and the

tensors Ã and B̃ defined as follows:

(Ã)j1,...,jk =
n∑

i1,...,ik=1

(A)i1,...,ikri1j1 , . . . , rikjk ,

(B̃)j1,...,jk =

n∑
i1,...,ik=1

(B)i1,...,ikri1j1 , . . . , rikjk .

The function u: Ω → R u:x → ũ(Rtx) and the sets ΩA ≡ RΩ̃
Ã

and ΩB ≡ RΩ̃
B̃

will
satisfy the thesis of the lemma.
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4. A model case. Now we give a first existence result which holds when F
depends only on the highest-order derivatives and when the boundary datum φ is a
polynomial.

Theorem 4.1. Let Ω ⊂ Rn be an open Lipschitz set. Let F : ((Rn)⊗k)s → R be a
quasi-convex function, coercive in a rank-1 direction Λ. Let φ: Ω→ R be a polynomial
of degree less than or equal to k such that F (Dkφ(x)) = F (ξ0) ≤ 0. Then there exists

a function u ∈ φ+W k,∞
0 (Ω) such that F (Dku(x)) = 0, a.e. x ∈ Ω.

Proof . We can assume that Ω is bounded and that F (ξ0) < 0, otherwise u = φ is
a solution to our problem.

For r > 0 we define

K =
{
η ∈ ((Rn)⊗k)s: η = ξ + tΛ, ξ ∈ B(ξ0, r), t ∈ R:m|t| − q ≤ 0

}
.

K is a convex compact set and{
η ∈ ((Rn)⊗k)s: η = ξ + tΛ, ξ ∈ B(ξ0, r), F (η) ≤ 0

}
⊂ K.

Let

V = {u ∈ φ+W k,∞
0 (Ω): ∃εl ↓ 0∃ul ∈ Pεl such that

‖u− ul‖k−1,∞,Ω ≤ ε,
Dkul(x) ∈ intK, a.e. x ∈ Ω,
F (Dkul(x)) < 0, a.e. x ∈ Ω,

ul ∈ u+W k,∞
0 (Ω)}.

Since φ is in V , V is nonempty and (V,Ck−1(Ω)) is a complete metric space. But K

is bounded, hence V is bounded in W k,∞
0 (Ω): Let u ∈ V and let ul be a sequence

approximating u; since ‖Dkul‖∞ ≤ C there exists a function g ∈ L∞(Ω, ((Rn)⊗k)s)
such that Dkul converges (up to a subsequence) to g in the weak*-topology of L∞.
We want to prove that g = Dkul a.e. Let gs be one of the components of g (s is a
multi-index). Let s = (s1, s

′), s1 ∈ N and let ψ ∈ C1
0 (Ω). Then∫

Ω

ψgs dx = lim
l→∞

∫
Ω

ψDsul dx = lim
l→∞

−
∫

Ω

〈
∂ψ

∂xs1
, Ds′ul

〉
dx

−
∫

Ω

〈
∂ψ

∂xs1
, Ds′u

〉
dx =

∫
Ω

ψDsu dx,

which implies g(x) = Dku(x), a.e. x ∈ Ω.

Therefore ul converges to u in the weak*topology of W k,∞
0 (Ω). Let η ∈ C∞0 (Ω)

be a nonnegative function; by the quasi-convexity of F (see Meyers [18], Fusco [13],
and Guidorzi and Poggiolini [15]) we have

0 ≥ lim inf
l→∞

∫
Ω

F (Dkul(x))η(x) dx ≥
∫

Ω

F (Dku(x))η(x) dx,

which implies

F (Dku(x)) ≤ 0, a.e. x ∈ Ω

and therefore

V ⊂ {u ∈ φ+W k,∞
0 (Ω):F (Dku(x)) ≤ 0, a.e. x ∈ Ω}.
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For each m ∈ N let us consider the set

V m =

{
u ∈ V :

∫
Ω

F (Dku(x)) ≥ −1

m

}
.

V m is an open subset of V , indeed by quasi-convexity of F , V \ V m is closed (see
again [18], [13], [15]).

We want to prove that V m is also a dense subset of (V,Ck−1(Ω)). Let v ∈ V ; by
definition there exist ε > 0 and vε such that

vε ∈ Pε(Ω),

Dkvε(x) ∈ intK, a.e. x ∈ Ω,

F (Dkvε(x)) < 0, a.e. x ∈ Ω,

vε ∈ φ+W k,∞
0 (Ω),

‖vε − v‖k−1,∞,Ω <
ε

2
.

These mean that there exist Ω0, Ωj , j ∈ N open Lipschitz pairwise disjoint subsets of
Ω such that ⋃

j≥0

Ωj = Ω,

|Ω0| ≤ ε,
Dkvε(x) = ξj ∈ intK, a.e. x ∈ Ω,

F (ξj) < 0 ∀j ∈ N.
For each j ∈ N let us consider the application τj : t ∈ R→ ξj + tΛ ∈ ((Rn)⊗k)s. Since
F (ξj + tΛ) ≥ m|t| − q ∀t ∈ R and F (ξj) < 0, there exist t1, t2, t1 < 0 < t2, such
that

F (τj(t1)) = F (τj(t2)) = 0

and therefore, there exist t̃1, t̃2, t1 < t̃1 < 0 < t̃2 < t2, such that

F (τj(t̃1)) > −ε, F (τj(t̃2)) > −ε,(4.1)

τj(t̃1) ∈ intK, τj(t̃2) ∈ intK.(4.2)

Moreover, since τj(t̃2)− τj(t̃1) = (t̃2 − t̃1)Λ is a rank-1 tensor, we can apply Lemma
3.1 in the open Lipschitz set Ωj to the tensors Aj = τj(t̃1) and Bj = τj(t̃2) with the
boundary value vε.

There exist Ω1
j ,Ω

2
j ⊂ Ωj , and a function vje such that

|Ωj \ (Ω1
j ∪ Ω2

j )| < ε2−j ,

vjε ∈ vε +W k,∞
0 (Ωj),

Dkvjε(x) = ξj + t̃1Λ, a.e. x ∈ Ω1
j ,

Dkvjε(x) = ξj + t̃2Λ, a.e. x ∈ Ω2
j ,

‖vjε − vε‖k−1,∞,Ωj < ε2−j ,

Dk(vjε(x)) ∈ intK, a.e. x ∈ Ωj ,

F (Dk(vjε(x))) < 0, a.e. x ∈ Ωj .
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If we define

uε(x) =

{
vε(x), x ∈ Ω0,
vjε(x), x ∈ Ωj , j ∈ N,

we have uε ∈ P2ε(Ω), ‖uε − vε‖k−1,∞,Ω < ε; we need to show that uε ∈ V m:∫
Ω

F (Dkuε(x)) dx =

∫
Ω0

F (Dkvε(x))dx

+
∑
j∈N

[∫
Ω1
j
∪Ω2

j

F (Dkvjε(x)) dx+

∫
Ωj\(Ω1

j
∪Ω2

j
)

F (Dkvjε(x)) dx

]
≥ −|Ω0|C −

∑
j∈N

[
ε|Ωj \ (Ω1

j ∪ Ω2
j )| − Cε2−j

]
≥ −ε [C + |Ω|+ C] ≥ −1

m

for ε > 0 sufficiently small. To conclude our proof we only must apply Baire’s
lemma: the subsets V m are open and dense in the complete metric space V , therefore⋂
m∈N V

m is also dense in V . Let u ∈ ⋂m∈N V m:

F (Dku(x)) ≤ 0, a.e. x ∈ Ω because u ∈ V ;∫
Ω

F (Dku(x)) dx ≥ 0 because u ∈
⋂
m∈N

V m;(4.3)

so it must be

F (Dku(x)) = 0, a.e. x ∈ Ω.

5. Equation with lower-order terms. In this section we prove our main the-
orem concerning the case of only one equation, i.e., Theorem 1.1.

Lemma 5.1. Let Ω ⊂ Rn be an open Lipschitz set. Let F : Ω×· · ·×((Rn)⊗k)s → R
be a continuous function, quasi-convex and coercive in a rank-1 direction Λ with respect
to the last variable. Let φ: Ω̃ → R be a Ck(Ω) function such that F (x,D[k−1]φ(x),
Dkφ(x)) < 0 ∀x ∈ Ω.

Then there exists a function u ∈ φ+W k,∞
0 (Ω) such that

F (x,D[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ω.(5.1)

Proof. As in the previous lemmas we can assume that Ω is bounded. Let us
consider the function

G(x, s, ξ) ≡ F (x, s+D[k−1]φ(x), Dkφ(x) + ξ).

G is a continuous function, coercive in the rank-1 direction Λ and quasi-convex with
respect to the variable ξ, and

G(x, 0, 0) = F (x,D[k−1]φ(x), Dkφ(x)) < 0 ∀x ∈ Ω.

So our problem is equivalent to the following one: find{
w ∈W k,∞

0 ,
G(x,D[k−1]w(x), Dkw(x)) = 0, a.e. x ∈ Ω.

(5.2)
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Let r > 0. If v ∈W k,∞
0 (Ω) and |Dkv(x)| ≤ r, a.e. x ∈ Ω, we know that ‖D[k−1]v‖∞ ≤

Lr, L = L(diam(Ω)). We consider the coercivity condition (2.3) with x ∈ Ω, |s| ≤ Lr,
|ξ| ≤ r:

There exist m, q ∈ R, m > 0 such that G(x, s, ξ + tΛ) ≥ m|t| − q ∀t ∈ R. We
define

K =
{
η ∈ ((Rn)⊗k)s: η = ξ + tΛ, |ξ| ≤ r, t ∈ R:m|t| − q ≤ 0

}
.

K is a convex compact set and{
η ∈ ((Rn)⊗k)s: η = ξ + tΛ, |ξ| ≤ r, G(x, s, η) ≤ 0 ∀x ∈ Ω ∀s: |s| ≤ Lr} ⊂ K.

Let

W =
{
u ∈W k,∞

0 (Ω):∃εl ↓ 0∃ul ∈ Pεl(Ω) such that


‖u− ul‖k−1,∞,Ω ≤ εl,
Dkul(x) ∈ intK, a.e. x ∈ Ω,
G(x,D[k−1]ul(x), Dkul(x)) < 0 ∀x ∈ Ω,

ul ∈W k,∞
0 (Ω).

Since ψ ≡ 0 is in W , W is nonempty and, as in Lemma 4.1, (W,Ck−1(Ω)) is a complete
metric space. Moreover, since G is quasi-convex we have

W ⊂ {u ∈W k,∞
0 (Ω):G(x,D[k−1]u(x), Dku(x)) ≤ 0, a.e. x ∈ Ω};

see [18], [13], [15]. For each m ∈ N let us consider the set

Wm =

{
u ∈W :

∫
Ω

G(x,D[k−1]u(x), Dku(x)) ≥ −1

m

}
.

Wm is an open subset of W ; indeed, since G is quasi-convex, W \Wm is closed.
We want to prove that Wm is also a dense subset of (W,Ck−1(Ω)). Let w ∈ W ;

by definition there exist ε > 0 and wε such that

wε ∈ Pε(Ω),

Dkwε(x) ∈ intK, a.e. x ∈ Ω,

G(x,D[k−1]wε(x), Dkwε(x)) < 0, a.e. x ∈ Ω,

wε ∈ φ+W k,∞
0 (Ω),

‖wε − w‖k−1,∞,Ω <
ε

2
.

By definition of Pε(Ω), there exist Ω0, Ωj , j ∈ N open Lipschitz pairwise disjoint
subsets of Ω such that⋃

j≥0

Ωj = Ω,

|Ω0| ≤ ε,
Dkwε(x) = ξj ∈ intK, a.e. x ∈ Ωj ∀j ∈ N,
ξj ∈ intK,

G(x,D[k−1]wε(x), ξj) < 0 ∀x ∈ Ωj ∀j ∈ N.
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Since G is continuous and Ωj is compact, there exists δj > 0 such that δj ≤ δ ∀j ∈ N
such that

G(x,D[k−1]wε(x), ξj) < −δj ∀x ∈ Ωj .

The functions D[k−1]v(•) are equicontinuous for v ∈ W ; hence there exist Ωjh, h =

1, . . . , Hj , open Lipschitz pairwise disjoint subsets such that
⋃Hj
h=1 Ωjh = Ωj and

|G(x1, D
[k−1]v1(x1), ξ)−G(x2, D

[k−1]v2(x2), ξ)| < −δj ∀x1, x2 ∈ Ωjh,(5.3)

∀v1, v2 ∈W k,∞(Ωjh), v1 − v2 ∈W k,∞
0 (Ωjh),

Dkv1(x), Dkv2(x) ∈ K,
a.e. x ∈ Ωjh, and ∀ξ ∈ K.

For each h = 1, . . . , Hj let us fix xh ∈ Ωjh; we have

G(xh, D
[k−1]wε(xh), ξj) < −δj ∀h = 1, . . . , Hj .(5.4)

We can therefore solve the following problem:{
G(xh, D

[k−1]wε(xh), Dkv(x)) = −δj , a.e. x ∈ Ωjh,

v ∈ wε +W k,∞
0 (Ωjh).

(5.5)

By Lemma 4.1, in fact there exists a solution vjh to problem (5.5) and vjh has
a sequence of approximating functions. More precisely, there exists vjhl ∈ Pεl(Ωjh)
such that 

‖vjhl − vjh‖k−1,∞,Ω ≤ εl,
Dkvjhl(x) ∈ intK, a.e. x ∈ Ω,

vjhl ∈ vjh +W k,∞
0 (Ωjh) = wε +W k,∞

0 (Ωjh),
G(xh, D

[k−1]wε(xh), Dkvjhl(x)) < −δj , a.e. x ∈ Ωjh.

By (5.3) we get

G(x,D[k−1]wjhl(x), Dkvjhl(x)) < −0, a.e. x ∈ Ωjh.(5.6)

We can now define the function v ∈Wm approximating w:

v(x) =

{
wε(x), x ∈ Ω0,
vjh(x), x ∈ Ωjh, h = 1, . . . , Hj , j ∈ N.(5.7)

So, by construction, v ∈ w +W k,∞
0 (Ω) = W k,∞

0 (Ω).
Let us compute

∫
Ω
G(x,D[k−1]v(x), Dkv(x)) dx:∫

Ω

G(x,D[k−1]v(x), Dkv(x)) dx

=

∫
Ω0

G(x,D[k−1]wε(x), Dkwε(x)) dx+
∑
j∈N

Hj∑
h=1

∫
Ωjh

G(x,D[k−1]vjh(x), Dkvjh(x)) dx

=

∫
Ω0

G(x,D[k−1]wε(x), Dkwε(x)) dx+
∑
j∈N

Hj∑
h=1

∫
Ωjh

G(x,D[k−1]wε(x), Dkvjh(x)) dx

+
∑
j∈N

Hj∑
h=1

∫
Ωjh

[
G(x,D[k−1]vjh(x), Dkvjh(x))−G(x,D[k−1]wε(x), Dkvjh(x))

]
dx.
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We have
∫

Ω0
G(x,D[k−1]wε(x), Dkwε(x)) dx ≥ −C|Ω0| because Dkwε(x) is in the

compact set K a.e. x ∈ Ω0 and G is continuous;

∑
j∈N

Hj∑
h=1

∫
Ωjh

[
G(x,D[k−1]vjh(x), Dkvjh(x))−G(x,D[k−1]wε(x), Dkvjh(x))

]
dx

≥
∑
j∈N
−δj |Ωj | ≥ −δ|Ω| by (5.3);

∑
j∈N

Hj∑
h=1

∫
Ωjh

G(x,D[k−1]wε(x), Dkvjh(x)) dx = −δj by construction.

Therefore ∫
Ω

G(x,D[k−1]v(x), Dkv(x)) dx ≥ −Cε− 2|Ω|δ ≥ −1

m

if ε and δ are small enough. The thesis follows from Baire’s lemma.
We now shall prove our main theorem.
Theorem 5.2 (Theorem 1.1). Let Ω ⊂ Rn be an open Lipschitz set. Let F : Ω×

· · · × ((Rn)⊗k)s → R be a continuous function, quasi-convex and coercive in a rank-1
direction Λ with respect to the last variable. Let φ: Ω → R be a Ck(Ω) function such
that F (x,D[k−1]φ(x), Dkφ(x)) ≤ 0 ∀x ∈ Ω.

Then there exists a function u ∈ φ+W k,∞
0 (Ω) such that

F (x,D[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ω.(5.8)

Proof. As in the previous lemmas we can assume that Ω is bounded. Let us define

Ω0 ≡
{
x ∈ Ω:F (x,D[k−1]φ(x), Dkφ(x)) = 0

}
.

Since Dkφ and F are continuous, Ω0 is closed, hence Ω \Ω0 is open. It might not be
a Lipschitz set, but Ω ⊃ Ω0, hence Dkφ(x) is defined on ∂Ω0 and we can consider the
following problem:{

F (x,D[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ω \ Ω0,

u ∈ φ+W k,∞
0 (Ω0).

(5.9)

The boundary datum φ doesn’t satisfy the compatibility condition

F (x,D[k−1]φ(x), Dkφ(x)) < 0 ∀x ∈ Ω \ Ω0.

Nevertheless we can solve (5.9): For t > 0 let us consider the set

Ωt ≡
{
x ∈ Ω \ Ω0:F (x,D[k−1]φ(x), Dkφ(x)) = t

}
.

We want to prove that the set {
t < 0: |Ωt| = 0

}
is dense in (−∞, 0). Let

Tl ≡
{
t < 0:

|Ω \ Ω0|
l + 1

< |Ωt| < |Ω \ Ω0|
l

}
.
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We have

Ω \ Ω0 =
⋃
t<0

Ωt ⊃
⋃
t∈Tl

Ωt

which implies

+∞ > |Ω \ Ω0| >
∑
t∈Tl
|Ωt| > Ω \ Ω0

l + 1
#(Tl).

Hence Tl must be a finite set and
⋃
l∈N Tl is countable, therefore its complementary

set {t < 0: |Ωt| = 0} is dense in (−∞, 0). In particular there exists a sequence tl ↑ 0
such that |Ωtl | = 0. Let us define

Ωl ≡
{
x ∈ Ω \ Ω0: tl < F (x,D[k−1]φ(x), Dkφ(x)) < tl+1

}
.(5.10)

We can find a solution ul to the problem{
F (x,D[k−1]u(x), Dku(x)) = 0, a.e. x ∈ Ωl,

u ∈ φ+W k,∞
0 (Ωl).

(5.11)

Let us define

u(x) =

{
φ(x), x ∈ Ω0,
ul(x), x ∈ Ωl.

(5.12)

Then u is a solution to our problem.

6. Systems of partial differential equations. We begin this section with a
structure lemma whose proof can be found in [9].

Proposition 6.1. Let E ⊂ ((Rn)⊗k)s. Let us define

RcoE = E

and, by induction,

Ri+1coE =
{
ξ ∈ ((Rn)⊗k)s: ξ = tA+ (1− t)B, t ∈ [0, 1],

A,B ∈ RicoE rank{A−B} = 1} .
Then

RcoE =
⋃
i∈N

RicoE.(6.1)

The next lemma is an extension of Lemma 3.1.
Lemma 6.2. Let E ⊂ ((Rn)⊗k)s be a bounded set. Let Ω ⊂ Rn be an open

Lipschitz set. Let ξ ∈ RcoE. Let φ: Ω→ R be such that Dkφ(x) ≡ ξ for every x ∈ Ω.

Then for any ε > 0 there exist a function u ∈ φ + W k,∞
0 (Ω) and an open Lipschitz

set Ω̃ ⊂ Ω such that

u ∈ Pε(Ω),(6.2)

‖u− φ‖k−1,∞,Ω < ε,(6.3)

|Ω \ Ω̃| < ε,(6.4)

Dku(x) ∈ E, a.e. x ∈ Ω̃,(6.5)

dist(Dku(x), RcoE) ≤ ε, a.e. x ∈ Ω.(6.6)
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Proof . The proof consists of an iteration of Lemma 3.1. Let ξ ∈ RcoE =⋃
i∈NRicoE; then there exists i ∈ N such that ξ ∈ RicoE. If i = 0, there is nothing to

prove; we only need to take u = φ. If i = 1, then ξ = tA+ (1− t)B where A,B ∈ E,
rank{A−B} = 1, and t ∈ [0, 1], so we only need to apply Lemma 3.1.

We shall prove Lemma 6.2 by induction on i. Let us assume ξ ∈ Ri+1coE; then
ξ = tA + (1 − t)B where A,B ∈ RicoE, rank{A − B} = 1, and t ∈ [0, 1]. We apply
Lemma 3.1 to A and B: there exist v ∈ Pε(Ω), ΩA, ΩB ⊂ Ω open Lipschitz subsets
such that

v ∈ φ+W k,∞
0 (Ω),

Dkv(x) =

{
Ax ∈ ΩA,
Bx ∈ ΩB ,

dist(Dkv(x),RcoE) < dist(Dkv(x),RicoE) < ε, a.e. x ∈ Ω,

‖v − φ‖k−1,∞,Ω <
ε

2
.

Since A, B ∈ RcoE, and ΩA, ΩB are open Lipschitz sets where v is a polynomial
whose degree is less or equal than k we have

∃Ω̃A ⊂ ΩA, ∃vA ∈ Pε(ΩA) such that

vA ∈ v +W k,∞
0 (ΩA),

DkvA ∈ E, a.e. x ∈ Ω̃A,

dist(DkvA(x),RcoE) < ε, a.e. x ∈ ΩA,

‖v − vA‖k−1,∞,ΩA <
ε

2
,

∃Ω̃B ⊂ ΩB , ∃vB ∈ Pε(ΩB) such that

vB ∈ v +W k,∞
0 (ΩB),

DkvB ∈ E, a.e. x ∈ Ω̃B ,

dist(DkvB(x),RcoE) < ε, a.e. x ∈ ΩB ,

‖v − vB‖k−1,∞,ΩB <
ε

2
,

so we just need to set

Ω̃ = Ω̃A ∪ Ω̃B ;

u(x) =

 v(x), x ∈ Ω \ (ΩA ∪ ΩB),
vA(x), x ∈ ΩA,
vB(x), x ∈ ΩB .

We omit the proofs of the following lemma and theorem which can be found in
Dacorogna and Marcellini [10] for the case k = 2.

Lemma 6.3. Let Ω ⊂ R be an open Lipschitz set. Let F δi : ((Rn)⊗k)s → R,
i = 1, . . . , N be quasi-convex functions, continuous with respect to the parameter δ ∈
[0, δ0), δ0 > 0 such that

Rco
{
ξ ∈ ((Rn)⊗k)s:F

δ
i (ξ) = 0 ∀i = 1, . . . , N

}
=
{
ξ ∈ ((Rn)⊗k)s:F

δ
i (ξ) ≤ 0 ∀i = 1, . . . , N

}
bounded set of ((Rn)⊗k)s,(6.7) {

ξ ∈ ((Rn)⊗k)s:F
δ
i (ξ) = 0 ∀i = 1, . . . , N

}
⊂ {ξ ∈ ((Rn)⊗k)s:F

0
i (ξ) < 0 ∀i = 1, . . . , N

} ∀δ ∈ (0, δ0).(6.8)
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Let φ: Ω→ R be a polynomial of degree less than or equal to k such that

F 0
i (Dkφ(x)) ≡ F 0

i (ξ0) < 0 ∀i = 1, . . . , N.(6.9)

Then there exists u ∈ φ + W k,∞
0 (Ω) such that F 0

i (Dku(x)) = 0 a.e. x ∈ Ω ∀i =
1, . . . , N .

Theorem 6.4. Let Ω ⊂ R be an open Lipschitz set. Let F δi : Ω×· · ·×((Rn)⊗k)s →
R, i = 1, . . . , N be continuous functions, quasi-convex functions with respect to the
last variable, continuous with respect to the parameter δ ∈ [0, δ0), δ0 > 0. Moreover,
let us assume that for every (x, s) ∈ Ω× R× · · · × ((Rn)⊗k−1)s,

Rco
{
ξ ∈ ((Rn)⊗k)s:F

δ
i (x, s, ξ) = 0 ∀i = 1, . . . , N

}
=
{
ξ ∈ ((Rn)⊗k)s:F

δ
i (x, s, ξ) ≤ 0 ∀i = 1, . . . , N

}
bounded set of ((Rn)⊗k)s;(6.10) {

ξ ∈ ((Rn)⊗k)s:F
δ
i (x, s, ξ) = 0 ∀i = 1, . . . , N

}
⊂ {ξ ∈ ((Rn)⊗k)s:F

0
i (x, s, ξ) < 0 ∀i = 1, . . . , N

} ∀δ ∈ (0, δ0).(6.11)

Let φ: Ω→ R be a (piecewise Ck(Ω)) function such that

F 0
i (x,D[k−1]φ(x), Dkφ(x)) < 0 ∀i = 1, . . . , N.(6.12)

Then there exists u ∈ φ + W k,∞
0 (Ω) such that F 0

i (x,D[k−1]u(x), Dku(x)) = 0 a.e.
x ∈ Ω ∀i = 1, . . . , N .
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Abstract. We prove some converse properties of long time limiting behavior (along the particle
paths) of a class of spatial decay solutions of the Boltzmann equation. It is shown that different
initial data f0 determine different long time limit functions f∞(x, v) = limt→∞ f(x + tv, v, t), and
for any given function F (x, v) which belongs to a function set, there exists a solution f such that
f∞ = F . Existence of such spatial decay solutions are proven for the inverse power potentials with
weak angular cut-off condition and for the initial data f0 satisfying f0(x, v) ≤ C(1 + |x|2 + |v|2)−k,
or f0(x, v) ≤ C(1 + |x− v|2)−k , etc. For the soft potentials, the solutions may have “locally infinite

particles,” i.e.,
∫
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1. Introduction. In this paper we study long time limiting behavior of spatial
decay solutions of the Cauchy problem for the Boltzmann equation

(B)
∂

∂t
f + v · ∇xf = Q(f, f) in R3 ×R3 × (0,∞),

f |t=0 = f0 on R3 ×R3,

which describes the time evolution of the particle number density f = f(x, v, t) (at
time t ∈ [0,∞), position x ∈ R3, and velocity v ∈ R3) of a simple monoatomic gas of
identical particles. v · ∇x denotes differentiation with respect to x in the direction of
v, and Q(f, f) is the so-called collision integral, which describes the rate of change of
f due to a binary collision. Let us first recall some basic facts about (B), which are
also used later. Under some assumption of angular cut-off, the collision operator Q
can be written as the difference of two positive bilinear forms (i.e., the gain term and
the loss term):

Q(f, g)(v) = Q+(f, g)(v)−Q−(f, g)(v),(1.1)

where

Q+(f, g)(v) =

∫∫
R3×S2

B(v − v∗, ω)f(v′)g(v′∗)dωdv,(1.2)

Q−(f, g)(v) = f(v)L(g)(v),(1.3)

L(g)(v) =

∫
R3

A(v − v∗)g(v∗)dv∗, A(z) =

∫
S2

B(z, ω)dω.
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Of course in (B), Q(f, f)(x, v, t) means Q(f(x, ·, t), f(x, ·, t))(v). In (1.2) and (1.3),
v, v∗ are the velocities of two particles before they collide, and v′, v′∗ are their velocities
after the collision. According to the conservation laws of momentum and kinetic
energy, v′, v′∗ and v, v∗ have the relations

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2,(1.4)

which are equivalent to the explicit representation:

v′ = v − 〈v − v∗, ω〉ω, v′∗ = v∗ + 〈v − v∗, ω〉ω, ω ∈ S2,(1.5)

where 〈·, ·〉 is the inner product in R3, |x|2 = 〈x, x〉, and S2 = {ω ∈ R3 | |ω| = 1}.
The collision kernel B(z, ω) is a nonnegative Borel function of |z| and |〈z, ω〉| only.
For the interaction potentials of inverse power laws, B(z, ω) takes the form (see, for
instance, [Ce], [T,M])

B(z, ω) = b(θ)|z|γ , θ = arccos(|z|−1|〈z, ω〉|), −3 < γ ≤ 1,(1.6)

where the nonnegative function b(θ) is at least assumed to satisfy the weak angular
cut-off assumption (for defining (1.1)):

B0 :=

∫ π/2

0

b(θ) sin(θ)dθ <∞;(1.7)

thus A(z) = 4πB0|z|γ is in L1
loc(R

3). The exponent γ is related to the models of
potentials of intermolecular forces, namely, the soft potentials (−3 < γ < 0), the
Maxwell molecular model (γ = 0), the hard potentials (0 < γ < 1), and the hard
sphere model (γ = 1 , b(θ) = const. cos(θ)). All these potentials are simultaneously
contained in a general form:

B(z, ω) ≤ b(θ)(|z|γ1 + |z|γ2), −3 < γ1 ≤ 0 ≤ γ2 ≤ 1,(1.8)

which includes the Grad cut-off condition [Gr]:

B(z, ω) ≤ const. cos(θ)(|z|−δ + |z|1−δ), 0 ≤ δ < 1.(1.9)

Due to the mathematical difficulties in dealing with (B), one usually considers, after
integration along the particle paths, the mild form:

f ](x, v, t) = f0(x, v) +

∫ t

0

Q(f, f)](x, v, s)ds, t ∈ [0,∞),(1.10)

where

f ](x, v, t) = f(x+ tv, v, t), Q(f, f)](x, v, t) = Q(f, f)(x+ tv, v, t), etc.

A measurable function f is called a (global) mild solution of (B) if it is nonnegative
on [0,∞) × R3 × R3 and satisfies for almost everywhere (a.e.) (x, v) ∈ R3 × R3;
Q+(f, f)](x, v, t) and Q−(f, f)](x, v, t) are both in Lloc[0,∞) and (1.10) (with
f |t=0 = f0) holds ∀ t ∈ [0,∞). If f is a mild solution of (B) and satisfies that
L(f)](x, v, t) ∈ L1

loc[0,∞) for (x, v) ∈ R3 ×R3 a.e., then (1.10) can also be written
as the following exponential multiplier form:

(1.11)

f ](x, v, t) = f0(x, v) e
−
∫ t

0
L(f)](x,v,s)ds

+

∫ t

0

Q+(f, f)](x, v, s) e
−
∫ t
s
L(f)](x,v,τ)dτ

ds.
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Equilibrium (mild) solutions of (B) are called local Maxwellians which have the form

M(x, v, t) = a(x, t)exp{−|v − u(x, t)|2/c(x, t)}, a(x, t) ≥ 0, c(x, t) > 0.(1.12)

As is well known, many results on the global existence of strong (classical), mild,
and renormalized solutions of (B) have been obtained, respectively, for certain classes
of initial data [I,S], [H], [B,T], [T1], [Po], [B,P,T] and for generally large L1 initial
data [D,L 1], [L1], [L2], [L3], [M,P]. In the kinetic theory of gases, after the existence
of global solutions of (B) are proven, a further problem is about their long time
behavior, including those along the particle paths. In the case of periodic box, i.e.,
the solutions f(x, v, t) are periodic in each xi with period Ti ∈ (0,∞), 1 ≤ i ≤ 3,
which includes the spatially homogeneous solutions, it has been proved that [A,E,P],
[W] for certain classes of such solutions f , f(x, v, t) always converge in L1(T3 ×R3)
(T3 = Π3

i=1[0, Ti]), as t→∞, to global Maxwellians M(v) = a exp{−|v−u|2/c} (i.e.,
the coefficients in (1.12) are constants) and therefore, due to the spatial periodicity,
this implies that

lim
t→∞ f

](x, v, t) = M(v) in L1(T3 ×R3),

where the constant coefficients a, u, c depend only on the initial moments
∫∫

T3×R3 f0

(x, v)(1, v, |v|2)dxdv. Even for generally large L1 initial data, a similar result (except
for the uniqueness of M(v)) has also been obtained in [L1].

In nonperiodic cases, the conclusion on these long time behaviors may be quite
different. First of all, for a class of spatial decay solutions and for generally large
L1 solutions, we must have limt→∞ f(x, v, t) = 0 in pointwise (see, for instance,
[B,P,T]) and, respectively, in L1(Ω × R3)-norm for all bounded domain Ω ⊂ R3

[D,L 1]. Some quantitative estimates in L1-norm on the time decay of large L1

(or renormalized) solutions have been also established in [Pe]. On the other hand,
under the Gard cut-off condition (1.9), Toscani [T1], [T2] proved that for any p >
1/2, k > 3/2, there exists a constant C > 0 such that if the initial datum satisfies
f0(x, v) ≤ C(1 + |x|2)−p(1 + |v|2)−k then the corresponding mild solution satisfying
f(x, v, t) ≤ 2C(1+|x−tv|2)−p(1+|v|2)−k exists and satisfies for some function f∞ ≥ 0

lim
t→∞ sup

(x,v)∈R3×R3

|f ](x, v, t)− f∞(x, v)| = 0

or equivalently, limt→∞ sup(x,v)∈R3×R3 |f(x, v, t) − f∞(x − tv, v)| = 0 (see also
Polewczak [Po] for more strong convergence of classical solutions). Moreover, if for
some constant ε > 0

f0(x, v) ≥ ε(1 + |x|2)−p(1 + |v|2)−k on R3 ×R3

then there exists a constant ε′ > 0 such that (thanks to the exponential multiplier
form (1.11))

f∞(x, v) ≥ ε′(1 + |x|2)−p(1 + |v|2)−k on R3 ×R3.

This implies that f∞(x − tv, v) cannot be any local Maxwellian because it does not
decay exponentially at infinity in the velocity variable. As a consequence (for p >
5/2, k > 7/2), if TM is the traveling Maxwellian

TM (x, v) = c1exp(−c2|x− x̄0|2 − c3|v − v̄0|2), ci > 0,
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determined by the moments of the initial datum f0∫∫
R3×R3

TM (x, v)ϕdxdv =

∫∫
R3×R3

f0(x, v)ϕdxdv, ϕ = 1, x, v, |x|2, |v|2,(1.13)

then inft≥0H(f)(t) > H(TM ), where H is the Boltzmann H-functional:

H(f)(t) =

∫∫
R3×R3

f(x, v, t)logf(x, v, t)dxdv (= H(f ])(t)).

Continuing this investigation, it is natural to ask which kind of initial data f0 can
imply that the long time limits f∞(x, v) = limt→∞ f ](x, v, t) of the corresponding
solutions satisfy that the functions f∞(x − tv, v) are local Maxwellians? Or on the
analogy of the gross determinism for long time limits in the case of periodic box,
which kind of different solutions can have the same long time limit f∞? In this paper,
our main results on these questions can be roughly stated as follows: For the collision
model (1.8) (−2 < γ1 ≤ 0 ≤ γ2 ≤ 1 ) with the weak angular cut-off condition (1.7),
and for continuous mild solutions f, g, . . . (their initial data may be different) which
have upper-bounds CΦ on R3 ×R3 × [0,∞) where Φ is one of the following three
types of functions:

Φ(x, v, t) =

(
1 +

∣∣∣∣x− tv − x0

a

∣∣∣∣2 +

∣∣∣∣v − v0

b

∣∣∣∣2)−k,(1.14)

(1.15)

Φ(x, v, t) =

(
1 +

∣∣∣∣x− tv − x0

a

∣∣∣∣2 +

∣∣∣∣v − v0

b

∣∣∣∣2)−k e−α|v−v0|β , α > 0, 0 ≤ β ≤ 2,

Φ(x, v, t) =

(
1 +

∣∣∣∣x− tv − x0

a
− v − v0

b

∣∣∣∣2)−k(1.16)

with constants a > 0, b > 0, (x0, v0) ∈ R3 ×R3 and with a suitably large k > 0
(here the third bounds (1.16) are used only for soft potentials and Maxwell model
γ1 ≤ 0 = γ2), we have the following:

(1) All such solutions’ long time limits f∞ exist in pointwise; and if f∞(x− tv, v)
is a local Maxwellian M , then f ≡M ; if inft≥0H(f)(t) = H(TM ), then f ≡ TM (x−
tv, v), especially, f0 = TM , where the traveling Maxwellian TM is determined by the
moment condition (1.13). Therefore, if f0 6= TM , then inft≥0H(f)(t) > H(TM ).

(2) If f∞ = g∞, then f ≡ g, especially, f0 = g0. That is, different initial data
determine different long time limits (along the particle paths).

(3) If initial data f0 are continuous satisfying f0(x, v) ≤ CΦ(x, v, 0) with a suitable
constant C > 0, then such continuous mild solutions exist on R3 ×R3 × [0,∞).

(4) For any continuous function F (x, v) satisfying C1Φ(x, v, 0) ≤ F (x, v) ≤
C2Φ(x, v, 0) with suitable constants C2 > C1 > 0, there exists a continuous mild
solution f such that f∞ = F .

The results (1), (2), and (4) give some converse properties for long time limiting
behavior (along the particle paths) of spatial decay or L1(R3 ×R3) solutions, and
show that there are some essential differences between spatial decay and nonspatial
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decay (e.g., spatially periodic) solutions. Detailed statements and proofs of these
results are given in section 3 for (1), (2) and section 4 for (3), (4), where under the weak
angular cut-off condition (1.7) the collision kernel B(z, ω) is taking only the inverse
power laws (1.6) (−2 < γ ≤ 1) in order to simplify our notation and proofs (including
those in section 2). As one will see, this treatment on the collision model does not
influence the results (1)–(4) above for the collision model (1.8)(−2 < γ1 ≤ 0 ≤ γ2 ≤ 1)
since the collision operators Q± are linear and increasing with respect to kernels B.
To avoid interrupting our proofs for the main results, we first prove several technical
lemmas in section 2. These lemmas are also useful for further investigation of the
Boltzmann equation.

2. Some lemmas. For any z ∈ R3 \ {0}, let S1(z) = {ω ∈ S2 | ω⊥z}, and let
d⊥ω denote the Lebesgue measure on the circle S1(z), i.e.,∫

S1(z)

g(ω)d⊥ω :=

∫ 2π

0

g(cos(φ) i + sin(φ) j)dφ, g ∈ C(S2),

where i, j ∈ S1(z), i ⊥ j. It is easily verified that the right-hand side of the integrals
is independent of the choice of i, j. The following homogeneity is obvious and will be
often used in this section:

S1(−z) = S1(z), S1(λz) = S1(z), z ∈ R \ {0}, λ > 0.(2.1)

Lemma 2.1. Let G ∈ C(S2 × S2), 0 ≤ F ∈ C(R3 ×R3), 0 ≤ f ∈ C(R3), and let
ρ ≥ 0 be measurable on (0,∞). Then∫

S2

[ ∫
S1(σ)

G(σ, ω)d⊥ω
]
dσ =

∫
S2

[ ∫
S1(ω)

G(σ, ω)d⊥σ
]
dω,(2.2) ∫

R3

ρ(|z|)
[ ∫

S1(z)

F (z, |z|ω)d⊥ω
]
dz =

∫
R3

ρ(|z|)
[ ∫

S1(z)

F (|z|ω, z)d⊥ω
]
dz,(2.3) ∫

R3

ρ(|z|)
[ ∫

S1(z)

f(|z|ω)d⊥ω
]
dz = 2π

∫
R3

ρ(|z|)f(z)dz.(2.4)

Proof. Choose δ ∈ C(R), δ ≥ 0 satisfying suppδ ⊂ [−1, 1],
∫ 1

−1
δ(t)dt = 1. Let

δn(t) = nδ(nt). Then, by the Fubini theorem, we have∫
S2

[ ∫
S2

G(σ, ω)δn(〈σ, ω〉)dω
]
dσ =

∫
S2

[ ∫
S2

G(σ, ω)δn(〈σ, ω〉)dσ
]
dω.

On the other hand, ∀ σ ∈ S2, we compute∫
S2

G(σ, ω)δn(〈σ, ω〉)dω =

∫ π

0

δn(cos(θ)) sin(θ)

∫
S1(σ)

G(σ , cos(θ)σ + sin(θ)ω)d⊥ω dθ

=

∫ 1

−1

δ(t)

∫
S1(σ)

G(σ , (t/n)σ +
√

1− (t/n)2 ω )d⊥ω dt→
∫

S1(σ)

G(σ, ω)d⊥ω, n→∞.

Similarly,

lim
n→∞

∫
S2

G(σ, ω)δn(〈σ, ω〉)dσ =

∫
S1(ω)

G(σ, ω)d⊥σ ∀ ω ∈ S2.
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Therefore (2.2) follows from the Lebesgue dominated convergence theorem. Equation
(2.3) is easily proved by first using spherical coordinate transform and the Fubini–
Tonelli theorem with the two integrals, and then applying (2.2) to their inner integrals
of angular variables. Equation (2.4) is a special case of (2.3).

Lemma 2.2. Let B(z, ω) = B̄(|z|, |z|−1|〈z, ω〉|) be a collision kernel. Then for
any nonnegative function F ∈ C(R3 ×R3),

(2.5) ∫∫
R3×S2

B(v − v∗, ω)F (v′, v′∗)dω dv∗

= 2

∫ π/2

0

sin(θ)

∫
R3

B̄(|z|, cos(θ))

[ ∫
S1(z)

F (v − cos(θ)z, v − sin(θ)|z|ω)d⊥ω
]
dz dθ

and ∀ θ ∈ (0, π/2), v ∈ R3,

(2.6) ∫
R3

B̄(|z|, cos(θ))

[ ∫
S1(z)

F (v − cos(θ)z , v − sin(θ)|z|ω)d⊥ω
]
dz

=

∫
R3

B̄(|z|, cos(θ))

[ ∫
S1(z)

F (v − cos(θ)|z|ω , v − sin(θ)z)d⊥ω
]
dz.

Furthermore, if B(z, ω) = b(θ)|z|γ and f, g ∈ C(R3) are nonnegative, then

Q+(f, g)(v) = 2

∫ π/2

0

b(θ) sin(θ)I(f, g)(θ, v)dθ(2.7)

and

I(f, g)(θ, v) ≡ I(g, f)(π/2− θ, v), θ ∈ [0, π/2], v ∈ R3,(2.8)

where

I(f, g)(θ, v) =

∫
R3

|z|γf(v − cos(θ)z)

[ ∫
S1(z)

g(v − sin(θ)|z|ω)d⊥ω
]
dz.(2.9)

Proof. Let Q+(F )(v) be the left-hand side of (2.5). By (1.5) and the spherical
coordinate transform we have

Q+(F )(v) =

∫ ∞
0

∫
S2

∫
S2

r2B̄(r, |〈σ, ω〉|)F (v − 〈σ, ω〉rω , v − rσ + 〈σ, ω〉rω)dω dσ dr

=

∫
R3

[ ∫
S2

B̄

(
|z|
∣∣∣∣〈σ, z|z|

〉∣∣∣∣)F (v −〈σ, z|z|
〉
z , v − |z|σ +

〈
σ,

z

|z|
〉
z

)
dσ

]
dz

=

∫
R3

∫ π

0

B̄(|z|, | cos(θ)|) sin(θ)

[ ∫
S1(z)

F (v − cos(θ)z , v − sin(θ)|z|ω)d⊥ω
]
dθ dz

=the right-hand side of (2.5),

where the factor 2 in (2.5) is due to S1(−z) = S1(z). Equations (2.6) and (2.8) follow
from Lemma 2.1. Equation (2.7) is a special case of (2.5).
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The “reciprocity” relation (2.8) and the formula (2.4) are important for the fol-
lowing estimation of gain term (Lemma 2.3) because they allow us to estimate (2.8)
alone, so that the angular function b(θ) is needed only to satisfy the weak angular
cut-off (1.7). In this sense, the application of (2.7)–(2.9) and (2.4) are more convenient
than those of the Carleman representation of gain term [Ca]; see also [Gu].

Lemma 2.3. Let B(z, ω) satisfy (1.6), (1.7), and let k > (3 + γ)/2. Then there
exist positive constants C± = C±(B0, γ, k) <∞ depending only on B0, γ, and k such
that if

Φ(v) = (a+ b|v − u|2)−k, a > 0, b > 0, u ∈ R,3

then

Q±(Φ,Φ)(v)

Φ(v)
≤ C±

(
1

a

)k−(3+ν)/2(
1

b

)(3+γ)/2

(a+ b|v − u|2)µ/2, v ∈ R3,(2.10)

where µ = max{γ, 0}, ν = min{γ, 0}.
Proof. Let Φ̂(v) = (1 + |v|2)−k. Then using, for instance, (2.7), (2.9), and (2.1)

with the change of integration variable z we have

Q±(Φ,Φ)(v)

Φ(v)(a+ b|v − u|2)µ/2
=

(
1

a

)k−(3+ν)/2(
1

b

)(3+γ)/2
Q±(Φ̂, Φ̂)(w)

Φ̂(w)(1 + |w|2)µ/2
,

where w =
√

b
a (v−u). Thus the estimate (2.10) is equivalent to its standard case, i.e.,

a = b = 1 and u = 0, so that in the following we can suppose that Φ(v) = (1+ |v|2)−k.
Since

Q−(Φ,Φ)(v)

Φ(v)
= L(Φ)(v) = 4πB0

∫
R3

|z|γ Φ(v − z)dz

and, by Lemma 2.2,

Q+(Φ,Φ)(v) ≤ 2B0 sup
θ∈[0,π/4]

I(Φ,Φ)(θ, v),

we see that to prove the standard case of (2.10) it suffices to prove that there exists
a positive constant C = C(γ, k) <∞ such that∫

R3

|z|γ Φ(v − z)dz ≤ C(1 + |v|2)µ/2,(2.11)

sup
θ∈[0,π/4]

I(Φ,Φ)(θ, v) ≤ CΦ(v)(1 + |v|2)µ/2.(2.12)

In the following, the same C always denotes different finite constants which depend
only on γ and k. If γ ≥ 0, then µ = γ and |z|γ ≤ (1 + |v − z|2)γ/2(1 + |v|2)γ/2 which
implies (2.11); if −3 < γ < 0, then µ = 0 and∫

R3

|z|γΦ(v − z)dz =

∫
|z|≤|v−z|

|z|γΦ(v − z)dz +

∫
|z|>|v−z|

|z|γΦ(v − z)dz

≤
∫

R3

|z|γΦ(z)dz +

∫
R3

|v − z|γΦ(v − z)dz = 8π

∫ ∞
0

r2+γ(1 + r2)−kdr <∞;
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(2.11) still holds. For any z ∈ R3 \ {0} and any ω ∈ S1(z), we have, since ω⊥z,
|z|2 = | cos(θ)z − sin(θ)|z|ω |2 ≤ 2|v − cos(θ)z|2 + 2|v − sin(θ)|z|ω |2,(2.13)

|v − cos(θ)z|2 + |v − sin(θ)|z|ω |2 = |v|2 + |v − cos(θ)z − sin(θ)|z|ω |2 ≥ |v|2.(2.14)

Using (2.13) we get

Φ(v − cos(θ)z)Φ(v − sin(θ)|z|ω)

≤ (1 + |v − cos(θ)z|2 + |v − sin(θ)|z|ω|2)−k ≤ Φ

(
z√
2

)
which together with (2.9) implies that I(Φ,Φ) is bounded:

I(Φ,Φ)(θ, v) ≤ 2π

∫
R3

|z|γΦ

(
z√
2

)
dz ≤ C.

Thus (2.12) holds for |v| ≤ 1. In the following we suppose that |v| > 1, and consider
two cases for large and small θ in [0, π/4].

Case 1. arctan(1/4) ≤ θ ≤ π/4. By (2.14) we have

Φ(v − cos(θ)z)Φ(v − sin(θ)|z|ω) ≤ Φ

(
v√
2

)
[Φ(v − cos(θ)z) + Φ(v − sin(θ)|z|ω)].

Then, applying Lemma 2.1 and (2.4) we obtain

I(Φ,Φ)(θ, v) ≤ Φ

(
v√
2

)
×
[ ∫

R3

|z|γ
∫

S1(z)

Φ(v − cos(θ)z)d⊥ωdz +

∫
R3

|z|γ
∫

S1(z)

Φ(v − sin(θ)|z|ω)d⊥ωdz
]

= 2πΦ

(
v√
2

)[∫
R3

|z|γΦ(v − cos(θ)z)dz +

∫
R3

|z|γΦ(v − sin(θ)z)dz

]

= πΦ

(
v√
2

)[(
1

cos(θ)

)3+γ

+

(
1

sin(θ)

)3+γ ] ∫
R3

|z|γΦ(v − z)dz ≤ CΦ(v)(1 + |v|2)µ/2,

where the last inequality is due to (2.11) and also due to the fact that Φ( v√
2
) ≤ CΦ(v).

Case 2. 0 ≤ θ ≤ arctan(1/4). We have, by homogeneity (2.1),

I(Φ,Φ)(θ, v) =

(
1

cos(θ)

)3+γ ∫
R3

|z|γΦ(v − z)
∫

S1(z)

Φ(v − tan(θ)|z|ω)d⊥ω dz

≤ C[I1(Φ,Φ)(θ, v) + I2(Φ,Φ)(θ, v)],

where

I1(Φ,Φ)(θ, v) =

∫
tan(θ)|z|≤ 1

2 |v|
|z|γΦ(v − z)

∫
S1(z)

Φ(v − tan(θ)|z|ω)d⊥ω dz,

I2(Φ,Φ)(θ, v) =

∫
tan(θ)|z|> 1

2 |v|
|z|γΦ(v − z)

∫
S1(z)

Φ(v − tan(θ)|z|ω)d⊥ω dz.

By (2.11) we have

I1(Φ,Φ)(θ, v) ≤ 2πΦ(
v

2
)

∫
tan(θ)|z|≤ 1

2 |v|
|z|γΦ(v − z)dz ≤ CΦ(v)(1 + |v|2)µ/2.
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For I2(Φ,Φ)(θ, v), since tan(θ)|z| > 1
2 |v| implies |v − z| ≥ ( 1

2tan(θ) − 1)|v| ≥ |v|
4tan(θ) , it

follows from (2.4) and (2.11) that

I2(Φ,Φ)(θ, v) ≤ Φ

(
v

4tan(θ)

)∫
R3

|z|γ
∫

S1(z)

Φ(v − tan(θ)|z|ω)d⊥ω dz

= Φ

(
v

4tan(θ)

)
2π

(
1

tan(θ)

)3+γ ∫
R3

|z|γΦ(v − z)dz

≤ C Φ

(
v

4tan(θ)

)(
1

tan(θ)

)3+γ

(1 + |v|2)µ/2

≤ C
(

1

|v|
)2k

(tan(θ))2k−3−γ(1 + |v|2)µ/2 ≤ C Φ(v)(1 + |v|2)µ/2.

Therefore, combining these estimates then leads to (2.12).
Lemma 2.4. Let h ∈ L1[0,∞) be positive and decreasing on [0,∞). Then ∀

(x, v) ∈ R3 ×R3 ∫ ∞
0

h

( |x+ tv|√
1 + t2

)
dt

1 + t2
≤ C (1 + |x|2 + |v|2)−1/2,(2.15)

where C = max{
√

2π
2 h(0),

√
2π‖h‖L1[0,∞)}.

Proof. Denote by Ix,v the left-hand side of (2.15), and let ρ =
√|x|2 + |v|2. Since

Ix,v ≤ π
2h(0), (2.15) holds for ρ ≤ 1. Suppose that ρ > 1 . Let sin(α) = |x|/ρ with

α ∈ [0, π/2]. Then

Ix,v =

∫ π/2

0

h(| cos(θ)x+ sin(θ)v|)dθ

≤
∫ π/2

0

h(| cos(θ)|x| − sin(θ)|v| |)dθ =

∫ π/2

0

h(ρ| sin(θ − α)|)dθ

≤
∫ π/2

−π/2
h

(
2

π
ρ|θ|
)
dθ ≤ π

ρ
‖h‖L1[0,∞) ≤

√
2π‖h‖L1[0,∞)(1 + ρ2)−1/2.

Introducing polynomials

P (x, v, t) = 1 +

∣∣∣∣x− tv − x0

a

∣∣∣∣2 +

∣∣∣∣v − v0

b

∣∣∣∣2,(2.16)

P̃ (x, v, t) = 1 +

∣∣∣∣x− tv − x0

a
− v − v0

b

∣∣∣∣2(2.17)

the functions (1.14)–(1.16) can then be written, respectively,

Φ = P−k, P−ke−α|v−v0|β , P̃−k.

Lemma 2.5. Assume that B(z, ω) satisfy (1.6), (1.7) with −2 < γ ≤ 1. Let
k > (3 + γ)/2, µ = max{γ, 0}, ν = min{γ, 0}, and let Φ be given by (1.14) or
(1.15), or given by (1.16) for γ ≤ 0. Then

(i)

(2.18)

C±p := sup
(x,v)∈R3×R3

1

Φ(x, v, 0)

[ ∫ ∞
0

(1 + t2)
3+γ

2 (p−1)(Q±(Φ,Φ)](x, v, t))pdt

]1/p

<∞,
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where p ≥ 1 is arbitrary for γ ≤ 0, and p = 1/γ for 0 < γ ≤ 1.
(ii) There exist positive constants D± = D±(B0, γ, k) <∞ such that ∀a, b > 0

sup
(x,v)∈R3×R3

1

Φ(x, v, 0)

∫ ∞
0

Q±(Φ,Φ)](x, v, t)dt ≤ D± a b2+γ .(2.19)

(iii) There exists a positive constant C = C(B0, γ, k, a, b) <∞ such that

sup
(x,v)∈R3×R3

1

Φ(x, v, 0)

∫ ∞
t

Q±(Φ,Φ)](x, v, s)ds ≤ C (1 + t)−2−ν , t ≥ 0,(2.20)

Q±(Φ,Φ)(x, v, t) ≤ C (1 + t2)−(3+γ)/2 Φ(x, v, t)(P (x, v, t))µ/2,(2.21)

L(Φ)(x, v, t) ≤ C (1 + t2)−(3+ν)/2(1 + |v − v0|µ).(2.22)

(iv) If f, g ∈ C(R3 ×R3× [0,∞)) are nonnegative and satisfy f, g ≤ CΦ for some
constant C <∞, then the functions

(2.23)

Q+(f, g), L(f),

∫ t

0

Q±(f, g)](x− tv, v, s)ds,
∫ ∞
t

Q±(f, g)](x− tv, v, s)ds

are all continuous on R3 ×R3 × [0,∞).
Proof. (i)–(iii). Since 0 ≤ β ≤ 2, we have, by the second equation (1.4),

|v′−v0|β+|v′∗−v0|β ≥ (|v′−v0|2+|v′∗−v0|2)β/2 = (|v−v0|2+|v∗−v0|2)β/2 ≥ |v−v0|β .
This implies that if Φ is given by (1.14) and Ψ is given by (1.15) then

Ψ(x, v′, t)Ψ(x, v′∗, t) ≤ e−α|v−v0|β Φ(x, v′, t)Φ(x, v′∗, t)

which together with Φ](x, v, t) ≡ Φ(x, v, 0),Ψ](x, v, t) ≡ Ψ(x, v, 0) imply

Q±(Ψ,Ψ)](x, v, t)

Ψ(x, v, 0)
≤ Q±(Φ,Φ)](x, v, t)

Φ(x, v, 0)
.

Therefore we need only to prove (2.18)–(2.22) for functions (1.14) and (1.16). Suppose
first that Φ is given by (1.14), i.e., Φ = (P )−k, where P is defined by (2.16). Then
using the identity

P (x, v, t) ≡ 1 +
|x− tv0 − x0|2
a2 + b2 t2

+

(
t2

a2
+

1

b2

)
|v − u(x, t)|2,(2.24)

where u(x, t) = (a2 + b2t2)−1(b2t(x− x0) + a2v0), and using Lemma 2.3 we have

Q±(Φ,Φ)(x, v, t)/Φ(x, v, t) = Q±(Φ(x, ·, t),Φ(x, ·, t))(v)/Φ(x, v, t)

≤ C±
(

1 +
|x− tv0 − x0|2
a2 + b2 t2

)−k+(3+ν)/2(
t2

a2
+

1

b2

)−(3+γ)/2

(P (x, v, t))µ/2,(2.25)

where C± = C±(B0, γ, k) are the constants in Lemma 2.3. Obviously, (2.25) implies
that (2.18)–(2.20) and (2.22) hold for γ ≤ 0 (i.e., for µ = 0, ν = γ), and (2.21) holds
∀ −2 < γ ≤ 1. Now let γ > 0. Then µ = γ, ν = 0, and p = 1/γ . Let

h(r) =

(
1

1 + r2

) k−3/2
γ

, x̃ =
x− x0

a
, ṽ =

v − v0

b
.
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Then h ∈ L1[0,∞) since k > (3 + γ)/2 and so by (2.25) and Lemma 2.3 we have
(with different constants Cγ,k,a,b)

1

Φ(x, v, 0)

[ ∫ ∞
0

(1 + t2)
3+γ

2 ( 1
γ−1)(Q±(Φ,Φ)](x, v, t) )

1
γ dt

]γ
≤ Cγ,k,a,b

[ ∫ ∞
0

h

( |x− x0 + t(v − v0)|√
a2 + b2 t2

)(
t2

a2
+

1

b2

)−(3+γ)/2

dt

]γ
(P (x, v, 0))γ/2

= Cγ,k,a,b

[ ∫ ∞
0

h

( |x̃+ tṽ|√
1 + t2

)(
1

1 + t2

)(3+γ)/2

dt

]γ
(P (x, v, 0))γ/2

≤ Cγ,k,a,b
[ ∫ ∞

0

h

( |x̃+ tṽ|√
1 + t2

)
dt

1 + t2

]γ
(P (x, v, 0))γ/2 ≤ Cγ,k,a,b.

Similarly, for 0 < γ < 1 we have by the Hölder inequality ∀ t ≥ 0

1

Φ(x, v, 0)

∫ ∞
t

Q±(Φ,Φ)](x, v, s)ds

≤ C± a b2+γ

∫ ∞
b
a t

(
h

( |x̃+ sṽ|√
1 + s2

))γ(
1

1 + s2

)(3+γ)/2

ds (P (x, v, 0))γ/2

≤ C± a b2+γ

[ ∫ ∞
b
a t

h

( |x̃+ sṽ|√
1 + s2

)
ds

1 + s2

]γ [ ∫ ∞
b
a t

(
1

1 + s2

) 3−γ
2(1−γ)

ds

]1−γ
(P (x, v, 0))γ/2

≤ C± a b2+γ Cγ,k

[ ∫ ∞
b
a t

(
1

1 + s2

) 3−γ
2(1−γ)

ds

]1−γ
≤ C±γ,ka b2+γ

(
1 +

b

a
t

)−2

,

and for γ = 1 using inequality (1 + s2)−2 ≤ (1 + s2)−1(1 + ( ba t)
2)−1 (s ≥ b

a t) we still
have

1

Φ(x, v, 0)

∫ ∞
t

Q±(Φ,Φ)](x, v, s)ds ≤ C±1,ka b3
(

1 +

(
b

a
t

)2
)−1

, t ≥ 0.

Next, by inequality A(v − v∗) = 4πB0|v − v∗|γ ≤ C (1 + |v − v0|γ)(P (t, x, v∗))γ/2 and
by identity (2.24) we have

L(Φ)(x, v, t) ≤ C (1 + |v − v0|γ)

(
t2

a2
+

1

b2

)−3/2 ∫
R3

(1 + |z|2)−k+γ/2dz

≤ C(1 + t2)−3/2(1 + |v − v0|γ).

Therefore (2.18)–(2.20) and (2.22) also hold for γ > 0 . Now suppose that Φ is given

by (1.16), i.e., Φ = P̃−k, where P̃ is defined by (2.17). This case corresponds to γ ≤ 0
by our assumption. Then starting from the identity

P̃ (x, v, t) ≡ 1 +

(
t

a
+

1

b

)2

|v − u(x, t)|2,

where u(x, t) = (a+bt)−1(b(x−x0)+av0), and using only Lemma 2.3 we easily obtain
(2.18)–(2.22).
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(iv) Let (x, v, t), (xn, vn, tn) ∈ R3 ×R3× [0,∞) and (xn, vn, tn)→ (x, v, t) (n→
∞). By Lemma 2.2 we have

Q+(f, g)(xn, vn, tn) = 2

∫ π/2

0

b(θ) sin(θ)

∫
R3

|z|γFn(θ, z)dz dθ,

where Fn(θ, z) = F (θ, z, xn, vn, tn),

F (θ, z, x, v, t) = f(x, v − cos(θ)z, t)

∫
S1(z)

g(x, v − sin(θ)|z|ω, t)d⊥ω, z 6= 0.

The continuity of f, g implies that limn→∞ Fn(θ, z) = F (θ, z, x, v, t) ∀ θ ∈ [0, π/2], z ∈
R3 \ {0}. We may assume that |xn − x| + |vn − v| ≤ 1. Then by definition of Φ we
have for some 0 < Cx,v <∞,Φ(xn, vn−z, tn) ≤ Cx,vΦ̂(z), where Φ̂(z) = (1+ |z|2)−k.
Since 0 ≤ f, g ≤ CΦ , this gives

Fn(θ, z) ≤ C2C2
x,v Φ̂(cos(θ)z)

∫
S1(z)

Φ̂(sin(θ)|z|ω)d⊥ω.

Since the integral Q+(Φ̂, Φ̂)(0) <∞ , it follows from the dominated convergence theo-
rem that limn→∞Q+(f, g)(xn, vn, tn) = Q+(f, g)(x, v, t). Thus Q+(f, g) is continuous
on R3 ×R3 × [0,∞). The continuity of L(f) is obvious. Finally, using the estimate
(2.21) we have ∀ (x, v, t) ∈ R3 ×R3 × [0,∞),

Q±(f, g)](x− tv, v, s) ≤ C(1 + s2)−(3+γ)/2, s ∈ [0,∞).

This and the continuity of Q±(f, g) imply the continuity of the third and fourth
functions in (2.23).

Lemma 2.6. Let f, f∗, f ′, f ′∗ be nonnegative and φ, φ∗, φ′, φ′∗ be positive real num-
bers. Then[

(ff∗ − f ′f ′∗) log
(f ′ + φ′)(f ′∗ + φ′∗)
(f + φ)(f∗ + φ∗)

]+

≤ f ′φ′∗ + f ′∗φ
′ + fφ∗ + f∗φ+ φ′φ′∗ + φφ∗,[

(f ′f ′∗ − ff∗) log
(f ′ + φ′)(f ′∗ + φ′∗)
(f + φ)(f∗ + φ∗)

]+

≤ E(f ′f ′∗ , ff∗) + f ′φ′∗ + f ′∗φ
′ + fφ∗ + f∗φ,

where (y)+ = max{y, 0} and E(·, ·) ≥ 0 is given by

E(a, b) =

 (a− b) log(ab ), a > 0, b > 0;
∞, a > 0, b = 0 or a = 0, b > 0;
0, a = b = 0.

Proof. Denote by ∆1,∆2 the left-hand sides of the two inequalities above, re-
spectively. By symmetry and definition of E, consider, only the case that (f ′ +
φ′)(f ′∗ + φ′∗) ≥ (f + φ)(f∗ + φ∗) and ff∗ > 0. If f ′f ′∗ ≥ ff∗, then ∆1 = 0 and, since
log(1 + y) ≤ y,

∆2 ≤ E(f ′f ′∗ , ff∗) + (f ′f ′∗ − ff∗)[log(1 + φ′/f ′) + log(1 + φ′∗/f
′
∗)]

≤ E(f ′f ′∗ , ff∗) + f ′∗φ
′ + f ′φ′∗.

If f ′f ′∗ < ff∗, then ∆2 = 0 and

∆1 ≤ (ff∗ − f ′f ′∗)
[

(f ′ + φ′)(f ′∗ + φ′∗)
(f + φ)(f∗ + φ∗)

− 1

]
≤ (f ′ + φ′)(f ′∗ + φ′∗)− (f + φ)(f∗ + φ∗) ≤ f ′φ′∗ + f ′∗φ

′ + φ′φ′∗.
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Lemma 2.7 (see [Cs], [Ku]). Let D ⊂ RN be a measurable set and let F,ϕ :
D → [0,∞) be measurable functions satisfying F (1 + | logF |) ∈ L1(D) and∫

D
F (z)dz =

∫
D
M(z)dz > 0,

∫
D
F (z)ϕ(z)dz ≤

∫
D
M(z)ϕ(z)dz <∞,

where M(z) = C exp(−ϕ(z)), C is a positive constant. Then for the H-functional
H(f) =

∫
D f(z) log f(z)dz,

H(F ) ≥ H(M) + [ 2‖M‖L1(D) ]−1[ ‖F −M‖L1(D) ]2.(2.26)

Equation (2.26) is the Csiszar–Kullback inequality which can be directly proved
by the following elementary inequality:

|b− a| ≤
(

4

3
a+

2

3
b

)1/2

[ b log b− a log a− (1 + log a)(b− a) ]1/2, a > 0, b ≥ 0.

The last lemma below is a Gronwall-type inequality, which in this paper is es-
sentially used to deal with the case of γ = 1 of the collision model (1.6) for proving
converse properties of the long time limits f∞.

Lemma 2.8. Let κ be nonnegative and c be positive constants.
(i) Let 0 < T ≤ ∞, 0 ≤ % ∈ L1(0, T ), and 0 ≤ u ∈ L∞(0, T ) satisfy ∀R ∈ [0,∞)

u(t) ≤ κ+R

∫ t

0

%(s)u(s)ds+ ce−R, t ∈ (0, T ).(2.27)

Then

u(t) ≤ κ+ c(T )κθ(T ), t ∈ (0, T ),(2.28)

where

θ(T ) =
1

2
exp

(
−
∫ T

0

%(s)ds

)
, c(T ) = (ec)1−θ(T )

(
1 +

∫ T

0

%(s)ds

)
.

(ii) Let 0 ≤ % ∈ L1(0,∞), 0 ≤ u ∈ L∞(0,∞) satisfy ∀R ∈ [0,∞)

u(t) ≤ κ+R

∫ ∞
t

%(s)u(s)ds+ ce−R, t ∈ (0,∞).

Then

u(t) ≤ κ+ c∞κθ, t ∈ (0,∞),

where

θ =
1

2
exp

(
−
∫ ∞

0

%(s)ds

)
, c∞ = (ec)1−θ

(
1 +

∫ ∞
0

%(s)ds

)
.

Proof. By substitution ũ(t) = u( 1
t ), %̃(t) = 1

t2 %( 1
t ), t ∈ (0,∞), part (ii) is reduced

to part (i) with T = ∞. Thus we need only to prove part (i). In the following we
set θ = θ(T ). Taking R = 0 in (2.27) we first obtain u(t) ≤ κ + c ∀t ∈ (0, T ). If
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κ ≥ ce− 1
2θ , then c ≤ c(κc e

1
2θ )θ ≤ (ec)1−θκθ and so u(t) ≤ κ+ c(T )κθ, t ∈ (0, T ). Now

we suppose that κ < c e−
1
2θ . Let

C = ec

(
1 +

∫ T

0

%(s)ds

)
, Uδ(t) =

1

C

∫ t

0

%(s)u(s)ds+ δ, t ∈ [0, T ),

where δ is a positive constant. By definition of θ = θ(T ) we have
∫ T

0
%(s)ds < e

1
2θ

which together with the bounds u(t) ≤ κ+c and κ < c e−
1
2θ imply that for sufficiently

small δ > 0

δ ≤ Uδ(t) ≤ 1/e, t ∈ [0, T ); δ ≤ κδ :=
κ

C

∫ T

0

%(s)ds+ δ ≤ e− 1
2θ .(2.29)

Now taking R = − log(eUδ(t)) in (2.27) and noticing that ce−R = ceUδ(t) ≤ CUδ(t)
we obtain

u(t) ≤ κ+ CUδ(t)| logUδ(t)|, t ∈ (0, T ).(2.30)

Multiplying %(t)/C to both sides of (2.30) and taking integration leads to

Uδ(t) ≤ κδ +

∫ t

0

%(s)Uδ(s)| logUδ(s)|ds, t ∈ [0, T ).

Let

G(U) =

∫ U

δ

dy

y| log y| = − log

(
logU

log δ

)
, U ∈ [δ, 1/e].

Then G−1(V ) = exp{(log δ)e−V }, V ∈ [0 , G(1/e)]. Since y 7→ y| log y| is positive
and increasing on [δ, 1/e], it follows from the generalized Gronwall inequality (e.g.,
Bihari’s inequality [B,B]) that

Uδ(t) ≤ G−1

(
G(κδ)+

∫ t

0

%(s)ds

)
≤ G−1

(
G(κδ)+

∫ T

0

%(s)ds

)
= (κδ)

2θ, t ∈ [0, T ).

Here we have checked by the second equation in (2.29) that G(κδ) +
∫ T

0
%(s)ds lies in

the domain [0, G(1/e)] of G−1. Therefore, using (2.30) and the inequality U | logU | ≤√
U, U ∈ [0, 1], we obtain

u(t) ≤ κ+ C
√
Uδ(t) ≤ κ+ C(κδ)

θ, t ∈ (0, T ),

which implies (2.28) by letting δ → 0+.

3. Some converse properties of long time limits. Throughout this section
and the next couple of sections we will always assume that the collision kernel B(z, ω)
satisfies (1.6), (1.7) with −2 < γ ≤ 1 . Let Φ be given by (1.14) or (1.15), or given
by (1.16) for γ ≤ 0. Define Φ0(x, v) = Φ(x, v, 0) and introduce function spaces:

B(Φ0) = {f ∈ C(R3 ×R3) | ‖f‖Φ0
:= sup

(x,v)∈R3×R3

|f(x, v)|/Φ0(x, v) <∞},

B(Φ) = {f ∈ C(R3 ×R3 × [0,∞)) | ‖f‖Φ := sup
t≥0
‖f ](t)‖Φ0

<∞},
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where f ](t) = f ](·, ·, t). Note that since Φ(x, v, t) ≡ Φ0(x− tv, v) , the norm for B(Φ)
can also be written

‖f‖Φ = sup
(x,v,t)∈R3×R3×[0,∞)

|f(x, v, t)|/Φ(x, v, t)

so that both (B(Φ), ‖ · ‖Φ) and (B(Φ0), ‖ · ‖Φ0) are Banach spaces. It is obvious
that if 0 < Ψ ≤ Φ then B(Ψ) ⊂ B(Φ). Suppose k > (3 + γ)/2 and let f ∈ B(Φ)
be a mild solution of (B). Then Lemma 2.5 ensures that f satisfies (1.10) on whole
R3 ×R3×[0,∞) and the functions

∫∞
0
Q±(f, f)](x, v, s)ds, and therefore the function

f∞(x, v) := f0(x, v) +

∫ ∞
0

Q(f, f)](x, v, s)ds(3.1)

are all in B(Φ0), where f0 = f |t=0. From (3.1), f ] can be written

f ](x, v, t) = f∞(x, v)−
∫ ∞
t

Q(f, f)](x, v, s)ds.(3.2)

This implies that f∞ is the long time limit of f ](t) in B(Φ0). In fact by Lemma 2.5
we have for a positive constant C = C(B0, γ, k, a, b) <∞ and for ν = min{γ, 0},

‖f ](t)− f∞‖Φ0
≤ C‖f‖2Φ(1 + t)−(2+ν) → 0 (t→∞).(3.3)

Theorem 3.1. Assume that −2 < γ < 1 , k > (3+γ)/2. Let Φ be given by (1.14)
or (1.15), or given by (1.16) for γ ≤ 0, and let f, g ∈ B(Φ) be mild solutions of (B)
(their initial data may be different). Then,

(i) There exists 0 < C <∞ such that

C−1‖f∞ − g∞‖Φ0
≤ ‖f ](t)− g](t)‖Φ0

≤ C‖f∞ − g∞‖Φ0
∀ t ≥ 0.(3.4)

(ii) If f∞(x − tv, v) is a local Maxwellian M(x, v, t), then f(x, v, t) ≡ M(x, v, t)
on R3 ×R3 × [0,∞). In particular, f0 = M0.

Proof. (i) From (3.2) and ff∗ − gg∗ = 1
2 [(f + g)(f∗ − g∗) + (f∗ + g∗)(f − g)] we

have

|f ](x, v, t)− g](x, v, t)|
≤ |f∞(x, v)− g∞(x, v)|+ ‖f + g‖Φ

∫ ∞
t

u(s)[Q+(Φ,Φ) +Q−(Φ,Φ)]](x, v, s)ds,

where u(t) = ‖f ](t)− g](t)‖Φ0 . Choose p = 2 for γ ≤ 0 and p = 1/γ for 0 < γ < 1 .
Let q = p/(p− 1), η = (3 + γ)/2. Then by Lemma 2.5 we have∫ ∞

t

u(s)[Q+(Φ,Φ) +Q−(Φ,Φ)]](x, v, s)ds ≤
[ ∫ ∞

t

[u(s)]q(1 + s2)−ηds
]1/q

×
[ ∫ ∞

t

(1 + s2)η(p−1)[(Q+(Φ,Φ)] +Q−(Φ,Φ)])(x, v, s)]pds

]1/p

≤
[ ∫ ∞

t

[u(s)]q(1 + s2)−ηds
]1/q

(C+
p + C−p )Φ0(x, v).

Therefore, for c = 2q−1[(C+
p + C−p )‖f + g‖Φ]q ,

[u(t)]q ≤ 2q−1[‖f∞ − g∞‖Φ0 ]q + c

∫ ∞
t

[u(s)]q(1 + s2)−ηds, t ≥ 0
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and so, by the Gronwall inequality,

[u(t)]q ≤ 2q−1[‖f∞ − g∞‖Φ0
]q exp{c

∫ ∞
t

(1 + s2)−ηds}, t ≥ 0.

This gives the right-hand-side inequality in (3.4) with C = 21/p exp{ cq
∫∞

0
(1+s2)−ηds}.

Similarly for each t ≥ 0 starting from

f ](x, v, τ) = f ](x, v, t) +

∫ τ

t

Q(f, f)](x, v, s)ds, τ ≥ t(3.5)

we obtain u(τ) ≤ C‖f ](t)− g](t)‖Φ0
∀ τ ≥ t. Applying (3.3) leads to limτ→∞ u(τ)

= ‖f∞ − g∞‖Φ0
and the left-hand-side inequality in (3.4) also holds.

(ii) Suppose thatM(x, v, t) := f∞(x−tv, v) is a local Maxwellian. ThenM ](x, v, t)
≡ f∞(x, v) and M ∈ B(Φ) since f∞ ∈ B(Φ0). Therefore M∞ = f∞ and so by (3.4)
f ≡M on R3 ×R3 × [0,∞).

The restriction γ < 1(which excludes only the hard sphere model) will be removed
in our next theorem, but the estimates like (3.4) will be given in L1-norm for solutions
f, g ∈ B(Φ), where Φ is of type (1.15).

When dealing with the long time behavior of solutions of (B), one naturally
considers the (formal) entropy equality (write f ′ = f(x, v′, s), f ′∗ = f(x, v′∗, s), f∗ =
f(x, v∗, s))

(3.6)

H(f)(t) = H(f0)− 1

4

∫ t

0

ds

∫∫
R9×S2

B(v − v∗, ω)E(f ′f ′∗, ff∗)dω dv∗ dx dv, t ≥ 0

or entropy inequality [D,L 2] (i.e., H(f)(t) ≤ the right-hand side of (3.6)), where E(·, ·)
is defined in Lemma 2.7. Unlike the cases of spatially homogeneous or spatially peri-
odic solutions, our next theorem further shows that even though the entropy equality
(3.6) can be rigorously proven for spatial decay solutions (in B(Φ)), this equality does
not essentially help to determine what are trends of the solutions (along the particle
paths).

Theorem 3.2. Assume that −2 < γ ≤ 1. Let µ = max{γ, 0}.
(i) Let f ∈ B(Φ) be a mild solution of (B), where Φ is given by (1.14) with

k > 3 + 1
2µ. Then the entropy equality (3.6) holds on [0,∞).

(ii) Let Φ be given by (1.15) with k > 3, β = µ, and let f, g ∈ B(Φ) be mild
solutions of (B) (their initial data may be different). Then there exists 0 < θ < 1 and
0 < C <∞ such that

(3.7)

[C−1‖f∞ − g∞‖L1(R6) ]1/θ ≤ ‖f ](t)− g](t)‖L1(R6) ≤ C[ ‖f∞ − g∞‖L1(R6) ]θ ∀ t ≥ 0.

As a consequence, the conclusion in part (ii) of Theorem 3.1 still holds. Moreover, if
k > 4 and if TM is the traveling Maxwellian determined by f0 through (1.13), then
there exists 0 < C <∞ such that

inf
t≥0

H(f)(t) = H(f∞) ≥ H(TM ) + C sup
t≥0

[ ‖f ](t)− TM‖L1(R6) ]2/θ.(3.8)

Proof. (i) Consider f + φn where φn = 1
nΦ , n ≥ 1. By f ∈ B(Φ) and Φ =

P−k where P is the polynomial (2.16), one easily obtains the following estimates on
R3 ×R3 × [0,∞):

(f + φn)| log(f + φn)| ≤ CΦ(1 + logP ), | log(f + φn)| ≤ C n(1 + logP ) ∀n ≥ 1.
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Here and below C ∈ (0,∞) are independent of t, x, v, and n . Since φn](x, v, t) =
φn0 (x, v) are independent of t, it follows that

[(f + φn) log(f + φn)]](x, v, t)

= [(f0 + φn0 ) log(f0 + φn0 )](x, v) +

∫ t

0

[Q(f, f)(1 + log(f + φn)]](x, v, s)ds.

On the other hand, by Lemma 2.5 and (2.21) we have

Q±(f, f)(x, v, t) ≤ ‖f‖2ΦQ±(Φ,Φ)(x, v, t) ≤ C(1 + t2)−(3+γ)/2Φ(x, v, t)[P (x, v, t)]µ/2.

This implies that Q±(f, f)(1+| log(f+φn)|) ∈ L1(R3 ×R3×[0,∞)) since k > 3+µ/2.
Thus according to classical derivation we have

H(f+φn)(t) = H(f0+φn0 )−1

4

∫ t

0

ds

∫∫
R9×S2

B(v−v∗, ω)En(f ′, f ′∗, f, f∗)dω dv∗ dx dv,

where

En(f ′, f ′∗, f, f∗) = (f ′f ′∗ − ff∗) log
(f ′ + φn′)(f ′∗ + φn′∗)
(f + φn)(f∗ + φn∗)

.

Let

e+
n (t) =

1

4

∫ t

0

ds

∫∫
R9×S2

B(v − v∗, ω)[En(f ′, f ′∗, f, f∗)]
+dω dv∗ dx dv,

e−n (t) =
1

4

∫ t

0

ds

∫∫
R9×S2

B(v − v∗, ω)[−En(f ′, f ′∗, f, f∗)]
+dω dv∗ dx dv.

Then

e+
n (t) = H(f0 + φn0 )−H(f + φn)(t) + e−n (t).(3.9)

By definition ofE(·, ·) it is easily shown that limn→∞[En(f ′, f ′∗, f, f∗)]
+ = E(f ′f ′∗ , ff∗)

in pointwise. Moreover, by Lemma 2.6, we have

[En(f ′, f ′∗, f, f∗)]
+ ≤ E(f ′f ′∗ , ff∗) + C(Φ′Φ′∗ + ΦΦ∗),(3.10)

[−En(f ′, f ′∗, f, f∗)]
+ ≤ C

n
(Φ′Φ′∗ + ΦΦ∗)

so that

e−n (t) ≤ C

n

∫ t

0

ds

∫∫
R3×R3

Q−(Φ,Φ)(x, v, s)dx dv → 0 (n→∞).

Thus, by (3.9), Fatou’s lemma, and the dominated convergence theorem we obtain
∀ t ≥ 0

1

4

∫ t

0

ds

∫∫
R9×S2

B(v − v∗, ω)E(f ′f ′∗ , ff∗)dω dv∗ dx dv ≤ H(f0)−H(f)(t) <∞.

This integrability together with (3.10) and the dominated convergence theorem for
(3.9) then implies the entropy equality (3.6).
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(ii) The proof for (3.7) relies on Lemma 2.8. Let

u(t) = ‖f ](t)− g](t)‖L1(R6) ( = ‖f(·, ·, t)− g(·, ·, t)‖L1(R6) ).

From (3.2) and the basic fact (see (1.4), (1.5)) that (v, v∗) 7→ (v′, v′∗) is an orthogonal
transform (for each fixed ω ∈ S2) and |v′ − v′∗| = |v− v∗|, |〈v′ − v′∗, ω〉| = |〈v − v∗, ω〉|
and B(v − v∗, ω) depends only on |v − v∗| and |〈v − v∗, ω〉|, we have

u(t) ≤ ‖f∞ − g∞‖L1(R6) +

∫ ∞
t

ds

∫∫
R3×R3

|Q(f, f)−Q(g, g)|dx dv

≤ ‖f∞ − g∞‖L1(R6) + 2

∫ ∞
t

ds

∫∫
R3×R3

|f − g|L(f + g)dx dv.

Therefore by L(f + g) ≤ ‖f + g‖ΦL(Φ), Lemma 2.5, and (2.22) we obtain with
ν = min{γ, 0}

u(t) ≤ ‖f∞ − g∞‖L1(R6)(3.11)

+ C1

∫ ∞
t

(1 + s2)−(3+ν)/2

∫∫
R3×R3

|f − g|(1 + |v − v0|µ)dx dv ds.

Here and below C1, C2, . . . are positive and finite constants depending only on the
constants B0, γ, k, a, b, α and on the norm ‖f + g‖Φ. Using the inequality

1 + |v − v0|µ ≤
(

1 +
1

α

)
R+

(
1 +

1

α

)
eα|v−v0|µ−R ∀R ≥ 0

and recalling that Φ(x, v, s) = (P (x, v, s))−ke−α|v−v0|µ which implies∫ ∞
0

(1 + s2)−(3+ν)/2

∫∫
R3×R3

|f − g|eα|v−v0|µdx dv ds

≤ ‖f − g‖Φ
∫ ∞

0

(1 + s2)−(3+ν)/2ds

∫∫
R3×R3

(P (x, v, 0))−kdx dv <∞

we obtain by (3.11) ∀ R ≥ 0

u(t) ≤ ‖f∞ − g∞‖L1(R6) +R

∫ ∞
t

%(s)u(s)ds+ C3 e
−R, t ∈ [0,∞),

where %(s) = C2(1 + s2)−(3+ν)/2 (∈ L1[0,∞)). It is easily seen that u is bounded
and continuous on [0,∞). Then Lemma 2.8 ensures that with the number θ =
1
2 exp{− ∫∞

0
%(s)ds},

u(t) ≤ C[ ‖f∞ − g∞‖L1(R6) ]θ, t ∈ [0,∞).

In the same way, starting from (3.5) we also obtain ∀t ≥ 0,∀R ≥ 0,

u(τ + t) ≤ u(t) +R

∫ τ

0

%(s)u(s+ t)ds+ C3 e
−R, τ ∈ [0,∞)

since %(s+ t) ≤ %(s). Therefore by Lemma 2.8 we have (with the same θ) u(τ + t) ≤
C[u(t)]θ ∀ τ ≥ 0 . Letting τ →∞ then leads to (by Fatou’s lemma)

‖f∞ − g∞‖L1(R6) ≤ C[u(t)]θ, t ∈ [0,∞).
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These two estimates of u(t) give (3.7). Finally we prove (3.8). We may suppose
that ‖f0‖L1(R6) > 0. For otherwise, f0(x, v) ≡ 0 and so applying (3.7) (take g ≡ 0
and then choose t = 0,. . . ) we get f ≡ 0 and (3.8) is trivial. Now let ϕ(x, v) =
c2|x − x̄0|2 + c3|v − v̄0|2 be such that TM (x, v) = c1 exp(−ϕ(x, v)) is the traveling
Maxwellian determined by f0 through the moment condition (1.13). Since f ∈ B(Φ),
it is easily shown from Lemma 2.5 and (2.21) that Q±(f, f)](x, v, t)(1 + |x|2 + |v|2) ∈
L1(R3 ×R3× [0,∞)). Thus the classical derivation shows that all moments in (1.13)
are conserved by f ](·, ·, t). Therefore using dominated convergence we have∫∫

R3×R3

f∞(x, v){1, ϕ(x, v)}dx dv =

∫∫
R3×R3

TM (x, v){1, ϕ(x, v)}dx dv,

and so by Csiszar–Kullback inequality (2.26) we obtain

H(f∞) ≥ H(TM ) + [ 2‖f0‖L1(R6) ]−1[ ‖f∞ − TM‖L1(R6) ]2.(3.12)

Because all the coefficients ci (i = 1, 2, 3) are positive and µ ≤ 1, the solution TM (x−
tv, v) is in B(Φ). If we choose g(x, v, t) = TM (x − tv, v), then g](t) ≡ g∞ = TM and
so (3.12) and the inequality in the right-hand side of (3.7) imply the inequality in
(3.8). The equality in (3.8) is due to the monotonicity of H(f)(t)(= H(f ])(t)) and
limt→∞H(f)(t) = H(f∞) which follows from f ](t)| log f ](t)| ≤ CΦ0(1+ | log Φ0|) and
dominated convergence.

Remarks. 1. In Theorems 3.1 and 3.2, we do not assume the solutions are small
in the norm ‖ · ‖Φ of B(Φ), and for the entropy equality (3.6) we also do not assume
the solutions are positive everywhere.

2. The right-hand-side estimates in (3.4) and (3.7) may also be viewed as the
uniqueness of a “final” value problem of (B) (existence results for this problem will
be given in the next section). The proofs for this uniqueness are different from those
of the uniqueness of the initial value problem; see [L2], [Lu], where the two solutions
f, g need not be both strong (say bounded or spatial decay) solutions. This difference
is essentially due to the irreversibility of the time evolution of (B), i.e., due to the
different collision order Q+ −Q− and Q− −Q+ .

4. Two kinds of existence results. In this section the existence of the solu-
tions in Theorems 3.1 and 3.2 will be proven for the initial value problem and for the
“final” value problem, respectively. Throughout this section, the collision kernel is
assumed to satisfy the same conditions in section 3; i.e., B(z, ω) satisfies (1.6), (1.7)
with −2 < γ ≤ 1, and the functions Φ are given by (1.14) or (1.15), or given by (1.16)
for γ ≤ 0, with their constants k > (3 + γ)/2, a > 0, b > 0, etc. For the initial value
problem, we consider the following “interim” equation of nonnegative functions f :

f ](x, v, t) = f0(x, v) +

∫ t

0

Q(f ∧ φ, f ∧ φ)](x, v, s)ds on R3 ×R3 × [0,∞),(4.1)

where f0 ∈ B(Φ0), φ ∈ B(Φ) are nonnegative, and

(f ∧ φ)(x, v, t) = min{f(x, v, t), φ(x, v, t)}.
In the following, the positive constants D± = D±(B0, γ, k) appeared in Lemma 2.5,
and (2.19) will be used.

Theorem 4.1. (i) If γ < 1, then for any 0 ≤ f0 ∈ B(Φ0) and any 0 ≤ φ ∈ B(Φ),
(4.1) has a unique nonnegative global solution f ∈ B(Φ). Furthermore, if

‖f0‖Φ0
≤ (4D+ a b2+γ)−1,(4.2)
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then for any φ ∈ B(Φ) satisfying φ ≥ 2‖f0‖Φ0
Φ, the corresponding solution f is the

unique mild solution of (B) in B(Φ) and satisfies ‖f‖Φ ≤ 2‖f0‖Φ0
.

(ii) If γ = 1 and 0 ≤ f0 ∈ B(Φ0) satisfying

‖f0‖Φ0
≤ (a b3)−1d(1− dD+), 0 < d < [2(D+ +D−)]−1,(4.3)

then (B) has a mild solution f ∈ B(Φ) satisfying ‖f‖Φ ≤ 2‖f0‖Φ0
.

Proof. Consider the operator Kφ given by

Kφ(f)(x, v, t) = f0(x− tv, v) +

∫ t

0

Q(|f | ∧ φ, |f | ∧ φ)](x− tv, v, s)ds.

By Lemma 2.5 part (iv), Kφ maps C(R3 ×R3 × [0,∞)) into B(Φ). We first prove
that if f ∈ B(Φ) is a fixed point of Kφ, then f ≥ 0 on R3 ×R3 × [0,∞) and so f is
a global nonnegative solution of (4.1). In addition we have

f ](x, v, t) ≤ (‖f0‖Φ0
+ ‖φ‖2ΦD+a b2+γ)Φ0(x, v) on R3 ×R3 × [0,∞).(4.4)

The estimate (4.4) follows easily from f = Kφ(f), Lemma 2.5, and (2.19). Let
χ(y) = χ[0,∞)(y) be the characteristic function of [0,∞). Then, since f0 ≥ 0, we have
∀(x, v) ∈ R3 ×R3

(−f ](x, v, t))+ =

∫ t

0

[−Q(|f | ∧ φ, |f | ∧ φ)](x, v, s)]χ(−f ](x, v, s))ds

≤
∫ t

0

Q−(|f | ∧ φ, |f | ∧ φ)](x, v, s)χ(−f ](x, v, s))ds

=

∫ t

0

(|f | ∧ φ)](x, v, s)χ(−f ](x, v, s))L(|f | ∧ φ)](x, v, s)ds

≤ ‖φ‖Φ
∫ t

0

(−f ](x, v, s))+L(Φ)](x, v, s)ds, t ∈ [0,∞).

Since L(Φ)](x, v, s) is bounded with respect to s (see (2.22)), it follows from the
Gronwall inequality that (−f ](x, v, t))+ ≡ 0, i.e., f ≥ 0 on R3 ×R3 × [0,∞).

(i) γ < 1. For any τ > 0, define

B(Φ, τ) = {f ∈ C(R3 ×R3 × [0,∞)) | ‖f‖Φ,τ := sup
t≥0

e−τt‖f ](t)‖Φ0 <∞}.

Then B(Φ, τ) is a Banach space with the norm ‖f‖Φ,τ . Choose p = 2 for γ ≤ 0 and
p = 1/γ for 0 < γ < 1, and let q = p/(p − 1) . Then for any f, g ∈ B(Φ, τ) we have,
by | |f | ∧ φ− |g| ∧ φ | ≤ |f − g|, Lemma 2.5 and (2.18),

|Kφ(f)](x, v, t)−Kφ(g)](x, v, t)|

≤
∫ t

0

|Q(|f | ∧ φ, |f | ∧ φ)] −Q(|g| ∧ φ, |g| ∧ φ)] |(x, v, s) ds

≤ 2‖φ‖Φ ‖f − g‖Φ,τ
∫ t

0

eτs[Q+(Φ,Φ)] +Q−(Φ,Φ)]](x, v, s)ds

≤ 2‖φ‖Φ ‖f − g‖Φ,τ eτt

(qτ)1/q
(C+

p + C−p )Φ0(x, v), (x, v, t) ∈ R3 ×R3 × [0,∞).
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This implies

‖Kφ(f)−Kφ(g)‖Φ,τ ≤
2‖φ‖Φ(C+

p + C−p )

(qτ)1/q
‖f − g‖Φ,τ .

Let τ > 0 be sufficiently large such that Kφ : B(Φ, τ)→ B(Φ) ⊂ B(Φ, τ) is contractive.
Then Kφ has a unique fixed point f ∈ B(Φ), which is therefore the unique nonnegative
continuous global solution of (4.1). Now suppose that f0 satisfies the condition (4.2).
Let 0 ≤ f ∈ B(Φ) be the solution of (4.1) corresponding to a “minimum” function
φ = φ := 2‖f0‖Φ0

Φ. Then by (4.4) we have ∀(x, v, t) ∈ R3 ×R3 × [0,∞)

f ](x, v, t) ≤ (‖f0‖Φ0
+ 4‖f0‖2Φ0

D+a b2+γ )Φ0(x, v)

≤ 2‖f0‖Φ0
Φ0(x, v) = φ](x, v, t).

Therefore f ≤ φ and so f is a mild solution of (B). The remainder of the conclusion
of part (i) follows easily from the uniqueness of solutions of (4.1).

(ii) γ = 1. Suppose f0 satisfies (4.3). Choose λ ∈ [ 0, d ] such that

(a b3)−1λ(1− λD+) = ‖f0‖Φ0
.(4.5)

Let φ = (a b3)−1λΦ. For any f, g ∈ B(Φ) we have, as above (using Lemma 2.5 and
(2.19)),

‖Kφ(f)−Kφ(g)‖Φ ≤ 2λ(D+ +D−)‖f − g‖Φ.
Because 2λ(D+ +D−) < 1, Kφ has a unique fixed point f ∈ B(Φ), and f ≥ 0. Since
‖φ‖Φ = (a b3)−1λ , applying (4.4), (4.5) we obtain f ≤ φ. Thus f is a mild solution
of (B) and, by (4.5), ‖f‖Φ ≤ (a b3)−1λ ≤ 2‖f0‖Φ0 .

Theorem 4.2. For any F ∈ C(R3 ×R3) satisfying for 0 < d < [2(D+ +D−)]−1,

(a b2+γ)−1d2D+Φ0 ≤ F ≤ (a b2+γ)−1d(1− dD−)Φ0 on R3 ×R3,(4.6)

there exists a mild solution f ∈ B(Φ) of (B) such that f∞ = F .
Moreover, if γ < 1, or γ = 1 and Φ is given by (1.15) with k > 3 and β = 1, then

the solution f is unique in B(Φ).
Proof. Similar to the existence proof of the initial value problem, in this case we

consider the operator K̃φ:

K̃φ(f)(x, v, t) = F (x− tv, v)−
∫ ∞
t

Q(|f | ∧ φ, |f | ∧ φ)](x− tv, v, s)ds.(4.7)

Let F ∈ C(R3 ×R3) satisfy (4.6) and let φ = (a b2+γ)−1dΦ . Then, by Lemma 2.5,

K̃φ maps B(Φ) into B(Φ), and as the proof of Theorem 4.1 part (ii) we have

‖K̃φ(f)− K̃φ(g)‖Φ ≤ 2d(D+ +D−)‖f − g‖Φ ∀ f, g ∈ B(Φ).

Since 2d(D+ + D−) < 1, K̃φ has a unique fixed point f ∈ B(Φ). From this and
condition (4.6) we have ∀ (x, v, t) ∈ R3 ×R3 × [0,∞),

f ](x, v, t) ≥ F (x, v)− (a b2+γ)−1d2D+Φ0(x, v) ≥ 0,

f ](x, v, t) ≤ (a b2+γ)−1d(1− dD−) Φ0(x, v) + (a b2+γ)−1d2D−Φ0(x, v) = φ](x, v, t).
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Therefore

f ](x, v, t) = F (x, v)−
∫ ∞
t

Q(f, f)](x, v, s)ds on R3 ×R3 × [0,∞)(4.8)

and so f is a mild solution of (B) and satisfies f∞ = F by (3.2) and (3.3). The
uniqueness of f in B(Φ) follows from Theorems 3.1 and 3.2.

Remarks. 1. It is easy to show that the class of solutions of Eq.(B) obtained in
Theorem 4.1 contains such a subclass of solutions that for 0 ≤ γ ≤ 1 the total number
of particles is always infinity and for −2 < γ < 0 the local numbers of particles
are always infinity! To see for instance the second case (soft potentials), we use the
exponential multiplier form (1.11) to the solutions f and use the estimate (2.19) in
Lemma 2.5 for L(Φ)] = Q−(Φ,Φ)]/Φ0. Then we obtain f(x, v, t) ≥ cf0(x− tv, v) on
R3 ×R3× [0,∞) where c = exp(−‖f‖ΦD−a b2+γ) > 0. This implies that if Φ is given
by (1.14) or (1.16) with 3/2 ≥ k > (3 + γ)/2 and if for a small constant ε > 0, the
initial data f0 (in Theorem 4.1) satisfy f0 ≥ εΦ0, then

∫
R3 f(x, v, t)dv ≡ ∞, (x, t) ∈

R3 × [0,∞).
For the initial data with infinite total number of particles, as one of their recent

results, Mischler and Perthame proved that (see [M,P, Theorem 3.2 for N = 3 ]) if for
q ∈ (3/2, ∞] the function A(z) =

∫
S2 B(z, ω)dω belongs to Lq(R3) and if the initial

data f0 (which need not to be continuous) satisfy 0 ≤ f0(x, v) ≤ C0

6 exp(−1
2 |x−x0

a −
v−v0

b |2) with a > 0, b > 0 satisfying C0 a b
3
p−1 < 3−p

p‖A‖Lq(R3)
( p

2π )
3
2p , 1

p + 1
q = 1,

then there exist distributional solutions f ∈ L∞(R3 ×R3 × (0,∞)) of (B) such that

0 ≤ f(x, v, t) ≤ C(t)
6 exp(−1

2 |x−tv−x0

a − v−v0

b |2), where C(t) is bounded on [0,∞).
Comparing this result with our Theorem 3 part (i) (for −2 < γ ≤ 0 and for Φ given
by (1.16)) one sees that the above condition A ∈ Lq(R3) is too restrictive, and the
class of initial data given above is relatively small. However, this was the first global
existence result which does not require the initial data decay to zero uniformly in
both variables x and v. And our function (1.16), Φ0(x, v) = (1 + |x−x0

a − v−v0

b |2)−k,
is referred to this version.

2. In Theorem 4.2, the lower bounds given for F seems too large; it is used only
to guarantee the nonnegativity of the solution of the final value problem. A simple
example shows that (applying the exponential multiplier form (1.11)) this lower bound
cannot be replaced by 0. But we do not know whether this lower bound can be replaced
by a small one, for instance, by a traveling Maxwellian c1exp(−c2|x−x0|2−c3|v−v0|2).

3. For soft potentials and the Maxwell model (i.e., −2 < γ ≤ 0 ), a special case
of Theorem 4.2 is that the final data F (x, v) is only a function of velocity variable:
F (x, v) = h1(v− 1

T (x−x0)), (T > 0). In this case, Theorem 4.2 implies the existence
of nonnegative solutions of the future value problem of the spatially homogeneous
Boltzmann equation

∂

∂t
h(v, t) = Q(h, h)(v, t), (v, t) ∈ R3 × [0, t1]; h(v, t1) = h1(v), v ∈ R3(4.9)

for certain future data h1 > 0 and for a small t1 > 0, and the corresponding solution
f obtained in Theorem 4.2 must be a Nikol’skii’s solution (see [N], [T,M, p. 291], or
[Ce], [Ko]). That is, f can be written

f(x, v, t) = h(v − 1

T
(x− tv − x0), Z(t)), (x, v, t) ∈ R3 ×R3 × [0,∞),(4.10)
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where h is a spatially homogeneous solution on R3 × [0, t1] with t1 = T
2+γ , and

Z(t) =
T

2 + γ

[
1−

(
1 +

t

T

)−2−γ]
, t ∈ [0,∞)(4.11)

To clarify this, let 0 < T < [2(D+ +D−)]−1 and let Φ be given by (1.16) with a = Tb,

i.e., Φ(x, v, t) = Φ̃0(v − 1
T (x− tv − x0)), where

Φ̃0(v) =

(
1 +

∣∣∣∣v − v0

b

∣∣∣∣2)−k, k > (3 + γ)/2, b > 0.

Suppose that h1 ∈ C(R3) satisfy

T (b3+γ)−1D+Φ̃0(v) ≤ h1(v) ≤ (b3+γ)−1(1− TD−)Φ̃0(v), v ∈ R3.

Let f ∈ B(Φ) be the unique mild solution of (B) obtained in the proof of Theorem 4.2
(d = T ) corresponding to f∞(x, v) = F (x, v) = h1(v− 1

T (x−x0)). By the special form
of the final data, we assert first that f(x, v, t) is a function of (v − 1

T (x− tv − x0), t)
only. In fact, for any nonnegative function g̃ ∈ C(R3 × [0,∞)), let g(x, v, t) =
g̃(v− 1

T (x−tv−x0), t), then by translation and dilation transforms of velocity variables
in collision integrals we have ∀t ∈ [0,∞)∫ ∞

t

Q±(g, g)](x, v, s)ds =

∫ ∞
t

(
1 +

s

T

)−3−γ
Q±(g̃, g̃)

(
v − 1

T
(x− x0), s

)
ds.(4.12)

Thus the operator K̃φ given by (4) with F (x − tv, v) = h1(v − 1
T (x − tv − x0)) and

φ(x, v, t) = (b3+γ)−1Φ̃0(v− 1
T (x−tv−x0)) maps the functions of (v− 1

T (x−tv−x0), t)

into the same kind of functions. Since K̃φ is contractive and the solution f is the fixed

point of K̃φ, this proves the above assertion. Next, write f(x, v, t) = f̃(v − 1
T (x −

tv−x0), t). Then f ](x, v, t) = f̃(v− 1
T (x−x0), t). Take x = x0 and replace t by the

inverse function of Z(t):

Z−1(t) = T

[(
1− 2 + γ

T
t

)−1/(2+γ)

− 1

]
, t ∈ [0, t1), t1 = T/(2 + γ).

Then by (4.8), (4.12), and change of integral variable s we obtain

f̃(v, Z−1(t)) = h1(v)−
∫ t1

t

Q(f̃ , f̃)(v, Z−1(s))ds, t ∈ [0, t1).

Moreover, since f ∈ B(Φ), it follows that

0 ≤ f̃(v, Z−1(t)) ≤ CΦ̃0(v), lim
t→t−1

f̃(v, Z−1(t)) = h1(v) ∀v ∈ R3.

Therefore, the function h(v, t) = f̃(v, Z−1(t)), t ∈ [0, t1); h(v, t1) = h1(v), is a classi-
cal solution of (4.9), and conversely, f is a Nikol’skii’s solution (4.10), (4.11).
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Abstract. The resonances of the Laplacian on perturbations of half-spaces of dimensions greater
than or equal to two, with either Dirichlet or Neumann boundary conditions, are studied. An upper
bound for the resonance counting function is proven. If the domain has an elliptic, nondegenerate,
nonglancing periodic billiard trajectory, it is shown that there exists a sequence of resonances that
converge to the real axis.
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1. Introduction. The resonances of the Laplace operator on unbounded man-
ifolds has been the object of considerable study both for exterior domains and for
hyperbolic manifolds (see [21] for survey). Less well understood are the resonances for
the Laplacian on domains whose boundary extends to infinity.

In this article we study the resonances associated with the Laplacian on compact
perturbations of the half-space

Hn
+ = {(x1, x) ∈ R×Rn−1, x1 > 0}.

Here we assume n ≥ 2.
Denote the Laplacian by

∆ = − ∂2

∂x2
1

− · · · − ∂2

∂x2
n

.

In what follows we will assume either Dirichlet or Neumann boundary conditions.
Let Ω be a connected domain in Rn. Although weaker hypotheses are possible,

we assume that the boundary of Ω is a finite, disjoint union of smooth, simple curves
and that there exists a positive constant M such that

Ω ∩ {|x| > M} = Hn
+ ∩ {|x| > M}.

Then by standard methods, for either of the boundary conditions above, the
Laplacian can be defined as a self-adjoint operator whose spectrum is given by σ(∆) =
σac(∆) = [0,∞).

Theorem 1. Let χ ∈ C∞0 (Rn), and denote its restriction to Ω again by χ. Then
the mapping from {=(k) > 0} to L(L2(Ω)) given by

k→χ(∆− k2)−1χ
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extends to a meromorphic function in C for odd dimensions and to a meromorphic
function in Λ (the logarithmic plane) in even dimensions.

Theorem 1 is a simple adaptation of the analogous result in [12], where “black-
box” perturbations of Rn are studied. We remark that the methods of this paper also
apply to black-box perturbations of half-space.

We define the resonances of ∆ as the poles of χ(∆ − k2)−1χ and we define the
multiplicity of a resonance kj as the dimension of the image of the projection

i

π

∫
γ

χ(∆− s2)−1χ sds

with γ a sufficiently small loop around kj . Let {kj}j∈N be the list of resonances
including multiplicities.

We then prove an upper bound on the number of resonances. Define

N(r) = #{kj , |kj | < r}.
For even dimensions, it is more convenient to define

N(r, α, ε) = #{kj , ε < |kj | < r, | arg(kj)| < α}.
Theorem 2. For n ≥ 3 odd, there exists a constant C > 0 such that

N(r) ≤ Crn.
For n even and for any α ∈ (0, π), ε > 0, there exists a constant C > 0 such that

N(r, α, ε) ≤ Crn.
Theorem 2 is proven using the Fredholm determinant method (see [11] and the

discussion in section 2). The key estimates on the free resolvent, (∆Hn
+
−k2)−1, come

from observing that the associated Green’s function on Hn
+ is determined (via the

method of images) by the Green’s function on Rn for either Dirichlet or Neumann
boundary conditions.

The restrictions on α, ε in even dimensions are not necessary: the arguments in
[20] apply in our setting to give a bound on N(r, α, 0) which holds ∀ α. However, the
proof is much easier for our (weaker) statement, which essentially follows from the
proof of the odd dimensional case, after Jensen’s formula is replaced by a theorem of
Carleman [7]. This fact was kindly pointed out to us by the referee.

If we strengthen our hypotheses about Ω, we can also prove the following.
Corollary 1. Assume that Ω satisfies the hypotheses of Theorem 1, and fur-

thermore suppose there exists a single, nonglancing, elliptic, nondegenerate trapped
ray in Ω (see Figure 1). Then there exists a sequence of resonances k′j such that
=k′j→0 as |k′j |→∞.

Corollary 1 gives an affirmative answer to a conjecture of Lax and Phillips [5]
in this setting. We had originally been planning to prove the corollary only in odd
dimensions, following the outline of an argument found in [14], [15]. However, the
referee kindly suggested an argument that would apply in even dimensions as well
and furthermore furnishes lower bounds for the counting function for resonances near
the real axis. In proving Corollary 1 we shall adopt the referee’s argument.

In our original (odd-dimensional) proof, we began with a global a priori estimate
for the cutoff resolvent. Such an estimate was obtained by Zworski [23] for obstacle
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Fig. 1. Typical domain Ω consisting of a hole in a wall. Dirichlet conditions are imposed on
the boundary.

scattering in odd dimensions, adapting techniques found in [8] and using as a key
ingredient the minimodulus theorem for entire functions [17]; the method was then
extended to more general perturbations in [14], [15]. Arguing as in [14], [15], we then
proved that the existence of quasimodes (see [10], [1], [9], [6]) implies Corollary 1.

The referee pointed out that an a priori bound on the cutoff resolvent can be
proven in a neighborhood of the positive real axis near infinity, using the minimodulus
theorem of Cartan [7]. Then, using arguments appearing in [16] where they apply to
black-box perturbations of Rn, one shows that the existence of quasimodes implies a
linear lower bound on the number of resonances converging to the real axis. In [16]
it is also noted that under a certain hypothesis on the spacing of the quasimodes, a
finer lower bound on the resonances can be obtained.

The arguments of [16] have recently been refined by Stefanov [13], who again
studied black-box perturbations of Rn but without any hypothesis on the spacing of
quasimodes. Let Nq(r) be the number of quasimodes less than or equal to r, and let
Nres(r) be the number of resonances in the set {z : <z ∈ [1, r],=z ∈ [0, S(<z)]}; here
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S is a certain function which decays faster than the reciprocal of any polynomial.
Then Stefanov proves that for any k ≥ 1, there exists Ck such that

Nres(r) ≥ Nq(r − r−k)− Ck ∀r ≥ 1.

Stefanov then uses Popov’s [9] lower bounds on the counting function for the quasi-
modes associated to nondegenerate, elliptic trapped rays whose associated linearized
Poincaré map is 2N + 1 elementary for some half-integer N ≥ 2, to bound the reso-
nances close to the real axis below by crn. The arguments in [13] apply in our setting
too, and thus our O(rn) upper bound on the number of resonances is optimal.

2. Proofs. We will prove the theorems for Dirichlet boundary conditions, and
at the end of the section we will state the modifications necessary to treat Neumann
conditions.

Denote by L2(Ω) the set of square integrable functions on Ω, and denote the set
of bounded operators on L2(Ω) by L(L2(Ω)). Denote by B(a, r) the ball centered at
a of radius r. If the related domain is Ω, then B(a, r) refers to the ball intersected
with Ω. Denote the Dirichlet Laplacian on Ω (resp., Hn

+) by ∆ (resp., ∆0). Denote
the associated resolvent (∆0 − k2)−1 by R0(k). Denote (∆ − k2)−1 by R(k). Define
the Sobolev spaces Hi(Ω) as the domains of (∆ + 1)i/2. We define a smooth partition
of unity χ1 + χ2 = 1 such that χi ≥ 0, supp(χ1) ⊂ B(0,M + 2), and χ1 = 1
on B(0,M + 1). We also define smooth cutoff functions τi ≥ 0 such that τ1 = 1 on
supp(χ1) and supp(τ1) ⊂ B(0,M+3), and τ2 = 1 on supp(χ2) and τ2 = 0 on B(0,M).
Finally, we define a cutoff function ρ ∈ C∞0 (Rn) such that the supp(ρ) ⊂ B(0,M + 4)
and

ρ|B(0,M+3) = 1.(1)

Lemma 1. Let n be odd (resp., even). Let ψ1, ψ2 be smooth functions of bounded
support on Ω. Then the mapping from {=(k) > 0} to L(L2(Ω)) given by

k→ψ2R0(k)ψ1

extends to an entire function on C (resp., Λ). Also, the same is true for the mapping

k→ ∂

∂xi
ψ2R0(k)ψ1

for i = 1, . . . , n. Furthermore, for =(k) ≥ 0 and |k| > 1,

‖ψ2R0(k)ψ1‖L2→Hi ≤ Ci(1 + |k|)i−1, i = 0, 1, 2.(2)

Finally, if supp(ψ1)∩ supp(ψ2) = ∅, then (2) holds ∀ i.
Proof. For x = (x1, x) ∈ R×Rn−1 define the mapping U : Rn→Rn by U(x1, x) =

(−x1, x). Let R̃(k) = (∆Rn − k2)−1. By the method of images,

R0(k) = R̃(k)− U−1R̃(k)U,

the right-hand side being restricted to elements of L2(Hn
+). Hence, dropping the k

dependence,

χ1R0χ1 = χ1R̃χ1 − U−1χ1R̃χ1U.
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Since U is an isometry on Hi(Rn), Lemma 1 now follows immediately from the
analogous results for R̃(k) proven in [18] for n odd and [3], [4], [18], [19] for n
even.

Proof of Theorem 1. We prove the result for n odd; the even-dimensional case
is a simple adaptation of this. The argument follows closely along the lines of the
corresponding result in [12]. We define an approximation of R(k) as follows. Let

Ra(k) = τ1R(k0)χ1 + τ2R0(k)χ2.(3)

Here k0 is a parameter to be chosen below.
We have

(∆− k2)Ra(k) = I +K(4)

with

K = (k2
0 − k2)τ1R(k0)χ1 + [∆, τ1]R(k0)χ1 + [∆, τ2]R0(k)χ2.(5)

By (4) we have for =k > 0

Ra = (∆− k2)−1(I +K).

By (5) and (1) we have ρK = K; hence

Raρ = (∆− k2)−1ρ(I +Kρ).

For k = k0 and Im(k0) >> 0, we have by the spectral theorem that ‖Kρ‖L2→L2 < 1
and hence we can write

ρRa(k)ρ(I +Kρ)−1 = ρR(k)ρ.(6)

Fix such a k0. Now ρRa(k)ρ is an entire function of k with values in L(L2(Ω)), and
therefore meromorphy of ρR(k)ρ is equivalent to meromorphy of (I +Kρ)−1.

On the other hand, since χ1 and ρ are compactly supported, it follows that Kρ is
an entire compact operator-valued function of k. It now follows from the meromorphic
Fredholm theorem that k→ρR(k)ρ extends to a meromorphic function on C. Finally,
it is easy to see that the function ρ can be replaced by any smooth cutoff function.
This completes the proof of Theorem 1.

Proof of Theorem 2. In what follows, let C be various positive constants. A
simple Neumann series argument shows that (I + Kρ) is invertible if and only if
(I − (−Kρ)n+1) is invertible. On the other hand, since Kρ is a pseudodifferential
operator of order −1 in L(L2(Ω)), with compactly supported Schwartz kernel, it
follows that (Kρ)n+1 is trace class. Thus the Fredholm determinant det(I−(−Kρ)n+1)
is entire on C for n odd and on Λ for n even. Furthermore, the following lemma applies.

Lemma 2. The resonances of ∆ (counted with their multiplicities) are among the
zeros of the function

k→h(k) ≡ det(I − (−Kρ)n+1(k)),

counted with their multiplicities.
The reader is referred to [20] for a proof of this result.
We shall now complete the proof of Theorem 2 for n odd, after which the modi-

fications necessary for n even will be indicated.
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Because of Lemma 2, the bound appearing in Theorem 2 will follow from Jensen’s
inequality and the estimate

|h(k)| ≤ C expC|k|n.(7)

To obtain this estimate, we first write Kρ = K1 +K2 with K2 = [∆, τ2]R0(k)χ2ρ. We
then apply the theory of characteristic values developed in [2] and adapted to exterior
problems in [8], [22], [18]. The characteristic values µj(A) of a compact operator
A are the eigenvalues, listed in increasing order and counting multiplicities, of the
operator |A|. We recall the following inequalities from [2]: µj+k−1(AB) ≤ µj(A)µk(B),
µj+k−1(A+B) ≤ µj(A) + µk(B), and µj(AB) ≤ ‖A‖µj(B).

Applying inequalities on Fredholm determinants appearing in [2], we get

det(I − (−Kρ)n+1) ≤ det(I + 2n|K1|n+1)2n+2 det(I + 2n|K2|n+1)2n+2

≤
 ∞∏
j=1

(1 + 2nµj(|K1|)n+1)

2n+2 ∞∏
j=1

(1 + 2nµj(|K2|)n+1)

2n+2

.(8)

We estimate first the term involving K1. Recall

K1 = (k2 − k2
0)τ1R(k0)χ1ρ+ [∆, τ1]R(k0)χ1ρ.

Since τ1, χ1 are compactly supported, it follows by standard eigenvalue asymptotics
for pseudodifferential operators [11] that

µj(|τ1R(k0)χ1ρ|) ∼ Cj−2/n

and

µj(|[∆, τ1]R(k0)χ1ρ|) ∼ Cj−1/n.

It follows that, denoting the largest integer below x by bxc,
µj−1(|K1|) ≤ C|k|2bj/2c−2/n + Cbj/2c−1/n.

Hence we get

µj(|K1|n+1) ≤ (µ(bj/(n+1)c+1)(|K1|))n+1

≤ (C|k|2(bj/2(n+ 1) + 2c−2/n + C(bj/2(n+ 1)c+ 2)−1/n)n+1

≤ (C|k|2bj/2(n+ 1)c−2/n + Cbj/2(n+ 1)c−1/n)n+1

≤ C|k|2n+2j−(2n+2)/n + Cj−1−1/n.

We have, for |k| sufficiently large,

∞∏
j=1

(1 + 2nµj(|K1|)n+1)

≤
∏
j≤k2n

(1 + C|k/j1/n|2n+2)
∏
j>k2n

(1 + C|j−1/2n|2n+2 + Cj−1−1/n).

These two factors are bounded as in [22]; we sketch the argument. The first factor is
bounded by comparing it to

exp

(∫ |k|2
1

ln(1 + C|k/x1/n|2n+2)dx

)
,
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which is bounded by eC|k|
n

. The second factor is treated similarly. Thus

∞∏
j=1

(1 + 2nµj(|K1|)n+1) ≤ eC|k|n .(9)

Note that this estimate holds for all k ∈ C.
Next, we estimate the terms involving K2. The argument sketched below is an

adaptation of one originally implemented by Vodev in [18].
Lemma 3. Suppose =k ≥ 0. Then det(I + 2n|K2|n+1) < C for some positive

constant C.
Proof. We have, using (2) with i = 3,

µj(K2) = µj(ρ(I + ∆)−1(I + ∆)K2)

≤ µj(ρ(I + ∆)−1)‖(I + ∆)K2)‖
≤ Cj−2/n|k|2.

Now the arguments leading to (9) are easily adapted to this case. The details are
omitted.

Lemma 4. Suppose =k < 0. Then

det(I + 2n|K2|n+1) ≤ exp(C|k|n).

Proof. We use the notation of Lemma 1. We first observe that for =k < 0,

det(I + 2n|K2(k)|n+1)

≤ det(I + 2n|K2(−k)|n+1)2n+2 det(I + 2n|K2(k)−K2(−k)|n+1)2n+2.(10)

The first term on the right-hand side is bounded by Lemma 3. To bound the second,
we begin by recalling Stone’s theorem for the Laplacian on Rn,

R̃(k)− R̃(−k) = cnk
n−2

∫
Sn−1

eik<ω,x−y>dω.

It follows that

(R0(k)−R0(−k))(x, y) = cnk
n−2

∫
Sn−1

eik〈ω,x−y〉 − e−ikω1(x1−y1)eik〈ω,x−y〉dω.

This allows us the factorization for =k > 0

ρ(R0(k)−R0(−k))ρ = cnk
n−2ρE∗(k)E(k)ρ,

with E(k) being a mapping from L2(Hn
+) to L2(Sn−1) whose Schwartz kernel is given

by

e−ik〈ω,y〉 − eikω1y1e−ik〈ω,y〉.

Observe that this kernel is an entire function in k, and we have the estimate

‖ρE∗(k)‖L2→L2 ≤ e(M+2)|=k|,

with M as in (1). Also, observe that

µj(E(k)ρ) ≤ µj((∆Sn−1 + 1)−m)‖(∆Sn−1 + 1)mE(k)ρ‖
≤ Cm(j)−2m/(n−1)‖(∆Sn−1 + 1)mE(k)ρ‖.
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On the other hand, the estimate |k|peC|k| ≤ Cp! e(C+1)|k| together with a combinato-
rial argument yield

‖(∆Sn−1 + 1)mE(k)ρ‖ ≤ (2m)! eC|k|.

Thus

µj(E(k)ρ) ≤ (2m)! Cm(j)−2m/(n−1)eC|k|.

Optimizing over m, we get

µj(E(k)ρ) ≤ e−(1/j(n−1))/CeC|k|.

Hence

µj(ρ(R0(k)−R0(−k))ρ) ≤ e−(1/j(n−1))/CeC|k|.

A similar argument yields

µj

(
ρ
∂

∂xi
(R0(k)−R0(−k))ρ

)
≤ e−(j1/(n−1))/CeC|k|, i = 1, . . . , n.

Combining these yields for =k < 0,

µj ([∆, τ2](R0(k)−R0(−k))χ2ρ) ≤ eC|k|e−(j1/(n−1))/C .

Thus, setting T (k) = K2(k)−K2(−k),

det(I + 2n|T (k)|n+1) ≤
∏

j<C|k|n−1

(1 + 2nµj(|T (k)|n+1))

× exp

 ∑
j≥C|k|n−1

2nµj(|T (k)|n+1)


≤

∏
j<C|k|n−1

eC|k| exp

 ∑
j≥C|k|n−1

(
eC|k|e−(j1/(n−1))/C

)n+1


≤ eC|k|n .

This completes the proof of the lemma.
Combining (8) and (9) and Lemmas 3 and 4, we obtain (7) and hence Theorem 2

for n odd.
We now complete the proof for n even. In place of Jensen’s formula, we use

Carleman’s theorem [7, Thm. 5.1.1]. The bounds on the determinant for large k are
proven as in the odd-dimensional case (set the branch line on the negative real axis in
Lemma 4), and the bounds for k near the origin are obtained simply by analyticity.

Proof of Corollary 1.
Lemma 5. Let Λα,N = {k : | arg k| < α, |k| > N}. Fix ε > 0, α ∈ (0, π/2). Let

{kj} denote the resonances in Λα,N . Then there exist constants N,C such that

‖ρR(k)ρ‖ ≤ CeC|k|n log k(11)

∀ k ∈ Λα,N − ∪kjB(kj , |kj |−n−ε).
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Proof. In what follows we assume |k| > 1. We recall

ρRa(k)ρ(I +Kρ)−1 = ρR(k)ρ.(12)

It follows from (3), Lemma 1, and the proof of Lemma 4 that for α ∈ (0, π) and
k ∈ Λα,

‖ρRaρ‖L2→L2 ≤ eC|k|n .(13)

To bound (1 +Kρ)−1, we proceed as follows: From [2, Chap. 5, Thm. 5.1.], we have

‖(I +Kρ)−1‖L2→L2 ≤ |det(I + (Kρ)n+1)|−1det(I + |Kρ|n+1)n+1.

By the proof of Theorem 2, we have

det(I + |Kρ|n+1)n+1 ≤ eC|k|n .(14)

To obtain the lower bound on f(k) ≡ |det(I + (Kρ)n+1)|, we first note that

|det(I + (Kρ)n+1)|n+1 ≤ det(I + |Kρ|n+1)n+1

≤ eC|k|n .
Next, we apply the minimodulus theorem of Cartan (see [7, p. 21]). Thus let η, c > 0.
Suppose l >> 0. Clearly, |f(k)| ≤ eCl

n

for k ∈ B(l, 2ecl). It follows that in B(l, cl),
and outside a system of disks of radii whose sum is no greater than 4clη, we have

|f(k)| > (eC|k|
n

)−2−log(3e/2η),(15)

with C a constant independent of l, k. Setting η = l−n−2 and combining the inequality
above with (14), (15), (13), and (12), the inequality appearing in (11) holds in B(l, cl)
in the complement of the system of disks. We decompose the system of disks into the
union ∪Uj , where Uj are connected, mutually disjoint, and have diameter at most
4cl−n−1. By increasing c slightly if necessary, we also have that Uj ⊂ B(l, cl). Finally,
we can assume that each Uj contains a resonance. For if not, then (11) holds on Uj
by the maximum principle.

Now we suppose l is sufficiently large that l−n−ε > 8cl−n−1. Then it follows
that for each j, Uj ⊂ B(ki, |ki|−n−ε) for some resonance ki ∈ B(l, cl). With α,N
determined by c, ε, the lemma now follows.

The proof of Corollary 1 is completed as follows: applying Lemma 5 of this paper,
along with Lemma 2 of [16] (with h = 1/k2), the proofs of Theorems 1 and 2 in [16]
carry over immediately, yielding a linear lower bound on the resonances converging
to the real axis.

In the case of Neumann boundary conditions, it suffices to observe that by the
method of images, the associated resolvent of half-space satisfies

R0(k) = R̃(k) + U−1R̃(k)U.

The preceding arguments carry over without difficulty.
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ON A CONJECTURE RELATIVE TO THE MAXIMA OF
HARMONIC FUNCTIONS ON CONVEX DOMAINS∗
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Abstract. We consider a harmonic function u defined on a bounded domain Ω ⊂ R2 and
satisfying the mixed boundary conditions u|Γ0

= 0, (∂u/∂n)|Γ1
= 1, where Γ1 is composed by a

finite number of arcs of ∂Ω and Γ0 = ∂Ω ∼ Γ1. In [Berrone, Subsistencia de Modelos Matematicos
que Involucran a la Ecuacion del Calor-Difusion, Ph.D. thesis, Universidad Nacional de Rosario,
Argentina, 1994] it was conjectured that if Ω is convex and the subset Γ1 is made to vary on ∂Ω so as
to maintain its measure equal to a constant C > 0, then Γ1 7→ supx∈Ω u attains its maximum value
when Γ1 is a certain connected arc of measure C. The present paper has evolved from attempts to
prove this conjecture. When certain geometric restrictions are satisfied by the components of Γ1, the
property stated by the conjecture is shown to hold for every regular domain Ω, convex or not, and
every connected arc, provided that the measure |Γ1| is sufficiently small (see Theorem 5). However,
convexity becomes a necessary condition in order that the full conjecture can be supportable (see
section 2). In addition, some variations of the conjecture are proposed.

Key words. harmonic functions, mixed boundary value problems

AMS subject classifications. 35J05, 35B99

PII. S0036141098334973

1. Introduction. Let Ω be a bounded plane domain whose boundary curve ∂Ω
is composed of two families of relatively open arcs Γ0 and Γ1 such that ∂Ω = Γ0 ∪ Γ1,
Γ0 ∩Γ1 = ∅. In this paper we are concerned with the following mixed boundary value
problem: ∣∣∣∣∣∣

∆u(x) = 0, x ∈ Ω,
u(x) = 0, x ∈ Γ0,
∂u
∂n (x) = 1, x ∈ Γ1.

(1)

In (1), we have denoted by n the unit outward-pointing normal vector to ∂Ω. In regard
to the required regularity of Ω, a Dini-smooth boundary ∂Ω will be assumed in the
developments of sections 3 and 4. Moreover, an interior sphere condition on every
point of ∂Ω will be supposed in order that the strong maximum principle and Hopf’s
lemma may hold. As is well known, the solution to problem (1) is continuous up to
the boundary provided that the family Γ1 is finite, as we shall assume henceforth.
This solution will be denoted by u[Γ1] to indicate its dependence on Γ1. It is also well
known that many physical phenomena are modeled by problem (1). A nonexhaustive
list of these is given in [15] (see also [14]) but, for our purpose, it will be illustrative
to think about problem (1) as giving the equilibrium position of an elastic membrane
Ω which is subjected to a unit normal force on Γ1, while it is fixed at level zero along
the remaining portion Γ0 of the boundary of Ω.

Our main interest focuses on the behavior of the functional Γ1 7→ supx∈Ω u[Γ1].
Concretely, in the thesis [2] the following conjecture has been posed.
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Conjecture 1. Let Ω be a convex domain and C be a constant such that 0 <
C < |∂Ω|. If Γ1 is made to vary on all finite families of arcs of ∂Ω with measure
|Γ1| = C, then Γ1 7→ supx∈Ω u[Γ1] reaches its maximum value when Γ1 is a certain
connected arc of ∂Ω.

In terms of the above-given mechanical interpretation of problem (1), the con-
jecture states that if a convex membrane initially fixed at zero is lifted by a unitary
normal force on portions Γ1 of its boundary with a constant total measure C, then
the membrane will reach a maximum height when Γ1 is a certain connected arc of
measure C. As we explained in [4], this conjecture arose from attempts to estimate
the solution to boundary value problems like (1) through sub- and supersolutions:
in general, simple sub- and supersolutions to problem (1) are more easily calculated
when Γ1 is connected (cf. [3]). Furthermore, exact solutions to (1) are known for
particular domains in this situation, Ghizzetti’s solution for the circle (see [7]) being
a good example. Ghizzeti’s solution will be of capital importance in the developments
of sections 3 and 4.

In [4], Conjecture 1 is studied for unbounded domains and it is shown there to
be not generally true in this case. For instance, Conjecture 1 holds for the half-plane
but it fails for an infinite strip. Section 2 of this paper is devoted to supporting the
hypothesis of convexity of the domain Ω in the conjecture by showing an example of a
nonconvex domain such that connected arcs of its boundary are not generally optimal
for Γ1 7→ supx∈Ω u[Γ1].

Up to now, we have been unable generally to prove or to construct a counter-
example to Conjecture 1. Nevertheless, some variations of the conjecture seem to be
more manageable. An interesting variation is obtained when the functional Γ1 7→
‖u[Γ1]‖p =

(∫
∂Ω
|u[Γ1]|p ds)1/p, 1 ≤ p < +∞, is taken instead of Γ1 7→ supx∈Ω u[Γ1]

in Conjecture 1, giving rise to the following.
Conjecture 2. Let Ω be a convex domain and C be a constant such that 0 <

C < |∂Ω|. If Γ1 is made to vary on all possible finite families of arcs of ∂Ω with total

measure |Γ1| = C, then Γ1 7→
(∫
∂Ω
|u[Γ1]|p ds)1/p reaches its maximum value when

Γ1 is a certain connected arc of ∂Ω.
In mechanical terms, Conjecture 2 for p = 1 asserts that in order to maximize

the mean height of the boundary of the membrane by lifting a portion of measure
C of its boundary, a connected portion of measure C must be lifted. Now, if the
Green formula

∫
Ω
u∆u dx =

∫
∂Ω
u ∂u∂nds−

∫
Ω
|∇u|2 dx is applied to the solution u[Γ1]

to problem (1), we obtain∫
∂Ω

u[Γ1] ds =

∫
Γ1

u[Γ1] ds =

∫
Ω

|∇u[Γ1]|2 dx,

so that maximizing
∫
∂Ω
u[Γ1] ds amounts to the same as maximizing the Dirichlet

integral
∫

Ω
|∇u[Γ1]|2 dx. On the other hand, there exists a point P ∈ Ω such that

|∂Ω|u[Γ1](P ) =
∫
∂Ω
u[Γ1] ds and then, the following variation of Conjecture 2 is sug-

gested which says that the height of the membrane at the interior point P is a maxi-
mum when Γ1 is connected.

Conjecture 3. Let Ω be a convex domain and fix P ∈ Ω. Moreover, let C be a
constant such that 0 < C < |∂Ω|. If Γ1 is made to vary on all possible finite families
of arcs of ∂Ω with total measure |Γ1| = C, then u[Γ1](P ) reaches its maximum value
when Γ1 is a certain connected subarc of ∂Ω.

Observe that if Ω is a circle of radiusR centered at the origin, we have
∫
∂Ω
u[Γ1] ds =

2πRu[Γ1](0) and then Conjecture 2 for p = 1 and Conjecture 3 with P = 0 are equiv-
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alent statements. Recently, a proof of this particular instance was obtained (see [5])
by relating it to a nice result of Beurling on capacities of subsets of the circumference.

Of course, many other variations and extensions of these conjectures are viable but
in this paper we discuss two concrete results related to Conjecture 1. To properly state
these results, first we need to introduce some preliminary concepts and notations. Let
us consider in the following a Jordan domain Ω with a sufficiently regular boundary
curve γ. We suppose that γ is parametrized by its arc length s measured from some
point O ∈ γ. A relatively open subset Γ1 of γ with a finite number of components
can be described as follows:

Γ1 = {γ(s) : ak < s < bk, k = 1, 2, . . . , n},(2)

but, for the sake of brevity, we will identify a point γ(s) belonging to γ with its
corresponding arc length s, so that the more condensed notations

Γ1 = ∪nk=1(ak, bk) = ∪nk=1Γ
(k)
1 ,(3)

Γ
(k)
1 = (ak, bk), k = 1, 2, . . . , n(4)

will be used throughout this paper to denote the family of arcs given by (2). We
indicate by Γ∗1 a generic connected arc of γ, i.e.,

Γ∗1 = (a, b).(5)

Furthermore, if Γ1 is given by (3), for 0 < ε ≤ 1 we define

Γ1(ε) = ∪nk=1 (ak(ε), bk(ε)) ,(6)

where

ak(ε) =
ak + bk

2
− ε

2
(bk − ak)

and

bk(ε) =
ak + bk

2
+
ε

2
(bk − ak).

Note that Γ1(ε) corresponds to a shrinkage of Γ1 of magnitude ε and therefore,
|Γ1(ε)| = ε |Γ1|.

A proof is given in section 3 of the following result.
Theorem 4. Let Ω be a Jordan domain with a Dini-smooth boundary γ and

satisfying an interior sphere condition at every point of γ. Moreover, let Γ1 and Γ∗1 be
two subsets of γ respectively given by (3) and (5) with b− a =

∑n
k=1(bk − ak). Then,

the inequality

sup
Ω
u[Γ1(ε)] < sup

Ω
u[Γ∗1(ε)](7)

holds for every sufficiently small ε.
Recall that a uniformly continuous function ϕ defined on a connected set A ⊂ C

is said to be Dini-continuous when∫ δ

0

ω(ϕ, t)

t
dt < +∞,
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where ω(ϕ, t) = sup{|ϕ(z1)− ϕ(z2)| : z1, z2 ∈ A, |z1 − z2| ≤ t} is the modulus of
continuity of ϕ and δ > 0. If ∂Ω admits a parametrization γ(t), a ≤ t ≤ b, such
that γ′ is Dini-continuous and γ′(t) 6= 0, a ≤ t ≤ b, then we say the domain Ω has a
Dini-smooth boundary. This regularity condition on ∂Ω suffices for a conformal map
f : B1(0) → Ω to have a derivative f ′ which can be continuously extended to Ω (cf.
[12, Theorem 3.5, p. 48]), a fact we exploit often in sections 3 and 4.

For a finite family of arcs Γ1 ⊂ ∂Ω, we define the quantity d = d(Γ1) to be the
minimum distance in ∂Ω existing between adjacent components of Γ1. Thus, if Γ1 is
represented by (3), then we set

d(Γ1) = min

{
min

1≤k≤n−1
(ak+1 − bk) , a1 − bn

}
.(8)

The quantities

H(Γ1) =
|Γ1|

sin [d(Γ1)/ (2 ‖f ′‖∞)]
(9)

and

ρ(Γ1) =
1

|Γ1| max
1≤k≤n

∣∣∣Γ(k)
1

∣∣∣ ,(10)

where f is a conformal mapping of B1(0) onto Ω, are shown to be useful in the
developments of section 4. We remark that ‖f ′‖∞ = supB1(0) |f ′| does not depend
on the particular choice of the mapping f but only on the geometry of Ω. The same
property, that is, independent of the chosen mapping f , is enjoyed by the quantity

M(f) = inf∂B1(0) |f ′|. Taking into account that |∂Ω| =
∫ 2π

0

∣∣f ′(eiθ)∣∣ dθ ≤ 2π ‖f ′‖∞
and d/ |∂Ω| < 1/2, we see that 0 < d/ (2 ‖f ′‖∞) ≤ πd/ |∂Ω| < π/2. Therefore, H(Γ1)
is a decreasing function of d(Γ1). It should also be noted that nd ≤ |Γ0|; hence the
number of components n is bounded by |Γ0| /d.

Using the quantities H(Γ1) and ρ(Γ1), a distinguished class F of finite families
of arcs of ∂Ω is now defined as follows:

F =

{
Γ1 ⊂ ∂Ω : ρ(Γ1) ≤ δ1, ‖f ′‖∞

8πM(f ′)
H2(Γ1) ≤ 1− δ2, 0 < δ1 < δ2 < 1

}
.

Section 4 is devoted to proving the following generalization of Theorem 4.
Theorem 5. Let Ω be a Jordan domain with a Dini-smooth boundary γ and

satisfying an interior sphere condition at every point of γ. Then, for every family
Γ1 ∈ F with sufficiently small measure, the inequality

sup
Ω
u[Γ1] < sup

Ω
u[Γ∗1]

holds provided that Γ∗1 ⊂ ∂Ω is a connected arc with |Γ∗1| = |Γ1|.
For the shrinkage Γ1(ε) of a finite family of arcs Γ1, the minimum distance

d(Γ1(ε)) increases as ε ↓ 0 while the measure |Γ1(ε)| decreases. Moreover, the quan-
tity ρ(Γ1(ε)) does not change as ε varies and therefore, Γ1(ε) belongs to the class F
for small enough ε’s. Then, Theorem 5 contains Theorem 4.

Section 5 concludes the paper with some brief remarks on diverse questions related
to Conjectures 1–3. In particular, the possible validity of n-dimensional versions of
these conjectures is pointed out.
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Fig. 1.

2. The role of the convexity of the domain. The convexity of the domain
Ω is a condition which cannot be dropped if the property of the solutions to problem
(1) stated by Conjecture 1 was generally true. To clarify this point, in this section
an example is exhibited of a nonconvex domain where the conjecture fails. Thus,
let us consider a domain Ω with the shape depicted in Figure 1. For this domain
Ω, the solutions to problem (1) corresponding to different Γ1’s will be estimated by
constructing appropriate sub- and supersolutions. By a supersolution to problem (1)
we mean a function w ∈ C2(Ω) ∩ C(Ω) satisfying∣∣∣∣∣∣

∆w(x) ≤ 0, x ∈ Ω,
w(x) ≥ 0, x ∈ Γ0,
∂w
∂n (x) ≥ 1, x ∈ Γ1.

(11)

A function v ∈ C2(Ω) ∩ C(Ω) that satisfies the reverse inequalities is said to be a
subsolution to problem (1). Let v and w be a sub and a supersolution, respectively,
to problem (1). Since the domain Ω we are considering satisfies an interior sphere
condition at every point of its boundary, the strong maximum principle and Hopf’s
lemma (see [1], [9], [13]) guarantee that the inequalities

v(x) ≤ u(x) ≤ w(x), x ∈ Ω

are satisfied by the solution u to problem (1). In the discussion below, affine, quadratic,
and potential sub- and supersolutions are utilized which are simple enough to make
the calculations feasible and, at the same time, to provide estimates which suffice for
our purpose. As a general presentation of the method of sub- and supersolution to
obtain approximations in boundary value problems of elliptic type, we cite [13]. For a
more systematic study of estimates of the solution to problems like (1) using potential
or affine sub- and supersolution we refer to [3].

As can be observed in Figure 1, the geometry of the domain under consideration
is completely determined by the positive parameters L,R, and H (R > H/2). Note
that the smallest ball centered at the origin that contains Ω is given by Br0(0) with
r0 = L/2 + R +

√
R2 −H2/4. This fact will be used later to obtain appropriate

estimates. Moreover, we denote by a the length of Γ1; i.e., a = |Γ1|, assuming that
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Fig. 2.

Fig. 3.

a < min{L, πR/2}. First we will construct several supersolutions to problem (1)
which depend on the relative position occupied by a connected arc Γ1 on ∂Ω. By
the symmetry of the domain and the assumption made on a, it will be sufficient to
analyze three situations which are respectively characterized by Figures 2, 3, and 4.

In the following discussion, we always denote by u the solution to the instance of
problem (1) that is being analyzed.

Consider first the case illustrated in Figure 2. The function v1(x, y) = R+ y is a
supersolution to problem (1) in this case. In fact, v1 is harmonic and

(v1|Γ0)(x, y) ≥ R−R = 0, (x, y) ∈ Γ0,(
∂v1

∂n

)∣∣∣∣
Γ1

(x, y) = 1, (x, y) ∈ Γ1.

Thus, u ≤ v1 in Ω and then

sup
Ω
u ≤ sup

Ω
v1 = 2R.(12)
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Fig. 4.

When Γ1 is an arc of circle (see Figure 3) we denote by ν the unit outward-
pointing normal vector to the circle corresponding to the midpoint of Γ1. Then, the
affine function

v2(x, y) =
1

cos(a/(2R))

(
L

2
+R+

√
R2 − H2

4
+ 〈ν, (x, y)〉

)
,

where 〈·, ·〉 indicates the inner product in R2, is a supersolution to problem (1). Indeed,
from the above-mentioned inclusion Ω ⊂ Br0(0), r0 = L/2 + R +

√
R2 −H2/4 and

using the Cauchy–Schwarz inequality we deduce

(v2|Γ0
)(x, y) ≥ 1

cos(a/(2R))

(
L

2
+R+

√
R2 − H2

4
− |(x, y)|

)
≥ 0, (x, y) ∈ Γ0,

and, if n(x, y) indicates the unitary outward-pointing normal vector at the point
(x, y) ∈ ∂Ω,(

∂v2

∂n

)∣∣∣∣
Γ1

(x, y) =
〈ν, n(x, y)〉
cos(a/(2R))

≥ cos(a/(2R))

cos(a/(2R))
= 1, (x, y) ∈ Γ1.

Therefore,

sup
Ω
u ≤ sup

Ω
v2 ≤

2
(
L/2 +R+

√
R2 −H2/4

)
cos(a/(2R))

≤ L+ 4R

cos(a/(2R))
.(13)

The second inequality in (13) follows from a new application of the Cauchy–Schwarz
inequality. For the case described by Figure 4 we propose a potential supersolution
of the form (cf. [3])

v3(x, y) =
D(X0,Γ1)

h(X0,Γ1)
ln

(
D(X0,Γ0)

|(x, y)−X0|
)
,
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where X0 is a point not belonging to Ω and, if Γ is a subset of ∂Ω,

D(X0,Γ) = sup
(x,y)∈Γ

|(x, y)−X0| , h(X0,Γ) = inf
(x,y)∈Γ

〈
X0 − (x, y)

|(x, y)−X0| , n(x, y)

〉
.

In fact, we obviously have

v3(x, y) ≥ 0, (x, y) ∈ Γ0,

and placing X0 as in Figure 4 we obtain(
∂v3

∂n

)∣∣∣∣
Γ1

(x, y) =
D(X0,Γ1)

h(X0,Γ1)

1

|(x, y)−X0|
〈
X0 − (x, y)

|(x, y)−X0| , n(x, y)

〉
≥ D(X0,Γ1)

|(x, y)−X0| ≥ 1, (x, y) ∈ Γ1.

Thus, the following estimate for u is deduced:

sup
Ω
u ≤ sup

Ω
v3 ≤ D(X0,Γ1)

h(X0,Γ1)
ln

(
D(X0,Γ0)

d(X0,Ω)

)
,(14)

where, as usual, d(X0,Ω) denotes the distance of X0 to Ω. Now, simple calculations
show that an upper bound independent of the parameter H can be found for the
estimate of supΩ u given by (14). This property, which is also shared by the bounds
provided by (12) and (13), is to be exploited further on to complete the argument.
To find such an upper bound we set a = a1 + a2 with a2 denoting the length of the
part of Γ1 placed on the circle. Let (L/2−a1, H/2 +p) be the coordinates of X0 with
the value of p given by

p =

(
a1 +

√
R2 − H2

4

)
tan

(
a2

R
+ arcsin

(
H

2R

))
− H

2
;

then we can write

D(X0,Γ1) =
√
a2

1 + p2,(15)

D(X0,Γ0) = R+

√(
p+ H

2

)2
+

(
L− a1 +

√
R2 − H2

4

)2

,(16)

d(X0,Ω) = min

p,
√(

a1 +
√
R2 − H2

4

)2

+
(
p+ H

2

)2 −R
 .(17)

Furthermore, taking into account that

cosα = p√
a2

1+p2
, cos θ = H

2R cosα+
√

1− H2

4R2 sinα ≥
√

1− H2

4R2
a1√
a2

1+p2
,

where α and θ are the angles specified in Figure 4, we obtain

h(X0,Γ1) = min {cosα, cos θ} ≥ 1√
a2

1 + p2
min

{
p, a1

√
1− H2

4R2

}
.(18)
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By introducing (15)–(18) in (14) and taking H < R, after some algebraic manipula-
tions we conclude

sup
Ω
u ≤ a2

1 + p2

min{p,
√

3
2 a1}

ln


5
2R+ p+ L− a1

min

{
p,

√(
a1 +

√
3

2 R
)2

+ p2 −R
}  .(19)

Finally, in view of limH↓0 p = (a1 +R) tan (a2/R), an estimate independent of H for
supΩ u can be easily deduced from (19).

Next, we will consider the instance of problem (1) in which Γ1 splits into two
symmetric segments of length a/2 as shown in Figure 5. On the subdomain Ω

′
=

(−a/4, a/4)× (−H/2, H/2) (in gray in Figure 5), the harmonic function

w(x, y) =
1

H

(
y2 − x2 +

a2

16
− H2

4

)
satisfies (

∂w

∂n

)∣∣∣∣
Γ1

(x, y) = 1, (x, y) ∈ Γ1,

w
(
±a

4
, y
)

=
1

H

(
y2 − H2

4

)
≤ 0, |y| < H

2
.

By the strong maximum principle and Hopf’s lemma (see [13], [9], [1]), the solution
u to problem (1) satisfies u > 0 in Ω; hence

u
(
±a

4
, y
)
> 0, |y| < H

2
;

moreover, the symmetry of Ω and Γ1 guarantees that supΩ u = u(0,±H/2). Then we
see that w is a subsolution in Ω

′
of u and therefore,

sup
Ω
u ≥ sup

Ω′
w = w

(
0,±H

2

)
=

a2

16H
.(20)

Now, the fact that a domain shaped like that in Figure 1 does not satisfy the property
stated in Conjecture 1 quickly follows from inequalities (12), (13), (19), and (20). In
effect, the lower bound for supΩ u given by (20) depends on the reciprocal of H, unlike
the upper bounds provided by the remaining inequalities. Therefore, Conjecture 1 is
violated by the domain Ω under consideration when a sufficiently small H is chosen.

3. Proof of Theorem 4. The technique we employ to prove Theorem 4 consists
of several steps. Broadly speaking, we use Ghizzetti’s exact solution to problem (1) in
the circle and conformal maps to estimate the right-hand side of (7) for small enough
ε. An estimate of the other side is obtained through the maximum principles and
more involved estimations of normal derivatives. To begin with, using the notation
settled in the Introduction, for k = 1, 2, . . . , n let us consider the mixed boundary
value problems ∣∣∣∣∣∣∣∣

∆uk(x) = 0, x ∈ Ω,
uk(x) = 0, x ∈ Γ0,
∂uk
∂n (x) = 1, x ∈ Γ

(k)
1 ,

∂uk
∂n (x) = 0, x ∈ Γ

(j)
1 , j 6= k,

(21)
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Fig. 5.

and ∣∣∣∣∣∣∣∣
∆vk(x) = 0, x ∈ Ω,
vk(x) = 0, x ∈ Γ0,
∂vk
∂n (x) = 1, x ∈ Γ

(k)
1 ,

vk(x) = 0, x ∈ Γ
(j)
1 , j 6= k.

.(22)

The normal derivative ∂vk/∂n of the solution vk to (22) is a bounded and (at least)
continuous function on Γ1 and therefore, it makes sense to consider also the following
problem: ∣∣∣∣∣∣∣∣

∆wk(x) = 0, x ∈ Ω,
wk(x) = 0, x ∈ Γ0,
∂wk
∂n (x) = 0, x ∈ Γ

(k)
1 ,

∂wk
∂n (x) = −∂vk∂n (x), x ∈ Γ

(j)
1 , j 6= k.

(23)

From the strong maximum principle and Hopf’s lemma (see [9],[13]), we deduce that
the functions uk, vk, and wk are nonnegative on Ω. Take, for instance, the function
uk. In view of the imposed boundary conditions, uk is not constant on Ω; then,
infΩ uk = uk(x0) for a certain x0 ∈ ∂Ω by the strong maximum principle. But Hopf’s
lemma ensures the normal derivative (∂uk/∂n)(x0) is negative at the point x0, so that
x0 ∈ Γ0 and therefore infΩ uk = uk(x0) = 0. The nonnegativity of vk and wk follows
in a similar way.

Several relationships hold among functions uk, vk, wk, and the solution u[Γ1] to
(1). The most useful of these are listed in the following lemma.

Lemma 6. If u[Γ1], uk, vk, and wk respectively denote the solutions to problems
(1), (21), (22), and (23), then the following relationships hold:
(i) u[Γ1] =

∑n
k=1 uk;

(ii) uk = vk + wk, k = 1, 2, . . . , n;

(iii) vk ≤ uk ≤ vk + maxj 6=k
∥∥∥ (∂vk/∂n)|

Γ
(j)
1

∥∥∥
∞
∑
j 6=k uj .

Furthermore, if the inequality
∑n
k=1 maxj 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞
< 1 holds, then
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(iv)

max
1≤k≤n

sup
Ω
vk ≤ sup

Ω
u[Γ1] ≤ max1≤k≤n supΩ vk

1−∑n
k=1 maxj 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

.

Proof. Assertions (i) and (ii) are immediate from the definitions of u[Γ1], uk, vk,
and wk. The first inequality in (iii) follows from (ii) and the nonnegativity of wk.
To derive the second inequality in (iii), we consider the function w̃k that solves the
problem ∣∣∣∣∣∣∣∣∣

∆w̃k(x) = 0, x ∈ Ω,
w̃k(x) = 0, x ∈ Γ0,
∂w̃k
∂n (x) = 0, x ∈ Γ

(k)
1 ,

∂w̃k
∂n (x) = maxj 6=k

∥∥∥ ∂vk∂n ∣∣Γ(j)
1

∥∥∥
∞
, x ∈ Γ

(j)
1 , j 6= k.

The strong maximum principle and Hopf’s lemma provide wk ≤ w̃k on Ω. On the
other hand, it is obvious that

w̃k = max
j 6=k

∥∥∥∥∥ ∂vk∂n
∣∣∣∣
Γ

(j)
1

∥∥∥∥∥
∞

∑
j 6=k

uj ,

and thus, from (ii) we obtain

uk = vk + wk ≤ vk + w̃k = vk + max
j 6=k

∥∥∥∥∥ ∂vk∂n
∣∣∣∣
Γ

(j)
1

∥∥∥∥∥
∞

∑
j 6=k

uj .

In order to prove the inequalities (iv), we take
∑n
k=1 in the second inequality (iii) to

obtain

n∑
k=1

uk ≤
n∑
k=1

vk +

n∑
k=1

max
j 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

∑
j 6=k

uj

 ,(24)

or, taking into account (i) and the nonnegativity of uk, k = 1, 2, . . . , n,

u[Γ1] ≤
n∑
k=1

vk +
n∑
k=1

max
j 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

∑
j 6=k

uk


≤

n∑
k=1

vk + u[Γ1]
n∑
k=1

max
j 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞
.(25)

By the strong maximum principle and Hopf’s lemma, there exists a point P ∈ Γ1

such that supΩ u[Γ1] = u[Γ1](P ). Without loss of generality we can assume P ∈ Γ
(1)
1 .

From (25) we then obtain

sup
Ω
u[Γ1] = u[Γ1](P ) ≤ v1(P ) + u[Γ1](P )

n∑
k=1

max
j 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞
,
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and using the hypothesis
∑n
k=1 maxj 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞
< 1,

sup
Ω
u[Γ1] ≤ v1(P )

1−∑n
k=1 maxj 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

≤ supΩ v1

1−∑n
k=1 maxj 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

≤ max1≤k≤n supΩ vk

1−∑n
k=1 maxj 6=k

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

,

which proves the second inequality in (iv). As for the first inequality in (iv), from the
first one in (iii) we deduce

sup
Ω
vk ≤ sup

Ω
u[Γ1],

whence

max
1≤k≤n

sup
Ω
vk ≤ sup

Ω
u[Γ1].

This completes the proof.
The second inequality from Lemma 6(iv) can be employed to prove Theorem 4.

In fact, assume for a moment that the expressions

sup
Ω
u[Γ∗1(ε)] = C0 ((b− a) ε)

p
+ o(εp),(26) ∥∥∥ (∂vk/∂n)|

Γ
(j)
1 (ε)

∥∥∥
∞
≤ Cj.k ((bk − ak) ε)

q
+ o(εq)(27)

hold for sufficiently small ε’s with p, q > 0 and constants C0 and Cj.k which are
independent of a, b and ak, bk, k = 1, 2, . . . , n, respectively. A proof of (26) and (27)
for a Dini-smooth domain (with p = 1 and q = 2 ) is furnished by Theorem 8 below.
With the inequalities (26) and (27) at hand, we succeed in proving Theorem 4 as
follows.

Proof of Theorem 4. By using (26), supΩ vk admits the following representa-
tion:

sup
Ω
vk = C0 ((bk − ak) ε)

p
+ o(εp), k = 1, 2, . . . , n,

and, since the hypothesis of item (iv) of Lemma 6 is satisfied when ε is small enough
(for instance, εq < 1/[2

∑n
k=1(bk − ak)q maxj 6=k Cj.k]), the second inequality from

Lemma 6(iv) and (27) provide for these ε’s

sup
Ω
u[Γ1(ε)] ≤ C0 max1≤k≤n ((bk − ak) ε)

p
+ o(εp)

1−∑n
k=1 maxj 6=k Cj.k ((bk − ak) ε)

q
+ o(εq)

= C0 max
1≤k≤n

((bk − ak) ε)
p

+ o(εp).(28)

By recalling that b− a =
∑n
k=1(bk − ak) and bk − ak > 0, k = 1, 2, . . . , n, from (26)

and (28) we get

sup
Ω
u[Γ1(ε)] ≤ C0 max

1≤k≤n
((bk − ak) ε)

p
+ o(εp)

< C0 ((b− a) ε)
p

+ o(εp) = sup
Ω
u[Γ∗1(ε)],
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for sufficiently small ε’s, as Theorem 4 asserts.
The remainder of this section is devoted to justifying the validity of the expressions

(26) and (27) under reasonable hypotheses on the regularity of the domain Ω. Let
us begin by showing that (26) and (27) hold for Ω = B1(0), the circle of radius 1;
then, the technique of conformal maps will be applied to extend their validity to
Dini-smooth domains which satisfy an interior sphere condition. Thus, we assume
that Ω = B1(0) in the following. As usual, polar coordinates are employed to denote
points belonging to the circle.

An explicit solution to the general mixed boundary value problem∣∣∣∣∣∣∣
∆u(ρ, φ) = 1

ρ

(
(ρuρ)ρ + 1

ρ uφφ

)
= 0, (ρ, φ) ∈ B1(0),

u(1, φ) = F (φ), α < φ < 2π,
∂u
∂ρ (1, φ) = G(φ), 0 < φ < α

(29)

was found by Ghizzetti in [7] (see also [8]). Under suitable hypotheses of regularity
on the functions F and G it is shown by this author that the solution u(ρ, φ) to (29)
can be expressed as follows:

u(ρ, φ) = 1
2π

∫ α
0

ln

(√
H(ρ,φ,θ)+

√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)√

H(ρ,φ,θ)−
√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)

)
G(θ) dθ

+ 1
2π

1−ρ2√
M(ρ,φ)+N(ρ,φ)

∫ 2π

α

√
H(ρ,φ,θ)+

√
K(ρ,φ,θ)

1−2ρ cos(φ−θ)+ρ2 F (θ) dθ,

(30)

where

H(ρ, φ, θ) = sin(|α−θ|/2)
sin(θ/2) (1− 2ρ cosφ+ ρ2),(31)

K(ρ, φ, θ) = sin(θ/2)
sin(|α−θ|/2) (1− 2ρ cos(φ− α) + ρ2),(32)

M(ρ, φ) = 2
√

(1− 2ρ cosφ+ ρ2)(1− 2ρ cos(φ− α) + ρ2),(33)

N(ρ, φ) = 2 (cos(α/2)− 2ρ cos(φ− α/2) + ρ2 cos(α/2)).(34)

Note that M = 2
√
HK. From (30) and (31)–(34) we easily derive an explicit solution

to the instance of problem (1) in which Ω = B1(0) and Γ1 = (0, α). In fact, denoting
this solution by uα we can write

uα(ρ, φ) = 1
2π

∫ α
0

ln

(√
H(ρ,φ,θ)+

√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)√

H(ρ,φ,θ)−
√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)

)
dθ,(35)

where H, K, M , and N are defined by (31)–(34). Now we prove that the supremum
supB1(0) uα is attained at the boundary point (1, α/2). In fact, the strong maximum
principle and Hopf’s lemma show that supB1(0) uα is attained at a point (1, φ0) such
that 0 < φ0 < α, and so, we must look for the maximum of the boundary value
φ 7→ h(φ) = uα(1, φ), 0 < φ < α. Since uα is symmetric with respect to the
line φ = α/2, the point φ = α/2 is a point of symmetry for the function h; i.e.,
h(α/2−φ) = h(α/2 +φ), 0 ≤ φ < α/2. Furthermore, h is a strictly concave function
in (0, α) which, jointly with its symmetry, implies that supB1(0) uα = sup0<φ<α h(φ) =
h(α/2) = uα(1, α/2). That h is really a strictly concave function can be seen by using
once again the maximum principle and Hopf’s lemma. On the one hand, h is a smooth
function and then the equation

∆uα(ρ, φ) =
1

ρ

(
(ρ (uα)ρ)ρ +

1

ρ
(uα)φφ

)
= 0
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holds up to the boundary ρ = 1, 0 < φ < α, so that we can write

h′′(φ) = (uα)φφ(1, φ) = − (ρ (uα)ρ)ρ (1, φ), 0 < φ < α.(36)

On the other hand, the function defined by v = ρ (uα)ρ, (ρ, φ) ∈ B1(0), is har-

monic and its maximum value (equal to 1) on B1(0) is reached at every point (1, φ),
0 < φ < α. Thus, Hopf’s lemma shows that the normal derivative (v)ρ(1, φ) =
(ρ (uα)ρ)ρ (1, φ) > 0, 0 < φ < α, and so, from (36) we obtain h′′(φ) < 0, 0 < φ < α;
that is, h is strictly concave.

Once it is known that supB1(0) uα = uα(1, α/2), Ghizzetti’s formula (36) becomes
useful in deriving an explicit expression for supB1(0) uα. Indeed, we have

supB1(0) uα = uα(1, α/2)

= 1
2π

∫ α
0

ln

(√
H(1,α/2,θ)+

√
M(1,α/2)−N(1,α/2)+

√
K(1,α/2,θ)√

H(1,α/2,θ)−
√
M(1,α/2)−N(1,α/2)+

√
K(1,α/2,θ)

)
dθ,

or, realizing that

H(1, α/2, θ) = 2 sin(|α−θ|/2)
sin(θ/2) (1− cos(α/2)),

K(1, α/2, θ) = 2 sin(θ/2)
sin(|α−θ|/2) (1− cos(α/2)),

M(1, α/2) = 4 (1− cos(α/2)),

N(1, α/2) = 4 (cos(α/2)− 1) = −M(1, α/2),

and after some simplifications,

supB1(0) uα = 1
π

∫ α
0

ln

∣∣∣∣√sin((α−θ)/2)+
√

sin(θ/2)√
sin((α−θ)/2)−

√
sin(θ/2)

∣∣∣∣ dθ
= α

π

∫ 1

0
ln

∣∣∣∣√sin(α2 (1−λ))+
√

sin(α2 λ)√
sin(α2 (1−λ))−

√
sin(α2 λ)

∣∣∣∣ dλ.
(37)

The expression (35) may be further used to compute the radial derivative ∂uα/∂ρ
at a point (1, φ) belonging to Γ0 = (α, 2π). With this purpose, we note that uα(1, φ) =
0 for every α < φ < 2π, and so, from (35) we obtain

∂uα
∂ρ (R,φ) = limρ↑1

uα(ρ,φ)
ρ−1

= 1
2π limρ↑1

∫ α
0

ln

( √
H(ρ,φ,θ)+

√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)√

H(ρ,φ,θ)−
√
M(ρ,φ)−NR(ρ,φ)+

√
K(ρ,φ,θ)

) 1
ρ−1

dθ

= 1
2π limρ↑1

∫ α
0

ln

(
1+

√
M(ρ,φ)−N(ρ,φ)√

H(ρ,φ,θ)+
√
K(ρ,φ)

1−
√
M(ρ,φ)−N(ρ,φ)√

H(ρ,φ,θ)+
√
K(ρ,φ)

) 1
ρ−1

dθ.

(38)

Routine calculations applied to the expressions (31)–(34) show that√
M(ρ, φ)−N(ρ, φ) = sin(α/2)√

sin(φ/2) sin((φ−α)/2)
(1− ρ) +O((1− ρ)2)
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and √
H(ρ, φ, θ) +

√
K(ρ, φ, θ) = 2

(
sin φ

2

√
sin((α−θ)/2)

sin(θ/2) + sin φ−α
2

√
sin(θ/2)

sin((α−θ)/2)

)
+O(1− ρ),

whence

limρ↑1 ln

(
1+

√
M(ρ,φ)−N(ρ,φ)√

H(ρ,φ,θ)+
√
K(ρ,φ)

1−
√
M(ρ,φ)−N(ρ,φ)√

H(ρ,φ,θ)+
√
K(ρ,φ)

) 1
ρ−1

= − sin(α/2)√
sin(φ/2) sin((φ−α)/2)

(
sin φ

2

√
sin((α−θ)/2)

sin(θ/2)
+sin φ−α

2

√
sin(θ/2)

sin((α−θ)/2)

) .(39)

On the other hand, using the Taylor’s series of x 7→ ln((1 + x)/(1 − x)) and the
inequality Ax + Bx−1 ≥ 2

√
AB which holds for A,B, x > 0, we see that for ρ close

enough to 1 there exists a constant L > 0 such that∣∣∣∣∣∣ln
(

1+

√
M(ρ,φ)−N(ρ,φ)√

H(ρ,φ,θ)+
√
K(ρ,φ)

1−
√
M(ρ,φ)−N(ρ,φ)√

H(ρ,φ,θ)+
√
K(ρ,φ)

) 1
ρ−1

∣∣∣∣∣∣
≤ L sin(α/2)√

sin(φ/2) sin((φ−α)/2)

(
sin φ

2

√
sin((α−θ)/2)

sin(θ/2)
+sin φ−α

2

√
sin(θ/2)

sin((α−θ)/2)

)
≤ L sin(α/2)

2 sin(φ/2) sin((φ−α)/2) , 0 < θ < α.

(40)

In view of (39) and (40) we can apply the dominated convergence theorem to the last
member of (38) to obtain

∂uα
∂ρ (1, φ) = − sin(α/2)

2π
√

sin(φ/2) sin((φ−α)/2)

∫ α
0

dθ

sin φ
2

√
sin((α−θ)/2)

sin(θ/2)
+sin φ−α

2

√
sin(θ/2)

sin((α−θ)/2)

= − α sin(α/2)

2π
√

sin(φ/2) sin((φ−α)/2)

∫ 1

0
dλ

sin φ
2

√
sin(α(1−λ)/2)

sin(αλ/2)
+sin φ−α

2

√
sin(αλ/2)

sin(α(1−λ)/2)

.

(41)

Now we are in the position to prove that expressions like (26) and (27) hold for
the circle.

Theorem 7. By employing the above notation, we have

supB1(0) uα = 1
2α+ o(α).(42)

Moreover, if α < φ1 < φ2 < 2π, then

supφ1<φ<φ2

∣∣∣∂uα∂ρ (1, φ)
∣∣∣ ≤ 1

8πminφ∈[φ1,φ2][sin(φ/2) sin((φ−α)/2)] α
2 + o(α2).(43)

Proof. With the purpose of proving the validity of expression (42), we observe
that

limα↓0
∫ 1

0
ln

∣∣∣∣√sin(α2 (1−λ))+
√

sin(α2 λ)√
sin(α2 (1−λ))−

√
sin(α2 λ)

∣∣∣∣ dλ =
∫ 1

0
ln
∣∣∣√1−λ+

√
λ√

1−λ−√λ

∣∣∣ dλ = π
2 .
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The expression (42) immediately follows from this equality and from (37). On the
other hand, it follows from the arithmetic mean-geometric mean inequality that, for
every 0 < λ < 1 and α < φ < 2π,

sin φ
2

√
sin(α(1−λ)/2)

sin(αλ/2) + sin φ−α
2

√
sin(αλ/2)

sin(α(1−λ)/2) ≥ 2
√

sin φ
2 sin φ−α

2
,

and hence ∫ 1

0
dλ

sin φ
2

√
sin(α(1−λ)/2)

sin(αλ/2)
+sin φ−α

2

√
sin(αλ/2)

sin(α(1−λ)/2)

≤ 1

2
√

sin φ
2 sin φ−α

2

.
(44)

Therefore, from (41) and (44) we see that∣∣∣∂uα∂ρ (1, φ)
∣∣∣ ≤ α sin(α/2)

2π
√

sin(φ/2) sin((φ−α)/2)

1

2
√

sin(φ/2) sin((φ−α)/2)

= 1
8π sin(φ/2) sin((φ−α)/2) α

2 + o(α2),

whence we finally get expression (43).
It should be observed that if uR,α is the solution to problem (1) for Ω = BR(0)

and Γ1 = (0, Rα), then we have uR,α(ρ, φ) ≡ Ruα(ρ/R, φ). In this way, by setting
ε = |Γ1| = Rα, from Theorem 7 we conclude

supBR(0) uR,α = 1
2ε+ o(ε),(45)

and, for α < φ1 < φ2 < 2π,

supφ1<φ<φ2

∣∣∣∂uR,α∂ρ (R,φ)
∣∣∣ ≤ 1

8πR2 minφ∈[φ1,φ2][sin(φ/2) sin((φ−α)/2)] ε
2 + o(ε2).(46)

Now we turn to consider the case of a Jordan domain Ω with a Dini-smooth
boundary curve γ. Choose a point O ∈ γ and take O as the origin of arcs. To facilitate
the following calculations γ(s) is given in complex form, γ(s) = γ1(s) + iγ2(s). By
translating Ω if necessary, we can take O as the origin of coordinates; i.e., we set
O = γ′(0) = (0, 0). Furthermore, a rotation of Ω around O can be done in such a way
so as to get γ′(0) = 1. As before, we symbolize by u[Γ1] the solution to problem (1)
for Γ1 = (0, ε). Among the conformal maps f from B1(0) onto Ω, we select that one
which verifies f(1) = 0 and f ′(1) = −i |f ′(1)|. In this way, the function v = u[Γ1] ◦ f
satisfies ∣∣∣∣∣∣

∆v(ρ, φ) = 0, (ρ, φ) ∈ B1(0),
v(1, φ) = 0, α(ε) < φ < 2π,

∂v
∂ρ (1, φ) =

∣∣f ′(eiφ)
∣∣ , 0 < φ < α(ε),

(47)

where α(s) is such that f(eiα(s)) = γ(s), 0 ≤ s ≤ |∂Ω|. Differentiating this last
equality with respect to s, we obtain f ′(eiα(s)) eiα(s)iα′(s) = γ′(s) and then, from the
assumptions made on γ and f , we deduce α(0) = 0 and α

′
(0) = 1/ |f ′(1)|, so that for

ε ↓ 0 we can write

α(ε) = 1
|f ′(1)|ε+ o(ε).(48)

By Ghizzetti’s formula (30), the function v solving (47) can be represented as

v(ρ, φ) = 1
2π

∫ α(ε)

0
ln

(√
H(ρ,φ,θ)+

√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)√

H(ρ,φ,θ)−
√
M(ρ,φ)−N(ρ,φ)+

√
K(ρ,φ,θ)

) ∣∣f ′(eiθ)∣∣ dθ,
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whence

v(1, φ) = 1
2π

∫ α(ε)

0
ln

(√
H(1,φ,θ)+

√
M(1,φ)−N(1,φ)+

√
K(1,φ,θ)√

H(1,φ,θ)−
√
M(1,φ)−N(1,φ)+

√
K(1,φ,θ)

) ∣∣f ′(eiθ)∣∣ dθ
= 1

π

∫ α(ε)

0
ln

∣∣∣∣√sin((α(ε)−θ)/2) sin(φ/2)+
√

sin(θ/2) sin((α(ε)−φ)/2)√
sin((α(ε)−θ)/2) sin(φ/2)−

√
sin(θ/2) sin((α(ε)−φ)/2)

∣∣∣∣ ∣∣f ′(eiθ)∣∣ dθ
(49)

and

∂v
∂ρ (1, φ) = − sin(α(ε)/2)

2π
√

sin(φ/2) sin((φ−α(ε))/2)

× ∫ α(ε)

0

|f ′(eiθ)|dθ
sin φ

2

√
sin((α(ε)−θ)/2)

sin(θ/2)
+sin

φ−α(ε)
2

√
sin(θ/2)

sin((α(ε)−θ)/2)

.
(50)

Compare (49) and (50) with (35) and (41), respectively. Now we prove that a result
like Theorem 7 holds for Jordan domains with a Dini-smooth boundary.

Theorem 8. Let Ω be a Jordan domain with a Dini-smooth boundary and Γ1

denote a connected arc of ∂Ω such that |Γ1| = ε. If u[Γ1] is the solution to problem
(1) for Ω and Γ1, then we have

supΩ u[Γ1] = 1
2ε+ o(ε).(51)

Moreover, if the conformal map f : B1(0) → Ω and α(ε) are defined as above,
then for α(ε) < φ1 < φ2 < 2π,

supφ1<φ<φ2

∣∣∣∂u[Γ1]
∂n (f(eiφ))

∣∣∣ ≤ ‖f ′‖∞
8πM3(f ′ ) minφ∈[φ1,φ2][sin(φ/2) sin((φ−α)/2)]

ε2 + o(ε2),(52)

where M(f ′) = min0≤φ≤2π |f ′(φ)|.
Proof. By making an appropriate change of variable in the integral of the last

member of (49), for 0 < φ < α(ε) we obtain

v(1, φ) = α(ε)
π

∫ 1

0
ln

∣∣∣∣√sin(α(ε)(1−λ)/2) sin(φ/2)+
√

sin(α(ε)λ/2) sin((α(ε)−φ)/2)√
sin(α(ε)(1−λ)/2) sin(φ/2)−

√
sin(α(ε)λ/2) sin((α(ε)−φ)/2)

∣∣∣∣
× ∣∣f ′(eiα(ε)λ)

∣∣ dλ.(53)

Taking into account (48) and the continuity up to the boundary of f ′, we realize that,
when ε ↓ 0, the integral of the right-hand side of (53) converges to∣∣∣f ′(1)

∣∣∣ ∫ 1

0
ln
∣∣∣√1−λ+

√
λ√

1−λ−√λ

∣∣∣ dλ = π
2

∣∣∣f ′(1)
∣∣∣ ;

thus

u[Γ1](f(eiφ)) = v(1, φ)

= 1
π

(
1

|f ′(1)|ε+ o(ε)
) (

π
2

∣∣∣f ′(1)
∣∣∣+O(1)

)
= 1

2ε+ o(ε),
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so proving the expression (51). On the other hand, from (50) we deduce

∂u[Γ1]
∂n (f(eiφ)) = 1

|f ′(eiφ)|
∂v
∂ρ (1, φ)

= − sin(α(ε)/2)

2π|f ′(eiφ)|
√

sin(φ/2) sin((φ−α(ε))/2)

×α(ε)
∫ 1

0

|f ′(eiα(ε)λ)|dλ
sin φ

2

√
sin(α(ε) (1−λ)/2)

sin(α(ε)λ/2)
+sin

φ−α(ε)
2

√
sin(α(ε)λ/2)

sin(α(ε) (1−λ)/2)

.

(54)

By proceeding as in the proof of (43) we obtain∣∣∣∂u[Γ1]
∂n (f(eiφ))

∣∣∣ ≤ α(ε) sin(α(ε)/2)

2π |f ′(eiφ)|
√

sin(φ/2) sin((φ−α(ε))/2)

∫ 1

0
|f ′(eiα(ε)λ)|dλ

2
√

sin(φ/2) sin((φ−α(ε))/2)

≤ ‖f ′‖∞α(ε) sin(α(ε)/2)

4π |f ′(eiφ)| sin(φ/2) sin((φ−α(ε))/2)

=
‖f ′‖∞

8π |f ′(eiφ)| sin(φ/2) sin((φ−α(ε))/2)
ε2

|f ′ (1)|2 + o(ε2)

≤ ‖f ′‖∞
8πM3(f ′) sin(φ/2) sin((φ−α(ε))/2)ε

2 + o(ε2),

(55)

where we have again used (48), the continuity up to the boundary of f ′, and the fact
that f ′ does not vanish in Ω. Inequality (52) follows by taking supφ1<φ<φ2

in the first
and last members of inequalities (55).

As a simple example of an application of Theorem 8 we now set Ω = BR(0).
The function f(z) = iR (1− z) is the Riemann mapping from B1(0) onto iR+BR(0)
verifying f(1) = 0, f ′(1) = −iR = −i |f ′(1)|. Since |f ′(z)| ≡ R for this mapping,
expressions (45) and (46) are respectively recovered from the general expressions (51)
and (52) appearing in the theorem.

Observe that expression (51) from Theorem 8 is just a proof of (26) for Jor-
dan domains with a Dini-smooth boundary. In order to derive the correspond-
ing expression (27) for these domains, we introduce suitable coordinates so that
a1 = 0, γ(0) = O, and γ′(0) = 1. As before, denote by f the function that
conformally maps B1(0) onto Ω and satisfies f(1) = 0, f ′(1) = −i |f ′(1)|. For
k = 1, 2, . . . , n and 0 < ε ≤ 1, define the rotations gk(z) = eiα(ak(ε))z and con-
sider the mappings fk : B1(0) → Ω such that fk = f ◦ gk. These mappings verify
fk(1) = f(eiα(ak(ε))) = γ(ak(ε)), fk

(
ei(α(bk(ε))−α(ak(ε)))

)
= f(eiα(bk(ε))) = γ(bk(ε)),

‖f ′k‖∞ = ‖f ′‖∞, and M(f ′k) = M(f ′); then, an application of the inequality (52) with
u[Γ1] and f substituted by vk and fk, respectively, give us

supφ1<φ<φ2

∣∣∂vk
∂n (fk(eiφ))

∣∣ ≤ ‖f ′‖∞((bk−ak)ε)2

8πM3(f ′ ) minφ∈[φ1,φ2]

[
sin φ

2 sin
φ−(α(bk(ε))−α(ak(ε)))

2

] + o(ε2),

where α(bk(ε))−α(ak(ε)) < φ1 < φ2 < 2π. Therefore, for small enough ε ’s, we have∥∥∥ (∂vk/∂n)|
Γ

(j)
1 (ε)

∥∥∥
∞
≤ ‖f ′‖∞((bk−ak)ε)2

8πM3(f ′ ) minφ∈[α(aj(ε)),α(bj(ε))]

[
sin

φ−α(ak(ε))

2 sin
φ−α(bk(ε))

2

] + o(ε2).

(56)
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Since

minφ∈[α(aj(ε)),α(bj(ε))]

[
sin φ−α(ak(ε))

2 sin φ−α(bk(ε))
2

]
→ sin2

(
α((aj+bj)/2)−α((ak+bk)/2)

2

)
when ε ↓ 0, we see from (56) that expression (27) holds for the constants Cj,k given
by

Cj,k =
‖f ′‖∞

4πM3(f ′ ) minj 6=k

[
sin2

(
α((aj+bj)/2)−α((ak+bk)/2)

2

)] .
4. Proof of Theorem 5. In order to prove Theorem 5, better estimates for

normal derivatives are needed. For the sake of clarity, we first discuss the case Ω =
B1(0). Notations are the same as those used in the previous section.

From (41) and (44) we obtain, for α < φ < 2π,∣∣∣∂uα∂ρ (1, φ)
∣∣∣ ≤ α sin(α/2)

4π sin(φ/2) sin((φ−α)/2)

= α
4π

sin(φ/2) cos((φ−α)/2)−cos(φ/2) sin((φ−α)/2)
sin(φ/2) sin((φ−α)/2)

= α
4π (cot((φ− α)/2)− cot(φ/2)) .

By the mean value theorem, we can write

cot((φ− α)/2)− cot(φ/2) = sin−2 ((φ− α)/2 + µα/2)α/2

for a certain 0 < µ = µ(φ) < 1, and then∣∣∣∂uα∂ρ (1, φ)
∣∣∣ ≤ α2

8π sin2((φ−α)/2+µ(φ)α/2)
, α < φ < 2π.(57)

In this way, for a given τ > 0 we have

supα+τ<φ<2π−τ
∣∣∣∂uα∂ρ (1, φ)

∣∣∣ ≤ α2

8πminα+τ<φ<2π−τ [sin2((φ−α)/2+µ(φ)α/2)]

≤ α2

8π sin2(τ/2)
.

(58)

Now consider a finite family of arcs Γ1 = ∪nk=1Γ
(k)
1 with Γ

(k)
1 = (αk, βk) ⊂ ∂B1(0)

and let δ denote the minimum distance on ∂B1(0) between adjacent components of
Γ1; i.e., δ = min {min1≤k≤n−1(αk+1 − βk), α1 − βn}. By using (58), we find∥∥∥∥∥ ∂vk∂n

∣∣∣∣
Γ

(j)
1

∥∥∥∥∥
∞
≤ (βk − αk)2

8π sin2(δ/2)
,(59)

so that

n∑
k=1

∥∥∥∥∥ ∂vk∂n
∣∣∣∣
Γ

(j)
1

∥∥∥∥∥
∞
≤ 1

8π sin2(δ/2)

n∑
k=1

(βk − αk)2 ≤ |Γ1|2
8π sin2(δ/2)

.(60)

Now, inequalities like (59) and (60) will be analogously derived for a domain with
a Dini-smooth boundary. With this purpose, the starting point we will choose is a
general representation formula for the normal derivative of the solution to the problem∣∣∣∣∣∣∣

∆u(ρ, φ) = 1
ρ

(
(ρuρ)ρ + 1

ρ uφφ

)
= 0, (ρ, φ) ∈ B1(0),

u(1, φ) = 0, β < φ < α+ 2π,
∂u
∂ρ (1, φ) =

∣∣f ′(eiφ)
∣∣ , α < φ < β,
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where the function f conformally maps B1(0) onto Ω. Denote by uα,β the solution to
this problem. After the developments of the previous section, it is not difficult to see
that, for β < φ < α+ 2π,

∂uα,β
∂ρ (1, φ) = − sin((β−α)/2)

2π
√

sin φ−α
2 sin φ−β

2

∫ β
α

|f ′(eiθ)|dθ
sin φ−α

2

√
sin((β−θ)/2)
sin((θ−α)/2)

+sin φ−β
2

√
sin((θ−α)/2)
sin((β−θ)/2)

,

whence we deduce

∂vk
∂n (f(eiφ)) = − sin((βk−αk)/2)

2π |f ′(eiφ)|
√

sin
φ−αk

2 sin
φ−βk

2

× ∫ βk
αk

|f ′(eiθ)|dθ
sin

φ−αk
2

√
sin((βk−θ)/2)

sin((θ−αk)/2)
+sin

φ−βk
2

√
sin((θ−αk)/2)

sin((βk−θ)/2)

.
(61)

In estimating the integral in the second member of (61) we again use the arithmetic

mean-geometric mean inequality and the fact that
∫ β
α

∣∣f ′(eiθ)∣∣ dθ = b− a to obtain∣∣∂vk
∂n (f(eiφ))

∣∣ ≤ sin((βk−αk)/2)

4π |f ′(eiφ)| sin φ−αk
2 sin

φ−βk
2

∫ βk
αk

∣∣f ′(eiθ)∣∣ dθ
= bk−ak

4π |f ′(eiφ)|
sin

βk−αk
2

sin
φ−αk

2 sin
φ−βk

2

.

(62)

As before, we have

sin
βk−αk

2

sin
φ−αk

2 sin
φ−βk

2

= βk−αk
2 sin2[φ−((1−µ)αk+µβk))]

,

for 0 < µ = µ(φ) < 1, and then inequality (62) becomes∣∣∂vk
∂n (f(eiφ))

∣∣ ≤ bk−ak
8π |f ′(eiφ)|

βk−αk
sin2[φ−((1−µ)αk+µβk))]

.(63)

Now let d be the minimum distance between adjacent components of Γ1 as defined
by (8). Since M(f ′) ≤ ∣∣f ′(eiθ)∣∣ ≤ ‖f ′‖∞, we have

M(f ′)δ ≤ d ≤ ‖f ′‖∞ δ,

where δ = min {min1≤k≤n−1(αk+1 − βk), α1 − βn} is the minimum distance on ∂B1(0)
between adjacent components of f−1(Γ1). Thus, from (62) we deduce∥∥∥ ∂vk∂n ∣∣Γ(j)

1

∥∥∥
∞
≤ supαk−δ<φ<βk+δ

∣∣∂vk
∂n (f(eiφ))

∣∣
≤ supαk−δ<φ<βk+δ

[
bk−ak

8π |f ′(eiφ)|
βk−αk

sin2[φ−((1−µ)αk+µβk)]

]
≤ ‖f

′‖∞(bk−ak)2

8πM(f ′) supαk−d/‖f ′‖∞<φ<βk+d/‖f ′‖∞

[
1

sin2[φ−((1−µ)αk+µβk)]

]
≤ ‖f

′‖∞(bk−ak)2

8πM(f ′)
1

sin2[d/(2‖f ′‖∞)]
,

(64)
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and summing on k = 1, 2, . . . , n,

∑n
k=1

∥∥∥ ∂vk∂n ∣∣Γ(j)
1

∥∥∥
∞
≤ ‖f ′‖∞

8πM(f ′)
1

sin2[d/(2‖f ′‖∞)]

∑n
k=1 (bk − ak)

2

≤ ‖f ′‖∞
8πM(f ′)

|Γ1|2
sin2[d/(2‖f ′‖∞)]

=
‖f ′‖∞

8πM(f ′)H
2(Γ1),

(65)

where H(Γ1) was defined by (9).
Finally, with inequalities (64) and (65) at hand, we can proceed to prove Theorem

5 as follows. Assume that Γ1 ∈ F ; i.e., that there exist δ1 and δ2, 0 < δ1 < δ2 < 1,
such that

ρ(Γ1) ≤ δ1,(66)

‖f ′‖∞
8πM(f ′)

H2(Γ1) ≤ 1− δ2.(67)

Furthermore, take 0 < ε ≤ (δ2 − δ1) / [2 (δ2 + δ1)] and assume that |Γ1| is so small
that expression (51) from Theorem 8 can be applied to write

max
1≤k≤n

sup
Ω
vk <

1

2
max

1≤k≤n

∣∣∣Γ(k)
1

∣∣∣+ ε max
1≤k≤n

∣∣∣Γ(k)
1

∣∣∣(68)

and

sup
Ω
u[Γ∗1] >

1

2
|Γ1| − ε |Γ1| ,(69)

where Γ∗1 ⊂ ∂Ω is an arc with |Γ∗1| = |Γ1|. From inequalities (65) and (67) we see that
the second inequality in Lemma 6(iv) is applicable so that, in view of (68), (66), and
(67), we obtain

sup
Ω
u[Γ1] ≤ max1≤k≤n supΩ vk

1−∑n
k=1

∥∥∥ (∂vk/∂n)|
Γ

(j)
1

∥∥∥
∞

<

1
2 max1≤k≤n

∣∣∣Γ(k)
1

∣∣∣+ εmax1≤k≤n
∣∣∣Γ(k)

1

∣∣∣
1− ‖f ′‖∞

8πM(f ′)H
2(Γ1)

=
1
2 + ε

1− ‖f ′‖∞
8πM(f ′)H

2(Γ1)
ρ(Γ1) |Γ1|

≤ δ1
δ2

(
1

2
+ ε

)
|Γ1| .(70)

From (70) and (69) we deduce

sup
Ω
u[Γ1] <

δ1
δ2

(
1

2
+ ε

)
|Γ1| ≤

(
1

2
− ε
)
|Γ1| < sup

Ω
u[Γ∗1].

This finishes the proof of Theorem 5.



1206 LUCIO R. BERRONE

5. Final remarks. Results that are to Conjectures 2 and 3 as Theorem 4 is to
Conjecture 1 can reasonably be proved. Namely, if Ω is a sufficiently regular Jordan
domain, P ∈ Ω and 1 ≤ p < +∞, then the inequalities

‖u[Γ1(ε)]‖p < ‖u[Γ∗1(ε)]‖p ,
u[Γ1(ε)](P ) < u[Γ∗1(ε)](P ),

hold for ε small enough, provided that Γ1 and Γ∗1 are two subsets of γ respectively
given by (3) and (5) with β − α =

∑n
k=1(βk − αk).

Although questions of regularity of the domain Ω may well be considered of sec-
ondary interest in relation to the proposed conjectures, some commentaries are in
order on this matter. Domains Ω with a Dini-smooth boundary were assumed in the
developments of sections 4 and 5. By eventually restricting the placement on ∂Ω
of the arcs composing Γ1, this assumption may be relaxed to include domains with
corners too. The technique of conformal maps could be employed again in such a
generalization (cf. [12]). On the other side, the domain Ω studied in section 2 is one
with corners, but these corners can be mollified to obtain a smooth domain Ω∗ ⊃ Ω
so close to Ω that the solution u∗ corresponding to problem (4) for Ω∗ (and an appro-
priate Γ1) is a small “perturbation” of the solution u to that problem (4) for Ω. This
domain Ω∗ would then afford an example of a nonconvex smooth domain for which
the optimality of connected arcs is not true.

In this paper we have treated plane domains but n-dimensional versions of Con-
jectures 1–3 could, we hope, also be supportable. Of course, additional precisions
will then be needed on the geometry of the admissible family Γ1. For the sphere, the
optimal Γ1 would presumably be bounded by circles.
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paper. He also wishes to thank the hospitality of the Courant Institute of Mathe-
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Abstract. We consider the homogenization of the criticality eigenvalue problem for the even
parity flux of neutron transport in a domain with isotropic and periodically oscillating coefficients.
We prove that the neutron density is factored in the product of two terms. The first one describes
local behavior of the density at the cell level. It is a solution of a heterogeneous transport problem
with periodic boundary conditions. The second term gives global behavior on the whole domain.
It satisfies a homogeneous diffusion equation posed on the whole domain with Dirichlet boundary
conditions. We also give the asymptotic analysis of the corresponding eigenvalues. This expansion
gives rise to errors of the order of the cell size. It does not account for neutron leakage at the boundary
of the core and yields unacceptable errors in practice. We derive a more accurate expansion of the
eigenelements in the case of a symmetric and cubic domain. The analysis of a boundary layer
allows us to derive modified boundary conditions for the diffusion eigenvalue problem. The resulting
approximation for the leading transport eigenvalue is proven to be accurate to one order higher than
previously. Numerical experiments confirm the accuracy of the reconstructed eigenvectors in realistic
settings.

Key words. neutron transport, eigenvalue problem, homogenization, even parity flux formula-
tion, half space problem

AMS subject classification. 35B27

PII. S0036141098338855

1. Introduction. Transport equations are solved in industrial applications in
order to determine the power distribution of neutrons in nuclear reactors. In the case
of a stable reactor, only a steady-state solution is required. Hence the time variable
can be eliminated. An eigenvalue problem, called the criticality problem for neutron
transport, is solved to figure out whether a steady state exists. The unknowns are
the multiplicative factor keff , which expresses the balance between the production
of neutrons by fission and its absorption and leakage at the boundary of the core,
and the neutron density φ(x, µ), defined in phase space at position x and velocity µ.
They are the largest eigenvalue and the associated positive eigenvector of the following
equation:

(µ · ∇φ+ Σφ)(x, µ) =

∫
V

Σs(x, µ
′, µ)φ(x, µ′)dµ′ +

1

keff

∫
V

σf (x, µ′, µ)φ(x, µ′)dµ′(1)

posed with appropriate boundary conditions in an open bounded domain Ω ∈ Rd for a
velocity space V . With the usual notation, µ·∇ =

∑d
i=1 µi

∂
∂xi

, where µ = (µ1, . . . , µd)
and d ∈ N∗ is the spatial dimension. It turns out that the eigenvector φ(x, v) is the
only positive normalized eigenvector of (1); hence the only one of physical interest.
We have the following interpretation for the multiplicative factor keff . If keff = 1,
the core is stable and fission exactly compensates for absorption and leakage. When
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keff > 1, fission is too important and the reactor is supercritical. If keff < 1, fission
must be increased, or the chain reaction dies out.

In (1), Σ, Σs, and σf are the total cross section, the scattering cross section,
and the fission cross section, respectively. They characterize the nuclear reactors,
which are highly heterogeneous. Therefore, numerical simulations with the transport
equation are very demanding.

A first approximation consists in assuming that the core is periodic. It allows
us to homogenize the transport equation (1), which yields a homogeneous second-
order elliptic eigenvalue problem. We consider here a physical domain Ωε composed
of roughly 1

εd
identical cells. The cross sections Σ, Σs, and σf are supposed to be

isotropic, i.e., only depend on the spatial position x, and to be Y -periodic in the
domain Ωε, where Y is the unit cell. For simplicity, the velocity space V will be here
the unit sphere V = Sd−1 = {µ ∈ Rd, |µ| = 1}.

The homogenization of transport equations has been studied at length in the
past, physically [12, 15, 21] and mathematically [14, 26, 27, 31, 33]. We have recently
revisited the criticality eigenvalue problem in [4, 5, 8]. To the best of our knowledge,
no theory is available for the homogenization of eigenvalue problems with periodic
coefficients taking account for neutron leakage at the boundary of the core. In the
same spirit, let us mention the works of [6, 7, 29] concerning the homogenization
of heterogeneous diffusion eigenvalue problems. Notice that various results on the
homogenization of transport equations have been obtained in different contexts [1,
22, 23].

The theory of transport is usually done using (1). However, it is also interesting
to analyze the so-called even parity flux formulation. The even parity flux is defined
by

ψ+(x, µ) =
1

2
(φ(x, µ) + φ(x,−µ)).

When no direction is privileged with respect to its opposite one, such as in the diffusion
limit, this symmetrized flux can be of interest. We deduce from (1) and Appendix A
the following equation in Ωε × V :

−µ·∇ 1

Σ(x)
µ·∇ψ+(x, µ)+Σ(x)ψ+(x, µ) =

(
Σs(x) +

1

kεeff
σf (x)

)∫
V

ψ+(x, µ′)dµ.

(2)

The derivation of this symmetrized transport equation requires that the cross sections
be isotropic. By definition of the even parity flux, we have ψ+(x,−µ) = ψ+(x, µ).
Consequently, we need to consider only solutions of (2) satisfying this symmetry con-
dition. It is well known that the homogenization of transport equations yields homo-
geneous second-order elliptic equations. Thus, the second-order differential operator
in the even parity formulation is similar to that of diffusion. More precisely, we will
see that the variational formulation associated with the transport equation (2) is well
suited to the derivation of the variational formulation of diffusion and simplifies the
analysis of the leakage at the boundary of the core and of the associated boundary
layer problem.

Let us now define our main framework. It is convenient to recast the sequence of
problems (2), parameterized by ε, on a fixed domain. By change of variables x→ εx,
the spatial domain becomes Ω. Since the core is periodic, Ω is composed of roughly
ε−d identical cells of the kind εY = (0, ε)d, where Y = (0, 1)d is the unit cell. The
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period of the heterogeneities in Ω is thus given by ε > 0. No further geometrical
assumption is needed when no leakage is accounted for. However, in order to derive
a more accurate approximation for the leading eigenvalue, neutron leakage at the
boundary cannot be ignored. We have to make more precise the local geometry at
the boundary of the core. We assume here that Ω is the unit cube and that ε−1 is an
integer. The main characteristic is that the boundary of Ω always coincides with the
boundary of a unit cell.

Let us define

Σε(x) = Σ
(x
ε

)
, Σεs(x) = Σs

(x
ε

)
, σεf (x) = σf

(x
ε

)
,(3)

where Σ, Σs, and σf are Y -periodic measurable functions, bounded from above and
below by positive constants and such that the absorption cross section Σ − Σs be
also bounded from below by a positive constant. The latter condition ensures that
absorption is positive everywhere; hence fission is allowed. For simplicity, we introduce
λε = 1

keff
. We consider here an absorbing boundary condition. It means that no

particle enters the core. The solution to (1) satisfies

φ = 0 on Γ− = {(x, µ) ∈ ∂Ω× V subject to (s.t.) µ · n(x) < 0},
where n(x) denotes the outward unit normal to ∂Ω at x ∈ ∂Ω. In practice, this
boundary condition is a first approximation only. The addition of a reflector around
the core yields a correction of order ε. Its analysis is much more involved and is not
considered here.

Let us define ϕε+(x, µ) = ψ+(xε , µ). These assumptions enable us to recast (2) as

−ε2µ·∇ 1

Σε(x)
µ·∇ϕε+(x, µ) + Σε(x)ϕε+(x, µ)

= (Σεs(x) + λεσεf (x))

∫
V

ϕε+(x, µ′)dµ′ in Ω× V,
ϕε+(x, µ)− ε

Σε(x)
µ·∇ϕε+(x, µ) = 0 on Γ−.

(4)

The boundary conditions have been obtained following rules recalled in Appendix A.
An outline of this paper is as follows. In section 2, we recall existing results

on problem (4) at ε given. We also address the transport problem with periodic
boundary conditions, which characterizes the neutron density at the small scale. In
section 3, we present our main results on the asymptotic behavior of the eigenvalues
and eigenvectors of (4) as ε→ 0. First an analysis is given without accounting for the
leakage at the boundary of the core. Second, a first-order correction of the previous
results is given for the largest eigenvalue keff . This correction characterizes the
amount of neutron leakage at the boundary of a nuclear reactor. We give in sections
4 to 6 a detailed proof of these results. In section 4, we give some a priori estimates
and existence results with ε fixed. Our results are based on the analysis of a source
problem introduced in section 3. The asymptotic expansion of this problem is given
in section 5. The analysis of a genuine multidimensional boundary layer problem, or
Milne problem, that is used in section 5, is given in section 6. Finally, we present
some numerical experiments in section 7.

2. The criticality eigenvalue problem in bounded and periodic domain.
In this section, we state some results of existence and regularity for the eigenvalues
and eigenvectors of the even parity transport. They are very close to known results
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on eigenvalue problems in transport theory (see [20, Chapter 21]). We recall them
here for the sake of completeness. The proofs are sketched only and we refer to the
thesis [8] for the details and to the equivalence between the first-order formulation
and the even parity flux formulation given in Appendix A. Our main hypothesis on
the physical data is given now.

Hypothesis 2.1.
(H1) Ω is a convex open bounded subset of Rd.
(H2) V = Sd−1 = {v ∈ Rd s.t. |v| = 1}.
(H3) The cross sections Σ(x), Σs(x), and σf (x) are positive functions in ÃL∞(Ω).

Moreover they are Y -periodic, where Y = (0, 1)d is the periodicity cell.
(H4) There exists a constant η > 0 such that Σ(x)− Σs(x) ≥ η and σf (x) ≥ η.

Let us introduce the Hilbert space

W 2(Ω× V ) = {u ∈ L2(Ω× V ), µ·∇u ∈ L2(Ω× V )}.(5)

We deduce from [8, Theorem II.2.1.1] and Appendix A the following result.
Theorem 2.2. Assume that Hypothesis 2.1 is satisfied. Then problem (4) ad-

mits a countable number of real eigenvalues and of associated eigenvectors, which are
elements of W 2(Ω× V ). Moreover there exists a simple, positive, and real eigenvalue
of smallest modulus, such that its associated eigenvector be the unique normalized
positive eigenvector of (4).

The solutions of (4) can be seen as the eigenvalues and eigenvectors of a positive
compact operator. The reality of these eigenvalues, which holds true in the simplified
setting of isotropic cross sections, is given in [34], for instance. The first part of
the theorem is then proven. The second part relies on the Krein–Rutman theory of
positive operators, which asserts that the spectral radius of this compact operator is
an eigenvalue and that the corresponding eigenvector is positive. Following a proof
given in [20, Chapter 21], one proves that this eigenvalue is simple and that there
exists a unique positive normalized eigenvector.

As we shall see in the next section, the asymptotic limit as ε→ 0 of the solutions
to (4) involves the small scale behavior of the neutron density. It is obtained by
considering the solutions of the following criticality eigenvalue problem in periodic
domain:

Find the smallest eigenvalue λ∞ and the associated positive eigenvector ψ+
∞ of

−µ·∇y 1

Σ
µ·∇yψ+

∞ + Σψ+
∞ = (Σs + λ∞σf )

∫
V

ψ+
∞(y, µ′)dµ′ in Y × V,

y 7→ ψ+
∞(y, µ) is Y -periodic.

(6)

Still following the equivalence between the first-order formulation and the even parity
flux formulation given in Appendix A, we deduce from [8, Theorems II.2.2.4 and
II.2.2.7] the following theorem.

Theorem 2.3. Assume that Hypothesis 2.1 is satisfied. Then problem (6) admits
a simple, positive, and real eigenvalue of smallest modulus, such that its associated
eigenvector be the unique normalized positive eigenvector of (6). Moreover assume
that the cross sections Σ, Σs, and σf belong to Cm(Y ) for m ∈ N∗. Then we have
that ψ+

∞ ∈ Hm(Y × V ).
Remark 2.4. The regularity result stated in the previous theorem is a character-

istic property of the criticality problem with periodic boundary conditions. It is well
known that the solutions to (4) are not arbitrarily regular, even with smooth physical
data (see [30]). For example, we have a nonvanishing outgoing density at the boundary
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of the core, whereas the incoming density is zero by hypothesis. Let us also mention
the following regularity result [5]. Assume that the cross sections are bounded from
above and below by positive constants. Then ψ+

∞ and 1
ψ+
∞

belong to L∞(Y × V ).

Consider the associated source problem:

−µ·∇y 1

Σ
µ·∇yψ+ + Σψ+ = (Σs + λ∞σf )

∫
V

ψ+(y, µ′)dµ′ + S in Y × V,
y 7→ ψ+(y, µ) is Y -periodic,

(7)

where S is a given function in L2(Y × V ) satisfying S(y, µ) = S(y,−µ). Then we
deduce from [8, Theorems II.2.2.5 and II.2.2.8] the following result.

Theorem 2.5. Let (λ∞, ψ+
∞) be the solution to (6). Then problem (7) admits a

solution if and only if the source term S satisfies the following compatibility condition:∫
Y

∫
V

S(y, µ)ψ+
∞(y, µ) dµ dy = 0.(8)

Furthermore, if a solution exists, it is unique up to the addition of a multiple of
ψ+
∞. Assume moreover that the cross sections Σ, Σs, and σf are of class Cm(Y )

and the source term S belongs to Hm(Y × V ) for m ∈ N∗. Then we have that
ψ+ ∈ Hm(Y × V ).

3. Main results on the asymptotic analysis. In this section, we present our
main results on the asymptotic analysis of the criticality eigenvalue problem (4). Let
us introduce the function ψ+

ε (x, µ) = ψ+
∞(xε , µ), where ψ+

∞ is the positive normalized
eigenvector of (6) extended by Y -periodicity on Rd × V . Clearly, ψ+

ε is εY -periodic
and satisfies (4) on Ω × V . The difference between ψ+

ε and ϕε+ is the definition of
their boundary conditions on ∂Ω. Therefore, we can expect some similarities in the
behavior of both solutions away from the boundary. This is confirmed more precisely
in Theorem 3.2 below. It is based on the asymptotic expansion of solutions to source
problems, which requires sufficient regularity for the physical parameters. We do not
dwell on optimal regularity results here and assume the physical parameters to be
smooth.

Hypothesis 3.1.
(H5) In addition to Hypothesis 2.1, we assume the cross sections Σ, Σs, and σf to

be of class C∞(Ω).
(H6) The domain Ω is either cubic or has a boundary ∂Ω of class C∞.

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied. Let 0 < λε1 < λε2 ≤ λε3 ≤
· · · ≤ ∞ be the eigenvalues of (4) ranked in increasing order, and ϕε+l the normalized
eigenvector associated with λεl . Then, up to a subsequence, we have

ϕε+l (x, µ) = ul(x)ψ+
∞(

x

ε
, µ) +O(ε) and λεl = λ∞ + ε2νl +O(ε3),(9)

where λ∞ is the first eigenvalue of (6), ψ+
∞ its associated normalized eigenvector and

where (νl, ul) are the lth eigenvalue (in the sense that 0 < ν1 < ν2 ≤ ν3 ≤ · · · ≤ ∞)
and corresponding normalized eigenvector of the homogenized diffusion problem

−∇D∇u = νσfu in Ω,
u = 0 on ∂Ω.

(10)

In the convergence of the eigenvectors, O(ε) is to be understood in the sense of the
L2(Ω×V )-norm. The positive definite homogeneous tensor D = (Dij)1≤i,j≤d and the
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homogeneous fission cross section σf in (10) are defined by

Dij =

∫
V

∫
Y

(ψ+
∞(y, µ))2

Σ(y)

(
µi + µ·∇θi(y, µ)

)
µjdµ dy,

σf =

∫
Y

σf (y)

(∫
V

ψ+
∞(y, µ)dµ

)2

dy,

(11)

where (µi)1≤i≤d are the coordinates of µ in Rd and (θi)1≤i≤d are the zero mean solu-
tions of

−µ·∇y (ψ+
∞)2

Σ
µ·∇yθi +Qθi = µi

(
µ·∇y (ψ+

∞)2

Σ

)
,

y 7→ θi(y, µ) is Y -periodic
(12)

with the local scattering operator being defined by

Qw = Σ∞
(
ψ+
∞w

∫
V

ψ+
∞(x, µ′)dµ′ − ψ+

∞

∫
V

w(x, µ′)ψ+
∞(x, µ′)dµ′

)
,

Σ∞ = Σs + λ∞σf .
(13)

Due to the even parity formulation, the homogeneous coefficients given in this
theorem are nonstandard. However, they are similar to those obtained in the homog-
enization of heterogeneous diffusion problems [29], and it can be shown [8] that they
correspond to those derived in the setting of first-order transport [5, 26, 27] . Notice,
however, that they slightly differ from the coefficients derived physically in [12].

Remark 3.3. Hypothesis (H6) is not optimal. We do not need it to prove the
convergence of the eigenvalues and eigenvectors, i.e., to replace the rates of conver-
gence O(ε) and O(ε3) in (9) by o(1) and o(ε2), respectively. Hypothesis (H5) can also
be considerably weakened. We obtained in [5] the convergence of the eigenelements
for cross sections that are only uniformly bounded from above and below by positive
constants.

In practical nuclear reactor computations, the number of assemblies, or equiva-
lently ε−1, is not very large, and the expansion given in the previous theorem is not
sufficiently accurate. The aim of the next theorem is to give a third-order corrector
for the smallest eigenvalue λε1, the only one of physical interest. Numerical simula-
tions also show a better accuracy for the associated positive eigenvector [9], even if a
theoretical proof is given only for source problems.

First-order correctors have already been addressed in homogeneous transport the-
ory [33] as well as in heterogeneous diffusion theory [3, 32]. The results obtained in
these works show that the first-order corrector for the eigenvalues can strongly depend
on the geometry. In transport theory, the first-order corrector is driven by the neutron
leakage at the boundary of the core. Since the neutron mean free path is comparable
to the size of the unit cell, the boundary ∂Ω has a direct influence on the leakage. We
need to define our geometry more precisely in order to obtain an asymptotic neutron
leakage. We study here the case of a cubic domain with symmetric cells as follows.

Hypothesis 3.4.
(H7) Ω is the unit cube (0, 1)d. It is composed of Nd identical cells, where N =

1
ε ∈ N.

(H8) Hypotheses (H5) and (H6) are satisfied.
(H9) The periodicity cell Y is symmetric in the following sense. The cross sections

Σ, Σs, and σf are symmetric with respect to the (hyper)planes parallel to the
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sides of Y and splitting Y in two identical parts. Furthermore these cross
sections are invariant by the rotations that preserve Y (rotations of angle
π/2).

Then we have the following first-order corrector for the smallest eigenvalue.
Theorem 3.5. Assume that Hypothesis 3.4 is satisfied. Then there exists a

constant extrapolation length L such that the first eigenvalue ωε1 of the elliptic problem

−∇D∇Φε = ωεσfΦε in Ω,

Φε + εL
∂Φε

∂n
= 0 on ∂Ω,

(14)

satisfies

λε1 = λ∞ + ε2ωε1 +O(ε7/2).(15)

Remark 3.6. To our knowledge, this extrapolation length can unfortunately not
be computed explicitly. In the case of homogeneous cells, the value of L can be derived
from Chandrasekhar’s H function [18]. An approximate value is L0 = 0.7104 (see,
e.g., [20, Chapter 21]). In general, L is defined as the limit when the first coordinate
x1 → ∞ of the solution to a conservative transport problem posed on the half space
x1 > 0 with some suitable boundary conditions. The analysis of this problem is part
of our section 6. Since the neutron leakage is positive, we believe that L is always
positive, although we do not have a mathematical proof for it. In case L < 0, which
is physically unrealistic, (14) is well posed for ε small enough only.

Remark 3.7. Up to some slight modifications in the proof, the theorem can be
extended to the case of cells satisfying all symmetries stated in (H9) but the invariance
by rotation. Then L is constant on each side of ∂Ω, but not necessarily on the whole
∂Ω.

We now give a proof for Theorems 3.2 and 3.5. They will rely on some results
interesting in themselves for related source problems. We present them in the re-
maining part of this section and postpone the proofs to the following sections. The
proof of Theorem 3.2 relies on the analysis of an equivalent eigenvalue problem for
the factored function uε defined by

uε =
ϕε+

ψ+
ε
,(16)

where ϕε+ is a solution of (4). Since ψ+
∞ is positive and regular by virtue of Theorem

2.3, ϕε+ 7→ uε is uniquely defined by (16). The derivation of a transport equation for
uε uses the following identity:

µ·∇ 1

Σ
µ·∇(uψ) = uµ·∇ 1

Σ
µ·∇ψ +

1

ψ
µ·∇ψ

2

Σ
µ·∇u.(17)

An analogous relation was first used in the homogenization of heterogeneous diffusion
eigenvalue problems [29]. Plugging (16) into (4) and using (6) and (17), we obtain

−ε2µ·∇ (ψ+
ε )2

Σε
µ·∇uε+Σεs

(
ψ+
ε uε

∫
V

ψ+
ε (x, µ′)dµ′ − ψ+

ε

∫
V

uε(x, µ
′)ψ+

ε (x, µ′)dµ′
)

= λεσεfψ
+
ε

∫
V

uε(x, µ
′)ψ+

ε (x, µ′)dµ′ − λ∞σεfuεψ+
ε

∫
V

ψ+
ε (x, µ′)dµ′ in Ω× V.

(18)
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Let us now derive the boundary conditions satisfied by uε. We deduce from (4) and
(16) that

uε(ψ
+
ε −

ε

Σε
µ·∇ψ+

ε )− ε

Σε
ψ+
ε µ·∇uε = 0 on Γ−.

Introduce ψε = ψ+
ε − ε

Σεµ·∇ψ+
ε . From the equivalence presented in Appendix A, ψε

is the solution of the first-order criticality eigenvalue problem

1

ε
µ·∇ψε +

1

ε2
(Σεψε − Σε∞ψε) = 0,(19)

where Σ∞ε = Σεs + λ∞σεf . It is positive (see [5] and [8, Theorem II.2.1.1]). Thus we
obtain the boundary conditions for uε:

uε − εψ+
ε

ψεΣε
µ·∇uε = 0 on Γ− .(20)

This enables us to recast (18) as

Aεuε = νεFεuε in Ω× V,
uε − εψ+

ε

ψεΣε
µ·∇uε = 0 on Γ−,

(21)

where we have defined

Aεu = −µ·∇ (ψ+
ε )2

Σε
µ·∇u+

1

ε2
Qεu,(22)

νε =
λε − λ∞

ε2
,(23)

Qεu = Σ∞ε

(
ψ+
ε u

∫
V

ψ+
ε (x, µ′)dµ′ − ψ+

ε

∫
V

u(x, µ′)ψ+
ε (x, µ′)dµ′

)
,(24)

Fεu = ψ+
ε σ

ε
f

∫
V

ψ+
ε (x, µ′)u(x, µ′)dµ′.(25)

Following the results given in section 2, ψ+
ε is smooth and uniformly positive. Thus

problems (4) and (21) are equivalent in W 2(Ω× V ). We write (21) as

1

νε
uε = Sεuε,

Sε = A−1
ε Fε.

(26)

We will see in Theorem 3.9 that Sε ∈ L(L2(Ω×V )). The first step in the asymptotic
analysis of problem (26), or equivalently (4), consists in studying the following source
problem:

Aεwε = Fεq in Ω× V,
wε − εψ+

ε

ψεΣε
µ·∇wε = 0 on Γ−,

(27)

where q(x, µ) ∈ L2(Ω × V ) is a given source term satisfying q(x, µ) = q(x,−µ). Let
us recall that we are interested only in solutions of the form wε(x,−µ) = wε(x, µ).
We first state an a priori estimate for the solutions of source problems.
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Lemma 3.8. Let q(x, µ) ∈ L2(Ω × V ) and g ∈ L2(Γ−, dξ). Assume that wε is a
solution to

Aεwε = Fεq in Ω× V,
wε − εψ+

ε

ψεΣε
µ·∇wε = g on Γ−.

(28)

Then we have

‖µ·∇wε‖+ ‖wε‖+
1√
ε
‖wε‖L2(∂Ω×V,dξ) +

1

ε
‖wε −

∫
V

wε‖

≤ C‖q‖+
C√
ε
‖g‖L2(Γ−,dξ),

(29)

where ‖ · ‖ is the L2(Ω × V )-norm and where the measure dξ on ∂Ω × V is given by
dξ = |µ · n(x)|dµdσ, with dσ the surface measure on ∂Ω.

The proof of this lemma is given in section 4. This energy estimate is a key result
in our analysis. It enhances the interest of the variational formulation associated with
the even parity flux formulation. The asymptotic behavior of the source problem is
stated in the following result.

Theorem 3.9. Assume that Hypothesis 3.1 is satisfied. Let q ∈ L2(Ω× V ) be a
given source term. Then problem (27) admits a unique solution wε, which converges
strongly to w ∈ H1

0 (Ω) in L2(Ω×V ) as ε→ 0, where w is the solution of the diffusion
problem

−∇D∇w = q in Ω,
w = 0 on ∂Ω.

(30)

Here we have

q(x) =

∫
Y

σf (y)

{∫
V

ψ+
∞(y, µ′)dµ′

∫
V

ψ+
∞(y, µ)q(x, µ)dµ

}
dy.

Moreover, assume that there exists M ∈ N such that q(x, µ) =
∑M
m=1 qm(x)hm(µ),

where qm ∈ C2,α(Ω) and hm ∈ L2(V ), 1 ≤ m ≤M . Then we have the error estimate
in L2(Ω× V ):

wε − w = O(ε).

The proof of the well-posedness of (27) is given in section 4. The proof of the
asymptotic behavior stated in this theorem is postponed to section 5. We deduce
from this theorem the pointwise convergence of Sε to the homogenized operator S ∈
L(L2(Ω× V )) defined by

q 7→ Sq = w,

where w is the solution to (30). The compact convergence of the sequence Sε (in the
sense given in Appendix B) is asserted by the following lemma.

Lemma 3.10. Let xε be a sequence of elements in the unit ball of L2(Ω × V ).
Then Sεxε is relatively compact.

Proof. We deduce from the a priori estimate (29) of Lemma 3.8 that

‖µ·∇(Sεxε)‖2 + ‖Sεxε‖+ ‖Sεxε‖2L2(∂Ω×V,dξ) ≤ C.
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Then the averaging lemma given in [25] yields that
∫
V
Sεxε dµ is relatively compact

in L2(Ω). Using (29) once again, we have

‖Sεxε −
∫
V

Sεxε dµ‖ ≤ Cε,

which asserts that Sεxε is also relatively compact. This completes the proof of this
lemma.

We deduce from Theorem 3.9 and Lemma 3.10 that the sequence of operators Sε
converges compactly to S. Theorem 3.2 is then a straight consequence of Theorem
B.1. Since the eigenvectors of the diffusion eigenvalue problem are regular, the error
estimates (9) given in Theorem 3.2 are easily derived from Theorem B.2.

In order to prove Theorem 3.5, we need to characterize first-order correctors
for the source problem (27). The source term in the criticality eigenvalue problem,
coming from the fission term, is regular and isotropic. Therefore, we consider only
source terms q = q(x) ∈ C3,α(Ω) with α > 0.

Theorem 3.11. Let wε be the solution to (28) with g = 0 and (θi)1≤i≤d defined
by (12). Assume that Hypothesis 3.4 is satisfied and that q = q(x) ∈ C3,α(Ω). Then
there exists a constant L, independent of q, such we have the following result.

Let w0 and w10 be the solutions of{ −∇D∇w0 = q in Ω,
w0 = 0 on ∂Ω,

(31) { −∇D∇w10 = 0 in Ω,

w10 + L
∂w0

∂n
= 0 on ∂Ω.

(32)

Then, denoting by θiε(x, µ) = θi(xε , µ), we have∥∥∥∥wε − [w0 + ε

(
θiε
∂w0

∂xi
+ w10

)]∥∥∥∥
L2(Ω×V )

= O(ε3/2).(33)

This theorem is proven in section 5. Let us focus on the proof of Theorem 3.5. We
obtained in Theorem 3.2 that λε = λ∞ + ε2νε, where the lth eigenvalue νεl converges
to νl as ε → 0. Now we are interested in the limit of the corrector for the smallest
eigenvalue ξε1 =

νε1−ν1

ε . Denote by sε the solution of

Aεs
ε = ν1Fεu1.

This problem admits a unique solution, as seen in Theorem 3.9. Multiplying this
equation by uε, the solution of Aεuε = νε1Fεuε, and integrating over Ω × V , we
obtain, since Aε is self-adjoint, that

νε1(sε, Fεuε) = ν1(u1, Fεuε),

(νε1 − ν1)(u1, Fεuε) = νε1(u1 − sε, Fεuε),(
νε1 − ν1

ε

)
(u1, Fεuε) = νε1

(
u1 − sε

ε
, Fεuε

)
.(34)

Since u1 is sufficiently smooth, we deduce from Theorem 3.11 the following expansion
in L2(Ω× V ):

sε = u1 + εθiε
∂u1

∂xi
+ εw +O(ε3/2),(35)
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where w is the solution to (32) with w0 replaced by u1. Then(
sε − u1

ε
, Fεu1

)
= (w,Fεu1) +

(
Fεθ

i
ε

∂u1

∂xi
, u1

)
+O(ε).

The first term on the right-hand side clearly converges to σf (u1, w). The second term
is given by∫

Ω

[∫
V

θi
(x
ε
, µ
)
σf

(x
ε

)
ψ+
∞
(x
ε
, µ
)
dµ

∫
V

ψ+
∞
(x
ε
, µ′
)
dµ′
]
∂u1

∂xi
(x)u1(x)dx.

From the symmetry properties of Y given in Hypothesis 3.4, we easily deduce (see
also Lemma 5.1 in section 5) that∫

Y

∫
V

θi(y, µ)σf (y)ψ+
∞(y, µ)dµ

∫
V

ψ+
∞(y, µ′)dµ′dy = 0.

Since u1 is regular, a Taylor expansion of u1 yields that (Fεθ
i
ε
∂u1

∂xi
, u1) = O(ε). There-

fore, since uε = u1 + O(ε), the right-hand side of (34) is equal to −ν1σf (u1, w) +
O(ε1/2). The left-hand side of (34) is equal to ξε1σf +O(ε). The first-order corrector
for the eigenvalue takes the form

ξε1 = −ν1(u1, w) +O(ε1/2).

At last we deduce from [20, Proposition 3, section 5, Chapter 21], or from elementary
computations on the eigenvalues of a homogeneous diffusion problem in a cube, that
the smallest eigenvalue of

−∇D∇Φε = ωεσfΦε in Ω,

Φε + εL
∂Φε

∂n
= 0 on ∂Ω,

(36)

satisfies u1 and Φε being normalized in L2(Ω),

ωε1 = ν1 − εν1(u1, w) +O(ε3/2).(37)

This concludes the proof of Theorem 3.5.

4. A priori estimates and analysis of the source problem. This section
presents some preliminary results on the source problem (27), which will prove useful
in the study of its asymptotic behavior as ε → 0. We give a proof for Lemma 3.8
and for the well-posedness of problem (27) as stated in Theorem 3.9. We will use the
notation

〈u〉 =

∫
V

u(µ)dµ.

One of the interesting properties of the even parity flux is that it allows us to use
a variational formulation. Introduce the bilinear form aε(u, v)

aε(u, v) =

∫
Ω

∫
V

(ψ+
ε )2

Σε
µ·∇uµ·∇v dµ dx+

1

ε

∫
∂Ω

∫
V

|µ · n|hε uv dµ dσ

+
1

ε2

∫
Ω

∫
V

(Qεu) v dµ dx,

(38)
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where the function hε is defined on ∂Ω × V by hε = ψεψ
+
ε on Γ− and hε(x, µ) =

hε(x,−µ). According to the results of section 2, hε is uniformly positive. An integra-
tion by parts shows that (28) is equivalent to finding wε ∈ V such that

aε(wε, v) = (Fεq, v) +
1

ε

∫
∂Ω

∫
V

|µ · n|hε g v dµ dσ ∀v ∈ V,(39)

where V is the Hilbert space

V = {v ∈W 2(Ω× V ) s.t. v ∈ L2(∂Ω× V, dξ), v(x, µ) = v(x,−µ)}.(40)

The bilinear form aε is bicontinuous in V. We deduce that aε is symmetric from the
identity

∫
V

(Qεu)v dµ =
∫
V
u(Qεv) dµ. Now choosing v = wε in (39), we obtain that

‖µ·∇wε‖2 +
1

ε
‖wε‖2L2(∂Ω×V,dξ) +

1

ε2
(Qεwε, wε)

≤ Caε(wε, wε) ≤ C‖q‖ ‖wε‖+
C

ε
‖g‖L2(∂Ω×V,dξ)‖wε‖L2(∂Ω×V,dξ).

(41)

A Poincaré-like inequality in transport theory (see [5, 8]) yields that

‖wε‖ ≤ C (‖µ·∇wε‖+ ‖wε‖L2(∂Ω×V,dξ)),(42)

where C is a constant independent of wε. Therefore, the coercivity of aε is easily
deduced from the positiveness of the collision operator Qε that we prove now.

Lemma 4.1. Let f ∈ L∞(V ) be a positive function. Then the operator Q defined
by

Qu(µ) = f(µ)u(µ)〈f〉 − f(µ)〈f u〉

satisfies the property

(Qu, u) ≥ (inf
V
f)2‖u− 〈u〉‖2L2(V ),

where (·, ·) is the usual scalar product of L2(V ).
Proof. Some computations yield

(Qu, u) =

∫
V

∫
V

f(µ)f(µ′)u(µ)(u(µ)− u(µ′))dµdµ′

=
1

2

∫
V

∫
V

f(µ)f(µ′)(u(µ)− u(µ′))2dµdµ′

≥ (inf
V
f)2 1

2

∫
V

∫
V

(u(µ)− u(µ′))2dµdµ′ = (inf
V
f)2

∫
V

(u(µ)− 〈u〉)2
dµ.

This concludes the proof of the lemma.
From this lemma and the Poincaré inequality (42), we obtain that

‖µ·∇wε‖+ ‖wε‖+
1√
ε
‖wε‖L2(∂Ω×V,dξ) +

1

ε
‖wε −

∫
V

wε‖

≤ C
√
aε(wε, wε) ≤ C

(
‖q‖+

1√
ε
‖g‖L2(∂Ω×V,dξ)

)
.

(43)
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This concludes the proof of Lemma 3.8. Moreover, the existence and uniqueness of
a solution to (28) is a straight consequence of the Lax–Milgram theory. This also
asserts the well-posedness and boundedness of Sε in L(L2(Ω× V )), and the first part
of Theorem 3.9 is complete. We also need an analogous result for nonhomogeneous
boundary conditions. We have the maximum principle as follows.

Proposition 4.2. Let g ∈ L∞(Γ−). There exists a unique solution to (28) with
q = 0 in L∞(Ω× V ). Furthermore, we have that ‖wε‖L∞(Ω×V ) ≤ ‖g‖L∞(Γ−).

Proof. We use the maximum principle stated for first-order transport equations
in [20, Chapter 21] and the equivalence presented in Appendix A. Let α > 0 and the
sequence of problems

−µ·∇ (ψ+
ε )2

Σε
µ·∇wεα +

1

ε2
Qεw

ε
α + αwεα = 0 in Ω× V,

wεα −
εψ+

ε

ψεΣε
µ·∇wεα = g on Γ−.

We denote f̌(µ) = f(−µ) for every function f . We deduce from the results recalled
in Appendix A that

wεα =
ψεψ

ε
α + ψ̌εψ̌

ε
α

ψε + ψ̌ε
.

Here, ψε is the positive solution of (19) and ψεα is the solution to

1

ε
µ·∇ψεα +

Σ∞ε
ε2

(
1

ψε
ψεα

∫
V

ψε − 1

ψε

∫
V

ψεαψε

)
+ αψεα = 0 in Ω× V,

ψεα = g on Γ−.

We deduce from [20, Proposition 7, Chapter 21, section 2] that ‖ψεα‖L∞ ≤ ‖g‖L∞
independently of α. Therefore, ‖wεα‖L∞ ≤ ‖g‖L∞ independently of α. Thus there
exists a subsequence of wεα that converges to wε in L∞(Ω × V ) weak∗ as α → 0.
Using standard techniques (see Bardos [10] and Appendix A), we verify that wε is a
solution of (28) and satisfies ‖wε‖L∞(Ω×V ) ≤ ‖g‖L∞(Γ−). We know from Lemma 3.8
that

‖wε‖ ≤ C√
ε
‖g‖L2(Γ−,dξ).

Therefore, the solution to (28) in L∞(Ω× V ) is unique.
Before addressing the asymptotic convergence of the solutions to (27), we need

one more result on source problems in infinite media. Let us introduce the factored
flux ϕ+ defined by ψ+ = ψ+

∞ϕ
+. Then we easily obtain the following corollary for

Theorem 2.5.
Corollary 4.3. Assume that the hypotheses of Theorem 2.5 are satisfied. Then

problem

−µ·∇y (ψ+
∞)2

Σ
µ·∇yϕ+ +Qϕ+ = S in Y × V,

y 7→ ϕ+(y, µ) is Y -periodic
(44)

admits a unique zero mean solution if and only if∫
Y

∫
V

S(y, µ)dy dµ = 0.

The same regularity results as in Theorem 2.5 hold true.
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Since ψ+
∞ is periodic, we deduce from this corollary that (12) admits a unique zero

mean solution. Then the diffusion coefficients are uniquely defined by (11) and do not
depend on the mean over Y × V of the functions θi. The following lemma asserts the
positive definiteness of the diffusion tensor D and consequently the well-posedness of
the diffusion problem (10).

Lemma 4.4. The homogeneous tensor D defined by (11) is positive definite.
Proof. Let us multiply (12) by a Y -periodic smooth test function. After integra-

tion by parts, we obtain∫
Y

∫
V

(ψ+
∞)2

Σ
µ·∇yθiµ·∇yv dµdy + (Qθi, v)−

∫
∂Y

∫
V

(ψ+
∞)2

Σ
µ·∇yθi(µ · n)v dµdσ

= −
∫
Y

∫
V

µi
(ψ+
∞)2

Σ
µ·∇yv dµdy +

∫
∂Y

∫
V

µi
(ψ+
∞)2

Σ
v(µ · n) dµdσ.

The boundary terms in this equation cancel out since
(ψ+
∞)2

Σ µ·∇yθiv and µi
(ψ+
∞)2

Σ v are
Y -periodic, whereas the sign of (µ · n) is reversed from one side of Y to the opposite
one. Thus we have∫

Y

∫
V

(ψ+
∞)2

Σ
(µ·∇yθi + µi)µ·∇yv dµdy + (Qθi, v) = 0

for any periodic test function v and in particular for the functions θj . We recall that
the coefficients Dij are defined by (11). For each vector ξ ∈ Rn, of components ξi, we
deduce that (with the convention of summation over the repeated indexes)

Dijξiξj =

∫
Y

∫
V

(ψ+
∞)2

Σ
µjξj(µ·∇yθi + µi)ξi dµdy

=

∫
Y

∫
V

(ψ+
∞)2

Σ
(µ·∇yθj + µj)ξj(µ·∇yθi + µi)ξi dµdy

−
∫
Y

∫
V

(ψ+
∞)2

Σ
µ·∇yθjξj(µ·∇yθi + µi)ξi dµdy

=

∫
Y

∫
V

(ψ+
∞)2

Σ


(

n∑
i=1

(µ·∇yθi + µi)ξi

)2

+

(
Q(

n∑
i=1

ξiθ
i),

n∑
i=1

ξiθ
i

) dµdy.

We deduce from Lemma 4.1 that this expression is nonnegative. Therefore, D is
positive. Assume now that it is not definite. Then there exists a vector ξ 6= 0
such that (µ ·∇yθi + µi)ξi = 0 almost everywhere (a.e.) (y, µ) ∈ Y × V . Integrate
this equality over Y for µ ∈ V given. We deduce from the Y -periodicity of θi that∫
Y
µiξi = µiξi = 0 a.e. µ ∈ V . This yields ξ = 0 and a contradiction. Thus the tensor

D is positive definite.

5. Analysis of the source problem. This section is devoted to the proof of
Theorems 3.9 and 3.11. It is based on the classical method of two-scale asymptotic
expansions. Notice that the two-scale convergence introduced in [2] represents a
natural framework to prove the convergence stated in Theorem 3.9 [5]. It allows for
very mild regularity assumptions on the physical data; however, it does not enable us
to obtain the rates of convergence stated in section 3.
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5.1. Asymptotic convergence of the source problem. The pointwise con-
vergence of the operator Sε is stated in Theorem 3.9. We now give a proof of this
result.

Proof. It is based on a two-scale analysis of the neutron density. Let us define
the ansatz

wε(x, µ) = w0

(
x,
x

ε
, µ
)

+ εw1

(
x,
x

ε
, µ
)

+ ε2w2

(
x,
x

ε
, µ
)

+ ζε(x, µ),(45)

where the functions y 7→ wk(x, y, µ) are Y -periodic for 0 ≤ k ≤ 2. We derive the
equations that wk(x, y, µ) must verify to justify this asymptotic expansion. This
provides us with an explicit choice for wk(x, y, µ). Next, we prove that ζε defined by
(45) is of order O(ε) in L2(Ω × V ). This is done first for a source term q(x, µ) =
q̃(x)h(µ) and then extended to the case q ∈ L2(Ω× V ) by density.

(i) We remark that the differentiation operator is now given by µ·∇ = µ·∇x+ 1
εµ·∇y.

Inserting (45) into (27) and neglecting ζε, we obtain

−
(
µ·∇x +

1

ε
µ·∇y

)
(ψ+
∞)2

Σ

(
µ·∇x +

1

ε
µ·∇y

)
(w0 + εw1 + ε2w2)

+
1

ε2
Q(w0 + εw1 + ε2w2) = σfψ

+
∞

∫
V

ψ+
∞(x, µ′)q(x, µ′)dµ′.

(46)

The term of order −2 in the expansion in powers of ε yields

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw0 +Qw0 = 0.(47)

Following the same development as in section 3 we obtain that w0ψ
+
∞ is a solution of

(6) for any given x. Then by virtue of Theorem 2.3, we have w0 = w0(x). From the
boundary conditions for wε we deduce that w0 must vanish on ∂Ω.

Taking into account the form of w0, we obtain for the terms of order ε−1 that

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw1 +Qw1 = µ·∇y (ψ+

∞)2

Σ
µ·∇xw0.(48)

This equation was posed on Y ×V for every given x ∈ Ω and we deduce from Corollary
4.3 that w1(y, µ) = θi(y, µ)∂w0

∂xi
(x) + w10(x), where θi is defined by (12) and w10(x)

is still undetermined. We choose here w10(x) = 0.
Consider now the zeroth-order equation. We have

− (ψ+
∞)2

Σ
(µ·∇x)2w0 −

(
µ·∇y (ψ+

∞)2

Σ
µ·∇x + µ·∇x (ψ+

∞)2

Σ
µ·∇y

)
w1

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2 +Qw2 = σfψ

+
∞

∫
V

ψ+
∞(y, µ′)q(x, µ′)dµ′.

(49)

Following Corollary 4.3, this equation admits a solution when the source term is of
zero mean. It implies that w0 satisfies the equation∫

V

∫
Y

[
− (ψ+

∞)2

Σ
(µ·∇x)2w0 −

(
µ·∇y (ψ+

∞)2

Σ
µ·∇x + µ·∇x (ψ+

∞)2

Σ
µ·∇y

)
w1

]
dµdy

=

∫
V

∫
Y

(
σf (y)ψ+

∞(y, µ)

∫
V

ψ+
∞(y, µ′)q(x, µ′)dµ′

)
dµdy.
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Replacing w1 by its expression in terms of w0, we obtain that w0 is a solution to (30).
Since D is positive definite according to Lemma 4.1, we deduce that w0 is uniquely
defined in H1

0 (Ω). The expression of w1 is also known. It remains to define w2.
Equation (49) can be recast as

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2 +Qw2 =

(
σfψ

+
∞

∫
V

ψ+
∞q − q

)
+ (hij(y, µ)−Dij)

∂2w0

∂xj∂xi

owing to the expression of w1 and (30), where

hij =
(ψ+
∞)2

Σ
µj(µi + µ·∇yθi) + µj µ·∇y (ψ+

∞)2

Σ
θi.

We define the functions w2a and w2ij , 1 ≤ i, j ≤ n, recalling that q(x, µ) = q̃(x)h(µ),
by

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2a +Qw2a = σfψ

+
∞

∫
V

ψ+
∞h dµ

′ −
∫
Y

∫
V

(
σfψ

+
∞

∫
V

ψ+
∞h dµ

′
)
dµdy

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2ij +Qw2ij = hij −Dij .

We easily check that the source terms have zero mean. Consequently the functions
w2a and w2ij are defined up to an additive constant and are smooth according to
Corollary 4.3. By linearity of transport, we obtain that w2 is equal to

w2(x, y, µ) = w2a(y, µ)q̃(x) + w2ij(y, µ)
∂2w0

∂xj∂xi
(x) + w20(x),

where w20 is undetermined. We choose here w20 = 0.
(ii) It remains to derive an equation for ζε and prove that this error term is small.

Inserting (45) in (27), we obtain from the explicit expressions of w0, w1, and w2 that

−µ·∇ (ψ+
ε )2

Σε
µ·∇ζε +

1

ε2
Qεζ

ε = εζε1 + ε2ζε2 in Ω× V,
ζε − εψ+

ε

ψεΣε
µ·∇ζε = εζε3 + ε2ζε4 + ε3ζε5 on Γ−,

(50)

where ζεi (x, µ) = ζi(x,
x
ε , µ) and

ζ1 = − (ψ+
∞)2

Σ
(µ·∇x)2w1 − µ·∇x (ψ+

∞)2

Σ
µ·∇yw2 − µ·∇y (ψ+

∞)2

Σ
µ·∇xw2,

ζ2 = − (ψ+
∞)2

Σ
(µ·∇x)2w2, ζ3 = −w1 +

ψ+
∞

ψ∞Σ
(µ·∇xw0 + µ·∇yw1),

ζ4 = −w2 +
ψ+
∞

ψ∞Σ
(µ·∇xw1 + µ·∇yw2), ζ5 =

ψ+
∞

ψ∞Σ
µ·∇xw2.

(51)

Assume first that q̃ is of class C2,α(Ω). Since D is positive definite, we deduce from
[24] that w0 is of class C4,α(Ω). The terms w1 and w2 are the sums of products of
functions depending only on x and of functions depending only on (y, µ). The part
depending only on x in the expression of w1: ∂w0

∂xi
is of class C3,α(Ω), and the one

in the expression of w2: q̃ and ∂2w0

∂xjxi
is of class C2,α(Ω). The parts depending on
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(y, µ) in terms θi, w2a, and w2ij are regular according to Corollary 4.3. Therefore,
the terms ζεi are of class C0,α(Ω× V ). From the variational formulation of (50) (see
Lemma 3.8 and Proposition 4.2), we deduce that ‖ζε‖ ≤ Cε, where C is independent
of ε. Therefore, we have proven that wε − w = O(ε), provided q is of the form

q(x, µ) =
∑M
m=1 qm(x)hm(µ), where all qm are of class C2,α(Ω).

The proof of the convergence in the general case follows from two density ar-
guments. Let us first assume that q̃ belongs to L2(Ω). Consider a sequence q̃i of
functions of class C2,α(Ω) converging to q̃ strongly in L2(Ω). Then for any η > 0
and i large enough we have ‖q̃i − q̃‖ ≤ Cη. Let wεi be the solution of (27). From the
linearity of the transport equation and from its variational formulation, we deduce
that ‖wεi − wε‖ ≤ Cη independently of η and ε. On the other hand we have proven
that wεi → wi, where wi is defined as the solution of the diffusion solution with a
source term equal to q̃i instead of q̃. We easily check that ‖wi −w0‖ ≤ Cη, where w0

is the solution of (30) with source term q̃, and deduce the convergence of wε to w0 as
ε→ 0.

The same argument is used for the general case q ∈ L2(Ω × V ). Every function
q ∈ L2(Ω × V ) admits a spectral decomposition in the canonical Schauder basis of
L2(Ω× V )

q(x, µ) =
∞∑
m=1

∞∑
p=1

αmpq̃m(x)hp(µ),

where the functions q̃m are vectors of an orthogonal basis in L2(Ω) and hp are vectors
of an orthogonal basis in L2(V ). We have that

∑∞
m=1

∑∞
p=1 α

2
mp < ∞. Thus the

sequence

qMP =
M∑
m=1

P∑
p=1

αmpq̃m(x)hp(µ)

converges strongly to q in L2(Ω × V ). We deduce that ‖wεMP − wMP ‖ converges to
0 independently of ε and that wMP converges strongly to w (using obvious notation)
as M,P → ∞. On the other hand for fixed M,P large enough, the linearity of the
transport and diffusion equations yields the strong convergence in L2(Ω×V ) of wεMP

to wMP as ε→ 0.

5.2. First-order corrector for the source problem. This subsection is de-
voted to the derivation of the first-order corrector of the source problem (27) as stated
in Theorem 3.11.

First we introduce some notation. To simplify we assume here that the spatial
dimension is d = 3. Let O be the center of Y . We denote by Pp the plane (O, xm, xn),
m,n ∈ {i, j, k} spanned by the vectors em, en and such that O ∈ Pp. The index
p ∈ {i, j, k} is such that p 6= m and p 6= n.

We say that two pairs (y, µ) and (y′, µ′) of Y × V are symmetric with respect to
Pp if they satisfy

d(y,Pp) = d(y′,Pp), (y′ − y) ‖ ep, µ′ = µ− 2(µ · ep)ep.
For a pair (y, µ) and (y′, µ′) of symmetric points we say that a function ψ is symmetric
with respect to Pp if ψ(y′, µ′) = ψ(y, µ), and that it is skew symmetric if ψ(y′, µ′) =
−ψ(y, µ). We now state Lemma 5.1.
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Lemma 5.1. Assume that the cross sections Σ and Σs are symmetric in Y with
respect to the planes Pp, p = i, j, k. Let (y, µ) and (y′, µ′) be symmetric points with
respect to Pp for p ∈ {i, j, k}.

(i) Let f be a source term satisfying f̌ = f and f(y, µ) = ±f(y′, µ′) a.e. (y, µ) ∈
Y × V . Then the solution of

−µ·∇y (ψ+
∞)2

Σ
µ·∇yϕ+Qϕ = f in Y × V,

y 7→ ϕ(y, µ) is Y -periodic

satisfies the following relation of symmetry ϕ(y, µ) = ±ϕ(y′, µ′).
(ii) Let f be a function satisfying that f(y, µ) = ±f(y′, µ′) a.e. (y, µ) ∈ Y × V .

Then we have

µ′ ·∇y′f(y′, µ′) = µ·∇yf(y, µ).

Proof. (i) Define h(y′, µ′) = ϕ(y, µ). We check that µ′·∇y′h(y′, µ′) = µ·∇yϕ(y, µ).
Since Y is symmetric, the solution ψ+

∞ and the cross sections are also symmetric.
Then

−µ′ ·∇y′ (ψ
+
∞)2

Σ
(y′, µ′)µ′ ·∇y′h(y′, µ′) = µ·∇y (ψ+

∞)2

Σ
µ·∇yϕ

and

(Qh)(y′, µ′) = (Qϕ)(y, µ).

Therefore, h is solution of the equation

−µ′ ·∇y′ (ψ
+
∞)2

Σ
(y′, µ′)µ′ ·∇y′h(y′, µ′) + (Qh)(y′, µ′) = ±f(y′, µ′).

We deduce from the uniqueness of the solution for this equation that h(y′, µ′) =
±ϕ(y, µ). It concludes the first part of the proof.

(ii) Consider the plane of symmetry Pk. We have µ·∇yf = µi
∂f
∂yi

. If i = k, then
∂f
∂yi

(y′, µ′) = − ∂f
∂yi

(y, µ) and (µi)
′ = µ′i = −µi. If i 6= k, then ∂f

∂yi
(y′, µ′) = ∂f

∂yi
(y, µ)

and (µi)
′ = µi. In any case we have (µi

∂f
∂yi

)(y′, µ′) = (µi
∂f
∂yi

)(y, µ), and the proof is
complete.

We are now in a position to prove Theorem 3.11.
Proof of Theorem 3.11. The first part of the proof is very similar to that of

Theorem 3.9. We assume the following ansatz on wε:

wε(x, µ) = w0

(
x,
x

ε
, µ
)

+εw1

(
x,
x

ε
, µ
)

+ε2w2

(
x,
x

ε
, µ
)

+ε3w3

(
x,
x

ε
, µ
)

+ζε(x, µ),

(52)
where the functions y 7→ wi(x, y, µ) are Y -periodic for 0 ≤ i ≤ 3. Our objective is
to derive some conditions on the terms wi such that ζε be of order O(ε3/2). The
main difference with the proof of Theorem 3.9 is that the asymptotic expansion does
not provide suitable boundary conditions for the functions wi. This difficulty will
be overcome by the analysis of a boundary layer problem, which allows us to find
boundary conditions for the terms wi such that the error ζε be of order ε in the
vicinity of the boundary but of order ε3/2 globally in L2(Ω× V ).
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(i) Plugging (52) into (27) and neglecting ζε, we obtain

−
(
µ·∇x +

1

ε
µ·∇y

)
(ψ+
∞)2

Σ

(
µ·∇x +

1

ε
µ·∇y

)
(w0 + εw1 + ε2w2 + ε3w3)

+
1

ε2
Qε(w0 + εw1 + ε2w2 + ε3w3) = σfψ

+
∞

∫
V

ψ+
∞(y, µ′)q(x)dµ′.

(53)

From the terms of order ε−2, we have w0 = w0(x), and from the terms of order ε−1,
w1 = θi ∂w0

∂xi
+w10. Here we cannot choose w10 = 0 since it is of order ε. The term of

order ε0 is given by

− (ψ+
∞)2

Σ
(µ·∇x)2w0 −

(
µ·∇y (ψ+

∞)2

Σ
µ·∇x + µ·∇x (ψ+

∞)2

Σ
µ·∇y

)
w1

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2 +Qw2 = σfψ

+
∞

∫
V

ψ+
∞(y, µ′)q(x)dµ′.

This equation admits a solution when (31) is satisfied. We recast the equation for w2

as follows:

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2 +Qw2

=

(
σfψ

+
∞

∫
V

ψ+
∞q − q

)
+ (hij(y, µ)−Dij)

∂2w0

∂xj∂xi
+ µ·∇y (ψ+

∞)2

Σ
µ·∇xw10,

where hij =
(ψ+
∞)2

Σ µj(µi + µ·∇yθi) + µjµ·∇y (ψ+
∞)2

Σ θi. Since q = q(x), we have

µ·∇y (ψ+
∞)2

Σ
µ·∇yw2a +Qw2a = σfψ

+
∞

∫
V

ψ+
∞ dµ′ −

∫
Y

∫
V

(
σfψ

+
∞

∫
V

ψ+
∞ dµ′

)
dµdy

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw2ij +Qw2ij = hij −Dij .

In these equations the source term has zero mean. Thus w2 can be written as

w2(x, y, µ) = w2a(y, µ)q(x) + w2ij(y, µ)
∂2w0

∂xj∂xi
(x) + θi

∂w10

∂xi
+ w20(x).

Because we are not interested in the terms of order ε2 we can choose w20 = 0. Let us
go one step further in the expansion in powers of ε. The term of order ε yields

− (ψ+
∞)2

Σ
(µ·∇x)2w1 −

(
µ·∇y (ψ+

∞)2

Σ
µ·∇x + µ·∇x (ψ+

∞)2

Σ
µ·∇y

)
w2

−µ·∇y (ψ+
∞)2

Σ
µ·∇yw3 +Qw3 = 0.

This equation admits a solution if and only if the source term

(ψ+
∞)2

Σ
(µ·∇x)2w1 +

(
µ·∇y (ψ+

∞)2

Σ
µ·∇x + µ·∇x (ψ+

∞)2

Σ
µ·∇y

)
w2

has zero mean. Replacing the functions wi by their expressions in terms of w0, w10,
and q, and denoting for simplicity by ∂i = ∂

∂xi
, we rewrite this compatibility condition
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as (∫
V

∫
Y

(ψ+
∞)2

Σ

[
(µkµjθ

i) + µ·∇y(µkw2ij)
]
dµdy

)
∂3
kjiw0

+

(∫
V

∫
Y

(ψ+
∞)2

Σ
µiµ·∇yw2adµdy

)
∂iq

+

(∫
V

∫
Y

(ψ+
∞)2

Σ

[
(µ·∇x)2w10 + µ·∇yθiµ·∇x∂iw10

]
dµdy

)
= 0.

The last term of the left side is given by(∫
V

∫
Y

(ψ+
∞)2

Σ

[
(µ·∇x)2w10 + µ·∇yθiµ·∇x∂iw10

]
dµdy

)
= ∇D∇w10.

Using the hypotheses of symmetry on Y , we prove now that the other terms in this
expression vanish. We use results stated in Lemma 5.1. First, we easily obtain that∫

V

∫
Y

(ψ+
∞)2

Σ
(µkµjθ

i)dµdy = 0.

Indeed θi and µj are skew symmetric with respect to the plane Pi and symmetric
with respect to the other planes Pk for k 6= i. The product of three skew symmetric
functions being skew symmetric at least with respect to one hyperplane, we deduce

from the symmetries of
(ψ+
∞)2

Σ that the integral vanishes. Consider now the term∫
V

∫
Y

(ψ+
∞)2

Σ
µkµ·∇y(w2ij)dµdy.

We easily check by symmetry that Dij = 0 if i 6= j. Thus the source term in the
equation for w2ij equals hij . Since θi is skew symmetric with respect to Pi,(

µi + µ·∇yθi + µ·∇
(

(ψ+
∞)2

Σ
θi
))

is also skew symmetric. Then w2ij and therefore µ·∇yw2ij are skew symmetric with
respect to Pi. Here again, for all values of k, the integral vanishes. The last term is∫

V

∫
Y

(ψ+
∞)2

Σ
µiµ·∇yw2adµdy.

The source terms in the equation for w2a and then w2a and µ·∇yw2a are symmetric.
Since µi is skew symmetric with respect to Pi, the corresponding integral vanishes.
It follows that w10 satisfies (32) on Ω× V .

We do not give here the equation satisfied by w3 explicitly. However, w3, like w2,
is the sum of products of functions of (y, µ) and of functions of x. The terms depending
on (y, µ) are regular by hypothesis, and the terms depending on x depend on fifth-
order derivatives of w0, first-order derivatives of q, and second-order derivatives of
w10. By hypothesis for q, w0 and w10 are sufficiently regular. This yields that w3 is
well defined and has continuous second-order derivatives. Again w3 is defined up to
an additive function w30(x). We choose w30 = 0.
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(ii) It remains to define a constant L such that the term ζε are small. Assume
that L is given and insert the expressions of the functions wi given by (52) into (27).
We obtain

−µ·∇ (ψ+
ε )2

Σε
µ·∇ζε +

1

ε2
Qεζ

ε = ε2ζε1 + ε3ζε2 in Ω× V,

ζε − εψ+
ε

ψεΣε
µ·∇ζε = εζε3 + ε2ζε4 + ε3ζε5 + ε4ζε6 on Γ−,

(54)

where ζεi (x, µ) = ζi(x,
x
ε , µ) and

ζ1 = − (ψ+
∞)2

Σ
(µ·∇x)2w2 − µ·∇x (ψ+

∞)2

Σ
µ·∇yw3 − µ·∇y (ψ+

∞)2

Σ
µ·∇xw3,

ζ2 = − (ψ+
∞)2

Σ
(µ·∇x)2w3, ζ3 = −w1 +

ψ+
∞

ψ∞Σ
(µ·∇xw0 + µ·∇yw1),

ζ4 = −w2 +
ψ+
∞

ψ∞Σ
(µ·∇xw1 + µ·∇yw2),

ζ5 = −w3 +
ψ+
∞

ψ∞Σ
(µ·∇xw2 + µ·∇yw3), ζ6 =

ψ+
∞

ψ∞Σ
µ·∇xw3.

(55)

Each term ζi gives rise to contributions of order ε2 except ζ3. We would like to derive
some boundary conditions on w10, which would enable us to cancel out this first-order
term. This cannot be done in general because ζ3 depends on the variables x, y, and
µ, whereas w10 depends only on x. Replacing w1 by its expression in terms of w0 and
w10, we find that

ζ3(x, y, µ) = κi(y, µ)
∂w0

∂xi
(x)− w10(x),

where κi(y, µ) = (
ψ+
∞

ψ∞Σ (µi + µ·∇yθi)− θi)(y, µ). Let us define the first-order term bε

as a solution of

Aεb
ε = 0 in Ω× V,

bε − εψ+
ε

ψεΣε
µ·∇bε = ζε3 on Γ−.

(56)

From the linearity of the transport equations, the function bε is the sum of 2d terms
having vanishing boundary conditions on each side of Ω but one. For all x ∈ Rd, we
introduce the notation x = (x1, x

′), where x1 is the first coordinate of x and x′ the
last (d− 1)th ones. By symmetry we consider only the side x1 = 0. Denote by bε1 the
function satisfying the same equation as bε on Ω×V , with the same condition on the
boundary where x1 = 0 and vanishing boundary conditions on the other sides of Ω.
For conciseness, we do not write the equation satisfied by bε1. Since w0 = 0 on ∂Ω, we
obtain for x = (0, x′) the relation

ζε3(x, µ) = κ1

(x
ε
, µ
) ∂w0

∂x1
(x)− w10(x).

We are interested in the asymptotic behavior of bε1. Let ε go to 0 and consider a
point (0, x′) on the side x1 = 0. We perform a stretching around the point (0, x′) in
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order to obtain an equation for bε1(εx, µ). In the limit ε = 0 we obtain formally the
following equation for b∞(y, µ), where x′ is a parameter:

−µ·∇y (ψ+
∞)2

Σ
µ·∇yb∞ +Qb∞ = 0 in R+ × Rd−1 × V,

b∞ − ψ+
∞

ψ∞Σ
µ·∇yb∞ = κ1(y, µ)

[
∂w0

∂x1
(0, x′)

]
− [w10(0, x′)] on Γ−.

(57)

This problem is similar to the Milne problem presented, for instance, in [14, 20, 33].
For some particular matching conditions between w10 and ∂w0

∂xi
we obtain that b∞

decays exponentially fast as x1 → +∞. This problem is studied in Lemma 6.2,
given in section 6. We deduce from this lemma that (57) admits a unique solution
in W 2(R+ × Rd−1 × V ), which converges, as x1 goes to infinity, to a constant term
G(κ1

∂w0

∂x1
− w10) = G(κ1)∂w0

∂x1
− w10, where G(κ1) = L is a constant. We obtain that

the layer b∞ vanishes when x1 →∞ provided G(κ1
∂w0

∂x1
− w10) = 0. In other words,

L
∂w0

∂n
+ w10 = 0.(58)

This corresponds to the boundary conditions (32).
Let us now prove that bε is of order O(ε1/2) in L2(Ω× V ) when (58) is satisfied.

We define

γ0 = {x ∈ ∂Ω s.t. x1 = 0}.

The variational formulation for bε1 is given for every test function v ∈ V by∫
Ω

∫
V

(ψ+
ε )2

Σε
µ·∇bε1 µ·∇v dµdx+

1

ε2

∫
Ω

∫
V

(Qεb
ε
1)v dµdx

+
1

ε

∫
∂Ω

∫
V

|µ · n|hεbε1v dµdσ =
1

ε

∫
γ0

∫
V

|µ · n|hε
(
κ1

(x
ε
, µ
)
− L

)
∂1w0(x′)v dµdσ.

(59)
Let us introduce

dε(x1, x
′, µ) = −∂1w0(x′)U(x1)b

(x
ε
, µ
)
,(60)

where U(x1) ∈ C∞(R+) is such that U(0) = 1 and U(x1) = 0 for x1 ≥ 1, and where
b is the solution to (66) with g = κ1 − L, S = 0, and T = 0. According to Lemma
6.2, b is exponentially decaying to 0. We have that

Aεd
ε = S̃ − µ·∇T̃ in X,

dε − εψ+
ε

ψεΣε
µ·∇dε =

(
L− κ1

(x
ε
, µ
))

∂1w0(x′) on Γ0
−,

(61)

with the notation of section 6. Here we have

T̃ = 2b
(x
ε
, µ
)
µ·∇(−∂1w0(x′)U(x1))

(ψ+
ε )2

Σε
,

S̃ = (µ·∇)2(−∂1w0(x′)U(x1))
(ψ+
ε )2

Σε
b
(x
ε
, µ
)
.
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According to the Y ′-periodicity of b (see section 6 for the notation), we obtain the
following variational formulation for dε:∫

X

(ψ+
ε )2

Σε
µ·∇dε µ·∇v dµdx+

1

ε2

∫
X

(Qεd
ε)v dµdx+

1

ε

∫
Γ0

|µ · n|hεdεv dµdσ

=
1

ε

∫
Γ0

[
|µ · n|hε

(
κ1

(x
ε
, µ
)
− L

)
∂1w0(x′)v − ε(µ · n)T̃ v

]
dµdσ

+

∫
X

(S̃v + T̃ µ·∇v)dµdx.

(62)

Let us define δε = dε− bε1. Since w0 = 0 on ∂Ω, we have dε = 0 on ∂Ω\γ0. Therefore,
subtracting (59) from (62), we obtain that∫

Ω

∫
V

( (ψ+
ε )2

Σε
µ·∇δε µ·∇v dµdx+ (Qεδ

ε)v
)
dµdx+

1

ε

∫
∂Ω

∫
V

|µ · n|hεδεv dµdσ

= −
∫
γ0

∫
V

(µ · n)T̃ vdµdσ +

∫
Ω

∫
V

(S̃v + T̃ µ·∇v)dµdx.

(63)

Because b decays exponentially fast, we deduce that∥∥∥b(x
ε
, µ
)∥∥∥ ≤ C√ε.

Therefore, the source terms T̃ and S̃ satisfy the same bound. Choose v = δε in this
expression. We have

‖µ·∇δε‖2 +
1

ε
‖δε‖2L2(Γ−,dξ) ≤ C‖δε‖L2(Γ−,dξ) + C

√
ε(‖δε‖+ ‖µ·∇δε‖).

Recalling the Poincaré inequality (42), we easily obtain that

‖δε‖+ ‖µ·∇δε‖+ ε−1/2‖δε‖L2(Γ−,dξ) ≤ C
√
ε.

Since bε1 = dε − δε, we deduce that ‖bε1‖ ≤ C
√
ε. This concludes the proof of the

theorem.

6. The conservative multidimensional Milne problem in a periodic half
space. In this section, we state the lemma we used in the proof of Theorem 3.11.
The study of problem (57) plays a crucial role in the construction of the first-order
corrector. For homogeneous problems in slab geometry, it is often referred to as the
conservative Milne problem. It has been studied by many authors in the setting of
the first-order integrodifferential form of the transport equation. First introduced by
astrophysicists [18], it has been analyzed in [14] using probabilistic techniques. More
recently, it has been revisited in [11] using results of functional analysis. The tools
introduced by these authors, such as the exponential decay analysis, are used here.
The specific structure of the second-order formulation in a genuine multidimensional
geometry necessitates employing additional methods.

Although we do not need it in the proof of convergence, we also study the half
space problem with an exponentially decaying source term away from the boundary.
Similar results were derived in diffusion theory for first-order correctors of source
problems [13].
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Let us introduce some notation. For x ∈ Rd, we have x = (x1, x
′). We denote by

Y ′ = (0, 1)d−1 and for A ∈ R+, ΓA = {A}×Y ′×V . Let XAB = (A,B)×Y ′×V and
X = X0,+∞. Its boundary is decomposed as ∂X = Γ# ∪ Γ0. The functional space
D(X) is defined by

D(X) = {u ∈W 2
#,loc(X), ‖u‖D(X) < +∞},

‖u‖D(X) = ‖µ · ∇u‖L2(X) + ‖u− 〈u〉‖L2(X) + ‖u‖L2(Γ0
−,dξ)

.
(64)

Here W 2
#,loc(X) is the space of functions of W 2

loc(X) that are Y ′-periodic with respect

to x′ and Γ0
− is the set of incoming boundary conditions for X at side Γ0.

Lemma 6.1. The space D(X) defined in (64) is Hilbert.
Proof. We have to prove that the seminorm given in (64) is a norm for D(X).

Actually we prove that

‖u‖X0M
≤ CM(‖µ · ∇u‖L2(X) + ‖u− 〈u〉‖L2(X) + ‖u‖L2(Γ0

−,dξ)
).

This is enough to obtain the local integrability. We first replace the domain of inte-
gration of the velocity by a smaller set of positive directions. Let B be a ball centered
at µ such that µ1 = 0 of a given radius. Let θ ∈ V = Sd−1 and Bθ be the image of B
by a rotation Rθ of angle θ. Let f ∈ L2(Sd−1). We have∫

Bθ

f2(µ)dµ =

∫
Bθ

[(f − 〈f〉)− (R−θf − 〈f〉) +R−θf ]2dµ

≤ 3

∫
B

f2(µ)dµ+ 6

∫
V

(f − 〈f〉)2dµ.

Let B = {µ ∈ V s.t. µ1 > 1/2}, for instance. A finite number of angles θ is sufficient
so that the union of the corresponding Bθ covers V . Then we have that

‖u‖L2(X0M ) ≤ C(‖u‖(0,M)×Y ′×B + ‖u− 〈u〉‖L2(X)),

where C is a universal constant. Since u is bounded at the boundary Γ0
− and µ ·∇u is

bounded in L2(X), it is not difficult to obtain a bound for ‖u‖(0,M)×Y ′×B . We have
that

u(x, µ) =

∫ d(x,µ)

0

µ · ∇u(x− sµ, µ)ds+ u(x, µ), (x, µ) ∈ (0,M)× Y ′ ×B.

Here d(x, µ) is the distance between x ∈ R+ × Rd−1 and the surface x1 = 0 in the
direction −µ and x the point of the interface defined by x = x− d(x, µ)µ. We deduce
from the Cauchy–Schwartz inequality that

|u(x, µ)|2 ≤ CM
∫ d(x,µ)

0

(µ · ∇u)2(x− sµ, µ)ds+ 2|u(x, µ)|2,(65)

where C is a universal constant. For µ ∈ B given, we integrate and obtain∫ M

0

∫
Y ′
|u(x, µ)|2dx ≤ CM2‖µ · ∇u‖2L2(X) + CM‖u‖2L2(Γ0

−,dξ)
.

It remains to integrate this relation over B to complete the proof of the lemma.
We can now state the main result of this section.



1232 GUILLAUME BAL

Lemma 6.2. Let g ∈ L2(Γ0
−, dξ), S ∈ L2(X), T ∈ L2(X) be sufficiently regular

so that its trace on γ0 is defined, and ν > 0. We assume that Š = S and Ť = −T .
We denote by N = ‖g‖L2(Γ0

−,dξ)
+ ‖S‖L2(X) + ‖T‖L2(X) + ‖T‖L2(γ0

−,dξ)
. There exists

a unique solution in D(X) to the following boundary layer problem:

−µ·∇ (ψ+
∞)2

Σ
µ·∇b∞ +Qb∞ = Se−νx1 − µ·∇(Te−νx1) in X,

b∞ − ψ+
∞

ψ∞Σ
µ·∇b∞ = g on Γ0

−.
(66)

The solution b∞ satisfies b̌∞ = b∞. Moreover, there exist three linear forms G and
H and J such that b∞ decays exponentially as x1 → ∞ to a constant L = G(g) +
H(S) + J(T ) satisfying |L| ≤ CN . More specifically, we have

‖b∞ − L‖L2(XM,∞) + ‖µ·∇b∞‖L2(XM,∞)

+ ‖(µ·∇)2b∞‖L2(XM,∞) + ‖Qb∞‖L2(XM,∞)
≤ CN e−βM/2,

(67)

where C and β are constants independent of b∞ and M . Notice that G(1) = 1.
Proof. (i) Existence and uniqueness of the solution. Let v ∈ D(X) be a test

function with compact support. Multiplying (66) by v and integrating by parts yields∫
X

(
(ψ+
∞)2

Σ
µ·∇b∞µ·∇v +Qb∞v

)
+

∫
Γ0

(ψ+
∞ψ∞)|µ · n|(b∞ − g)v

=

∫
X

e−νx1Sv + e−νx1Tµ·∇v −
∫

Γ0

(µ · n)Tv.

(68)

The measures of integration are dµdx on XAB and dµdx′ on ΓA. We drop them
for simplicity. By density, the same equation holds true for every v ∈ D(X). With
obvious notation, problem (66) is equivalent to

a(b∞, v) = F(v) ∀v ∈ D(X).(69)

The form a is clearly bicontinuous and coercive in D(X). We deduce from the proof
of Lemma 6.1 that∣∣∣∣∫
X

e−νx1Tµ·∇v
∣∣∣∣+∣∣∣∣∫

X

e−νx1Sv

∣∣∣∣+∣∣∣∣∫
Γ0

(ψ+
∞ψ∞)|µ · n|g v

∣∣∣∣+∣∣∣∣∫
Γ0

|µ · n|T v
∣∣∣∣ ≤ CN‖v‖D(X),

where C is a constant independent of g, S, and v ∈ D(X). Therefore, the form F is
linear in D(X). By the Lax–Milgram lemma, there exists a unique solution to (66)
in D(X). From (66), we also deduce that µ·∇yb∞ ∈ D(X).

(ii) Convergence of b∞ when x1 → ∞. Let be A < B. Integrating (66) by parts
yields ∫

XAB

(
(ψ+
∞)2

Σ
µ·∇b∞µ·∇v +Qb∞v

)
−
∫

ΓA∪ΓB

(
(ψ+
∞)2

Σ
µ·∇b∞ − Te−νx1

)
(µ · n)v =

∫
XAB

e−νx1Sv + e−νx1Tµ·∇v.
(70)
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Let us choose v = 1 in this variational formulation. Recalling that µ · n = µ1 on ΓB

and µ · n = −µ1 on ΓA, we have for B =∞,∫
ΓA

(ψ+
∞)2

Σ
µ·∇b∞µ1 =

∫
XA,∞

e−νx1S −
∫

ΓA
(µ · n)e−νAT.(71)

Choosing v = b∞ now yields∫
ΓA

(ψ+
∞)2

Σ
µ·∇b∞µ1b∞

=

∫
XA,∞

(
− (ψ+

∞)2

Σ
(µ·∇b∞)2 − (Qb∞)b∞ + e−x1νSb∞ + e−x1νTµ·∇b∞

)
−
∫

ΓA
(µ · n)e−νATb∞ ≤

∫
XA,∞

(e−x1νSb∞ + e−x1νTµ·∇b∞)−
∫

ΓA
(µ · n)e−νATb∞.

We deduce from this equality, Lemma 4.1, and a classical trace theorem [16, 17] that

eAν/2
∫

ΓA

(ψ+
∞)2

Σ
µ·∇b∞µ1b∞ ≤ ‖b∞‖D(X)N .(72)

Let us now choose v = b∞eβx1 on X0B , where 0 < β < ν/2 will be determined later.
We obtain that∫

X0B

(
(ψ+
∞)2

Σ
(µ·∇b∞)2eβx1 +

(ψ+
∞)2

Σ
µ·∇b∞µ1b∞βeβx1 + (Qb∞)b∞eβx1

)
+

∫
Γ0

(ψ+
∞ψ∞)|µ · n|b2∞

=

∫
Γ0

(ψ+
∞ψ∞)|µ · n|b∞g +

∫
ΓB

(ψ+
∞)2

Σ
µ·∇b∞µ1b∞eβB +

∫
X0B

e−(ν−β)x1Sb∞

+

∫
X0B

e−(ν−β)x1T (µ·∇b∞ + µ1βb∞)−
∫

Γ0

T (µ · n)b∞ −
∫

ΓB
e−(ν−β)BT (µ · n)b∞.

We deduce from (72) and Lemma 4.1 that there exist positive constants η and C
independent of B such that∫

X0B

[
(ψ+
∞)2

Σ
(µ·∇b∞)2 + β

(ψ+
∞)2

Σ
µ·∇b∞µ1b∞ + η|b∞ − 〈b∞〉|2

]
eβx1 ≤ CN 2.(73)

The second term in the left-hand side in (73) has to be estimated in terms of the
two other ones, which are positive. Let us introduce the following average operators,
defined for every regular function u by

mΓB (u) =

∫
ΓB

u dµdx′, mM (u) =

∫
XM,M+1

u dµdx, mYM (u) =

∫
YM

u dx,(74)

where YM = (M,M + 1) × Y ′ is the Mth cell. Remark that mYM is only a spatial
averaging operator and that mM (u) =

∫
V
mYM (u). We now prove that

‖u−mM (u)‖L2(XM,M+1) ≤ C
(‖µ·∇u‖L2(XM,M+1) + ‖u− 〈u〉‖L2(XM,M+1)

)
.(75)
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Let µ ∈ V be given. Since the cell YM is bounded, we easily check by integration
of one-dimensional problems along the direction µ and along its transverse directions
that

‖u(·, µ)− (mYM (u))(µ)‖2L2(YM ) ≤ C‖µ·∇u‖2L2(YM ),

where C is a constant independent of µ. Integrating over V yields

‖u−mY (u)‖L2(XM,M+1) ≤ C‖µ·∇u‖L2(XM,M+1).

On the other hand we check that

‖mYM (u)−mM (u)‖2L2(XM,M+1) =

∫
XM,M+1

(∫
YM

(u− < u >)

)2

≤ C‖u− 〈u〉‖2L2(XM,M+1).

This proves (75). In addition, we obtain that

‖u−mΓx1 (u)‖L2(XM,M+1) ≤ ‖u−mM (u)‖L2(XM,M+1).

Therefore, we have

‖u−mΓx1 (u)‖L2(XM,M+1) ≤ C
(‖µ·∇u‖L2(XM,M+1) + ‖u− 〈u〉‖L2(XM,M+1)

)
.

This inequality holds for all M ∈ R+ and since eβM ≤ eβx1 ≤ eβeβM for x1 ∈
(M,M + 1), we obtain

‖(u−mΓx1 (u))e
β
2 x1‖L2(X) ≤ C(‖(µ·∇u)e

β
2 x1‖L2(X) + ‖(u− 〈u〉)e β2 x1‖L2(X)).(76)

We deduce from (71) that∣∣∣∣∫
X

(ψ+
∞)2

Σ
µ·∇b∞µ1mΓx1 (b∞)eβx1

∣∣∣∣
=

∣∣∣∣∣
∫
X

mΓx1 (b∞)eβx1

(∫
Xx1∞
e−νy1S −

∫
Γx1

(µ · n)e−νx1T

)∣∣∣∣∣
≤ C

∫
X

e−(ν−β)x1 |mΓx1 (b∞)|(‖S‖L2(X) + ‖T‖L2(X)) ≤ CN 2.

(77)

Here and in what follows, C denotes a constant independent of b∞. Then according
to (76) we can rewrite (73) and obtain for some constants η > 0 and θ > 0,∫

X

(µ·∇b∞)2eβx1 − θβ
∫
X

|(µ·∇b∞) (b∞ −mΓx1 (b∞))| eβx1

+η

∫
X

(b∞ −mΓx1 (b∞))
2
eβx1 ≤ CN 2.

(78)

Choosing now β > 0 small enough, we deduce from the Cauchy–Schwartz inequality
that ∫

X

(µ·∇b∞)2eβx1 +

∫
X

(b∞ −mΓx1 (b∞))
2
eβx1 ≤ CN 2.(79)
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Owing to (73) and (77), we deduce from (79) and the Cauchy–Schwartz inequality
that ∫

X

|b∞ − 〈b∞〉|2 eβx1 ≤ CN 2.

Therefore, we obtain∫
X

(µ·∇b∞)2eβx1 +

∫
X

|b∞ − 〈b∞〉|2 eβx1 ≤ CN 2.(80)

It follows from (75) and (80) that

‖u−mM (u)‖L2(XM,M+1) ≤ Ce−
βM
2 N ,

and averaging over x1 ∈ (M,M + 2) we have∥∥∥∥u− mM (u) +mM+1(u)

2

∥∥∥∥
L2(XM,M+1)

≤
∥∥∥u− mM (u)+mM+1(u)

2

∥∥∥
L2(XM,M+2)

≤ Ce− βM2 N .
Then we readily show that

|mM+1(u)−mM (u)| ≤ Ce− βM2 N .
This proves thatM 7→ mM (u) converges exponentially fast to a constant L by linearity
of the transport equation. Moreover, due to the exponential rate of convergence, we
have that

|L| ≤ |G(g)|+ |H(S)|+ |J(T )| ≤ CN .
Let us introduce

m(u) = mM (u) for x1 ∈ (M,M + 1).

Then m(b∞) is an element of L2(X) that converges to L and

‖[b∞ −m(b∞)]e
βx1

2 ‖L2(X) ≤ CN .
Hence we can conclude that b∞ converges to L in the following sense:

‖b∞ − L‖L2(XM,∞) ≤ Ce−
βM
2 N .

The same results are derived for µ · ∇yb and for Qb. This completes the proof of the
lemma.

7. Numerical application and conclusion. It goes beyond the scope of this
paper to present an extensive numerical application of the theory we have described.
We refer to [8, 9] for a more detailed analysis. However, we show the convergence of the
eigenvalues for the homogenization of a core composed of N ×N uranium assemblies,
which are common in thermal reactors. In its two-dimensional approximation, each
assembly is made of 17 × 17 fuel pins or control rods. We do not describe them
here and refer to [9] for the details. We present the convergence of the eigenvalue
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Table 1
Reference and reconstructed keff for cores composed of N ×N uranium assemblies.

N Reference keff , L = 0 Error (10−5) keff , L = 0.71 Error (10−5)
5 0.46598 0.45542 1056 0.46543 55
10 0.54521 0.54334 187 0.54515 6
20 0.57114 0.57089 25 0.57114 0
40 0.57825 0.57821 4 0.57825 0
∞ 0.58070

keff = 1/λε1 for different values of the number of assemblies N = 1/ε. In Table 1 are
gathered the exact multiplication factor keff , the associated diffusion approximation
given by (λ∞ + ε2ν1)−1 corresponding to an extrapolation length L = 0, and the
diffusion approximation (λ∞ + ε2ωε1)−1 that corresponds to an extrapolation length
of approximately L = 0.71. The exact extrapolation length has not been computed.
Instead, we took the value of the extrapolation length in homogeneous media. This can
be physically justified by the fact that uranium assemblies are not very heterogeneous.

As expected from the theory, the convergence of the eigenvalues without account-
ing for the leakage is of order ε3. A numerical estimate is given by

v =
ln e20

e10

ln 20
10

' 2.9,

which is in good agreement with the theoretical value. When we account for the
neutron leakage, the rate of convergence is too fast to be estimated numerically.
Indeed two-dimensional computations are already highly demanding, especially for a
number of assemblies equal to 20× 20 and 40× 40, which correspond to 115,600 and
462,400 rods, respectively. Hence we obtained an accuracy of 10−5 for the eigenvalues.
Nevertheless the gain obtained by adding an extrapolation length is clear according
to the numerical results presented in Table 1. We do not give here the reconstructed
fluxes for both methods. However, in both cases the shape of the exact fluxes is
well reproduced by the reconstructed fluxes [9]. In the case of a zero extrapolation
length, the reconstructed flux is shifted downward. This is explained by the Dirichlet
boundary conditions, which do not account for the neutron leakage. The error made
is of the order of 5% for a core composed of 10 × 10 assemblies (usual cores have
approximately 150 assemblies). When Robin-like boundary conditions are imposed
for the diffusion approximation, the reconstructed flux has the correct shape, up to
an error of less than 1%. Fine resolution close to the boundary also allows us to see
the exponential decay of the boundary layer [9].

In this paper, we have presented the homogenization of the transport criticality
eigenvalue problem and a numerical experiment for a one-velocity periodic neutron
transport problem. The generalization to multigroup and anisotropic equations is
straightforward and does not require new techniques [4, 5]. The results can also be
readily extended [8] to cores that are periodic up to a perturbation of order ε2, i.e.,
for instance, Σ(xε , µ)+ε2Σ′(x, xε , µ). However, the extension to genuinely nonperiodic
cores is still open. Periodicity is needed in order to obtain separation of slow and fast
variables. It would be interesting, theoretically as well as practically, to understand
the homogenization of locally periodic domains. The analysis of boundary layers is
replaced by that of interface layers, for which no theory is available at present.

Appendix A. Equivalence between the first-order and even parity flux
formulations. A linear integrodifferential Boltzmann equation is usually solved to
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model neutron transport. In the simplified setting of one-velocity and isotropic source
problems, it is given as follows. Given the cross sections Σ and Σs and the source
term q, we want to find the neutron angular flux ψ(x, µ) satisfying

µ·∇ψ(x, µ) + Σ(x)ψ(x, µ) = Σs(x)

∫
V

ψ(x, µ′)dµ′ + q(x) in Ω× V,
ψ(x, µ) = 0 on Γ−.

(81)

The assumption of one-velocity neutrons is not essential in order to derive the even
parity flux formulation, and the generalization to multigroup problems is straight-
forward. However, isotropy of the scattering operator can be hardly avoided, even
if complicated generalizations exist for nonisotropic media. This restricts the use of
the even parity formulation, although isotropy is a correct approximation in nuclear
reactor computations.

The even parity flux formulation consists in deriving a second-order integrodif-
ferential equation for the even parity flux, which is defined by

ψ+(x, µ) =
ψ(x, µ) + ψ(x,−µ)

2
.(82)

The main features of this formulation are that the second-order differential operator
allows for the use of a variational formulation, which is convenient in theory as well as
for numerical implementations. For instance, standard finite element methods can be
used as in the resolution of elliptic problems [28, Chapter 6]. Let us also emphasize
that the number of angular directions, and therefore the computational cost, has been
divided by two.

The derivation of the even parity flux equations from the first-order integrodif-
ferential equation is done as follow. Let us first introduce the odd parity flux

ψ−(x, µ) =
ψ(x, µ)− ψ(x,−µ)

2

and the scalar flux

φ(x) =

∫
V

ψ(x, µ′)dµ′ =

∫
V

ψ+(x, µ′)dµ′.

Then (81) written at points (x, µ) and (x,−µ) yields

(µ·∇+ Σ)(ψ+ + ψ−) = Σsφ+ q, (−µ·∇+ Σ)(ψ+ − ψ−) = Σsφ+ q.

Summing and subtracting these equalities, we obtain that

µ·∇ψ− + Σψ+ = Σsφ+ q, µ·∇ψ+ + Σψ− = 0.(83)

Since the total cross section Σ is positive, we have

ψ− = − 1

Σ
µ·∇ψ+.(84)

It remains to insert this expression in (83) and obtain

−µ·∇ 1

Σ(x)
µ·∇ψ+(x, µ) + Σ(x)ψ+(x, µ) = Σs(x)

∫
V

ψ+(x, µ′)dµ′ + q(x).(85)
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From the boundary conditions for ψ, we deduce that

ψ+ + ψ− = 0 on Γ− = {(x, µ) ∈ ∂Ω× V ; µ · n(x) < 0},
ψ+ − ψ− = 0 on Γ+ = {(x, µ) ∈ ∂Ω× V ; µ · n(x) > 0}.

Then, according to (84), we have

ψ+ − 1

Σ
µ·∇ψ+ = 0 on Γ−, ψ+ +

1

Σ
µ·∇ψ+ = 0 on Γ+.(86)

Remark that due to the symmetry of the even parity flux, these two boundary con-
ditions are redundant, so we need to mention only one of them. Equations (85) and
(86) are called the even parity flux formulation of the neutron transport. With the
assumption of subcriticality given by

Σ(x)− Σs(x) ≥ η > 0,

problem (81) admits a unique solution in W 2(Ω × V ) (see, e.g., [20, Chapter 21]).
Then from the definition (82), we obtain a weak solution of (85)–(86) in W 2(Ω× V ).
The even parity flux ψ+ also belongs to V, defined by (40). This follows from a trace
theorem [16, 17], which ensures that ψ|Γ+

∈ L2(Γ+, dξ) when ψ ∈ W 2(Ω × V ) and
ψ = 0 on Γ−.

Assume now that ψ+ ∈ V is a weak solution of (85)–(86) and define ψ = ψ+ −
1
Σµ·∇ψ+. From (85), we easily deduce that

µ·∇(ψ − ψ+) + Σψ+ = Σs

∫
V

ψ + q,

and then (81), since (86) clearly implies that ψ = 0 on Γ−. From (81) we deduce that
ψ ∈ W 2(Ω × V ), and both formulations are equivalent. The same equivalence holds
true for eigenvalue problems in bounded or periodic domains.

Appendix B. Some results on operator convergence. The results presented
here are derived from [19]. Let X be a Banach space and L(X) the set of bounded
linear operators from X to X. Let {Tn}n∈N be a sequence of operators in L(X). Then
Tn is said to converge compactly to T if

• for all x ∈ X, Tnx→ Tx as n→∞,
• for any bounded sequence {xn}n∈N with ‖xn‖ ≤ 1, the sequence {(T −
Tn)xn}n∈N is relatively compact in X.

Then we have the following result.
Theorem B.1. Let {Tn}n∈N be a sequence of operators in L(X) converging

compactly to T . Let σ(T ) and σ(Tn) be the spectra of T and Tn, respectively. Let λ
be an isolated eigenvalue of T of finite multiplicity and let Γ be a closed Jordan curve
in the complex plane around λ and isolating λ such that the domain ∆ enclosed by
Γ contains no other point of the spectrum σ(T ) than λ. Then σ(Tn) ∩∆ contains a
number of eigenvalues equal to the multiplicity of λ provided n is large enough.

Moreover, let λn be a sequence of eigenvalues of Tn converging to λ, and let un
be a sequence of normalized associated eigenvectors. Then, up to a subsequence, un
converges to a limit u in X, which is an eigenvector of T associated with λ.

The proof of this theorem relies on Theorem 5.5, p. 232; Proposition 5.6, p. 234;
Theorem 5.10, p. 236; Theorem 5.20, p. 244; and Proposition 5.28, p. 24 of [19]. We
also have the following error estimate result. Let λ be an eigenvalue of T of finite
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multiplicity and ∆ defined as above. Let P be the projection on the eigenvectors
of T associated with λ and Pn the projection on the eigenvectors associated with
eigenvalues of Tn included in ∆. We denote by λin, 1 ≤ i ≤ m, the m eigenvalues
counting their multiplicities of Tn in ∆ for n large enough. We note M = PX and
Mn = PnX. For P and Q two orthogonal projections on X, we define M = PX and
N = QX and the distance between M and N by

Θ(M,N) = max

(
sup

x∈M, ‖x‖=1

‖(1−Q)x‖, sup
x∈N, ‖x‖=1

‖(1− P )x‖
)

= max

(
sup

x∈M, ‖x‖=1

dist (x,N), sup
x∈N, ‖x‖=1

dist (x,M)

)
.

Then we prove the following result.
Theorem B.2. With the hypotheses and notation of Theorem B.1, the following

quantities are at least of order ‖(T − Tn)u‖:

Θ(M,Mn), λ− 1

m

m∑
i=1

λin,
1

λ
− 1

m

m∑
i=1

1

λin
(if λ 6= 0).

Moreover if λ is simple, then λ− λn and u− un are at least of order ‖(T − Tn)u‖.
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[20] R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique, Tome 3, Masson,

Paris, 1984.
[21] V. Deniz, The theory of neutron leakage in reactor lattices, in Handbook of Nuclear Reactor

Calculations, Vol. II, Y. Ronen, ed., 1968, pp. 409–508.
[22] L. Dumas and F. Golse, Homogenization of transport equations, SIAM J. Appl. Math., to

appear.
[23] E. Frenod and K. Hamdache, Homogenization of a transport kinetic equation with oscillating

potentials, Proc. Roy. Soc. Edinburgh Set. A, 126 (1996), pp. 1247–1275.
[24] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, Berlin, 1977.
[25] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the

solution of a transport equation, J. Funct. Anal., 76 (1988), pp. 110–125.
[26] E. W. Larsen, Neutron transport and diffusion in inhomogeneous media. I, J. Math. Phys.,

16 (1975), pp. 1421–1427.
[27] E. W. Larsen, Neutron transport and diffusion in inhomogeneous media. II, Nuclear Sci.

Engrg., 60 (1976), pp. 357–368.
[28] E. E. Lewis and W. F. Miller Jr., Computational Methods of Neutron Transport, John Wiley

& Sons, New York, 1984.
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Abstract. We construct solutions with a single interior condensation point for the two-dimensional
Gierer–Meinhardt system with strong coupling. The condensation point is located at a nondegenerate critical
point of the diagonal part of the regular part of Green’s function for −∆ + 1 under the Neumann boundary
condition. Our method is based on the Liapunov–Schmidt reduction for a system of elliptic equations.
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1. Introduction. We study the Gierer–Meinhardt system (see [14]) which models bi-
ological pattern formation and can be written as follows (already suitably scaled):

(GM)


At = ε2∆A−A+ Ap

Hq , A > 0 in Ω,

τHt = D∆H −H + Ar

Hs , H > 0 in Ω,

∂A
∂ν = ∂H

∂ν = 0 on ∂Ω.

Here, the unknowns A = A(x, t) and H = H(x, t) represent the concentrations at a point
x ∈ Ω ⊂ RN and at time t of the biochemicals called activator and inhibitor, respectively;

ε, τ,D are positive constants; ∆ :=
∑N
j=1

∂2

∂x2
j

is the Laplace operator in RN ; Ω is a smooth

bounded domain in RN ; ν(x) is the outer normal at x ∈ ∂Ω. The exponents p, q, r, s are
assumed to satisfy the conditions

(A) 1 < p <

(
N + 2

N − 2

)
+

, q > 0, r > 0, s ≥ 0, and 0 <
p− 1

q
<

r

s+ 1
,

where (N+2
N−2 )+ = N+2

N−2 if N ≥ 3; = +∞ if N = 1, 2. For a related model, see [20].
In numerical simulations of the activator-inhibitor system (GM), it is observed that,

when the ratio ε2/D is small, (GM) seems to have stable stationary solutions with the
property that the activator concentration is localized around a finite number of points in Ω.
Moreover, as ε → 0 the pattern exhibits a “point condensation phenomenon.” By this we
mean that the activator concentration is localized in narrower and narrower regions around
some points and eventually shrinks to a certain set of points as ε→ 0. Hereby the maximum
value of the inhibitor concentration diverges to +∞.
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The stationary equation for (GM) is the following system of elliptic equations:
ε2∆A−A+ Ap

Hq = 0, A > 0 in Ω,

D∆H −H + Ar

Hs = 0, H > 0 in Ω,

∂A
∂ν = ∂H

∂ν = 0 on ∂Ω.

(1.1)

Generally speaking, system (1.1) is quite difficult to solve since it has neither a variational
structure nor a priori estimates. One way to study (1.1) is to examine the so-called shadow
system. Namely, we let D → +∞ first.

It is known (see [23], [31], [34], [39]) that the study of the shadow system amounts to
the study of the following single equation:{

ε2∆u− u+ up = 0, u > 0 in Ω,

∂u
∂ν = 0 on ∂Ω.

(1.2)

Equation (1.2) has a variational structure and has been studied by numerous authors.
It is known that (1.2) has both boundary spike solutions and interior spike solutions. For
boundary spike solutions, see [5], [9], [10], [15], [17], [22], [25], [29], [30], [31], [39], [44], [46],
and the references therein. (When p = N+2

N−2 , N ≥ 3, boundary spike solutions of (1.2) have
been studied in [1], [2], [3], [12], [13], [27], etc.) For interior spike solutions, please see [4],
[6], [18], [21], [33], [38], [40], [41], [45]. For stability of spike solutions, please see [7], [19],
[26], [32], [42], and [43].

In the case when D is finite and not large (this is the so-called strong coupling case),
there are only very few results available. For N = 1, one can construct spike solutions for all
D ≥ 1; see [37]. In higher dimensions, as far as we know, there are no results yet. (See [8],
[28], and [34] for the study of related systems.) In this paper, we consider the case N = 2
since it has a particular asymptotic behavior.

Remark. Our approach does not work for dimensionsN ≥ 3 due to a different asymptotic
behavior of Green’s function of −∆ + 1 with the Neumann boundary condition.

From now on we suppose that N = 2. For simplicity, we let D = 1.
We construct solutions with a single interior condensation point. It turns out that the

condensation points in this case are different from those in the shadow system. We need to
introduce some notation. Let G(P, x) be Green’s function of −∆ + 1 under the Neumann
condition, i.e., G satisfies { −∆G+G = δP in Ω,

∂G
∂ν = 0 on ∂Ω,

where δP is the Dirac delta distribution at point P . It is also known that

G(P, x) = K(|x− P |)−H(P, x),

where K(|x|) is the fundamental solution of −∆ + 1 in R2 with singularity at 0 and H(P, x)
is C2 in Ω. It is known that

K(r) = − log r − µ+O(r) for r small.(1.3)

We call h(P ) := H(P, P ) the diagonal part of H(P, x).
We have Theorem 1.1.
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Theorem 1.1. Let P0 ∈ Ω be a nondegenerate critical point of h(P ). Then for ε
sufficiently small, problem (1.1) has a solution (Aε, Hε) with the following properties:

(1) Aε(x) = ξ
q/(p−1)
ε (w(x−Pεε ) + o(1)) uniformly for x ∈ Ω̄, where ξε > 0 will be deter-

mined later, Pε → P0 as ε→ 0, and w is the unique solution of the problem{
∆w − w + wp = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y)→ 0 as |y| → ∞.
(1.4)

(2) Hε(x) = ξε(1 +O( 1
| log ε| )) uniformly for x ∈ Ω̄.

(3) ξ
s+1− qr

p−1
ε = (1 + o(1))ε2 log 1

ε

∫
R2 w

r.
Remark. It is known that the solution w to (1.4) is radial, unique, and decays exponen-

tially. (See [16], [24].)
We now outline the proof of Theorem 1.1.
Our method is based on the Liapunov–Schmidt reduction, which was used in [11], [35],

and [36] to study semiclassical solutions of the nonlinear Schrödinger equation

h2

2
∆U − (V − E)U + Up = 0(1.5)

in RN , where V is a potential function and E is a real constant. Namely, in [11], [35],
and [36] solutions of (1.4) are constructed near a nondegenerate critical point of V provided
that h is sufficiently small. Later this method was used in [17], [18], [41], [44], [45], [46] to
construct spike solutions for (1.2).

Here we face a system of elliptic equations. Therefore, the process is more complicated.
To lay down the basic idea of our proof, we let

Aε = ξq/(p−1)
ε Āε, Hε = ξεH̄ε,

where ξε is to be chosen later. It is easy to see that system (1.1) is equivalent to the following:
ε2∆Āε − Āε + Āpε/H̄

q
ε = 0 in Ω,

∆H̄ε − H̄ε + cεĀ
r
ε/H̄

s
ε = 0 in Ω,

∂Āε
∂ν = ∂H̄ε

∂ν = 0 on Ω,

(1.6)

where

cε = ξ
qr
p−1−(s+1)
ε .

We fix a point P ∈ Ω. We rescale

Ãε(y) := Āε(P + εy), x = εy + P, y ∈ Ωε,P := {y|P + εy ∈ Ω}.
Then as ε → 0, if we assume that H̄ε(P + εy) → 1 in L∞loc(Ωε,P ), we have that Ãε → V (y),
where V satisfies {

∆V − V + V p = 0, V > 0 in R2,

V (0) = maxy∈R2 V (y), V ∈ H1(R2).

By a uniqueness result it is known that V (y) = w(y), where w is the unique solution of
(1.4). (See [16], [24].) Hence

Ãε(y) ∼ w(y).

(Here and thereafter A ∼ B means A = (1 + o(1))B as ε→ 0 in the corresponding norm.)
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To ensure that H̄ε(P + εy) ∼ 1, we note that

H̄ε(P ) =

∫
Ω

G(P, x)ξ
qr
p−1−(s+1)
ε

Ārε(x)

H̄s
ε (x)

dx

= ε2
∫

Ωε,P

G(P, P + εy)ξ
qr
p−1−(s+1)
ε

Ãr(y)

H̄s
ε (P + εy)

dy

(by (1.3), K(r) = − log r − µ+O(r) for r small)

∼ ξ
qr
p−1−(s+1)
ε ε2 log

1

ε

∫
R2

wr(y) dy.

This suggests that we take

ξ
qr
p−1−(s+1)
ε ε2 log

1

ε

∫
R2

wr(y) dy ∼ 1.

Hence we should look for solutions of (1.1) with the following properties:

Aε = ξq/(p−1)
ε Āε, Āε(y) = w(y) + φε(y), φε ∼ 0,

where y =
x− Pε
ε

and |Pε − P0| = o(1) as ε→ 0,

Hε = ξεH̄ε, H̄ε(x) = 1 + ψε(x), ψε ∼ 0,

and

ξ
qr
p−1−(s+1)
ε ε2 log

1

ε

∫
R2

wr(y) dy ∼ 1.

There are three main difficulties: First, w(x−Pεε ) does not satisfy the Neumann boundary
condition. Second, the linearized problem arising from (1.4) has the N -dimensional kernel
span{ ∂w∂y1

, . . . , ∂w∂yN }. Therefore, if we linearize system (1.6) at (w(x−Pε ), 1), the linearized

operator is not uniformly invertible with respect to ε. Third, we have two scales: (log 1
ε )−1

and ε. They are simply incomparable.
The first difficulty can be overcome by introducing the following projection: Let U ⊂ R2

be a smooth and open set. Suppose that W ∈ H1(R2). The projection PUW is defined by
PUW = W −QUW , where QUW satisfies{

∆QUW −QUW = 0 in U,

∂QUW
∂ν = ∂W

∂ν on ∂U.
(1.7)

The second difficulty is overcome by first “solving” (1.6) module approximate kernel
and cokernel, respectively. Subsequently we use the nondegeneracy of the critical point of
h at P0 to choose Pε near P0 such that the finite-dimensional part lying in the approximate
cokernel vanishes.

The third difficulty can be managed by choosing suitable approximate solutions.
From now on, we work with (1.6). The main points of the proof of Theorem 1.1 and the

organization of this paper can be described as follows:
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(A) Choose good approximate solutions.
We first study the solution (Aε,µ(x), Hε,µ(x), cε,µ) of the following problem:

ε2∆A−A+ Ap

(H(x)−µ)q = 0, x ∈ R2,

∆H −H + cε,µ
Ar

(H(x)−µ)s = 0, x ∈ R2,

H(0) = 1 +O( 1
log 1

ε

+ µ),

(1.8)

where µ is small.
Next we choose µ := µε(P ) so that

µ = QΩ(Hε,µ(· − P ))(P ).(1.9)

Set

Âε,P (x) := Aε,µε(P )(x− P ), Ĥε,P (x) := Hε,µε(P )(x− P ),

cε = ξ
qr
p−1−(s+1), cε,P := cε,µε(P ).

We now choose our approximate solutions:

Aε,P (y) := PΩε,P Âε,P (P + εy), Hε,P (x) := PΩĤε,P (x).(1.10)

Set

ϕε,P (y) := Âε,P (y)−Aε,P (y), ψε,P (x) := Ĥε,P (x)−Hε,P (x).

It will be proved that ϕε,P (y) = O(e−d(P,∂Ω)/ε) for almost everywhere (a.e.) y ∈ Ωε,P
and ψε,P = 1

log 1
ε

(H(P, x) + o(1)) uniformly with respect to x ∈ Ω.

We will analyze Aε,P and Hε,P in sections 2 and 3.
(B) The idea now is to look for a solution of (1.6) of the form

Āε(P + εy) = Aε,P (y) + φ(y), H̄ε(x) = Hε,P (x) + ψ(x).

We will show that, provided P is properly chosen, φ and ψ are expected to be insignificantly
small.

We now write system (1.6) in operator form.
For any smooth and open set U ⊂ R2, let

W 2,t
N (U) =

{
u ∈W 2,t(U)|∂u

∂ν
= 0 on ∂U

}
, H2

N (U) = W 2,2
N (U).

For A(y) ∈ H2
N (Ωε,P ), H(x) ∈ W 2,t

N (Ω), where 1 < t < 1.1. (We need t > 1 so that the
Sobolev embedding W 2,t(Ω) ⊂ L∞(Ω) is continuous.) Set

Sε

(
A
H

)
=

(
S1(A,H)
S2(A,H)

)
,

where S1(A,H) = ∆yA−A+Ap/Hq, S2(A,H) = ∆xH −H + cε,PA
r/Hs.

Then solving (1.6) is equivalent to

Sε

(
A
H

)
= 0, A ∈ H2

N (Ωε,P ), H ∈W 2,t
N (Ω).(1.11)
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We now substitute A = Aε,P (y) + φ(y), H = Hε,P (x) + ψ(x) into (1.11). The system
determining φ and ψ can be written as

S′ε

(
Aε,P
Hε,P

)[
φ
ψ

]
+

(
E1
ε,P

E2
ε,P

)
+

(
O(‖φ‖2L2(Ωε,P ) + ‖ψ‖2Lt(Ω))

O(‖φ‖2L2(Ωε,P ) + ‖ψ‖2Lt(Ω))

)
= 0,

where Eiε,P , i = 1, 2 denote the error terms and E1
ε,P = S1(Aε,P , Hε,P ), E2

ε,P = S2(Aε,P , Hε,P ).
We will estimate the error terms in section 3.

It is then natural to try to solve the equations for (φ, ψ) by a contraction mapping

argument. The problem is that the linearized operator S′ε(
Aε,P
Hε,P

) is not uniformly invertible

with respect to ε.
Therefore, we now replace the above equation with

S′ε

(
Aε,P
Hε,P

)[
φ
ψ

]
+

(
E1
ε,P

E2
ε,P

)
+

(
O(‖φ‖2L2(Ωε,P ) + ‖ψ‖2Lt(Ω))

O(‖φ‖2L2(Ωε,P ) + ‖ψ‖2Lt(Ω))

)
=

(
vε,P
0

)
,

(1.12)

where vε,P lies in an appropriately chosen approximate cokernel of the linear operator

Lε := ∆y − 1 + pAp−1
ε,P H

−q
ε,P −

qr

s+ 1

∫
Ωε,P

Ar−1
ε,P ·∫

Ωε,P
Arε,P

Apε,P ,

Lε : H2(Ωε,P )→ L2(Ωε,P ),

and φ is orthogonal in L2(Ωε,P ) to the corresponding approximate kernel of Lε.
(C) We solve (1.12) for (φ, ψ) module the approximate kernel. To this end, we need a

detailed analysis of the operators Lε and S
′
ε. This together with the contraction mapping

argument is done in section 4.
(D) In the last step, we study a vector field P → Wε(P ) such that Wε(P ) = 0 implies

vε,P = 0 (and hence solutions of system (1.6) can be found). To discuss the zeros of
P → Wε(P ) we need very good estimates for the error terms E1

ε,P and E2
ε,P . Much of

section 3 is devoted to this analysis. With a good estimate of Eiε,P , i = 1, 2, we discover
that under the geometric condition described in Theorem 1.1 there is a point Pε in a small
neighborhood of P0 ∈ Ω such that Wε(Pε) = 0. This will complete the proof of Theorem 1.1
and is done in section 5.

Finally, we remark that the stability of the solutions constructed in Theorem 1.1 should
be related to the matrix (∇i∇jh(P0)). This will be studied in a forthcoming paper.

Throughout this paper, we always assume that P ∈ Br(P0) for some fixed small number
r > 0. We shall frequently use the following technical lemma.

Lemma 1.2. Let u be a solution of

∆u− u+ f = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

Suppose

|f(x)| ≤ ηe−α|x−P |ε

for some α > 0. Then if ε > 0 is small enough we have

|u(P )| ≤ C1ηε
2 log

1

ε
(1.13)
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and

|u(P )− u(x)| ≤ C2ηε
2 log

( |x− P |
ε

+ 1

)
,(1.14)

where C1 > 0, C2 > 0 are generic constants (which are independent of ε > 0 and η > 0).
Proof. By the representation formula we calculate

u(x) =

∫
Ω

G(x, z)f(z)dz

and

u(P ) =

∫
Ω

G(P, z)f(z)dz = ε2
∫

Ωε,P

G(P, P + εy)f(P + εy)dy

≤ C1ηε
2 log

1

ε
.

Similarly we can obtain (1.14).

2. Study of the approximate solutions. In this section, we define a good approx-
imate solution and study its properties. We will use the implicit function theorem and
perturbation arguments. To this end, it is essential that we have the following important
lemma.

Lemma 2.1. The operator

L := ∆− 1 + pwp−1 − qr

s+ 1

∫
R2 w

r−1·∫
R2 wr

wp

with w defined in (1.4) is an invertible map from H2
r (R2) to L2

r(R
2), where H2

r (R2) (L2
r(R

2))
is the subset of those functions of H2(R2) (L2

r(R
2)) that are radially symmetric.

Proof. We just need to prove that

kernel(L) ∩H2
r (R2) = {0}, kernel(L∗) ∩H2

r (R2) = {0},
where L∗ is the conjugate operator of L.

In fact, let Lφ = 0 for φ ∈ H2
r (R2). Then we have

L0

(
φ− qr

(p− 1)(s+ 1)

∫
R2 w

r−1φ∫
R2 wr

w

)
= 0,

where L0 := ∆−1+pwp−1. By Lemma 4.2 of [30], φ− qr
(p−1)(s+1)

∫
R2

wr−1φ∫
R2

wr
w = 0. Multiplying

this equation by wr−1 and integrating over R2 we see that∫
R2

wr−1φ = 0.

Since qr
(p−1)(s+1) > 1 we conclude φ = 0.

Next we claim that kernel(L∗)∩H2
r (R2) = {0}. Let φ ∈ H2

r (R2) be such that L∗φ = 0.
Namely, we have

L0φ− qr

s+ 1

∫
R2 w

pφ∫
R2 wr

wr−1 = 0.(2.1)



1248 JUNCHENG WEI AND MATTHIAS WINTER

Multiplying (2.1) by w and integrating over R2, we obtain(
p− 1− qr

s+ 1

)∫
R2

wpφ = 0.

Since p− 1− qr
s+1 < 0 we get ∫

R2

wpφ = 0.

Hence L0φ = 0 and φ = 0.
We now study the following system:

ε2∆A−A+ Ap

(H−QΩH(P ))q = 0, x ∈ R2,

∆H −H + cε,P
Ar

(H−QΩH(P ))s = 0, x ∈ R2,

H(P ) = 1 +O( 1
log 1

ε

).

(2.2)

We have Theorem 2.2.
Theorem 2.2. For ε << 1, there exists a unique solution (Âε,P (x), Ĥε,P (x), cε,P ) of

(2.2) with the following properties:
(1) Âε,P (x) and Ĥε,P (x) depend on |x− P | only;

(2) Âε,P = (1 + o(1))w( |x−P |ε );

(3) Ĥε,P (0) = 1 +O( 1
log 1

ε

);

(4) Ĥε,P (x) = σP
log 1

ε

K(|x − P |) + ε
log 1

ε

Jε,P (|x − P |) for |x| ≥ δ, where σP = 1 + o(1),

Jε,P (|x− P |), ∇xJε,P (|x− P |) = O(1).
Proof of Theorem 2.2. The proof is divided into the following steps:
Step 1. We first look for radially symmetric solutions (Aε,µ, Hε,µ, cε,µ) of the following

parametrized equation:
ε2∆A−A+ Ap

(H−µ)q = 0, x ∈ R2,

∆H −H + cε,µ
Ar

(H−µ)s = 0, x ∈ R2,

A(x) = A(|x|), H(x) = H(|x|), H(0) = 1 +O( 1
log 1

ε

+ µ)

(2.3)

for 0 < µ << 1.
Problem (2.3) can be solved by the contraction mapping principle. We first need suitable

approximate solutions. We note that the problem
∆yA−A+ Ap

(1−µ)q = 0, y ∈ R2,

∆xH −H + cε,µ,0
Ar

(H−µ)s = 0, x ∈ R2,

x = εy, A(y) = A(|y|), H(x) = H(|x|), H(0) = 1

(2.4)

has a unique solution (Aε,µ,0(y), Hε,µ,0(x), cε,µ,0) for 0 < µ << 1. In fact, it is well known
that (for given µ small) the first equation has the unique positive solution Aε,µ,0(y) =
(1 − µ)q/(p−1)w(y) with maximum at 0 and decaying to 0 at infinity (compare equation
(1.4)). It is also easy to see that for given µ and A ∈ H2(R2), the second equation has a
unique solution Hε,µ,0(x) ∈ H2(R2) (note that the nonlinearity is concave). To ensure that
Hε,µ,0(0) = 1, we just need to choose cε,µ,0. In fact, by the standard representation formula

Hε,µ,0(x) =

∫
R2

K(|x− z|) cε,µ,0 (1− µ)rq/(p−1)(Hε,µ,0 − µ)−s(z)wr
(z
ε

)
dz.
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Taking x = 0, we obtain

cε,µ,0 = (1− µ)s−rq/(p−1)

(∫
R2

K(|z|)
(

1 +O

(
1

log 1
ε

+ µ

))
wr
(z
ε

)
dz

)−1

= (1− µ)s−rq/(p−1)

(
ε2

(
1 +O

((
log

1

ε

)−1
)

+ µ

)∫
R2

K(|εy|)wr(y) dy

)−1

= (1− µ)s−rq/(p−1) 1

ε2 log(1/ε)

(∫
R2

wr(y) dy

)−1

+O

(
1/ log(1/ε) + µ

ε2 log(1/ε)2

)
as ε→ 0.

(Here we have used the fact that (by Lemma 1.2)

|Hε,µ,0(x)−Hε,µ,0(0)| ≤ C 1

log 1
ε

log

( |x− P |
ε

+ 1

)
for some generic constant C > 0.)

Using the ansatz

Aε,µ(y) = Aε,µ,0(y) + aε,µ(y),

Hε,µ(x) = Hε,µ,0(x) + hε,µ(x),

and inserting it into (2.3) (with cε,µ = cε,µ,0) gives us

∆yaε,µ − aε,µ =
Apε,µ,0

(1− µ)q
− (Aε,µ,0 + aε,µ)p

(Hε,µ,0 + hε,µ − µ)q
,

∆xhε,µ − hε,µ = cε,µ,0
Arε,µ,0

(Hε,µ,0 − µ)s
− cε,µ,0 (Aε,µ,0 + aε,µ)r

(Hε,µ,0 + hε,µ − µ)s
.

The first equation can be rewritten as follows:

∆yaε,µ − aε,µ +
pAp−1

ε,µ,0aε,µ

(1− µ)q
− qApε,µ,0hε,µ

(1− µ)q+1
= e1,

where

e1 =
(Aε,µ,0 + aε,µ)p

(1 + hε,µ − µ)q
− (Aε,µ,0 + aε,µ)p

(Hε,µ,0 + hε,µ − µ)q

− (Aε,µ,0 + aε,µ)p

(1 + hε,µ − µ)q
+

Apε,µ,0
(1− µ)q

+
pAp−1

ε,µ,0aε,µ

(1− µ)q
− qApε,µ,0hε,µ

(1− µ)q+1
.

This implies

‖e1(y)‖L2(R2) = O
(
‖aε,µ(y)‖2L2(R2)

)
+O(‖hε,µ(x)‖2L∞(Ω)) +O

(
1

log 1
ε

+ µ

)
.

For a given aε,µ, we can solve the second equation directly since the nonlinearity is concave.
Moreover, we have that hε,µ satisfies

∆xhε,µ − hε,µ + cε,µ
rAr−1

ε,µ,0aε,µ

(Hε,µ,0 − µ)s
− cε,µ

sArε,µ,0hε,µ

(Hε,µ,0 − µ)s+1
= e2,
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where

e2 = cε,µ
Arε,µ,0

(Hε,µ,0 − µ)s
− cε,µ (Aε,µ,0 + aε,µ)r

(Hε,µ,0 − µ)s

+cε,µ
rAr−1

ε,µ,0aε,µ

(Hε,µ,0 − µ)s
− cε,µ

sArε,µ,0hε,µ

(Hε,µ,0 − µ)s+1
.

This implies

‖e2‖L2(R2) = O(‖aε,µ‖2L2(R2)) +O(‖hε,µ‖2L∞(Ω)‖Ar−1
ε,µ,0‖L2(R2)).

Thus by Lemma 1.2

hε,µ(x) = hε,µ(0) +O

(
1

log 1
ε

)
and

hε,µ(0) =

∫
R2

K(z)

[
cε,µ

rAr−1
ε,µ,0aε,µ

(Hε,µ,0 − µ)s
− cε,µ

sArε,µ,0hε,µ

(Hε,µ,0 − µ)s+1

]
+O(‖aε,µ‖2L2(R2))

= cε,µ

∫
R2

rAr−1
ε,µ,0aε,µ

(
1 +O

(
1

log 1
ε

+ µ

))

−cε,µshε,µ(0)

∫
R2

Arε,µ,0

(
1 +O

(
1

log 1
ε

+ µ

))
+O(‖aε,µ‖2L2(R2)).

Therefore

hε,µ(0) =
r

s+ 1

∫
Ar−1
ε,µ,0aε,µ∫
Arε,µ,0

+O

(
1

log 1
ε

+ µ

)
+O(‖aε,µ‖2L2(R2)).

Substituting this into the first equation, the equation for aε,µ becomes

∆yaε,µ − aε,µ +
pAp−1

ε,µ,0aε,µ

(1− µ)q
− qrApε,µ,0

(s+ 1)(1− µ)q+1

∫
R2 A

r−1
ε,µ,0aε,µ∫

R2 Arε,µ,0

= e1 +O

(
1

log 1
ε

+ µ

)
+O(‖aε,µ‖2L2(R2))

in L2(R2).
By Lemma 2.1 and a perturbation argument for ε << 1, µ << 1, the equation for aε,µ

can be solved and the solution is unique. Thus we have obtained a solution to (2.3).
Step 2. We choose µ such that

µ = Hε,µ(0)− PΩ(Hε,µ(· − P ))(P ).(2.5)

To this end, we note that this is equivalent to

µ =

∫
R2

(K(|z|)−G(P, P + z)) cε,µ (Hε,µ(z)− µ)−sArε,µ
(z
ε

)
dz
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=

∫
R2

H(P, P + z)cε,µ(Hε,µ(z)− µ)−sArε,µ
(z
ε

)
dz

= H(P, P )cε,µ

∫
R2

(Hε,µ(z)− µ)−sArε,µ
(z
ε

)
dz

+O(ε)

∫
R2

|z|cε,µ(Hε,µ(z)− µ)−sArε,µ
(z
ε

)
dz.

Since cε,µ
∫
R2(Hε,µ(z)−µ)−sArε,µ( zε )dz = 1+o(1)

log 1
ε

, it is easy to see that by the contraction

mapping principle, (1.9) has a unique solution µ = µε(P ).
We further calculate

µ =
1 + o(1)

log 1
ε

[
H(P, P ) +O

(
1

log 1
ε

)]
as ε→ 0.

Now let

Âε,P (x) = Aε,µ(x− P ), Ĥε,P (x) = Hε,µ(x− P ), cε,P = cε,µ,

where µ := µε(P ) is given by (1.9).
It is easy to see that (1), (2), and (3) of Theorem 1.1 are satisfied. It remains to prove

statement (4) of Theorem 2.2. We have for |x| ≥ δ,

Ĥε,P (x) =
ε2
∫
R2 K(|x− P − εy|)A

r
ε,µ(y)

Hsε,µ
dy∫

R2 K(|εy|)Arε,µ(y)

Hsε,µ
dy

=
σP

log 1
ε

[K(|x− P |) +O(ε)], σP = 1 + o(1)

as ε→ 0.
This implies Theorem 2.2.

3. Estimates of the error terms. In this section, we give some preliminary estimates.
These will be used in the later sections.

Recall that we choose our approximate solution as follows:

Aε,P (y) = PΩε,P Âε,P , Hε,P (x) = PΩĤε,P (x).

Note that in this case

µ = QΩĤε,P (P ).

Also recall that

ϕε,P (y) = QΩε,P Âε,P = Âε,P −Aε,P , ψε,P (x) = QΩĤε,P = Ĥε,P −Hε,P .

We note that ϕε,P satisfies

∆yϕε,P − ϕε,P = 0 in Ωε,P ,

∂ϕε,P
∂ν

=
∂Âε,P
∂ν

= O(e−d(P,∂Ω)/ε) on ∂Ωε,P .
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Hence

‖ϕε,P ‖H2(Ωε,P ) = O(e−d(P,∂Ω)/ε).(3.1)

By Theorem 2.2 we have

PΩĤε,P (x) =

∫
Ωε,P

G(x, P + εy)
Ârε,P (y)

(Ĥε,P−µε(P ))s
dy∫

R2 K(|εy|) Âr
ε,P

(y)

(Ĥε,P−µε(P ))s
dy

=
1 + o(1)

log 1
ε

[K(|x− P |)−H(x, P ) +O(ε)].

This implies

ψε,P (x) = Ĥε,P (x)− PΩĤε,P (x− P ) =
1 + o(1)

log 1
ε

[H(x, P ) +O(ε)]

or, equivalently,

ψε,P (x) =
1 + o(1)

log 1
ε

H(P, x) +O

(
ε

log 1
ε

)
.(3.2)

By (3.1) and (3.2), we see that the term involving ϕε,P can be neglected. This is what
we will do in the later sections.

The reason for choosing Aε,µ and Hε,P as we did lies in the two following estimates:

S1(Aε,P , Hε,P ) = ∆yAε,P −Aε,P +
Apε,P
Hq
ε,P

=
(Âε,P − ϕε,P )p

(Ĥε,P − ψε,P )q
− (Âε,P )p

(Ĥε,P − ψε,P (P ))q

= O(e−d(P,∂Ω)/ε) + (Âε,P )p[(Ĥε,P − ψε,P )−q − (Ĥε,P − ψε,P (P ))−q] (by (3.1))

= O(e−d(P,∂Ω)/ε)− q(Âε,P )p(Ĥε,P )−q−1(ψε,P (x)− ψε,P (P )) +O

((
ε

log 1
ε

)2

Âpε,P

)
for a.e. y ∈ Ωε,P . Similarly we have

S2(Aε,P , Hε,P ) = ∆xHε,P −Hε,P + cε,P
Arε,P
Hs
ε,P

= O(e−d(P,∂Ω)/ε)− scε,P (Âε,P )r(Ĥε,P )−s−1(ψε,P (x)− ψε,P (P )) +O

(
cε,P

(
ε

log 1
ε

)2

Ârε,P

)
for a.e. x ∈ Ω.

We have thus obtained Lemma 3.1.
Lemma 3.1. We have

S1(Aε,P , Hε,P ) = O(e−d(P,∂Ω)/ε)− q(Âε,P )p(Ĥε,P )−q−1(ψε,P (x)− ψε,P (P ))

+O

((
ε

log 1
ε

)2

Âpε,P

)
(3.3)
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for a.e. y ∈ Ωε,P .

S2(Aε,P , Hε,P )

= O(e−d(P,∂Ω)/ε)− scε,P (Âε,P )r(Ĥε,P )−s−1(ψε,P (x)− ψε,P (P )) +O

(
cε,P

(
ε

log 1
ε

)2

Ârε,P

)
(3.4)
for a.e. x ∈ Ω.

Hence

‖S1(Aε,P , Hε,P )‖L2(Ωε,P ) = O

(
ε

log 1
ε

)
,(3.5)

‖S2(Aε,P , Hε,P )‖Lt(Ω) = O

(
ε2t
−1−1

(
1

log 1
ε

)2
)

(3.6)

for any 1 < t < 1.1.
Proof. The lemma is proved by direct computation.

4. The Liapunov–Schmidt reduction method. This section is devoted to studying
the linearized operator defined by

L̃ε,P := S′ε

(
Aε,P
Hε,P

)
,

L̃ε,P : H2
N (Ωε,P )×W 2,t

N (Ω)→ L2(Ωε,P )× Lt(Ω),

where 1 < t < 1.1 is a fixed number.
Set

Kε,P := span

{
∂Aε,P
∂Pj

∣∣∣∣ j = 1, . . . , N

}
⊂ H2

N (Ωε,P ),

Cε,P := span

{
∂Aε,P
∂Pj

∣∣∣∣ j = 1, . . . , N

}
⊂ L2(Ωε,P ),

Lε := ∆− 1 + pAp−1
ε,P H

−q
ε,P −

qr

s+ 1

∫
Ωε,P

Ar−1
ε,P ·∫

Ωε,P
Arε,P

Apε,P ,

and

Lε,P := πε,P ◦ Lε : K⊥ε,P → C⊥ε,P ,

where πε,P is the projection in L2(Ωε,P ) onto C⊥ε,P .

We remark that since Aε,P (y) = (1 +O( 1
log 1

ε

))w(y), it is easy to see that

lε,P := πε,P ◦ (∆− 1 + pAp−1
ε,P ) : K⊥ε,P → C⊥ε,P

is a one to one and surjective map. For the proof please see the proof of Propositions 6.1–6.2
in [41].
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The following proposition is the key estimate in applying the Liapunov–Schmidt reduc-
tion method.

Proposition 4.1. For ε sufficiently small, the map Lε,P is a one-to-one and surjective
map. Moreover the inverse of Lε,P exists and is bounded uniformly with respect to ε.

Proof. We will follow the method used in [11], [35], [36], [41], and [44]. We first show
that there exist constants C > 0, ε̄ > 0 such that for all ε ∈ (0, ε̄),

‖Lε,PΦ‖L2(Ωε,P ) ≥ C‖Φ‖H2(Ωε,P )(4.1)

for all Φ ∈ K⊥ε,P .
Suppose that (4.1) is false. Then there exist sequences {εk}, {Pk}, and {φk} with

Pk ∈ Ω, φk ∈ K⊥εk,Pk such that

‖Lεk,Pkφk‖L2(Ωεk,Pk ) → 0,(4.2)

‖φk‖H2(Ωεk,Pk ) = 1, k = 1, 2, . . . .(4.3)

Namely, we have the following situation:

∆yφk − φk + pAp−1
εk,Pk

H−qεk,Pkφk −
qr

s+ 1

∫
Ωεk,Pk

Ar−1
εk,Pk

φk∫
Ωεk,Pk

Arεk,Pk
Apεk,Pk = fk,(4.4)

where

‖fk‖L2(Ωεk,Pk ) → 0,

φk ∈ K⊥εk,Pk , ‖φk‖H2(Ωεk,Pk ) = 1.(4.5)

We now show that this is impossible. Set Ak = Aεk,Pk ,Ωk = Ωεk,Pk .
Note that

Hεk,Pk = 1 + o(1) in L∞(Ω),

(∆y − 1 + pAp−1
k )

Ak
p− 1

= Apk + o(1) in L2(Ωk).

Thus we have

(∆y − 1 + pAp−1
k )

(
φk − qr

(s+ 1)(p− 1)

∫
Ωk
Ar−1
k φk∫

Ωk
Ark

Ak

)
= fk + o(1) in L2(Ωk).

Since the projection of Ak into Kεk,Pk is o(1) in H2(Ωk) and the operator

∆y − 1 + pAp−1
k

is a one-to-one and invertible map (with the inverse bounded uniformly with respect to ε)
from K⊥εk,Pk to C⊥εk,Pk , we have

φk − qr

(s+ 1)(p− 1)

∫
Ωk
Ar−1
k φk∫

Ωk
Ark

Ak = o(1) in H2(Ωk).(4.6)
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Since qr
(p−1)(s+1) > 1, (4.6) implies that

‖φk‖H2(Ωk) = o(1).

This is a contradiction!
Thus (4.1) holds and Lε,P is a one-to-one map.
Next we show that Lε,P is also surjective. To this end, we just need to show that the

conjugate of Lε,P (denoted by L∗ε,P ) is injective from K⊥ε,P to C⊥ε,P .

Let L∗ε,Pφ ∈ C⊥ε,P , φ ∈ K⊥ε,P . Namely, we have

∆yφ− φ+ pAp−1
ε,P H

−q
ε,Pφ−

qr

s+ 1

∫
Ωε,P

Apε,Pφ∫
Ωε,P

Arε,P
Ar−1
ε,P ∈ Cε,P .(4.7)

We can assume that ‖φ‖H2(Ωε,P ) = 1.
Multiplying (4.7) by Aε,P and integrating over Ωε,P , we obtain(

p− 1− qr

s+ 1

)∫
Ωε,P

Apε,Pφ = o(1)

or, equivalently, ∫
Ωε,P

Apε,Pφ = o(1).

Hence φ satisfies

∆yφ− φ+ pAp−1
ε,P H

−q
ε,Pφ+ o(1) ∈ Cε,P , φ ∈ K⊥ε,P ,

which implies that ‖φ‖H2(Ωε,P ) = o(1). This is a contradiction!
Therefore, Lε,P is also surjective.
We now deal with system (1.6).
L̃ε,P is not uniformly invertible in ε due to the approximate kernel

Kε,P := Kε,P ⊕ {0} ⊂ H2
N (Ωε,P )×W 2,t

N (Ω).

We choose the approximate cokernel as follows:

Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε,P )× Lt(Ω).

We then define

K⊥ε,P := K⊥ε,P ⊕W 2,t
N (Ω) ⊂ H2

N (Ωε,P )×W 2,t
N (Ω),

C⊥ε,P := C⊥ε,P ⊕ Lt(Ω) ⊂ L2(Ωε,P )× Lt(Ω).

Let πε,P denote the projection in L2(Ωε,P ) × Lt(Ω) onto C⊥ε,P . (Here the projection in the
second component is the identity map.) We then show that the equation

πε,P ◦ Sε
(
Aε,P + Φε,P
Hε,P + Ψε,P

)
= 0

has the unique solution

Σε,P =

(
Φε,P (y)
Ψε,P (x)

)
∈ K⊥ε,P

if ε is small enough.
As a preparation in the following two propositions we show the invertibility of the

corresponding linearized operator.
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Proposition 4.2. Let Lε,P = πε,P ◦ L̃ε,P . There exist positive constants ε, λ such that
for all ε ∈ (0, ε),

‖Lε,PΣ‖L2(Ωε,P )×Lt(Ω) ≥ λ‖Σ‖H2(Ωε,P )×W 2,t(Ω)(4.8)

for all Σ ∈ K⊥ε,P .

Proposition 4.3. There exists a positive constant ε such that for all ε ∈ (0, ε), the map

Lε,P = πε,P ◦ L̃ε : K⊥ε,P → C⊥ε,P
is surjective.

Proof of Proposition 4.2. This proposition follows from Proposition 4.1. In fact, suppose
that (4.8) is false. Then there exist sequences {εk}, {Pk}, and {Σk} with

Pk ∈ Ω, Σk =

(
φk(y)
ψk(x)

)
∈ K⊥εk,Pk

such that

‖Lεk,PkΣk‖L2(Ωεk,Pk )×Lt(Ω) → 0,(4.9)

‖Σk‖H2(Ωεk,Pk )×W 2,t(Ω) = 1, k = 1, 2, . . . .(4.10)

Namely, we have the following situation:

∆yφk − φk + pAp−1
εk,Pk

H−qεk,Pkφk − qA
p
εk,Pk

H−q−1
εk,Pk

ψk = fk, ‖fk‖L2(Ωεk,Pk ) → 0,(4.11)

∆xψk − ψk + rcεk,PkA
r−1
εk,Pk

H−sεk,Pkφk − scεk,PkArεk,PkH−s−1
εk,Pk

ψk = gk,(4.12)

where

‖gk‖Lt(Ω) → 0,

φk ∈ K⊥εk,Pk ,(4.13)

‖φk‖2H2(Ωεk,Pk ) + ‖ψk‖2W 2,t(Ω) = 1.(4.14)

We now show that this is impossible. Set Ak = Aεk,Pk ,Ωk = Ωεk,Pk .
We first note that by (4.12) we have

‖ψk‖L∞(Ω) ≤ C
and hence by Lemma 1.2 and Sobolev embedding,

|ψk(x)− ψk(Pk)| ≤ C|x− Pk|α +
1

log 1
ε

log

( |x− P |
ε

+ 1

)
for some α > 0 since t > 1. Thus

‖Apk(ψk − ψk(Pk))‖L2(Ωk) → 0, k = 1, 2, . . . in L2(Ωk).(4.15)

Moreover by (4.12),

ψk(Pk) =

∫
Ωk

G(P, z)(rcεk,PkA
r−1
k H−sεk,Pkφk − scεk,PkArkH−s−1

εk,Pk
ψk − gk)
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= (1 + o(1))rcεk,Pk log
1

εk

∫
Ωk

Ar−1
εk,Pk

φk − (1 + o(1))sψk(Pk)cεk,Pk

∫
Ωk

Ark + o(1).

Therefore

ψk(Pk) =
r

s+ 1

∫
Ωk
Ar−1
k φk∫

Ωk
Ark

+ o(1).

Thus we have

Lεk,Pkφk = o(1) in L2(Ωk), φk ∈ K⊥εk,Pk .(4.16)

By Proposition 4.1, ‖φk‖H2(Ωk) = o(1). Hence ψk(Pk) = o(1) and by elliptic estimates
‖ψk‖W 2,t(Ω) = o(1).

This contradicts assumption (4.14) and the proof of Proposition 4.2 is complete.
Proof of Proposition 4.3. We just need to show that the conjugate operator of Lε,P

(denoted by L∗ε,P ) is injective from K⊥ε,P to C⊥ε,P . Suppose not. Then there exist φ ∈
K⊥ε,P , ψ ∈W 2,t(Ω) such that

∆yφ− φ+ pAp−1
ε,P H

−q
ε,Pφ+ rcε,PA

r−1
ε,P H

−s
ε,Pψ ∈ C⊥ε,P ,

∆xψ − ψ − scε,PArε,PH−s−1
ε,P ψ − qApε,PH−q−1

ε,P φ = 0,

‖φ‖2H2(Ωε,P ) + ‖ψ‖2W 2,t(Ω) = 1.

Similar to the proof of Proposition 4.2, we have

ψ(P ) = −(1 + o(1))cε,P
q

s+ 1

∫
Ωε,P

Apε,Pφ∫
Ωε,P

Arε,P

and substituting into the equation for φ we obtain

Lε,Pφ+ o(1) ∈ C⊥ε,P , φ ∈ K⊥ε,P .

By Proposition 4.1, ‖φ‖H2(Ωε,P ) = o(1), and hence ‖ψ‖W 2,t(Ω) = o(1). This is a contradic-
tion!

Now we are in a position to solve the equation

πε,P ◦ Sε
(
Aε,P + φ
Hε,P + ψ

)
= 0.(4.17)

Since Lε,P |K⊥
ε,P

is invertible (call the inverse L−1
ε,P ) we can rewrite

Σ = −(L−1
ε,P ◦ πε,P )

(
Sε

(
Aε,P
Hε,P

))
− (L−1

ε,P ◦ πε,P )Nε,P (Σ) ≡Mε,P (Σ),(4.18)

where

Nε,P (Σ) = Sε

(
Aε,P + φ
Hε,P + ψ

)
− Sε

(
Aε,P
Hε,P

)
− S′ε

(
Aε,P
Hε,P

)[
φ
ψ

]
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and the operator Mε,P is defined by the last equation for Σ ∈ H2
N (Ωε,P )×W 2,t(Ω). We are

going to show that the operator Mε,P is a contraction on

Bε,δ ≡ {Σ ∈ H2(Ωε,P )×W 2,t(Ω)|‖Σ‖H2(Ωε,P )×W 2,t(Ω) < δ}
if δ is small enough. We have by Lemma 3.1 and Propositions 4.2 and 4.3,

‖Mε,P (Σ)‖H2(Ωε,P )×W 2,t(Ω)

≤ λ−1

(
‖πε,P ◦Nε,P (Σ)‖L2(Ωε,P )×Lt(Ω) +

∥∥∥∥πε,P ◦ Sε( Aε,P
Hε,P

)∥∥∥∥
L2(Ωε,P )×Lt(Ω)

)

≤ λ−1C

(
c(δ)δ + ε2t

−1−1 1

log 1
ε

)
(by Lemma 3.1),

where λ > 0 is independent of δ > 0 and c(δ)→ 0 as δ → 0. Similarly we show

‖Mε,P (Σ)−Mε,P (Σ′)‖H2(Ωε,P )×W 2,t(Ω) ≤ λ−1C(ε1/2 + c(δ)δ)‖Σ− Σ′‖H2(Ωε,P )×W 2,t(Ω),

where c(δ)→ 0 as δ → 0. If we choose δ small enough, then Mε,P is a contraction on Bε,δ.
The existence of a fixed point Σε,P now follows from the contraction mapping principle and
Σε,P is a solution of (4.18).

We have thus proved Lemma 4.4.
Lemma 4.4. There exists ε > 0 such that for every pair of ε, P with 0 < ε < ε there

exists a unique (Φε,P ,Ψε,P ) ∈ K⊥ε,P satisfying

Sε

((
Aε,P + Φε,P
Hε,P + Ψε,P

))
∈ Cε,P

and

‖(Φε,P ,Ψε,P )‖H2(Ωε,P )×W 2,t(Ω) ≤ Cε2t
−1−1.(4.19)

We can improve the estimates in Lemma 4.4.
Lemma 4.5. Let (Φε,P , ψε,P ) be given by Lemma 4.4. Then we have

‖Φε,P ‖L∞(Ωε,P ) = O

(
ε

log 1
ε

)
, ‖Ψε,P ‖L∞(Ω) = O

(
ε

log 1
ε

)
,(4.20)

and

|Ψε,P (x)−Ψε,P (P )| ≤ C ε

(log 1
ε )2

log

( |x− P |
ε

+ 1

)
for x 6= P.(4.21)

Proof. The proof is divided into several steps.
First we note that by the equation for Φε,P and Lemmas 3.1 and 4.4,

∆yΦε,P − Φε,P + pAp−1
ε,P H

−q
ε,P − qApε,PH−q−1

ε,P Ψε,P + f1 ∈ Cε,P ,
where ‖f1‖L2(Ωε,P ) = O( ε

log 1
ε

). Hence we obtain

‖Φε,P ‖H2(Ωε,P ) ≤ C‖Apε,PH−q−1
ε,P Ψε,P ‖L2(Ωε,P ) +O

(
ε

log 1
ε

)
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≤ C‖Ψε,P (x)‖L∞(Ω) +O

(
ε

log 1
ε

)
.(4.22)

Next Ψε,P satisfies

∆xΨε,P −Ψε,P = f2 := cε,P
Ârε,P

(Ĥε,P − ψε,P (P ))s
− cε,P (Âε,P + Φε,P )r

(Ĥε,P − ψε,P (x) + Ψε,P )s
.

We have

|f2(x)| ≤ Ccε,P (w(y)r−1|Φε,P (y)|+ wr(y)|Ψε,P (x)|) +O

(
ε

log 1
ε

cε,Pw
r(y)

)
(4.23)

for a.e. x ∈ Ω.
Therefore, we have by Lemma 1.2 and (4.22)

Ψε,P (x) = O

(
ε

log 1
ε

)
+O

(
1

log 1
ε

‖Ψε,P ‖L∞(Ω)

)
and so

‖Ψε,P ‖L∞(Ω) = O

(
ε

log 1
ε

)
or, equivalently,

‖Ψε,P ‖L∞(Ωε,P ) = O

(
ε

log 1
ε

)
,

where y = (x− P )/ε.
Moreover by Lemma 1.2 and (4.23),

Ψε,P (x)−Ψε,P (P ) = O

(
ε

(log 1
ε )2
| log |y|+ 1|

)
.

Lemma 4.5 is proved.

5. The reduced problem. In this section we solve the reduced problem and prove
our main theorem.

By Lemma 4.4 there exists a unique solution (Φε,P , ψε,P ) ∈ K⊥ε,P such that

Sε

(
Aε,P + Φε,P
Hε,P + Ψε,P

)
=

(
vε,P
0

)
∈ Cε,P .

Our idea is to find P such that

Sε

(
Aε,P + Φε,P
Hε,P + Ψε,P

)
⊥ Cε,P .

Let

Wε,j(P ) :=
log 1

ε

ε2

∫
Ω

(
S1(Aε,P + Φε,P , Hε,P + Ψε,P )

∂Aε,P
∂Pj

)
,



1260 JUNCHENG WEI AND MATTHIAS WINTER

Wε(P ) := (Wε,1(P ), . . . ,Wε,N (P )).

Then Wε(P ) is a continuous map in P and our problem is reduced to finding a zero of
the vector field Wε(P ).

Let us now calculate Wε(P ).
By Lemma 4.5,

Ψε,P (x)−Ψε,P (P ) = O

(
ε

(log 1
ε )2

log

( |x− P |
ε

+ 1

))
.(5.1)

By (3.3) and (3.4), we have∫
Ω

(
S1(Aε,P + Φε,P , Hε,P + ψε,P )

∂Aε,P
∂Pj

)

= ε2
∫

Ωε,P

(∆yΦε,P − Φε,P + pAp−1
ε,P H

−q
ε,PΦε,P − qAp−1

ε,P H
−q−1
ε,P Ψε,P )

∂Aε,P
∂Pj

+O

(
ε3
(

1

log 1
ε

)2
)

+ε2
∫

Ωε,P

−q(Âε,P )p(Ĥε,P )−q−1[ψε,P (P + εy)− ψε,P (P )]
∂Aε,P
∂Pj

(y) dy

+O(e−d(P,∂Ω)/ε) = I1 + I2,

where I1, I2 are defined by the last equality.

For I1, we note that ‖Ψε,P ‖L∞(Ωε,P = O( ε
log 1

ε

),
∂Aε,P
∂Pj

= −1+o(1)
ε

∂w
∂yj

, and hence

I1 = ε

∫
Ωε,P

(qAp−1
ε,P H

−q−1
ε,P Ψε,P )

∂w

∂yj
+O

(
ε2
(

1

log 1
ε

)2
)

= ε

∫
Ωε,P

(qwp−1Ψε,P )
∂w

∂yj
+O

(
ε2
(

1

log 1
ε

)2
)

= ε

∫
Ωε,P

(qwp−1(y)H−q−1
ε,P (Ψε,P (P + εy)−Ψε,P (P )))

∂w

∂yj
+O

(
ε2
(

1

log 1
ε

)2
)

= O

(
ε2

1

(log 1
ε )2

)
by (5.1).

For I2 we have

I2 = Cε

∫
Ωε,P

[ψε,P (P + εy)− ψε,P (P )]
∂w

∂yj
dy

(
1 +O

(
1

log 1
ε

))

= C
ε

log 1
ε

∫
R2

−[H(P, P + εy)−H(P, P )]w′(|y|) yi|y| dy
(

1 +O

(
1

log 1
ε

))
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= −C ε2

log 1
ε

∂

∂Pj
H(P, P )

∫
R2

w′(|y|)|y| dy +O

(
εN

(log 1
ε )2

)
as ε → 0 uniformly in P , where w′(|y|) = d

drw(r) for r = |y| and C 6= 0 denotes a generic
constant.

Combining I1 and I2, we have

Wε(P ) = c0∇PH(P, P ) +O

(
1

log 1
ε

)
,

where c0 6= 0 is a generic constant.
Suppose at P0 we have ∇PH(P0, P0) = 0,det(∇j∇kH(P0, P0)) 6= 0; then the standard

Brouwer fixed point theorem shows that for ε << 1 there exists a Pε such that Wε(Pε) = 0
and Pε → P0.

Thus we have proved the following proposition.
Proposition 5.1. For ε sufficiently small there exist points Pε with Pε → P0 such that

Wε(Pε) = 0.
Finally, we prove Theorem 1.1.
Proof of Theorem 1.1. By Proposition 5.1, there exists Pε → P0 such that Wε(Pε) =

0. In other words, S1(Aε,Pε + Φε,Pε , Hε,Pε + Ψε,Pε) = 0. Let ξ
qr

(p−1)(s+1)−qr
ε = cε,Pε , Aε =

ξ
q/(p−1)
ε (Aε,Pε + Φε,Pε), Hε = ξε(Hε,P + Ψε,Pε). It is easy to see that Hε = 1 + O( 1

log 1
ε

) > 0

and hence Aε ≥ 0. By the maximum principle, Aε > 0. Moreover Aε, Hε satisfy Theorem
1.1.
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Abstract. In this work we prove the existence of the global classical solution in a two-phase
multidimensional Stefan problem. We apply a method which consists of the following. First, we
construct a special system of difference–differential approximating elliptic problems, then we prove
some uniform estimates and pass to the limit. We prove that the free boundary is given by the graph
of a function from the H2+α,1+α

2 class.

Key words. two-phase Stefan problem, global classic solution, free boundary problem
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Introduction. In this work we study the existence of the global classical solution
for a two-phase multidimensional Stefan problem; see, e.g., [21, chap. 5, §9]. Let D =
{x ∈ R3 : 0 < R1 < |x| < R2}, DT = D×(0, T ), Bi = {x ∈ R3 : |x| < Ri}; i = 1, 2,
T > 0 is a fixed number. The problem is to find a function u(x, t) and domains ΩT ,
GT , which satisfy

(0.1) ∆u− ∂u

∂t
= 0 in ΩT ∪GT ,

ΩT = {(x, t) ∈ DT : 0 < u(x, t) < 1}, GT = {(x, t) ∈ DT : u(x, t) > 1}.

On the known boundary

(0.2) u(x, t) = ϕi(x, t) on ∂Bi × (0, T ), i = 1, 2.

On the unknown (free) boundary γT = ∂ΩT ∩DT = ∂GT ∩DT

(0.3) u+ = u− = 1,
3∑
k=1

(
∂u−

∂xi
− ∂u+

∂xi

)
cos(n, xi) + λ cos(n, t) = 0,

where λ is a positive constant, n is the normal to the surface γT directed to the side
of increase of the function u(x, t), and u+(x, t), u−(x, t) are the boundary values on
the surface γT taken from the domains GT , ΩT , respectively.

The initial conditions are

(0.4) u(x, 0) = ψ(x) in D, ψ(x) = ϕi(x, 0) on ∂Bi,

0 ≤ ψ(x) < 1 on ∂B1, ψ(x) > 1 on ∂B2,

Ω0 = {x ∈ D : ψ(x) < 1}, G0 = {x ∈ D : ψ(x) > 1}, γ0 = ∂Ω0 ∩D = ∂G0 ∩D.
∗Received by the editors January 15, 1998; accepted for publication (in revised form) February

4, 1999; published electronically October 4, 1999.
http://www.siam.org/journals/sima/30-6/33253.html
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Problem (0.1)–(0.4) represents a mathematical model that describes the spreading
of heat in a medium with a varying phase state. The function u(x, t) is interpreted
as the temperature of the medium, γT is the interface between the liquid and solid
phases, and u(x, t) = 1 is the temperature of melting.

Multidimensional Stefan problems have been studied by many authors. The con-
cept of weak solutions was introduced in [1], [2], where the existence and uniqueness of
such solutions have been proved. Certain free boundary problems have been reduced
to variational inequalities [3], [4]. Such reduction allowed us to prove [5] Lipschitz
continuity of the free boundary in a one-phase Stefan problem. However, this was
not enough to prove the existence of a classical solution. The existence of a classical
solution in a one-phase Stefan problem was proved in [6]. The works by L. Caffarelli
[7]–[9] played an important role here. A variational inequality equivalent to a two-
phase Stefan problem was obtained by M. Fremon [10], but this allowed us to prove
just continuity of the temperature.

Lipschitz continuity of the free boundary in a two-phase problem was proved in
[11]. Moreover, in [12] it was shown that a viscosity solution with Lipschitz free
boundary under certain nondegeneracy conditions is, actually, classical, and the free
boundary is a C1 graph in space and time. The existence of classical solutions for
a small time interval was proved in [13]–[15]. The main result of this paper is the
following theorem.

Theorem 0.1. Let the following conditions be satisfied:

ψ(x) ∈ C2+α(D), ∆ψ ≤ 0 in D,
∂ψ

∂ρ
> 0 in D,

ϕ1(x, t) = 0 on ∂B1, ϕ2(x, t) = q = const > 1 on ∂B2,

and assume that the corresponding compatibility conditions at t = 0, x ∈ ∂ΩT ∪ ∂GT
hold. Then ∀ T > 0 there exists a unique solution of the problem (0.1)–(0.4) and

u(x, t) ∈ C(DT ) ∩
(
H2+α,1+α

2 (ΩT )×H2+α,1+α
2 (GT )

)
;

the free boundary is given by the graph ρ = ω(θ1, θ2, t) of a function ω(θ1, θ2, t) ∈
H2+α,1+α

2 (ΠT ), where (ρ, θ1, θ2) are spherical coordinates, Π = {(θ1, θ2) : 0 < θ1 <
2π, 0 < θ2 < π}, ΠT = Π× (0, T ).

This result has been announced in [16]. The theorem provides sufficient condi-
tions for the existence of a global classical solution for a Stefan problem. Note that
similar assumptions on the data have been used in [11]. Although our conditions are
not necessary, examples [17], [18], [11], [12] show that the smoothness of initial and
boundary conditions alone does not imply the smoothness of the free boundary.

The paper is organized as follows. In sections 1 and 2 we construct a difference–
differential approximation of our problem and study its properties. Uniform estimates
for the approximate solutions are obtained in section 3. In section 4 we pass to the
limit and prove the main theorem.

In [19] we have also considered a contact Stefan problem with Neumann boundary
conditions on the fixed part of the boundary.

For the sake of simplicity we consider three-dimensional space; the same method
can be applied in the case of arbitrary space dimension.

1. Construction of the approximating problems. Let us construct a system
of approximating problems. We divide the cylinder DT by the planes t = kh, 1 ≤
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k ≤ N ; N is a positive number. For any number ε > 0 we introduce a function
χε ∈ C∞(R1) such that

χε(x) = 1 ∀x ≤ 1, χε(x) = 0 ∀x ≥ 1 + ε, χ′ε(x) ≤ 0.

Define the functions {uk(x, h, ε)}, {Fk(x, h, ε)} as solutions of the following prob-
lem.

(1.1) ∆uk − uk − uk−1

h
= −λχε(uk)− χε(u0)

h
+
Fk−1

h
in D, k = 1, 2, . . . , N,

(1.2) uk = ϕi(x, kh) on ∂Bi, u0 = ψ(x) in D,

(1.3) ∆Fk − Fk
h

= −λχε(uk)− χε(u0)

h
in D,

(1.4) Fk = 0 on ∂B1 ∪ ∂B2, F0 = 0 in D.

If h > 0, ε > 0 are fixed, the solvability of problem (1.1)–(1.4) is evident. It can be
considered step by step starting with k = 1. First, we find the function Fk−1(x, h, ε)
(F0 = 0), then we put it to the right-hand side of (1.1) and consider the boundary
problem for the function uk(x, h, ε). We plug the function thus obtained into the
right-hand side of (1.3) and find the function Fk(x, h, ε), and so on. The existence of
a solution for each of the above-mentioned problems is known [20, chap. 3, §1]. Thus,
we obtain the following statement.

Theorem 1.1. Let the following conditions hold:

ψ(x) ∈ C2+α(D), ϕi(x, kh) ∈ C2+α(D), α ∈ (0, 1),

and the functions ψ(x), ϕi(x, kh) on x ∈ ∂Bi, and k = 0 satisfy the corresponding
compatibility conditions. Then problem (1.5)–(1.8) is solvable and

uk(x, h, ε) ∈ C2+α(D), Fk(x, h, ε) ∈ C2+α(D).

In what follows we shall show that the linear interpolations of the functions
{uk(x, h, ε)} with respect to t converge to a solution of the Stefan problem (0.1)–
(0.4) as ε→ 0, h→ 0.

Subtract (1.3) from (1.1) and set

(1.5) wk(x, h, ε) = uk(x, h, ε)− Fk(x, h, ε)

Then the functions {wk(x, h, ε)} will satisfy the following problem.

(1.6) ∆wk − wk − wk−1

h
= 0 in D,

(1.7) wk(x, h, ε) = ϕi(x, kh) on ∂Bi, w0 = ψ(x) in D.

The equality (1.5) shows that the functions uk(x, h, ε) are sums of two summands; the
first one wk(x, h, ε) is more smooth than the solution of the Stefan problem, while the
second one Fk(x, h, ε) contains information about the behavior of the solution near
the free boundary. However, this second summand is the solution of a sufficiently
simple problem. The exact meaning of these words will be clear from what follows.
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2. Properties of {wk(x, h, ε)}.
Theorem 2.1. Let the assumptions of Theorem 1.1 hold and suppose that

(2.1) |ϕi(x, (k − 1)h)− ϕi(x, kh)| ≤ ch ∀x ∈ ∂Bi,

where the constant c does not depend on h and k. Then there exists a constant M,
such that

(2.2) |wk−1(x, h, ε)− wk(x, h, ε)| ≤Mh ∀x ∈ D,

where M does not depend on k, h, and ε.
If instead of (2.1) the following condition holds:

(2.1∗) ∆ψ < 0 in D, 0 < c1h ≤ ϕ(x, (k − 1)h)− ϕ(x, kh) ≤ c2h,

then

(2.2∗) 0 < M1h ≤ wk−1(x, h, ε)− wk(x, h, ε) ≤M2h,

where the constants ci, Mi do not depend on k, h, and ε.
Proof. On the boundary of the domain D the estimation (2.1) follows from the

hypothesis of the theorem. Let us assume that

max
1≤k≤N,x∈D

[wk−1(x, h, ε)− wk(x, h, ε)] = wn−1(x0, h, ε)− wn(x0, h, ε),

where x0 ∈ D. At a local maximum point we have ∆(wn−1 −wn) ≤ 0. Therefore, the
equation

(2.2) ∆(wn−1 − wn)− wn−1 − wn
h

= −wn−2 − wn−1

h

implies

wn−1(x0, h, ε)− wn(x0, h, ε) ≤ wn−2(x0, h, ε)− wn−1(x0, h, ε).

From this estimate we conclude that

wn−1(x0, h, ε)− wn(x0, h, ε) ≤ w0(x0, h, ε)− w1(x0, h, ε),

but the function w0(x, h, ε)− w1(x, h, ε) satisfies the equation

(2.3) ∆(w0 − w1)− w0 − w1

h
= ∆ψ.

Therefore,

max
1≤k≤N,x∈D

[wk−1(x, h, ε)− wk(x, h, ε)] ≤ max
x∈D
|∆ψ|h.

Similarly, we estimate the minimum of the functions {wk−1(x, h, ε)− wk(x, h, ε)}.
The second part of the theorem is obvious.

Corollary 2.1. Let the assumptions of Theorem 2.1 hold and

‖ϕi(x, kh)‖C2+α(D) ≤ c3.
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Then ∃M3 > 0, such that

(2.4) ‖wk(x, h, ε)‖C1+α(D) ≤M3,

where the constant M3 does not depend on h, ε, and k.
Proof. From (2.1) and (1.6) we get

0 < M1 ≤ −∆wk ≤M2.

After that the estimation (2.4) follows from known properties of solutions of elliptic
boundary problems.

Theorem 2.2. Let the assumptions of Theorem 1.1 hold and

‖ϕi(x, kh)‖C2+α(D) +
∥∥∥ϕi[x, (k − 1)h]− ϕi(x, kh)

h

∥∥∥
Cα(D)

≤ c4.

Then ∃M4 > 0, such that

(2.5) ‖wk‖C2+α(D) +
∥∥∥wk−1(x, h, ε)− wk(x, h, ε)

h

∥∥∥
Cα(D)

≤M4,

where the constant M4 does not depend on h, ε, and k.
Proof. We use the method suggested in [20]. Let ζ1(x), ζ2(x), . . . , ζl(x) be non-

negative indefinitely differentiable functions with compact supports such that their
sum is identically equal to one on D, i.e.,

l∑
k=1

ζk(x) = 1, x ∈ D.

The functions {wk(x, h, ε)− wk−1(x, h, ε)} have the form

l∑
s=1

[wsk(x, h, ε)− wsk−1(x, h, ε)] = wk(x, h, ε)− wk−1(x, h, ε), k = 1, 2, . . . , N,

where

wsk(x, h, ε)− wsk−1(x, h, ε) = ζs(x)[wk(x, h, ε)− wk−1(x, h, ε)].

If the support of ζs(x) lies in the domainD, we can consider {wsk(x, h, ε)−wsk−1(x, h, ε)}
as compactly supported functions from C2+α(R3), satisfying the equations

(2.6) ∆(wsk − wsk−1)− wsk − wsk−1

h
= −w

s
k−1 − wsk−2

h
− (fsk − fsk−1),

where fsk = −2∇wk∇ζs − wk∆ζs. Let x0 belong to the support of the function ζs(x)
and KR(x0) be the ball with its center at the point x0 and the radius R so large that
its boundary lies outside of the support of ζs(x).

Let

(2.7) Γn−k+1(|x− y|) =
ih

2π

∮
∂L+(ρ)

Sh[
√
z(R− |x− y|)]

4π|x− y|Sh(
√
zR)

dz

(1− zh)n−k+1
,
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where L+(ρ) = {z = ξ + iη : Rez > − π2

R2 , |z| < ρ}, ∂L+(ρ) is the boundary of this

set, ρ ≥ 2
h , Sh(x) = ex−e−x

2 . The numerator and the denominator of the integrand
have the same branch point. Therefore, in the domain L+(ρ) it is possible to choose a
univalent branch of the integrand by setting, for example,

√
1 = 1. We shall multiply

both sides of (2.6) by Γn−k+1(|x0− y|), sum up over k, 1 ≤ k ≤ n, and then integrate
over KR(x0) \Kδ(x0). After that we shall make the passage to the limit δ → 0. Thus,
we shall construct an integral representation of a solution of (2.6)

wsn(x0, h, ε) −wsn−1(x0, h, ε) =

∫
KR(x0)

ζs(y)∆ψΓn(|x0 − y|) dy

+
n∑
k=1

∫
KR(x0)

(fsk − fsk−1)Γn−k+1(|x0 − y|) dy.

Let us transform the last term
n∑
k=1

∫
KR(x0)

(fsk − fsk−1)Γn−k+1(|x0 − y|) dy = −
∫

KR(x0)

fs0 Γn(|x0 − y|) dy

+

n∑
k=1

∫
KR(x0)

fsk [Γn−k+1(|x0 − y|)− Γn−k(|x0 − y|)] dy, Γ0(|x0 − y|) ≡ 0.

Thus, we obtain the following integral representation:

wsn(x0, h, ε) −wsn−1(x0, h, ε) =

∫
KR(x0)

(ζs∆ψ − fs0 )Γn(|x0 − y|) dy

+
n∑
k=1

∫
KR(x0)

fsk [Γn−k+1(|x0 − y| − Γn−k(|x0 − y|)] dy.

Let y0 be a point in the support of the function ζs(x) such that x0 6= y0 and
vsn(x, h, ε) = wsn(x, h, ε)− wsn−1(x, h, ε). Then for the difference

vsn(x0, h, ε)− vsn(y0, h, ε)

after several simplifications we get the following expression:
(2.8)

vsn(x0, h, ε)− vsn(y0, h, ε) =

∫
KR(x0)

[φs(y, h, ε)− φs(y − x0 + y0, h, ε)]Γn(|x0 − y|) dy

+
n∑
k=1

∫
KR(x0)

[fsk(y, h, ε)− fsk(y − x0 + y0, h, ε)][Γn−k+1(|x0 − y|)− Γn−k(|x0 − y|)] dy,

where φs = ζs∆ψ − fs0 . Note the following properties of the fundamental solutions
{Γn(|x0 − y|)}. Let y 6= x0, then

∆Γ1 −Γ1

h
= 0, Γ1(|x0 − y|) =

Sh
[√

1
h (R− |x0 − y|)

]
4π|x0 − y|Sh

(√
1
hR
) ,

∆Γn−k+1 −Γn−k+1 − Γn−k
h

= 0, Γn−k+1(R) = 0, k = 1, 2, . . . , n− 1.
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These formulas can be easily proved. They imply that

Γn−k+1(|x0 − y|) > 0,∫
KR(x0)

Γn−k+1(|x0 − y|)− Γn−k(|x0 − y|)
h

dy =

∫
∂KR(x0)

∂Γn−k+1

∂ν
ds < 0,

where ν is the outward pointing field to ∂KR(x0). Therefore,

(2.9)

∫
KR(x0)

Γn(|x0 − y|)
h

dy ≤
∫

KR(x0)

Γ1(|x0 − y|)dy
h

= 1−
√

1
hR

Sh
√

1
hR
≤ 1.

Let

Γ1
n−k+1(|x0 − y|) =

ih2

2π

∮
∂L+(ρ)

zSh[
√
z(R− |x0 − y|)]

4π|x0 − y|Sh(
√
zR)

dz

(1− zh)n−k+1
,

then it follows from (2.7) that

(2.10) Γn−k+1(|x0 − y|)− Γn−k(|x0 − y|) = Γ1
n−k+1(|x0 − y|).

After that it is obvious that

(2.11)
n∑
k=1

∫
KR(x0)

|Γ1
n−k+1(|x0 − y|)|

h
dy ≤ c,

where the constant c does not depend on h. From (2.8), taking into account the
estimates (2.9) and (2.11), we obtain

|vsn(x0, h, ε) −vsn(y0, h, ε)| ≤ c1|x0 − y0|α
∫

KR(x0)

Γn(|x0 − y|) dy

+

∫
KR(x0)

max
1≤k≤n

|fsk(y, h, ε)− fsk(y − x0 + y0, h, ε)|
n∑
k=1

∣∣∣Γ1
n−k+1(|x0 − y|)

∣∣∣ dy
≤ c1h|x0 − y0|α + c2h|x0 − y0|α,

where the constants c1, c2 do not depend on h, ε, n. Let the support of the function
ζs(x) lie only partially in the domain D. By a parallel transport we may force the
part of ∂D which belongs to the support to pass through the origin. The inversion
x→ y = x \ |x|2 is a diffeomorphism of R3 \ {0} onto itself and it maps a ball, such
that its boundary passes through the origin onto a half-space. Let us denote by vsk
the Kelvin transformation

vsk(x, h, ε) = |x|−1vsk(x/|x|2, h, ε).
We take the fundamental solutions {Γn−k+1(|x0 − y|) − Γn−k(|x∗0 − y|)}, where

x∗0 is symmetric to x0 with respect to the flat part of the boundary, and for vsk we
repeat with small modifications the previous reasoning. After that, for the functions
{wk(x, h, ε)} we get

∆wk(x, h, ε) =
wk(x, h, ε)− wk−1(x, h, ε)

h
∈ Cα(D).

Therefore, taking into account known properties of solutions of elliptic problems, we
obtain the estimation (2.5).
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3. Uniform estimations of {uk(x, h, ε)}.
Theorem 3.1. Let the assumptions of Theorem 1.1 and the estimation (2.1)

hold. Then

(3.1) |uk(x, h, ε)− uk−1(x, h, ε)| ≤M1h.

If instead of (2.1) the condition (2.1∗) holds, then

(3.2∗) 0 ≤ uk−1(x, h, ε)− uk(x, h, ε) ≤M2h,

where the constants Mi do not depend on k, h, and ε.
Proof. In view of (2.1), it suffices to prove the estimation (3.1) in D. Using (1.5),

we present (1.1) as follows:

(3.2) ∆uk − uk
h

= −wk−1

h
− λχε(uk)− χε(u0)

h
.

Let us write down the equation for the difference uk−1(x, h, ε)− uk(x, h, ε):

(3.3) ∆(uk−1 − uk)− uk−1 − uk
h

= −wk−2 − wk−1

h
+ λ

χε(uk)− χε(uk−1)

h
.

Let us assume that the function uk−1(x, h, ε) − uk(x, h, ε) has a negative minimum
and attains it at an interior point. Then at this point ∆(uk−1 − uk) ≥ 0. Therefore,
(3.3) implies

uk−1 − uk ≥ wk−2 − wk−1 − λ[χε(uk)− χε(uk−1)] ≥ wk−2 − wk−1.

If the function uk−1(x, h, ε) − uk(x, h, ε) has a local maximum at an interior point,
then at this point

uk−1 − uk ≤ wk−2 − wk−1 − λ[χε(uk)− χε(uk−1)] ≤ wk−2 − wk−1.

The proof of the second part of the theorem is quite similar.
Let us estimate |∇uk| in D. First we shall prove a preliminary estimation.
Theorem 3.2. Let the assumptions of Theorem 1.1 and (2.1∗) hold. Then

(3.4) max
x∈∂D,1≤k≤N

∣∣∣∂uk
∂xi

∣∣∣ ≤ c1, max
x∈D,,1≤k≤N

∣∣∣∂uk
∂xi

∣∣∣ ≤ c2
ε
,

where the constants c1, c2 do not depend on h, ε.
Proof. By virtue of (1.5) and (2.4), the first estimate (3.4) will follow from the

boundedness of ∂Fk∂xi
on ∂D. The functions Fk(x, h, ε) are the solutions of the problem

(1.3), (1.4). By (3.2∗) Fk is nonnegative in D. Then (1.5) implies that

{x ∈ D : wk > 1 + ε} ⊂ {x ∈ D : uk > 1 + ε}.
By (2.4) there exists a positive constant d not depending on h, ε, k, such that

dist({x ∈ D : uk > 1 + ε}, ∂B2) ≥ dist({x ∈ D : wk > 1 + ε}, ∂B2) ≥ d.
We denote

w(x) = λ

√
h

r
Sh

R2 − r√
h

, r = |x|.
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The function w(x) in D satisfies the equation

∆w − w

h
= 0.

Hence

∆(w−Fk)− w − Fk
h

= 0 in Dd = {x ∈ D : R2 − d < |x| < R2}, (w−Fk)|∂Dd ≥ 0,

w − Fk = 0 on ∂B2. This easily implies∣∣∣∂Fk
∂xi

∣∣∣
∂B2

≤ λ

R2
.

A similar estimate can be proved on ∂B1 as well.
Furthermore, we differentiate (3.3) with respect to one of the variables xi and

transform it to the following form:

(3.5) ∆u′k − [1− λχ′ε(uk)]
u′k
h

= −w
′
k−1

h
+
λ

h
χ′ε(u0)u′0.

From this relation at the points of a local extremum we obtain the second estimation
of (3.4).

Set

ω0(ε) = {x ∈ D : 1 < u0(x) = ψ(x) < 1 + ε}, Dε = D \ ω0(ε).

Theorem 3.3. Let the assumptions of Theorem 3.2 hold and dist(∂ω0, ∂D) ≥
hσ, σ ∈ (0, 1/2), ε4 ≥ √h. Then there exists a constant c, which does not depend on
h, ε, such that the following estimate holds:

(3.6) max
x∈Dε,1≤k≤N

∣∣∣∂uk
∂xi

∣∣∣ ≤ c.
Proof. First of all, let us prove that ∂uk

∂xi
are bounded on the boundary of the

domain ω0(ε). Let x0 ∈ ∂ω0(ε), KR(x0) ⊂ D, a0(x0) = 1− λχ′ε[uk(x0, h, ε)], a(x) =
1− λχ′ε[uk(x, h, ε)],

E(|x− y|) =

Sh

(√
a0(x0)
h (R− |x− y|)

)
4π|x− y|Sh

(√
a0(x0)
h R

) .

Let us construct an integral representation of a solution of (3.5).

∂uk
∂xi

=

∫
KR(x0)

∂wk−1

∂yi

E(|x0 − y|)
h

dy −
∫

∂KR(x0)

∂uk
∂yi

∂E

∂n
ds

(3.7) +

∫
KR(x0)

[a(x0)− a(y)]
∂uk
∂yi

E(|x0 − y|)
h

dy − λ
∫

KR(x0)

χ′ε(u0)
∂u0

∂yi

E(|x0 − y|)
h

dy.
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As

|a(x0)− a(y)| ≤ c1
ε3
|x0 − y|, |χ′ε[u0(y)]| = |χ′ε[u0(y)]− χ′ε[u0(x0)]|

≤ c2
ε2
|x0 − y|max

x∈D
|∇u0|, ∂E

∂n

∣∣∣
∂KR(x0)

= −
√
a0

h

1

4πRSh
√

a0

h R
,

(3.7) implies∣∣∣∂uk
∂xi

∣∣∣ ≤ max
y∈D,1≤k≤N

∣∣∣∂wk−1

∂yi

∣∣∣ ∫
KR(x0)

E(|x0 − y|)
h

dy +

√
a0

h

R

Sh
√

a0

h R
max

y∈D,1≤k≤N

∣∣∣∂uk
∂yi

∣∣∣
(3.8) +

(
c3
ε3

max
y∈D,1≤k≤N

|∇uk|+ max
y∈D
|∇u0|2

) ∫
KR(x0)

|x0 − y|E(|x0 − y|)
h

dy.

Furthermore,

(3.9)

∫
KR(x0)

E(|x0 − y|)
h

dy ≤ 1,

∫
KR(x0)

|x0 − y|E(|x0 − y|)
h

dy ≤ c4
√
h.

Let us assume that R ≥ hσ, σ ∈ (0, 1/2). Hence, by the known inequality

(3.10) xm exp(−x) ≤ mm exp(−m) ∀x ≥ 0, m > 0,

we get

(3.11)

√
a0

h
R

1

Sh
√

a0

h R
≤ chσ1 , σ1 > 0.

From (3.8), taking into account (3.5), (3.9)–(3.11), we obtain∣∣∣∂uk
∂xi

∣∣∣ ≤ max
x∈D,1≤k≤N

|∇wk−1|+ c

ε
hσ1 +

c

ε4

√
h+

c

ε2

√
hmax
x∈D
|∇u0|2.

From here, assuming that ε4 ≥ √h, we obtain estimation (3.6) on the boundary of
the domain ω0(ε). On the boundary ∂D estimation (3.6) is proved in Theorem 3.2.
To complete the proof it suffices to notice that in the domain Dε = D \ ω0(ε) (3.5)
has the following form:

∆u′k − [1− λχ′ε(uk)]
u′k
h

= −w
′
k−1

h
.

Therefore, if u′k(x, h, ε) attains its own extremum in Dε, the estimation (3.6) is obvi-
ous.

Corollary 3.1. Let the assumptions of Theorem 3.3 hold and

x0 ∈ {x ∈ D : ψ(x) ≥ 1 + ε}, y0 ∈ {x ∈ D : ψ(x) ≤ 1}.
Then ∣∣∣∣∂uk(x0, h, ε)

∂xi
− ∂uk(y0, h, ε)

∂xi

∣∣∣∣ ≤ c1|x0 − y0|α + c2h
σ1 ,
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(3.11∗) |uk(x0, h, ε)− uk(y0, h, ε)| ≤ |x0 − y0|+ c2h
σ1 ,

where ci > 0, σ1 > 0 do not depend on h, ε, k, x0, y0.
The proof of this statement can be carried out by the same techniques as that of

Theorem 3.3.
Set ωk(h, ε) = {x ∈ D : 1 < uk < 1 + ε}.
Theorem 3.4. Let the assumptions of Theorem 3.1 hold. If x ∈ ω+

k = {x ∈ D :
uk(x, h, ε) ≥ 1 + ε} and dist(x, ∂ω+

k ) ≥ hσ, σ ∈ (0, 1/2), then

(3.12) max
x
|Fk(x, h, ε)| ≤ c1hσ1 , σ1 > 0.

If x ∈ Dk(h, ε) = D \ [ωk(h, ε) ∪ ω0(h, ε)] and dist(x, ∂Dk) ≥ hσ, then

(3.13) max
x

∣∣∣ ∂βFk

∂xβ1

1 ∂xβ2

2 ∂xβ3

3

∣∣∣ ≤ λc2(βhσ1)β , σ1 > 0, β = β1 + β2 + β3.

If x ∈ D \ [ωk(h, ε)∪ωk−1(h, ε)] and dist
(
x, ∂{D \ [ωk(h, ε)∪ωk−1(h, ε)]}

)
≥ hσ,

then

(3.14) max
x

∣∣∣Fk − Fk−1

h

∣∣∣ ≤ c3hσ1 , σ1 > 0.

The constants ci, σ1, β do not depend on k, h, ε.
Proof. From (1.3), (1.4) it follows that∣∣∣Fk(x, h, ε)

∣∣∣ ≤ λ ∀x ∈ D.

Let x0 ∈ ω+
k and dist(x0, ∂ω

+
k ) ≥ hσ, R ≥ hσ, σ ∈ (0, 1/2). Then

|Fk(x0, h, ε)| ≤ −
∫

∂KR(x0)

|Fk|∂E(|x0 − y|)
∂n

ds ≤ λ
√

1

h
R

1

Sh
√

1
hR

,

where

E(|x0 − y|) =
Sh
√

1
h (R− |x0 − y|)

4π|x0 − y|Sh
√

1
hR

.

After that (3.14) follows from (3.11).
Let us differentiate (1.3) with respect to xi. It gives

∆
∂Fk
∂xi
− 1

h

∂Fk
∂xi

= −λ
h
χ′ε(uk)

∂uk
∂xi

+
λ

h
χ′ε(u0)

∂u0

∂xi
.

On Dk(h, ε) this equation takes the form

∆
∂Fk
∂xi
− 1

h

∂Fk
∂xi

= 0.

Let dist(x0, ∂Dk(h, ε)) ≥ hσ, KR(x0) ⊂ Dk(h, ε). Then we have

∂Fk(x0, h, ε)

∂xi
= −

∫
∂KR(x0)

∂Fk
∂yi

∂E(|x0 − y|)
∂n

ds.
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Taking into account that ∂
∂nE(|x0 − y|) on ∂KR(x0) does not depend on the variable

of integration, we divide by it both sides of the previous equality and integrate over
R. We get

∂Fk(x0, h, ε)

∂xi

R∫
0

4π
√
hρSh

√
1

h
ρdρ = −

∫
KR(x0)

∂Fk
∂yi

dy.

As

R∫
0

√
hρSh

ρ√
h
dρ = RhCh

√
1

h
R− h 3

2Sh

√
1

h
R

and R ≥ hσ, using the inequality (3.11), we obtain∣∣∣∂Fk
∂xi

∣∣∣ ≤ cmhm( 1
2−σ)− 3

2 , m > 0.

We construct a sequence of domains L1, L2, . . . , Ll+1 such that

Ll+1 = D \ [ωk(h, ε) ∪ ω0(ε)], Lj ⊂ Lj+1,

and the distance between Lj and ∂Lj+1 equals hσ

l , j = 1, 2, . . . , l. For any point x0 in

Lj the ball with the radius hσ

l and center x0 is contained in Lj+1 : Khσ

l
(x0) ⊂ Lj+1.

Hence, applying the last inequality to the equation

∆Dl+1−jFk − 1

h
Dl+1−jFk = 0 in Lj , Dj =

∂j

∂xn1
1 ∂xn2

2 ∂xn3
3

, j = n1 + n2 + n3,

we get

max
Lj

|Dl+1−jFk(x, h, ε)| ≤ cmhml (σ− 1
2 )− 3

2 max
Lj+1

|Dl−jFk(x, h, ε)|.

By considering these inequalites one by one for j = 1, 2, . . . , l and estimating the
right-hand side of the jth inequality using the (j + 1)th inequality, we finally get

max
x∈Dk(h,ε

|DlFk(x, h, ε)| ≤ [cmh
m
l (σ− 1

2 )− 3
2 ]l max

x∈D
|Fk(x, h, ε)|.

Since m is an arbitrary positive number, we can choose it so that σ1 = m(σ− 1
2 )− 3

2 l >
0. The proof of (3.14) is quite similar.

Denote

ωk(h, ε, σ) = {x ∈ D : 1− hσ < uk(x, h, ε) < 1 + ε+ hσ, }, ω1
k(h, ε, σ)

= {x ∈ D : 1− hσ < uk−1(x, h, ε) < 1 + ε+ hσ} ∪ ωk(h, ε, σ), ω0(h, ε, σ)

= {x ∈ D : 1− hσ < u0 < 1 + ε+ hσ}.
Theorem 3.5. Let the assumptions of Theorem 3.2 hold and∥∥∥ϕk − ϕk−1

h

∥∥∥
Cα(D)

+ ‖ϕk‖C2+α(D) ≤ c.
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Then ∀h > 0, ε3 ≥ √h the following estimations hold:

(3.15)
∥∥∥uk − uk−1

h

∥∥∥
Cα(Ω

1

k)
+ ‖uk‖C2+α(Ωk) ≤ ‖wk‖C2+α(D) + c1h

σ1 , σ1 > 0,

Ωk = {x ∈ D \ [ωk(h, ε, σ) ∪ ω0(h, ε)] : dist(x, ∂D) ≥ hσ},

Ω1
k = {x ∈ D \ [ω1

k(h, ε, σ) ∪ ω0(h, ε)] : dist(x, ∂D) ≥ hσ},

(3.16) min
x∈Ω

1

k

uk−1 − uk
h

≥ min
x∈D

wk−1 − wk
h

− c2hσ2 , σ2 > 0,

the constants ci, σi do not depend on h, ε, and k.
Proof. Note that (3.17) and (3.18) follow from (3.13) and (3.14). After that the

statements of the theorem become obvious.
Theorem 3.6. Let ϕ1(x, t) ≡ 0, ϕ2(x, t) ≡ q = const, q > 1,

(3.17) ψ ∈ C2+α(D)
∂ψ

∂ρ
> 0 in D, ρ = |x|, ∆ψ ≤ 0 in D,

then

(3.18) min
x∈D,1≤k≤N

∂wk
∂ρ
≥ c2, min

x∈Ωk,1≤k≤N

∂uk
∂ρ
≥ min
x∈D,1≤k≤N

∂wk
∂ρ
− c3hσ1 , σ1 > 0,

where the constants ci, i = 1, 2, 3, σ1 do not depend on h, ε, and k.
Proof. As Theorem 2.1 implies,

∆wk =
wk − wk−1

h
≤ 0.

Let v(x) be a function which satisfies the following conditions:

∆v = 0 in D, v = 0 on ∂B1, v = q on ∂B2.

Obviously,

v(x) ≤ wk(x, h, ε) ≤ w0 = ψ(x) in D.

This implies

∂wk
∂ρ

∣∣∣∣∣
∂B2

≥ ∂ψ

∂ρ

∣∣∣∣∣
∂B2

,
∂wk
∂ρ

∣∣∣∣∣
∂B1

≥ ∂v

∂ρ

∣∣∣∣∣
∂B1

.

Assume now that

min
x∈D,1≤k≤N

(
ρ
∂wk
∂ρ

)
=
(
ρ
∂wn
∂ρ

)∣∣∣
x=x0

, x0 ∈ D.

We differentiate (1.6) with respect to ρ. It will give

∆

(
ρ
∂wn
∂ρ

)
− 1

h

(
ρ
∂wn
∂ρ
− ρ∂wn−1

∂ρ

)
= 2

wn − wn−1

h
.
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As at a point of local minimum of
(
ρ∂wn∂ρ

)
, ∆(ρ∂wn∂ρ ) ≤ 0, we have

ρ
∂wn
∂ρ
− ρ∂wn−1

∂ρ
≥ 2(wn−1 − wn) ≥ 0.

Hence, there exists a constant c1 > 0 such that it does not depend on h, ε, and k, and

min
x∈D,1≤k≤N

∂wk
∂ρ
≥ c1 > 0.

By (1.5) we get

∂uk
∂ρ

=
∂wk
∂ρ

+
∂Fk
∂ρ

.

The relation (3.13) completes the proof of (3.20).

4. Passage to the limit. Let the function η(x, t) ∈ C2,1(D) be equal to zero
on (∂D × (0, T )) ∪ (D × (t = T )), ηk(x) = η(x, kh). Let us represent (1.1) as

∆uk − uk − uk−1

h
= −λ

h
[χε(uk)− χε(uk−1)] + ∆Fk−1.

We multiply (1.1) by hηk(x), integrate it over D, and take the sum over k from
1 to N. After simple transformations we obtain

h
N∑
k=1

∫
D

{
∇uk∇ηk +

1

h
(uk − uk−1)ηk + λχε(uk)

ηk+1 − ηk
h

}
dy

(4.1) +λ

∫
D

χε(u0)η1dy + h
N−1∑
k=1

∫
D

Fk − Fk−1

h
ψk+1dy = 0,

where ψk = h
N∑
l=k

∆ηl. Let us denote by {u(x, t, h, ε)} the piecewise linear interpola-

tions of the functions {uk(x, h, ε)} with respect to the variable t. If t ∈ [(k− 1)h, kh],
then

u(x, t, h, ε) = uk−1(x, h, ε) +
uk(x, h, ε)− uk−1(x, h, ε)

h
(t− (k − 1)h).

Let

GT (h, ε) = {(x, t) ∈ DT : u(x, t, h, ε) > 1 + ε+ hσ}, ΩT (h, ε)

= {(x, t) ∈ DT : u(x, t, h, ε) < 1− hσ}, γ−T (h, ε) = ∂ΩT ∩DT ,

γ+
T (h, ε) = ∂GT ∩DT ,

γ+
0 (ε) = {x ∈ D : ψ(x) = 1 + ε}.

Theorem 4.1. Let the following conditions be satisfied:

ψ(x) ∈ C2+α(D), ∆ψ ≤ 0 in D,
∂ψ

∂ρ
> 0 in D,
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ϕ1(x, t) = 0 on ∂B1, ϕ2(x, t) = q = const > 1 on ∂B2,

and assume that the corresponding compatibility conditions at t = 0, x ∈ ∂ΩT ∪ ∂GT
hold. Then ∀ T > 0, there exists a unique solution of the problem (0.1)–(0.4) and

u(x, t) ∈ C(DT ) ∩
(
H2+α,1+α

2 (ΩT )×H2+α,1+α
2 (GT )

)
;

the free boundary is given by the graph ρ = ω(θ1, θ2, t) of a function ω(θ1, θ2, t) ∈
H2+α,1+α

2 (ΠT ), where (ρ, θ1, θ2) are spherical coordinates, Π = {(θ1, θ2) : 0 < θ1 <
2π, 0 < θ2 < π}, ΠT = Π× (0, T ).

Proof. From the estimations (3.2∗) and (3.6) it follows that ∂u
∂t

is uniformly

bounded everywhere in DT and |∇u| is uniformly bounded everywhere in DT exclud-
ing the set, whose measure vanishes as h, ε→ 0.

Denote

u(x, t) = lim
ε,h→0

u(x, t, h, ε), ε4 ≥
√
h.

From (3.20) it follows that

(4.2)
∂u

∂ρ
≥ c > 0 on ΩT (h, ε) ∪GT (h, ε).

Therefore, the level surfaces γ±T (h, ε) can be given by the explicit equations

ρ = ω+(θ, t, h, ε), ρ = ω−(θ, t, h, ε),

respectively, and

ω±t = −u
±
t

u±ρ
, ω±θi = −u

±
θi

u±ρ
, i = 1, 2,

are uniformly bounded. The functions 1
h [Fk(x, h, ε) − Fk−1(x, h, ε)] are nonnegative

and uniformly bounded in D, and, besides, the estimate (3.14) holds.
The assumptions of Theorem 4.1 on the initial conditions imply

lim
ε→0

mes{1 ≤ ψ ≤ 1 + ε} = 0, lim
ε→0

γ+
0 (ε) = γ0,

and Corollary 3.1 implies that for u(x, t, h, ε), (3.11∗) holds.
The facts stated above allow us to pass to the limit in (4.1) as ε→ 0, h→ 0, ε4 ≥√

h. It gives∫
DT

[
∇u∇η + utη

]
dxdt +λ

∫
DT∩{u<1}

ηtdxdt+ λ

∫
Ω0

η(x, 0)dx

+λ

∫
D1
T

lim
ε,h→0

χε(u)ηtdxdt+

∫
D1
T

lim
ε,h→0

Ft

T∫
t

∆ηdτ dxdt = 0,

where D1
T = DT ∩ {u = 1}. This integral identity implies that

∆u− ut = 0 in ΩT ∪GT ,
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where ΩT = lim
ε,h→0

ΩT (h, ε), GT = lim
ε,h→0

GT (h, ε),

λ

∫
D1
T

lim
ε,h→0

χε(u)ηtdxdt+

∫
D1
T

lim
ε,h→0

Ft

T∫
t

∆η(x, τ)dτdxdt

+

∫
γ−
T

[
∂u

∂n−
+ λ cos(n−, t)]ηds+

∫
γ+
T

∂u

∂n+
ηds = 0,

where n± are the outward pointing normal vectors to ∂ΩT , ∂GT , respectively. Let
η(x, t) = 0 on γ−T . Then

(4.3) λ

∫
D1
T

lim
ε,h→0

χε(u)ηtdxdt+

∫
D1
T

lim
ε,h→0

Ft

T∫
t

∆η(x, τ)dτdxdt+

∫
γ+
T

∂u

∂n+
ηds = 0.

Let us take η(x, t) as a solution of the following problem:

(4.4)

∆η − ηt = −ft(x, t) in DT \ ΩT ,

η(x, t)
∣∣∣
γ−
T

= 0, η(x, t)
∣∣∣
∂D2

= 0, η(x, 0) = Φ(x) ≥ 0 in D \ Ω0,

where f(x, t), Φ(x) are given smooth functions. The change of variables

ρ′ = R1 +
ρ− ω−(θ, t)

R2 − ω−(θ, t)
, θ′ = θ, t′ = t

maps the domain DT \ ΩT onto a cylinder, and (4.5) in new coordinates will have
varying coefficients. The solvability of this problem follows from [11, chap. 4, §9]. Let
us choose f(x, t),Φ(x) so that

ft(x, t) ≥ 0, ftt(x, t) ≤ 0, f(x, T ) = 0,∆Φ + ft(x, 0) ≤ 0.

Then the maximum principle implies that

η(x, t) ≥ 0, ηt(x, t) ≤ 0.

Note also that ∂u
∂n+ ≤ 0 on γ+

T . All these facts and the identity (4.4) imply∫
D1
T

lim
ε,h→0

Ftf(x, t)dxdt ≥ 0.

Hence, mes {(x, t) ∈ D1
T : lim

ε,h→0
Ft > 0} = 0. After that one can easily prove that

mes {(x, t) ∈ D1
T : lim

ε,h→0
χε(u) > 0} = 0.

As a result we obtain that

(4.5)

∫
DT

{
∇u∇η + utη + λχ(u)ηt

}
dxdt+ λ

∫
D

χ(ψ)η(x, 0)dx = 0,
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where χ(u) is the characteristic function of the domain ΩT , χ(ψ) is the characteristic
function of the domain Ω0. Identity (4.6) implies γ+

T = γ−T = γT = ∂ΩT∩D = ∂GT∩D,
and the equation of the free boundary γT = ∂ΩT ∩ D = ∂GT ∩ D has the form
ρ = ω(θ, t), where ωθ, ωt are uniformly bounded. As follows from the estimation
(3.17), ‖ut(x, t)‖Cα(ΩT∪GT ), ‖uxx(x, t)‖Cα(ΩT∪GT ) are bounded by a constant which

does not depend on t. The domains obtained by cutting the domains ΩT , GT by
planes t = const. have the cone property. Then, by [21, chap. 2, §3] we get

ux(x, t) ∈ H1,α/2(ΩT )×H1,α/2(GT ).

Then (4.6) implies that the condition (0.3) holds everywhere on the free boundary.
From this we obtain that

u(x, t) ∈
{
H2+α.1+α/2(ΩT )×H2+α,1+α/2(GT )

}
∩ C(DT ),

∂u±

∂ρ

∣∣∣
γT
≥ c > 0,

the free boundary is given by the graph ρ = ω(θ1, θ2, t) of a function ω(θ1, θ2, t)
∈ H2+α,1+α

2 (ΠT ), where (ρ, θ1, θ2) are spherical coordinates, Π = {(θ1, θ2) : 0 < θ1 <
2π, 0 < θ2 < π}, ΠT = Π× (0, T ).

The uniqueness of solution of the Stefan problem is proved, for example, in [21,
chap. 5, §9].

Remark. If in the hypothesis of the theorem we omit the requirement ψρ > 0 in D,
then the existence of global classical solution can be proved if we additionally assume
that

∆ψ < 0 in D,
∂ϕi
∂t

< 0 in DT .

Then, the free boundary is the graph of a function of C1+α
2 class.
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Abstract. This paper describes a variational approach for estimating a discontinuous optical
flow from a sequence of images. Defined as the apparent motion of the image brightness pattern,
the optical flow is very important in the computer vision community, where its accurate estimation
is strongly needed. After a short overview of existing methods, we present a new variational method
that we study in the space of bounded variations. We first present an integral representation of
the optical flow problem which appears to be not lower semicontinuous. The relaxed functional is
then calculated. We conclude by challenging questions about the possible numerical analysis of the
abstract results.

Key words. measure theory, space of bounded variations, convex functions of measures, Γ-
convergence, elliptic equations, relaxation of ill-posed problems, optical flow, computer vision
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1. Introduction. This paper deals with the estimation of the movement in a
sequence of images. This velocity field will be called the optical flow. In the computer
vision community, it is well known that the optical flow is a rich source of information
about the geometrical structure of the world. Many numerical algorithms on the
optical flow estimation and its applications have been performed. They have clearly
shown how the optical flow can be used to recover information about slant and tilt of
surface elements, ego-motion, shape information, time to collision, etc. [31, 32, 30,
34, 33, 29, 28, 38, 50, 24, 37, 49, 27, 9, 40, 41].

Almost all of these approaches use the classical brightness constancy assumption
that relates the gradient of brightness to the components of the local flow to esti-
mate. Because this problem is ill-posed, additional constraints are usually required.
The most common approach is to add a quadratic smoothness constraint, as done
originally by Horn and Schunk [29]. However, in order to estimate the optical flow
more accurately, other constraints involving high order spatial derivatives have also
been used [40]. Nevertheless, several of the proposed methods lacked robustness to
the presence of occlusion and yielded smooth optical flow. The variational approach
proposed in this paper is motivated by the need to recover the optical flow while
preventing the method from trying to smooth the solution across the flow discontinu-
ities. To cope with discontinuities, we propose in this article a complete mathematical
study of the relaxed optical flow problem in the space BV (Ω). We first present an
integral representation of the optical flow problem which does not appear to be lower
semicontinuous.

This article is organized as follows.
In section 1, we define the problem and propose a variational approach to solve it.

The general idea is based on a conservation law of the intensity along the trajectories.
We will deal with an ill-posed problem that we will solve by regularizing the unknowns.
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Fig. 2.1. Pinhole model of camera. Ω is the domain of the image; O is the optical center.

Section 3 presents some general recalls about the space of bounded variations
(noted BV (Ω)). Classically used for problems coming from computer vision, this
space permits discontinuities along curves (in dimension 2).

In section 4, we concentrate on the meaning of the energy we defined. This will
permit us to consider some integral representation results of the duality pairing of an
integrable function with a measure. Similar results have been proved by Anzellotti
[3], and we will extend them under weaker assumptions. This will enable us to obtain
a fully developed expression for energy that we have to minimize. Unfortunately, the
proposed energy is not lower semicontinuous for the weak topology of BV (Ω).

Section 5 is devoted to the computation of the relaxed functional. This part is
mainly technical and is based on ideas developed by Bouchitté et al. [14, 13].

Finally, we prove in section 6 that there exists a solution in BV(Ω) for the relaxed
formulation.

2. The optical flow problem: Definition and modelization.

2.1. Definition. As shown in Figure 2.1, we can modelize a camera as a simple
projective model. Consequently, the first idea is to say that the two-dimensional
velocity field in the image corresponds to the projection of the three-dimensional
velocity field of the objects. However, variations of intensity due to shadows do not
correspond to any real motion. The importance of the light source can be seen toward
other phenomena. For instance, if the object is sparkling, the reflected luminosity
changes rapidly with the position. This is the case for bodywork, glasses, etc. Finally,
notice the unavoidable problem of noise in images. These intensity variations may be
interpreted as false motions which have no physical meaning.

Thanks to these remarks, we will define the optical flow as the two-dimensional
velocity field describing the changes in intensity between images. In many cases, it
can be interpreted as an approximation of the projection of the three-dimensional
velocity field which animates physical objects. We will see in the next section how we
can traduce it mathematically.
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2.2. A short overview. In this last decade, numerous methods have been pro-
posed to compute optical flow. Several ideas have been used: working with regions,
curves, lines, or points. There is also a wide range of methodologies: wavelets,
Markov random fields, Fourier analysis, and naturally partial differential equations
[29, 28, 38, 50, 24, 37, 49, 27, 18, 40, 41]. We refer the interested reader to two (mainly
computational) general surveys:
• Barron, Fleet, and Beauchemin [9] explain the main techniques and perform

numerical quantitative experiments to compare them. (The database used for tests is
also available.)
• Orkisz and Clarysse [39] propose an updated version of the preceding one.
In this article we will concentrate upon the class of differential methods (as named

by Barron, Fleet, and Beauchemin) which have been proved to be among the best
[9]. Their common point is the consistency intensity hypothesis of a point during its
movement. More precisely, we will assume that

“The intensity of a point keeps constant along its trajectory.”(2.1)

This hypothesis is called the optical flow constraint (OFC) hypothesis. We can con-
sider it as reasonable, almost along short times, for which changes of the brightness
are weak.

Let x(t) = (x1(t), x2(t)) ∈ Ω ⊂ R2 be the projection of the point X(t) ∈ R3 at
time t (see Figure 2.1,). For x ∈ Ω, we denote by u(t, x) the reflected intensity (the
brightness) of the point x at time t. Let t0 be fixed. Using these notations, a natural
way to express (2.1) is

u(t, x(t)) = u(t0, x(t0)).(2.2)

By differentiating (2.2) with respect to t, we obtain, for t = t0,

σ(x) ·Du(t0, x) + ut(t0, x) = 0, x ∈ Ω,

where σ = (σ1, σ2)T =
(
dx1
dt

, dx2
dt

)T
is the unknown velocity field, D· is the spatial

gradient operator, and ut denotes the temporal derivative of u(t, x). (Derivatives are
written in the distributional sense.) This equation is the OFC. Naturally, this scalar
equation is insufficient to compute both components of the flow field. This problem
is usually called the aperture problem. Additional constraints are therefore required
to reduce the space of admissible functions. Several possibilities are then possible:
use additional constraints, consider special movements (rigid or fluids), regularize the
velocity field, etc. We refer to [6], where we notably propose an overview of these
different methods.

Our starting point will be the method proposed by Horn and Schunk in 1981 [29].
The idea is to minimize the following energy:

EHS(σ) =

∫
Ω

((σ ·Du) + ut)
2dx︸ ︷︷ ︸

A

+αr
2∑
j=1

∫
Ω

‖Dσj‖2dx︸ ︷︷ ︸
B

,(2.3)

where αr is a positive constant. The interpretation of this functional is the following:
we would like the OFC to be zero (term A) and the gradient magnitude to be minimum
(term B). Notice that term B is the classical Tikhonov–Arsenin [48] relaxation known
to smooth isotropically. With this method, we obtain a smooth optical flow, and flow
discontinuities are lost.
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2.3. Setting the problem. The purpose of this work is to propose a model able
to cope with the discontinuities of the optical flow. Starting from (2.3), we propose
to minimize the energy

E(σ) =

∫
Ω

|(σ ·Du) + ut|︸ ︷︷ ︸
A

+αr
2∑
j=1

∫
Ω

φ(Dσj)︸ ︷︷ ︸
B

+αh
∫

Ω

c(x)‖σ‖2dx︸ ︷︷ ︸
C

,(2.4)

where αr, αh are positive constants, φ(·) and c(·) to be determined. We refer the
interested reader to [35, 6] for the detailed construction of this model. Let us describe
briefly the main differences:

(i) Term A is comparable to term A in (2.3). Here we choose the L1 norm which
must be interpreted in term of measures. As we will see in what follows, since the
data u belongs a priori to BV (Ω), we cannot use the L2 norm as done in (2.3).

(ii) Term B is again a regularization term. The functions φ(·) have been chosen
so that we can preserve discontinuities. The key idea is to forbid smoothing across
discontinuities. Such ideas initially were proposed in the image restoration background
[45, 20, 5, 7], and many functions have been proposed. Typically, admissible functions
are convex functions with linear growth at infinity. For instance, we will choose the
minimal hypersurface function

φ(s) =
√
s2 + 1.

We mention that term B will be interpreted as convex functions of measures.
(iii) Finally, term C permits us to handle the homogeneous regions. Typically, c(x)

is high for low spatial gradients of u (hence penalizing velocities in poor information
zones) and low for high spatial gradients of u (no intervention).

3. General recalls. In this section we recall main notations and definitions. We
refer to [1, 22, 25, 23, 53] for the complete theory.

Let Ω be a bounded open set in RN with Lipschitz-regular boundary ∂Ω. We
denote by LN or dx the N -dimensional Lebesgue measure in RN and by Hα the α-
dimensional Hausdorff measure. We also set |E| = LN (E), the Lebesgue measure of
a measurable set E ⊂ RN . B(Ω) denotes the family of the Borel subsets of Ω. We
will denote the strong, the weak, and weak? convergences in a space V (Ω) by −−−→

V (Ω)
,

−−−⇀
V (Ω)

, and
?−−−⇀

V (Ω)
, respectively. Spaces of vector-valued functions will be denoted by

bold characters.
Working with images requires that the functions we consider can be discontinuous

along curves. This is impossible with classical Sobolev spaces such as W 1,1(Ω). This
is why we need to use the space of bounded variations (BV (Ω)) defined by

BV (Ω) =

{
u ∈ L1(Ω); sup

∫
Ω

udiv(ϕ)dx <∞ : ϕ ∈ C1
0(Ω)N , |ϕ|∞ ≤ 1

}
,

where C1
0(Ω) is the set of differentiable functions with compact support in Ω. We will

note

|Du|(Ω) = sup

{∫
Ω

udiv(ϕ)dx : ϕ ∈ C1
0(Ω)2, |ϕ|∞ ≤ 1

}
.
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If u ∈ BV (Ω) and Du is the gradient in the sense of distributions, then Du is a
vector-valued Radon measure and |Du|(Ω) is the total variation of Du on Ω. The set
of Radon measure is noted M(Ω)

The product topology of the strong topology of L1(Ω) for u and of the weak?
topology of measures for Du will be called the weak? topology of BV and will be
denoted by BV − w?.

un −−−⇀
BV−w?

u ⇐⇒


un −−−→

L1(Ω)
u,

Dun
?−−−⇀

M(Ω)
Du.

(3.1)

We recall that every bounded sequence in BV (Ω) admits a subsequence converging
in BV − w?.

We define the approximate upper limit u+(x) and the approximate lower limit
u−(x) by

u+(x) = inf

{
t ∈ [−∞,+∞] : lim

ρ→0+

LN ({u > t} ∩Bρ(x))

ρN
= 0

}
,

u−(x) = sup

{
t ∈ [−∞,+∞] : lim

ρ→0+

LN ({u < t} ∩Bρ(x))

ρN
= 0

}
,

where Bρ(x) is the ball of center x and radius ρ. We denote by Su the jump set, that
is, the complement up to a set of HN−1 measures zero of the set of Lebesgue points;
i.e., the set of points x where u+(x) is different u−(x), namely,

Su = {x ∈ Ω/u−(x) < u+(x)}.

After choosing a normal nu(x) (x ∈ Su) pointing toward the largest value of u, we
recall the following decompositions (see [2] for more details):

Du = ∇u · LN + Cu + (u+ − u−)nu · HN−1
|Su ,(3.2)

|Du|(Ω) =

∫
Ω

‖∇u‖dx+

∫
Ω\Su

|Cu|+
∫
Su

(u+ − u−)dHN−1,(3.3)

where ∇u is the density of the absolutely continuous part of Du with respect to the
Lebesgue measure, Cu is the Cantor part, and HN−1 is the Hausdorff measure of
dimension N − 1.

We then recall the definition of a convex function of measures. We refer to the
works of Goffman–Serrin [26] and Demengel–Temam [19] for more details. Let φ(·)
be convex and finite on R with linear growth at infinity. Let φ∞ be the asymptote

(or recession) function defined by φ∞(z) = lims→∞
φ(sz)
s ∈ [0; +∞). Then, for u ∈

BV (Ω), using classical notations, we define∫
Ω

φ(Du) =

∫
Ω

φ(‖∇u‖)dx+ φ∞(1)

∫
Su

(u+ − u−)dHN−1 + φ∞(1)

∫
Ω\Su
|Cu|.(3.4)

Finally, we mention that this function is lower semicontinuous for the (BV − w?)-
topology.
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4. The integral representation of the optical flow problem.

4.1. The precise formulation. This section is devoted to the mathematical
study of the optical flow model proposed in section 2.3. Let us recall it. Without loss
of generality, we will assume that αr = αh = 1. For u ∈ BV (R × Ω), the problem is
to find σ minimizing the energy

E(σ) =

∫
Ω

|(σ ·Du) + ut|+
N∑
j=1

∫
Ω

φ(Dσj) +

∫
Ω

c(x)‖σ‖2dx,(4.1)

where the infimum is taken over the space BV(Ω). The function φ(·) verifies

φ : R→ R+ is an even and convex function, nondecreasing on R+.(4.2)

There exist constants d > 0 and b ≥ 0 such that

dx− b ≤ φ(x) ≤ dx+ b for all x ∈ R,(4.3)

φ∞(1) = 1,(4.4)

φ∗(x∗) ≤ k, for all x∗ ∈ dom(φ∗) (k constant),(4.5)

where φ∗ is the Legendre–Fenchel conjugate function of φ. Note that hypotheses (4.3)
and (4.5) permit the assertion that (see [43])

φ(x) ≥ φ∞(x)− k.(4.6)

Finally, we assume that the function c(·) verifies the following assumptions:

c ∈ C∞(Ω),(4.7)

there exists a constant mc > 0 such that c(x) ∈ [mc, 1] for all x in Ω.(4.8)

4.2. The duality pairing (σ ·Du): An extended integral representation.
This part is devoted to a better understanding of the functional to be minimized (4.1)
and especially the product (σ ·Du). In fact, what can we say about the product of an
integrable function and a measure? This question has been treated for special cases,
with suitable hypotheses on σ and u (see [3, 47, 12]). For example, Anzellotti [3]
supposes

σ ∈ X(Ω) ∩ C0(Ω;RN ) and u(t0, ·) ∈ BV (Ω),

σ ∈ X(Ω) and u(t0, ·) ∈W 1,1(Ω),

where X(Ω) = {σ ∈ L∞(Ω); div(σ) ∈ LN (Ω)}. Our aim is to extend his results for a
more general class of product (σ ·Du). We suppose that

σ ∈ BV(Ω) ∩X(Ω),(4.9)

u(t0, ·) ∈ SBV (Ω) ∩ L∞(Ω),(4.10)

where SBV (Ω) is the space of special bounded variations (the Cantor part of Du is
zero).

Remark. The hypothesis (4.10) is quite general. We mention to the interested
reader a more applied work where we assumed only that the data u is Lipschitz [6].
In that case, there is no problem to define the L1 norm of the optical flow constraint,
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and we proved the existence and uniqueness of the minimization problem posed on
BV(Ω). We also proposed a convergent algorithm to approximate the solution (using
Γ-convergence arguments) and showed some numerical results on synthetic and real
sequences.

The space X(Ω) is a Banach space endowed with the norm

‖σ‖X(Ω) = ‖σ‖L∞(Ω) + ‖div(σ)‖LN (Ω),

and we can define a weak? topology on X(Ω) by

σn −−−⇀
X(Ω)

σ ⇐⇒


σn

?−−−⇀
L∞(Ω)

σ,

div(σn) −−−⇀
LN (Ω)

div(σ).

To make sense of the pairing (σ ·Du), our first thought is to define it by duality:∫
Ω

ϕ(σ ·Du) = −
∫

Ω

uϕdiv(σ)dx−
∫

Ω

uσ∇ϕdx for all ϕ in C1
c (Ω).(4.11)

Note that with hypotheses (4.9) and (4.10), the right-hand side of (4.11) is completely
defined. We can prove [3, 12] that (σ·Du) is a bounded measure, absolutely continuous
with respect to |Du|.

Our aim is to find an integral representation of that measure.
To this end, we need to introduce the precise representation of σ, noted σ̃ and

defined by

σ̃(x) = lim
r→0

1

LN (B(x, r))

∫
B(x,r)

σ(y)dy.(4.12)

If σ is simply in L1(Ω), the right-hand side limit exists LN almost everywhere (a.e.)
and is equal to σ(x). However, if σ is also in BV(Ω), we can explicitely write the
limit HN−1 a.e. using σ+, σ−. We have [52, 22]

σ̃(x) =
σ+(x) + σ−(x)

2
, HN−1 a.e. on Sσ.(4.13)

Another interesting property of σ̃ is that we have the approximation result

σ̃(x) = lim
ε→0

ηε ? σ(x), HN−1 a.e.,(4.14)

where (ηε) are the usual mollifiers: ηε ∈ C∞c (RN ), spt(ηε) ⊂ B(0, ε), 0 ≤ ηε ≤ 1,∫
RN

ηε(x)dx = 1. The function σ̃ is called the precise representation of σ since it
permits us in some way to define σ−HN−1 a.e. Remark that σ̃ and σ are in fact the
same elements in BV(Ω) (they belong to the same equivalent class of LNa.e. equal
functions) so that their distributional derivatives are the same.

From now on, we will consider that N = 2. For two measures µ and ν in M(Ω),
we will denote by dµ

dν the Radon–Nikodym derivative of µ with respect to ν (see [22]
for more details).

The main result of this section is the following proposition.
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Proposition 4.1. If σ ∈ X(Ω) ∩BV(Ω) and u(t0, ·) ∈ SBV (Ω) ∩ L∞(Ω), then
we have ∫

B

(σ ·Du) =

∫
B

σ̃(x) · dDu
d|Du| (x)|Du| for all Borel set B in Ω.(4.15)

Moreover, if u ∈ SBV (Ω), we obtain∫
Ω

(σ ·Du) =

∫
Ω

σ · ∇udx+

∫
Su

σ̃ · nu(u+ − u−)dHN−1.(4.16)

Before proving this result, we mention a convergence result which can be demon-
strated using arguments from [3].

Lemma 4.2. Let σε = ηε ? σ(x). If σ ∈ BV(Ω) ∩X(Ω), then we have

σε
?−−−⇀

L∞(A)
σ,(4.17)

div(σε) −−−→
Lp(A)

div(σ), p <∞,(4.18)

for all open sets A ⊂ Ω. Moreover, for all u ∈ BVloc(Ω) ∩ L∞(Ω), one has

(σε ·Du) −−−⇀
M(Ω)

(σ ·Du).(4.19)

Proof of Proposition 4.1. If we denote σε = ηε ? σ, then for all ϕ ∈ C1
c (Ω), we

have (see Lemma 4.2)

〈(σ̃ ·Du), ϕ〉 = lim
ε→0
〈(σε ·Du), ϕ〉.(4.20)

As Du� |Du|, by the Radon–Nikodym theorem, there exists a function h ∈ L1
|Du|(Ω),

|h(x)| = 1, such that Du = h|Du|. Thus, since σε ∈ L∞|Du|(Ω) (σε ∈ C∞(Ω)) we can
write

〈(σε ·Du), ϕ〉 =

∫
Ω

ϕσε · h|Du|.(4.21)

Equations (4.20) and (4.21) imply that

〈(σ ·Du), ϕ〉 = lim
ε→0

∫
Ω

ϕσε · h|Du|.(4.22)

What remains is to show the permutation between the limit and the integral in (4.22).
To do this, we use the Lebesgue dominated convergence theorem. Classically, two
requirements are necessary:
• The pointwise convergence of ϕ(x)σε(x) ·h(x) to ϕ(x)σ̃(x) ·h(x). It comes from

(4.14). Notice that the pointwise convergence is true HN−1 a.e. and consequently
|Du| a.e.
• Find a function which dominates the sequence. In fact, since Ω is bounded, it

is sufficient to prove that the L∞ norm of ϕ(x)σε(x) · h(x) is bounded uniformly by
a constant. Since ϕ is in C1

c (Ω) and |h(x)| = 1, it is enough to show that there exists
a constant C such that ‖σε‖L∞Du(Ω) ≤ C. In fact we have

‖σε‖L∞Du(Ω),≤ sup |σε|
RN

≤
[∗]
‖σ‖L∞LN (Ω) ≤ C,
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where inequality [∗] is shown in [3]. Consequently, we can apply the Lebesgue domi-
nated convergence theorem. This permits us to pass to the limit in (4.22) as ε → 0,
and we get (4.15). It is then an easy task to get (4.16) from (4.15) using the decom-
position (3.2).

4.3. Application to the optical flow problem. Now that we have found an
expression of the product (σ · Du), we will give in the next proposition the integral
representation of the functional E, which will be used in what follows.

We will assume that

u ∈ SBV (R× Ω) ∩ L∞(R× Ω).(4.23)

There exists h1 ∈ L1(Ω) and h2 ∈ L1
H1(Su) such that

ut = h1L2 + h2H1|Su .(4.24)

Notice that the assumption means that the measure ut is absolutely continuous with
respect to |Du|. This is physically correct, since when there is no texture (no gradient),
no intensity variation should be observed.

Proposition 4.3. We assume that N = 2. Let u verifying hypotheses (4.23)–
(4.24). Then the function E defined on X ∩BV(Ω) by

E(σ) =

∫
Ω

|(σ ·Du) + ut|+
2∑
j=1

∫
Ω

φ(Dσj) +

∫
Ω

c(x)‖σ‖2dx(4.25)

with hypotheses (4.2)–(4.3), (4.4)–(4.6), (4.7)–(4.8)can be rewritten as

E(σ) =

∫
Ω

|σ · ∇u+ h1|dx+

∫
Su

|σ̃ · nu(u+ − u−) + h2|dH1

+
2∑
j=1

∫
Ω

φ(Dσj) +

∫
Ω

c(x)‖σ‖2dx.
(4.26)

Proof. Thanks to [46, Theorem 6.13], we know that if ν is a positive measure on
M(Ω), g ∈ L1

ν , and λ is the measure defined by

λ(E) =

∫
E

gdν,

then we have

|λ|(E) =

∫
E

|g|dν.

Moreover, using the decomposition of the measure ut and the result (4.16), we have∫
Ω

(σ ·Du) + ut =

∫
Ω

(σ · ∇u+ h1)dx+

∫
Su∩Ω

(σ̃ · nu(u+ − u−) + h2)dH1.

Using the fact that dx and dH1 are mutually singular and applying the above theorem,
we can conclude the proof.

Commentary about proposition 4.3. The interesting point in the integral
representation (4.26) is that we no longer need the divergence of σ to be integrable.
Consequently, (4.26) can be viewed as an extension of E defined a priori for σ ∈
BV(Ω). The next section is devoted to the theoretical study of that extension.
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n

Fig. 5.1. Notation of the simplified problem. Notice that the normals are all oriented toward
the exterior.

5. The relaxed problem. After introducing notation and assumptions in sec-
tion 5.1, we show in section 5.2 that the functional that we are considering is not
lower semicontinuous for the BV − w? topology. As a consequence, the existence of
a solution cannot be shown for the initial problem. We then search for the relaxed
functional for a suitable topology in section 5.4 after proving some preliminary results
in section 5.3.

5.1. Notation and assumptions. To simplify proofs and notation, we will
assume in this section that N = 2 and that Su is a single C1 curve as shown in Figure
5.1, where the main notation is introduced. Notice that the parameter α corresponds
to the distance between Su and Se,αu (or Si,αu ). We will also use the superscript i
(respectively, e) to mention that we are considering the restriction of the function to
Ωi ≡ Ωi,0 (respectively, Ωe ≡ Ωe,0). The Hausdorff measure of dimension 1 is denoted
by ds.

Using this notation we rewrite the integral on Su of (4.26), which is∫
Su

|σ̃ · nu(u+ − u−) + h2|ds.(5.1)

Let b = ±1 be the function such that nu = bn, where n is the normal oriented toward
the exterior (Voir Figure 5.1). Let h̃2 be the function defined by h̃2 = bh2. It is then
easy to check that (5.1) may be rewritten as∫

Su

∣∣∣∣∣σi + σe

2
· n(u+ − u−) + h̃2

∣∣∣∣∣ ds.(5.2)

So, changing h2 in h̃2 allows us to have a normal independent of u. We will use this



1292 G. AUBERT AND P. KORNPROBST

expression, which is easier to handle. To simplify notation, we will omit the tilde
superscript for h2.

5.2. Statement of the problem. Let us first recall precisely the problem that
we are going to study. Let h1 ∈ L1(Ω) and h2 ∈ L1

H1(Su). Let φ(·) be a function
verifying (4.2)–(4.3), (4.4)–(4.6), and c satisfying (4.7)–(4.8). Let E be the functional
defined over BV(Ω) by

E(σ) =

∫
Ω

|σ · ∇u+ h1|dx+

∫
Su

|σ̃ · n(u+ − u−) + h2|ds

+
2∑
j=1

∫
Ω

φ(Dσj) +

∫
Ω

c(x)‖σ‖2dx.
(5.3)

We remark that it is well defined on BV(Ω) thanks to the embedding of BV(Ω) into
L2(Ω) (N = 2) (see, for instance, [25]). Our aim is to study the existence of a solution
to the minimization problem

inf E(σ)
σ∈BV(Ω)

.(5.4)

Following the direct method of the calculus of variations, let (σn) be a minimizing
sequence of (5.3). Thanks to hypotheses on functions φ(·) and c(·), we can obtain
a uniform majoration in BV(Ω) and in L2(Ω), so we can extract a subsequence
converging to some σ for the topology BV − w? and L2-weak. The question is, Can
we deduce an existence result for (5.4)? To answer this question, let us split the
functional E in two parts, namely, P and L, defined by

P (σ) =

∫
Ω

|σ · ∇u+ h1|dx+
2∑
j=1

∫
Ω

φ(Dσj) +

∫
Ω

c(x)‖σ‖2dx,(5.5)

L(σ) =

∫
Su

∣∣∣∣∣σi + σe

2
· n(u+ − u−) + h2

∣∣∣∣∣ ds.(5.6)

It is easy to show that we have

lim
n
P (σn) ≥ P (σ),

but we cannot say anything about the term L. The reason is that the functional L
is defined through traces and the trace application is not continuous for the weak?
topology of BV(Ω). Consequently, the functional E is not lower semicontinuous for
the BV −w? topology. In such a situation, the idea is to study the relaxed functional.

We recall that for a functional F defined over a topological metrizable space X,
the relaxed functional, noted R(F ), verifies that

for all u ∈ X, ∀un → u. lim inf
n

F (un) ≥ R(F )(u),(5.7)

for all u ∈ X, ∃un → u. lim sup
n

F (un) ≤ R(F )(u).(5.8)

R(F ) is in fact the higher lower semicontinuous functional less than or equal to F .
We refer the interested reader to [36, 16] for a complete overview of the relaxation
properties and consequences.
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5.3. Preliminary results. As is usual when we have this kind of problem, we
need to introduce additional variables and notation. Let us define the functionals L̃
and E1 by

L̃ : M(Su)×M(Su)→ R,(5.9)

L̃(µi, µe) =

∫
Su

d|ν|,

where

ν =
µi + µe

2
· n(u+ − u−) + h2ds(5.10)

and

E1 : BV(Ω)×M(Su)×M(Su)→ R,(5.11)

E1(σ, µi, µe) =

{
P (σ) + L̃(µi, µe) if µi = σids and µe = σeds,
+∞ otherwise.

It is straightforward to see that

inf E(σ)
σ∈BV (Ω)

= inf E1(σ, µi, µe).
(σ,µi,µe)∈BV(Ω)×M(Su)×M(Su)

(5.12)

The functionals (5.3) and (5.11) are not weakly lower semicontinuous, so it is natural
to search for the relaxed functionals of E and E1, noted R(E) and R(E1), for a
suitable topology.

Thanks to classical results [36, 16], we have, using (5.12),

inf E(σ)
σ∈BV (Ω)

= inf R(E)(σ)
σ∈BV (Ω)

= inf R(E1)(σ, µi, µe).
(σ,µi,µe)∈BV(Ω)×M(Su)×M(Su)

Moreover, since the relaxed functionals are lower semicontinuous, existence results can
be proved. Our aim is then to compute these relaxed functionals, which is the main
result of section 5. To this end, we will use the definitions (5.7) and (5.8). Difficulties
are twofold:
•We must guess the expression of the functional which is a priori unknown. This

will be done using the property (5.7) with some care.
• To check that the guess is really the relaxed functional, we need to verify (5.8).

The main difficulty is that we must find the sequence (un) converging to a given u.
However, we will see how we can avoid this difficulty.

We mention that the notion of relaxation is classical in many problems occurring
in the calculus of variations: phase transition, fracture mechanics, and plasticity, to
name a few. For recent advances and bibliography, we refer to [10].

The specificity of this work is that the surface energy is defined over a fixed set
independent of the unknown σ. Moreover, we give an explicit representation of the
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relaxed energy. We are going to establish that the functional E1 defined by

E1 : BV(Ω)×M(Su)×M(Su)→ R,

(5.13)

E1(σ, µi, µe) =

∫
Ω

|σ · ∇u+ h1|dx+
2∑
j=1

∫
Ωi∪Ωe

φ(Dσj) +

∫
Ω

c(x)‖σ‖2

+

∫
Su

d|ν|+
∫
Su

‖µi − µe‖1 +

∫
Su

‖µi − σids‖1 + ‖µe − σeds‖1,

where ‖η‖1 = |η1|+ |η2| and the measure ν is defined by (5.10), is in fact the relaxed
functional of E1 for the topology L2(Ωi ∪ Ωe)-strong ×M(Su)-weak ×M(Su)-weak.
We are also going to prove that the functional defined by

E : BV(Ω)→ R,

(5.14)

E(σ) =

∫
Ω

|σ · ∇u+ h1|dx+
2∑
j=1

∫
Ωi∪Ωe

φ(Dσj) +

∫
Ω

c(x)‖σ‖2 +

∫
Su

β(x, σi, σe),

where

β(x, λ, θ) = Inf

{
|λ− s|+ |θ − t|+ |s− t|+

∣∣∣∣s+ t

2
· n(x)(u+ − u−) + h2(x)

∣∣∣∣ :

(5.15)

(s, t) ∈ RN ×RN
}
,

is the relaxed functional of E. The expression of E will be deduced from E1.
Before finding (5.13) and (5.14), we first need to prove some preliminary results.

The general idea is that, for technical reasons, we need to work with functions defined
on more regular spaces. This is why we introduce the functionals E2 and E2 defined
by

E2 : BV(Ω)×M(Su)×M(Su)→ R,

E2(σ, µi, µe) =

{
E1(σ, µi, µe) if σ ∈W1,1(Ωi ∪ Ωe),

+∞ otherwise

(5.16)

and

E2 : BV(Ω)×M(Su)×M(Su)→ R,

E2(σ, µi, µe) =

{
E1(σ, µi, µe) if (σ, µi, µe) ∈W1,1(Ωi ∪ Ωe)× L1(Su)× L1(Su),

+∞ otherwise.

(5.17)

The justification of considering E2, E2 instead of E1, E1 is given by Lemmas 5.2 and
5.3, where we prove that Ej and Ej(j = 1, 2) have the same relaxed functional for the
topology L2(Ωi ∪ Ωe)-strong ×M(Su)-weak ×M(Su)-weak. As this is equivalent to
saying that they have the same dual functional [13], we will use (5.16) and (5.17) to
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compute the dual functionals (Lemmas A.1, A.2) and to establish the main relaxation
result.

Let us present a version of the slicing lemma of De Giorgi that will be useful in
what follows.

Theorem 5.1. Let φ(·) be a function verifying hypotheses (4.2)–(4.3). Let u ∈
BV (Ω) ∩ L2(Ω). Then, for every open set A ⊂ Ω with Lipschitz boundary, we can
find a sequence un ∈W 1,1(Ω) such that

un −−−→
L2(Ω)

u,(5.18)

un = u on ∂A,(5.19)

lim
n→∞

∫
A

φ(‖∇un‖)dx =

∫
A

φ(Du).(5.20)

Notice that this theorem permits us to fix the trace at the boundaries.
Proof. The proof of this theorem is a consequence of Lemma 2.6 proposed in [11],

which can be modified to obtain the strong convergence in L2.
Lemma 5.2. Let E1 and E2 be defined, respectively, by (5.11) and (5.16). Then

E1 and E2 have the same lower semicontinuous relaxed functions for the topology
L2(Ωi ∪ Ωe)-strong×M(Su)-weak×M(Su)-weak.

Proof. The proof contains two steps.
Step 1. Since we have E1 ≤ E2, we deduce that

R(E1) ≤ R(E2).(5.21)

Step 2. The reverse inequality will be proven using an approximation argu-
ment. Let (σ, µi, µe) ∈ BV(Ω) ×M(Su) ×M(Su) such that E1 be finite. Notice
that this forces the measures µi, µe to be the traces of σ. We search for a sequence
(σn, µi

n
, µe

n
) ∈ W1,1(Ωi ∪ Ωe) ×M(Su) ×M(Su) converging to (σ, µi, µe) for the

topology L2(Ωi ∪ Ωe)-strong×M(Su)-weak×M(Su)-weak such that

lim
n→∞E2(σn, µi

n
, µe

n
) = E1(σ, µi, µe).(5.22)

If we can find such a sequence, then the proof is complete since equality (5.22) means
that E1 ≥ R(E2). However, since R(E1) is the greatest lower semicontinuous function
less than or equal to E1, we deduce that

R(E1) ≥ R(E2).(5.23)

Inequalities (5.21) and (5.23) conclude the proof. The difficulty lies in finding such
a sequence. The idea is to apply Theorem 5.1 in Ωi and Ωe, separately. In Ωi, we
obtain the existence of a sequence (σi

n
) such that

σi
n −−−→
L2(Ωi)

σ,

σi
n|Su = σi|Su ,

lim
n→∞

∫
Ωi
φ(‖∇σin‖)dx =

∫
Ωi
φ(Dσ).(5.24)

We proceed as we had done in Ωe and define the sequence (σn)-L2 a.e. on Ω by

σn(x) =

{
σi
n

if x ∈ Ωi,

σe
n

if x ∈ Ωe.
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It is easy to check that σn belongs to W1,1(Ωi ∪Ωe). Using that sequence, we define

the sequence of measures µi
n

and µe
n

defined on Su by

µi
n

= σi
n
ds,(5.25)

µe
n

= σe
n
ds.(5.26)

Notice that since we have fixed the traces of σn on both sides of Su, the sequences
defined by (5.25)–(5.26) are in fact constant. So we have

E2(σn, µi
n
, µe

n
) =∫

Ω

|σn · ∇u+ h1|dx+

∫
Ω

c(x)‖σn‖2dx︸ ︷︷ ︸
continuous for the L2 strong topology

+
2∑
j=1

∫
Ω

φ(Dσnj ) +

∫
Su

d|ν|︸ ︷︷ ︸
constant

and, moreover,∫
Ω

φ(Dσj) =

∫
Ωi
φ(Dσj) +

∫
Ωe
φ(Dσj) +

∫
Su

|σij − σej |ds

= lim
n→∞

∫
Ωi
φ(‖∇σij

n‖)dx+ lim
n→∞

∫
Ωe
φ(‖∇σej

n‖)dx+

∫
Su

|σij − σej |ds

= lim
n→∞

∫
Ω

φ(‖∇σnj ‖)dx.

Thus condition (5.22) is satisfied, and this concludes the proof.
Lemma 5.3. Let E1 and E2 be defined by (5.13) and (5.17), respectively. Then

E1 and E2 have the same lower semicontinuous relaxed functionals for the topology
L2(Ωi ∪ Ωe)-strong×M(Su)-weak×M(Su)-weak.

Proof. This proof is inspired by the proof of Lemma 5.2. The first step is anal-
ogous, and the only difficulty is to find, for a given (σ, µi, µe) ∈ BV(Ω) ×M(Su) ×
M(Su), a sequence (σn, θi

n
, θen) ∈W1,1(Ωi ∪ Ωe)× L1(Su)× L1(Su) such that

lim
n→∞E2(σn, θi

n
, θen) = E1(σ, µi, µe).(5.27)

Construction of the sequence σn uses the same arguments as in Lemma 5.2, that is,
the use of Theorem 5.1 on Ωi and Ωe. We recall that the traces of σn on both sides of
Su are constant. The construction of the sequence approximating µi, µe is based on a
result of Bouchitté–Valadier [14]. We recall that the part depending on the measures
µi, µe in E1 is

H(x, µi, µe, σi, σe) =

∫
Su

d|ν|+
∫
Su

‖µi − µe‖1 +

∫
Su

‖µi − σids‖1 + ‖µe − σeds‖1,

where the measure ν is defined by (5.10). It is easy to check that the functional H is
homogeneous, so that, using [14], we can find a sequence θi

n
, θen in L1(Su) such that

θi
n −−−⇀

M(Su)
µi,

θen −−−⇀
M(Su)

µe,

lim
n
H(x, θi

n
, θen, σi,σe) = H(x, µi, µe, σi, σe).

Consequently, the constructed sequence (σn, θi
n
, θen) permits us to get (5.27), which

concludes the proof.
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5.4. The relaxation results.
Proposition 5.4. Let E1 be the functional defined by (5.11) with hypotheses

(4.23)–(4.24), (4.2)–(4.3), (4.4)–(4.6), (4.7)–(4.8). Then the relaxed functional of E1

for the topology L2(Ωi ∪ Ωe)-strong×M(Su)-weak×M(Su)-weak is

R(E1) : BV(Ω)×M(Su)×M(Su)→ R,

(5.28)

R(E1)(σ, µi, µe) =

∫
Ω

|σ · ∇u+ h1|dx+
2∑
j=1

∫
Ωi∪Ωe

φ(Dσj) +

∫
Ω

c(x)‖σ‖2

+

∫
Su

d|ν|+
∫
Su

‖µi − µe‖1 +

∫
Su

‖µi − σids‖1 + ‖µe − σeds‖1,

where ν =
µi + µe

2
· n(u+ − u−) + h2ds.

We can verify that we have R(E1) ≤ E1 and that they are equal as soon as
µe = σeds and µi = σids.

Proof. To simplify notations, we will note τ the topology L2(Ωi ∪ Ωe)-strong ×
M(Su)-weak×M(Su)-weak and τd the topology L2(Ωi ∪Ωe)-weak×C0(Su)-strong×
C0(Su)-strong. Notice that we will also use the notation M to denote a universal
constant appearing in uniform bounds. This value may change from one line to
another, but we will always write M .

We first remark that using Lemma 5.2 permits us to work on a more regular space,
that is, with E2. R(E2) is the relaxed functional of E2 (or equivalently of E1, thanks
to Lemma 5.2) if and only if, for all (σ, µi, µe) ∈W1,1(Ωi ∪ Ωe) ×M(Su) ×M(Su),
we have the following two conditions:

(i) for all (σn, µi
n
, µe

n
)→
τ

(σ, µi, µe), then

liminf
n→∞ E2(σn, µi

n
, µe

n
) ≥ R(E2)(σ, µi, µe);(5.29)

(ii) there exists (σn, µi
n
, µe

n
)→
τ

(σ, µi, µe) such that

limsup
n→∞

E2(σn, µi
n
, µe

n
) ≤ R(E2)(σ, µi, µe).(5.30)

The purpose of the two steps below is to establish that R(E2) = E2.
Step 1. This part is devoted to proving that

liminf
n→∞ E2(σn, µi

n
, µe

n
) ≥ R(E2)(σ, µi, µe)

for all the sequences (σn, µi
n
, µe

n
) converging to (σ, µi, µe).

Let (σ, µi, µe) ∈W1,1(Ωi∪Ωe)×M(Su)×M(Su) and a sequence (σn, µi
n
, µe

n
) ∈

BV(Ω)×M(Su)×M(Su) converging to (σ, µi, µe) for the τ -topology such that

E2(σn, µi
n
, µe

n
) ≤M,
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where M is a constant. Then, thanks to (4.3), we deduce that

‖σn‖BV (Ω) ≤M,(5.31)

on Su we have

{
µi
n

= σi
n
ds,

µe
n

= σe
n
ds,

so


σi
n
ds −−−⇀

M(Su)
µi,

σe
n
ds −−−⇀

M(Su)
µe.

(5.32)

Since the sequence (σn) is bounded in BV (Ω), we can deduce that there exists a
measure µ̃ such that

σnds −−−⇀
M(∂Ω)

µ̃.(5.33)

Decomposing Ω permits us to write

E2(σn, µi
n
, µe

n
) =

∫
Ω

|σn · ∇u+ h1|dx+

∫
Ω

c(x)‖σn‖2dx

+
2∑
j=1

(∫
Ωi∪Ωe

φ(‖∇σnj ‖)dx
)

+

∫
Su

‖σin − σen‖1ds

+

∫
Su

d|νn|,

where νn is given by (5.10). Thanks to the convergence properties, it is easy to check
that

liminf
n→∞

∫
Ω

|σn · ∇u+ h1|dx+

∫
Ω

c(x)‖σn‖2dx ≥
∫

Ω

|σ · ∇u+ h1|dx+

∫
Ω

c(x)‖σ‖2dx,

liminf
n→∞

∫
Su

‖σin − σen‖1ds ≥
∫
Su

‖µi − µe‖1ds,(5.34)

liminf
n→∞

∫
Su

d|νn| ≥
∫
Su

d|ν|.

By classical arguments and for a fixed j, we also have

liminf
n→∞

∫
Ωi∪Ωe

φ(‖∇σnj ‖)dx ≥
∫

Ωi∪Ωe
φ(Dσj)dx.

However, this minoration will not allow us to conclude anything because we need
to be more precise. Using the notation proposed in Figure 5.1, and especially the
decomposition Ωi ∪ Ωe = Ωi,α ∪ Ωe,α ∪ Ωi,αSu ∪ Ωe,αSu , we can write∫

Ωi∪Ωe
φ(‖∇σjn‖)dx =

∫
Ωi,α∪Ωe,α

φ(‖∇σjn‖)dx︸ ︷︷ ︸
Aα

+

∫
Ωi,αSu∪Ωe,αSu

φ(‖∇σjn‖)dx︸ ︷︷ ︸
Bα

.(5.35)

We study both parts separately.
Integral Aα. By classical arguments [25], we can write

liminf
n→∞

∫
Ωi,α∪Ωe,α

φ(‖∇σnj ‖)dx ≥
∫

Ωi,α∪Ωe,α
φ(Dσj)dx.(5.36)
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Integral Bα. Thanks to (4.6), we have∫
Ωi,αSu∪Ωe,αSu

φ(‖∇σjn‖)dx ≥
∫

Ωi,αSu∪Ωe,αSu

φ∞(‖∇σjn‖)dx− k|Ωi,αSu ∪ Ωe,αSu |.

However, since φ∞ is convex, we have

φ∞(‖∇σjn‖) = sup qGj · ∇σnj − (φ∞)∗(qGj)
qGj∈R2

,

where

(φ∞)∗(x∗) =

{
0 if x∗ ∈ dom(φ∗) = {x∗ ∈ R2/|x∗| < 1},
+∞ otherwise.

So, for any function qGj(x) such that qGj(x) ∈ dom(φ∗) a.e. x ∈ Ω with qGj in K
defined by

K = {q ∈L2(Ω) such that

‖qi‖L∞(Ω) ≤ 1, ‖qe‖L∞(Ω) ≤ 1,

div(qi) and div(qe) ∈ L2(Ω),

qi · n|Su and qe · n|Su ∈ C0(Su),

q · n|∂Ω = 0},(5.37)

we have ∫
Ωi,αSu∪Ωe,αSu

φ∞(‖∇σjn‖) ≥
∫

Ωi,αSu∪Ωe,αSu

qGj · ∇σnj .(5.38)

The set K has been introduced so that all the integrals that we are going to write
below are well defined. The only remaining problem is to estimate the limit of the
right-hand side. To this end, we first integrate by parts the same term, but on Ω. We
have∫

Ω

qGj ·∇σnj dx =

∫
Ωi
qGj · ∇σnj dx+

∫
Ωe
qGj · ∇σnj dx

= −
∫

Ωi∪Ωe
div(qGj)σnj dx+

∫
Su

(qGj
i
σij
n − qGjeσej

n
) · nds+

∫
∂Ω

qGjσnj · nds.

Thanks to the strong convergence in L2(Ωi ∪ Ωe) of the sequence σn and to (5.32)
(5.33), we have

lim
n→∞

∫
Ω

qGj · ∇σnj(5.39)

= −
∫

Ωi∪Ωe
div(qGj)σjdx+

∫
Su

(qGj
i
µij − qGj

e
µej) · n+

∫
∂Ω

qGj µ̃j · n.

Moreover, if we consider qGj · ∇σnj as a measure, for ϕ ∈ C1
c (Ω), we have by (4.11)

〈qGj · ∇σnj , ϕ〉 = −
∫

Ω

div(qGj)σnj ϕdx−
∫

Ω

qGj · ∇ϕσnj dx.
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When n tends to infinity, we have

lim
n→∞〈q

Gj · ∇σnj , ϕ〉 = −
∫

Ω

div(qGj)σjϕ−
∫

Ω

qGj · ∇ϕσj
= 〈qGj · ∇σj , ϕ〉.

The last result is the same as saying that the measure qGj ·∇σnj converges to qGj ·∇σj
for the topology M(Ω)weak?. Since Ω is bounded, we can prove in fact that

lim
n→∞

∫
Ωi,α∪Ωe,α

qGj · ∇σnj dx =

∫
Ωi,α∪Ωe,α

qGj · ∇σjdx.(5.40)

Consequently, substracting (5.40) from (5.39) permits us to write

lim
n→∞

∫
Ωi,αSu∪Ωe,αSu

qGj · ∇σnj dx =−
∫

Ωi∪Ωe
div(qGj)σjdx−

∫
Ωi,α∪Ωe,α

qGj · ∇σjdx

+

∫
Su

(qGj
i
µij − qGj

e
µej) · n+

∫
∂Ω

qGj µ̃j · n,

and, after integrating by part the term

∫
Ωi,α∪Ωe,α

qGj · ∇σjdx, we can rewrite (5.38):

lim
n→∞

∫
Ωi,αSu∪Ωe,αSu

φ(‖∇σnj ‖)dx ≥−
∫

Ωi∪Ωe
div(qGj)σjdx+

∫
Ωi,α∪Ωe,α

div(qGj)σjdx

+

∫
Su

(qGj
i
µij − qGj

e
µej) · n

−
∫
Si,αu

qGj
i
σij · nds−

∫
Se,αu

qGj
e
σej · nds

+

∫
∂Ω

qGj · n(µ̃j − σjds).(5.41)

Now that we have found a minoration for integrals Aα (5.36) and Bα (5.41), we merge
both results and let α tend to 0. The obtained result is

liminf
n→∞ E2(σn, µi

n
, µe

n
)

≥
∫

Ω

|σ · ∇u+ h1|dx+
2∑
j=1

∫
Ωi∪Ωe

φ(Dσj) +

∫
Ω

c(x)‖σ‖2 +

∫
Su

d|ν|+
∫
Su

‖µi − µe‖1

(�) +
2∑
j=1

∫
Su

qGj
i · n(µij − σijds)−

2∑
j=1

∫
Su

qGj
e · n(µej − σejds)

(♦) +

2∑
j=1

∫
∂Ω

qGj · n(µ̃j − σjds),

(5.42)

where ν =
µi + µe

2 · n(u+ − u−) + h2ds. Since this inequality is true for all qG =

(qG1, qG2) ∈ K×K, it is still true when we take the supremum in qG. This supremum
is taken for qG1, qG2 ∈ K defined by (5.37). Next, we introduce the set

C(x) = closure{(qi(x) · n(x), qe(x) · n(x)), (qi, qe) ∈ K},
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which can be rewritten as

C(x) = closure{(zi,ze) ∈ R2 such that

∃(ϕi, ϕe) ∈ [C0(Su)]2/ϕi(x) = zi, ϕe(x) = ze,

∃(qi, qe), ‖qi‖∞ ≤ 1, ‖qe‖∞ ≤ 1,div(qi) and div(qe) ∈ L2(Ω),

qi(x) · n(x) = ϕi(x), qe(x) · n(x) = ϕe(x) , x ∈ Su
q(x) · n = 0 x ∈ ∂Ω}.

To compute the supremum of (5.42), we consider in (5.42) only the term noted with
the symbol (�). Notice that the term noted with the symbol (♦) will not appear
in the minimization thanks to the definition of the set K, where we have imposed
q · n|∂Ω = 0. If we note

W =

(
(µi1 − σi1, µe1 − σe1)

(µi2 − σi2, µe2 − σe2)

)
,

we claim that

sup


2∑
j=1

∫
Su

qGj
i · n(µij − σijds)−

2∑
j=1

∫
Su

qGj
e · n(µej − σejds)


(qG1,qG2)∈K2

= sup
Z

∫
Su

2∑
j=1

Ztj ·Wj , where Z =

(
(zi1, z

e
1)

(zi2, z
e
2)

)
∈ C(x)2(5.43)

=

∫
Su

‖µi − σids‖1 + ‖µe − σeds‖1.(5.44)

Equality (5.43) corresponds to the permutation of the supremum. It is based on
techniques developed in [15, 17]. We then need to express that supremum giving the
expression (5.44) [14, 13]. We refer to [35] for the complete proof.

Finally, taking the supremum in (5.42) with respect to qGj
i
,qGj

e
and using (5.44)

permits us to have

liminf
n→∞ E2(σn, µi

n
, µe

n
) ≥ E2(σ, µi, µe),(5.45)

where E2 has been previously defined in (5.17). The functional E2 is then a candidate
to be the relaxed functional of E2. It remains to show the second condition (5.30)
(with R(E2) = E2), which is the aim of Step 2.

Step 2. The way to demonstrate (5.30) is based on the following assertion. Show-
ing (5.30) is equivalent to proving that

for all (f, ϕi, ϕe) ∈ L∞(Ωi ∪ Ωe)× C0(Su)× C0(Su)

there exists (fn, ϕi
n
, ϕe

n
)→
τd

(f, ϕi, ϕe) such that

liminf
n→∞ E∗2 (fn, ϕi

n
, ϕe

n
) ≥ R(E2)∗(f, ϕi, ϕe),(5.46)

where the superscript ∗ denotes the conjugate functionals. This result is due to [8]
(see also [13], where this idea has been used).
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Naturally, the difficulty is to compute the conjugate functional of E2 and E2.
This is done in Lemmas A.1 and A.2 of the appendix. We have shown that

E∗2 (f, ϕi, ϕe) = inf J(q)
q∈A(f,ϕi,ϕe)

,

where the minimum is computed for q = (qσ, qG1, qG2, qu, qT1, qT2, qSu) in (L∞(Ωi ∪ Ωe))3

× L∞(Ωi ∪ Ωe)× (L∞(Su))2 × L∞(Su) verifying the conditions (A.2)–(A.10) (which
defines the set A(f, ϕi, ϕe)) and

E2
∗
(f, ϕi, ϕe) = inf J(q)

q∈A(f,ϕi,ϕe)

when the minimum is computed for q = (qσ, qG1, qG2, qu, qT1, qT2, qµ
i

, qµ
e

, qSu) in
(L∞(Ωi ∪ Ωe))3 × L∞(Ωi ∪ Ωe) × (L∞(Su))4 × L∞(Su) verifying conditions (A.13)–
(A.24) (which defines the set A(f, ϕi, ϕe)). For more details about the definitions of
J, J,A(f, ϕi, ϕe) and A(f, ϕi, ϕe), we refer to Lemmas A.1 and A.2.

Let (fn, ϕi
n
, ϕe

n
) be a sequence such that

liminf
n→∞ E∗2 (fn, ϕi

n
, ϕe

n
) ≤M,(5.47)

where M is a constant. Then, for each n and using the definition of the conjugate
function associated with E2 (Lemma A.1), there exists a qn ∈ A(fn, ϕi

n
, ϕe

n
) so that

E∗2 (fn, ϕi
n
, ϕe

n
) ≥ J(qn)− 1

n
.(5.48)

Since E∗2 (fn, ϕi
n
, ϕe

n
) is uniformly bounded thanks to (5.47), it is easy to check that

we can find an element q ∈ A(f, ϕi, ϕe) such that the sequence qn converges to q for
the weak topology of this space, that is to say, the topology

(L∞(Ωi ∪ Ωe))3weak× L∞(Ωi ∪ Ωe)weak× (L∞(Su))2weak× L∞(Su)weak.

As the function J is lower semicontinuous for this topology, we have

liminf
n→∞ J(qn) ≥ J(q) ≥ inf J(q)

q∈A(f,ϕi,ϕe)

.(5.49)

Now, let us define the application T by

T : A(f, ϕi, ϕe)→ A(f, ϕi, ϕe),(5.50)

T (q) = q,
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where q is defined by:

qσ = qσ,

qGj = qGj , j = 1, 2,

qu = qu,

qSu = qSu ,

qTi =
1

2
qSu · n(u+ − u−) + qTi,

qTe =
1

2
qSu · n(u+ − u−) + qTe,

qµ
i

= ϕi − 1

2
qSu · n(u+ − u−),

qµ
e

= ϕe − 1

2
qSu · n(u+ − u−).

An easy computation permits us to see that if q belongs to A(f, ϕi, ϕe), then T (q)
belongs to A(f, ϕi, ϕe). Moreover, we can observe that

J(q) = J(T (q)).

Consequently, using (5.48)–(5.49), the definition of the function T and Lemma A.2,
we have

liminf
n→∞ E∗2 (fn, ϕi

n
, ϕe

n
) ≥ inf J(q)

q∈A(f,ϕi,ϕe)

= inf J(q)
q∈A(f,ϕi,ϕe)∩Im(T )

≥ inf J(q)
q∈A(f,ϕi,ϕe)

= E
∗
2(f, ϕi, ϕe),

(5.51)

which is exactly the statement (5.46).
Conclusion. As we can observe, the functional E2 complies with conditions (5.45)

and (5.51), that is to say, (5.29)–(5.30) (or, equivalently, (5.29)–(5.46)). As a conclu-
sion, we have

R(E2) = E2,

which is the desired statement.
Proposition 5.5. The relaxed functional noted R(E) of the functional E defined

by (5.3) is given by

R(E) : BV(Ω)→ R,

(5.52)

R(E)(σ) =

∫
Ω

|σ · ∇u+ h1|dx+

2∑
j=1

∫
Ωi∪Ωe

φ(Dσj) +

∫
Ω

c(x)‖σ‖2 +

∫
Su

β(x, σi, σe),

where

β(x, λ, θ) = Inf

{
|λ− s|+ |θ − t|+ |s− t|+

∣∣∣∣s+ t

2
· n(x)(u+ − u−) + h2(x)

∣∣∣∣ :

(s, t) ∈ RN ×RN
}
.

(5.53)
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Proof. This proposition is a direct consequence of Proposition 5.4, and we will
just sketch the proof. Let us define

G(σ) = inf E1(σ, µi, µe)
(µi,µe)∈M(Ω)

.

By classical arguments, we prove that the functional G is lower semicontinuous, less
than E, and also greater that R(E); so in fact

G(σ) = R(E)(σ).

We deduce the final result from a Rockafellar theorem [42, 44] which permits to
permute the infimum and the integral.

6. Existence for the relaxed functional.
Proposition 6.1. Let R(E) be defined by (5.52) and (??), where u verifies

hypotheses (4.23)–(4.24), φ(·) satisfies (4.2)–(4.3), (4.4)–(4.6), and c(x) is a function
verifying (4.7)–(4.8). Then the problem Inf{R(E)(σ) : σ ∈ BV(Ω)} admits a solution
in BV(Ω).

Proof. The functional R(E) is a convex function of measures which is lower semi-
continuous by construction. Moreover, it is coercive, so we can uniformly bound mini-
mizing sequences and deduce by classical arguments the existence of a solution.

The above theorem proves an existence result for the relaxed functional associated
to the optical flow problem. The main difficulty came from the product (σ ·Du), for
which we found an explicit integral representation. It will be interesting to study
more general functionals involving terms of the form f((σ ·Du)). This question will
be considered in a forthcoming paper.

Another challenging problem is the numerical analysis of these abstract results.
This induces several difficulties. One of the first is to characterize the solution. No
Euler equations can be written, but some partial answers have been given, using
variational [4] or dual [51] formulations. Then it will be necessary to propose some
suitable discretizations to take into account the discontinuities of the solution. These
problems will be considered in the future.

Appendix A. The dual functionals E∗2 and E
∗
2. We give in the two lemmas

below the detailed expressions of the dual functions associated to E2 and E2.
Lemma A.1. Let E2 be given by (5.16). Its dual functional is defined by

E∗2 : L∞(Ωi ∪ Ωe)× C0(Su)× C0(Su)→ R,(A.1)

E∗2 (f, ϕi, ϕe) = inf J(q),
q∈A(f,ϕi,ϕe)

where the infimum is taken over q = (qσ, qG1, qG2, qu, qTi, qTe, qSu) belonging to
(L∞(Ωi ∪ Ωe))3 × L∞(Ωi ∪ Ωe) × (L∞(Su))2 × L∞(Su) and complying the following
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conditions:

|qu| ≤ 1 a.e. on Ω,(A.2)

|qGj | ≤ 1, j = 1, 2, a.e. on Ω,(A.3)

|qSu | ≤ 1 a.e. on Su,(A.4)

|qTi + ϕi| ≤ 1 a.e. on Su,(A.5)

qu∇u+ qσ − div(qG)− f = 0 on Ω,(A.6)

1

2
qSun(u+ − u−) + qTi + qGi

n = 0 on Su,(A.7)

1

2
qSun(u+ − u−) + qTe + qGe

n = 0 on Su,(A.8)

qTi + ϕi + qTe + ϕe = 0 on Su,(A.9)

qGn = 0 on ∂Ω,(A.10)

where qG is the matrix defined by qG =

(
qG1T

qG2T

)
and where the function J is

defined by

J(q) =

∫
Ω

quh1dx+

∫
Ω

1

4c(x)2 |qσ|2dx+
2∑
j=1

∫
Ω

φ∗(|qGj |)dx+

∫
Su

qSuh2ds.(A.11)

Lemma A.2. Let E2 given by (5.17). Its dual functional is defined by

E
∗
2 : L∞(Ωi ∪ Ωe)× C0(Su)× C0(Su)→ R,(A.12)

E
∗
2(f, ϕi, ϕe) = inf J(q)

q∈A(f,ϕi,ϕe)

,

where the infimum is taken over q = (qσ, qG1, qG2, qu, qTi, qTe, qµ
i

, qµ
e

, qSu) belonging
to (L∞(Ωi ∪ Ωe))3×L∞(Ωi∪Ωe)×(L∞(Su))4×L∞(Su) and complying to the following
conditions:

|qu| ≤ 1 a.e. on Ω,(A.13)

|qGj | ≤ 1 (j = 1, 2) a.e. on Ω,(A.14)

|qSu | ≤ 1 a.e. on Su,(A.15)

|qTi + qµ
i | ≤ 1 a.e. on Su,(A.16)

qTi and qTe ∈ C(x) a.e. on Su,(A.17)

qu · ∇u+ qσ − div(qG)− f = 0 on Ω,(A.18)

qTi + qGi
: n = 0 on Su,(A.19)

qTe + qGe
: n = 0 on Su,(A.20)

1

2
qSun(u+ − u−) + qµ

i − ϕi = 0 on Su,(A.21)

1

2
qSun(u+ − u−) + qµ

e − ϕe = 0 on Su,(A.22)

qTi + qµ
i

+ qTe + qµ
e

= 0 on Su,(A.23)

qG : n = 0 on ∂Ω,(A.24)
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where qG is the matrix defined by qG =

(
qG1T

qG2T

)
and where the function J is

defined by

J(q) =

∫
Ω

quh1dx+

∫
Ω

1

4c(x)2 |qσ|2dx+
2∑
j=1

∫
Ω

φ∗(|qGj |)dx+

∫
Su

qSuh2ds.(A.25)

Proof of Lemmas A.1 and A.2. We refer to [35] for the complete proof, which
is mainly technical. To get that result, we used classical techniques developed in
[21], Rockafellar’s theorem, and suitable choices of dual variables q, q to simplify
calculus.

Acknowledgments. We thank M. Bellieud, G. Bouchitté, and G. Buttazzo for
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[10] A.C. Barroso, G. Bouchitté, G. Buttazzo, and I. Fonseca, Relaxation of bulk and inter-
facial energies, Arch. Rational Mech. Anal., 135 (1996), pp. 107–173.
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Abstract. The goal of this article is to show that the notion of generalized graphs is able to
represent the limit points of the sequence {g(un) dun} in the weak-? topology of measures when {un}
is a sequence of continuous functions of uniformly bounded variation. The representation theorem
induces a natural definition for the nonconservative product g(u) du in a BV context. Several existing
definitions of nonconservative products are then compared, and the theory is applied to provide
a notion of solutions and an existence theory to the Riemann problem for quasi-linear, strictly
hyperbolic systems.
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1. Introduction. The objective of this article is to present a theoretical frame
for the definition and properties of nonconservative products in one space dimension.
The issue of defining nonconservative products appears with Volpert’s chain rule [31]
for BV functions in several space dimensions. It is a central problem for defining a
notion of weak solutions for a general quasi-linear hyperbolic system

∂tu+A(u) ∂xu = 0, u(x, t) ∈ RN , x ∈ R, t > 0.(1.1)

Such systems appear in several models of the engineering and physics literature, e.g.,
[5, 8, 23, 24, 25, 28]. The origin of the nonconservative terms is usually a simplifying
modeling assumption or a closure hypothesis. If (1.1) is conservative, i.e., A(u) =
∇F (u) for some F : RN → RN , then weak solutions are defined in the sense of
distributions. In the general case, however, the term A(u) ∂xu will contain products
of discontinuous functions with measures, and its definition is not obvious. At present,
successful definitions exist in the one-space dimensional BV framework by LeFloch
[14, 15], Dal Maso, LeFloch, and Murat [10] and Raymond [27]. The definition in [10]
is based on a family of Lipschitz paths, is stable under weak convergence, and leads to a
solution of the Riemann problem in the class of genuinely nonlinear, strictly hyperbolic
systems with Riemann data that are sufficiently close. It has prompted investigations
on existence of weak solutions to (1.1), LeFloch and Liu [17], and on convergence of
numerical schemes, Hou and LeFloch [12]. The concept of extended graphs is used in
[27] to provide a general definition that is stable under weak convergence.
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Related issues appear in studies of transport equations with discontinuous coeffi-
cients (e.g., LeFloch [15, 16], LeFloch and Xin [20], Poupaud and Rascle [22], Bouchut
and James [4]) and in minimization of certain types of functionals in the space of
functions of bounded variation (e.g., Aviles and Giga [1], Raymond and Seghir [26]).
The reader is referred to Colombeau [6], Colombeau and Leroux [7] for a theory of
nonconservative products in a weaker functional framework.

Let g : RN → RN be a continuous function and u : [a, b] → RN be a function of
bounded variation. Our scope is to provide a justifiable definition for the inner product

of g(u) and du
dx , formally given by g(u)dudx =

∑N
i=1 g

i(u) du
i

dx . This definition will be

suggested by a representation theory of the limit points of sequences {g(un)dundx } in
weak topologies when the functions un are smooth. This viewpoint reflects the premise
that (1.1) arises in the limit of regularized problems as the dissipative mechanisms,
such as viscosity or relaxation time, tend to zero. Accordingly, the nonconservative
product will appear as a limit of regularized sequences.

If u is a continuous BV function, there is a natural definition of the product
µ = g(u) dudx as a Radon measure on C[a, b]. This is done by setting

〈µ, θ〉 =

∫
[a,b]

θ(x)g(u(x)) du(x), θ ∈ C[a, b],(1.2)

where the right-hand side is viewed as a Borel–Stieltjes integral relative to the (vector-
valued, signed) measure generated by u ∈ C∩BV . This definition is appropriate when
u is continuous. If u has discontinuities, definition (1.2) is “not stable,” because the
integral

∫
fdu, for f ∈ L1(du), changes values when changing f at the points of

discontinuity of u.
Consider a sequence {un} of continuous functions un : [a, b] → RN that are of

uniformly bounded variation

sup
[a,b]

|un|+ TV[a,b] (un) ≤ C.(1.3)

The products g(un)dun are well defined by (1.2) and belong toM[a, b] =
[C[a, b]]?, the

dual space of C([a, b];RN). The space of Radon measuresM[a, b] is usually equipped
either with the strong topology, generated by the dual norm ‖.‖M, or with the weak-?
topology. On account of (1.3), the sequence {g(un)dun} satisfies ‖g(un)dun‖M ≤ C ′.
(Throughout C,C ′, . . . will stand for constants that are independent of n.) Therefore,
along a subsequence,

g(un′)
dun′

dx
⇀ µ weak-? in M[a, b](1.4)

to some measure µ. Example 1.1 illustrates that, even if un(x)→ u(x) pointwise, the
sequence {g(un)dun} may have multiple limit points in the weak-? topology.

Example 1.1. Let u0, u1 be two states in RN , x0 ∈ (a, b) and π : [0, 1]→ RN be a
Lipschitz continuous path satisfying π(0) = u0 and π(1) = u1. Consider the sequence
of functions vn, defined by

vn(x) :=


u0 if x ∈ [a, x0 − 1/n],

π
(x−(x0−1/n)

2/n

)
if x ∈ [x0 − 1/n, x0 + 1/n],

u1 if x ∈ [x0 + 1/n, b].

(1.5)
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As n→∞, the sequence {vn} converges pointwise,

vn(x)→ v(x) :=


u0 if x ∈ [a, x0),

π(1/2) if x = x0,

u1 if x ∈ (x0, b],

(1.6)

and a calculation shows that∫ b

a

ϕ(x)g(vn(x))
dvn
dx

dx→
(∫ 1

0

g(π(s))π′(s)ds
)
ϕ(x0)

for ϕ ∈ C[a, b]. That is,

g(vn)
dvn
dx

⇀ c(g, π)δx0 weak-? in M[a, b],(1.7)

where δx0 stands for the Dirac measure at x0 and the scalar c(g, π) is given by the
formula

c(g, π) :=

∫ 1

0

g(π(s))π′(s)ds.(1.8)

Therefore, first, the limit points of {g(vn)dvndx } depend on the limiting graph selected
by {vn}, expressed via the path π. Second, by mixing sequences whose internal
structure is described by several distinct paths πj , it is easy to generate a sequence
{vn} which converges pointwise to the (same) limit v, but where {g(vn)dvndx } has
multiple weak-? limit points. There exists a notable exception to these features: If
g = ∇f for some f : RN → R, then c(g, π) = f(u1)−f(u0) and the weak-? limit (1.7)
is independent of π.

To characterize the weak-? limit points of {g(un)dun} we follow the approach
of Tartar [29], in his representation theory of weak limits via Young measures. Let
C0([a, b]×RN ) be the space of RN -valued continuous functions f = f(x, λ) that tend to
zero as λ ∈ RN tends to infinity, equipped with the sup-norm, and letM([a, b]×RN ) =[C0([a, b] × RN )

]?
be the dual space of Radon measures on [a, b] × RN . Define the

Radon measures pn by

〈pn, f〉 :=

∫ b

a

f(x, un(x)) dun(x) for f ∈ C0([a, b]× RN ).(1.9)

Then (1.3) implies that

|〈pn, f〉| ≤
(
TV[a,b] (un)

)
sup

x∈[a,b],|λ|≤C
|f(x, λ)|

and, hence, ‖pn‖M ≤ C. There exist a subsequence {pnk} and a measure p ∈
M([a, b]× RN ) such that

pnk ⇀ p weakly-? in M([a, b]× RN ).(1.10)

The question becomes to characterize the weak-? limit points of the sequence {pn}.
The characterization is effected by using the concept of graph completion or (as

we prefer to call it) generalized graph. This concept was introduced by Bressan and
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Rampazzo [3] in a context of control problems and turns out to be sufficiently dis-
criminating to capture the limiting graphs of the sequence {un}. Generalized graphs
were used by Dal Maso, LeFloch, and Murat [10] and Raymond [27] as intermediate
steps in their definitions of nonconservative products.

Definition 1.2 (see [3]). A generalized graph of u is a map (X,U) : [0, 1] →
[a, b]× RN such that X, U are Lipschitz continuous and satisfy

(1) (X(0), U(0)) = (a, u(a)), (X(1), U(1)) = (b, u(b));
(2) X is increasing: s1 < s2 implies X(s1) ≤ X(s2);
(3) given y ∈ [a, b], there exists s ∈ [0, 1] such that X(s) = y, U(s) = u(y).
Our aim is to reveal the central role of generalized graphs in providing a ge-

ometrically motivated definition of nonconservative products. To this end we ex-
ploit an equivalence relation on the space of continuous functions, accounting for
reparametrizations of graphs, and the associated pseudometric of uniform graph con-
vergence [3]. By definition, a sequence of graphs {gr(un)} is Cauchy in the sense of
graph convergence, if upon reparametrizing its elements gr(un) we obtain a Cauchy
sequence in the uniform metric. We will show that, given a sequence of continuous
functions {un} that is bounded in BV [a, b], generalized graphs emerge as and are
in correspondence to limit points of the sequence of graphs of un, {gr(un)}, in the
pseudometric of uniform graph convergence. Therefore, the terminology “graph com-
pletion” is somewhat misleading, in that it suggests that the completion of the graph
is effected arbitrarily from the outside. Since such objects emerge as limits of graphs
of sequences of continuous functions, we opt for the more pertinent terminology gen-
eralized graph. Using this notion we prove a representation theorem on the weak-?
limits in (1.4) and (1.10).

Theorem 1.3. (a) Let {un} be a sequence of continuous functions satisfying
the uniform bounds (1.3). There exists a subsequence {unk} and a generalized graph
(X,U) such that, for any continuous function g = g(λ), we have∫

[a,b]

θ(x)g(unk(x)) dunk(x)→ 〈µ(g), θ〉 for θ ∈ C[a, b],(1.11)

where µ : C0(RN )→M[a, b] is defined by

〈µ(g), θ〉 =

∫ 1

0

θ(X(s))g(U(s)) dU(s).(1.12)

(b) Conversely, given a generalized graph (X,U), let µ be defined by (1.12). There
exists a sequence of Lipschitz functions {un}, uniformly bounded in BV, such that for
any continuous g,

g(un)dun ⇀ µ(g) weak-? in M[a, b].(1.13)

The plan of the article is as follows. Section 2 is preliminary, presenting a change
of variable formula for Borel–Stieltjes integrals, an equivalence relation accounting for
reparametrizations of continuous paths, and the notion of uniform graph convergence.
The case of a continuous BV function is also considered; we introduce the arc-length
(or canonical) parametrization of the graph of u and use it, in conjunction with the
change of variable formula, to explore the ramifications of definition (1.2) for the
nonconservative product g(u) du, with u ∈ C ∩BV .

In sections 3 and 4 we study properties of sequences of continuous functions {un}
that are bounded in BV [a, b]. After presenting the notion of a generalized graph,
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we show that, first, generalized graphs arise as limits of subsequences to {gr(un)} in
the pseudometric of graph convergence and, second, that a given generalized graph
can always be approximated by a suitable sequence of graphs of continuous functions.
The results are summarized in Theorem 3.2 and are put in a metric space framework
at the end of section 3.1. Then in section 3.2 we prove a representation theorem.

The representation theorem suggests to define nonconservative products as mea-
sures based on generalized graphs. Two definitions, along with associated weak sta-
bility theorems, are pursued: In section 4.1, the nonconservative product is defined as
a Radon measure (Definition 4.1), while, in section 4.2, it is defined as a signed Borel
measure via its distribution function (Definition 4.4). The definitions are equivalent
and invariant under reparametrizations of the geometric graph determined by (X,U);
i.e., they depend on the equivalence class of the generalized graph (X,U) but not on
the specific representative.

In sections 4.3 and 4.4, we compare various definitions of nonconservative prod-
ucts. To assess the issue, it is instructive to keep in mind the analogy to the solution
of the Riemann problem for hyperbolic systems. There exist two approaches for solv-
ing the Riemann problem: In the first the solution is effected by patching together
elementary solutions (shocks, rarefaction waves, and contact discontinuities), while in
the second the whole wave fan is visualized to emerge as a single structure in a small
parameter (viscosity, relaxation, etc.) limit of a higher-order theory. Accordingly,
two viewpoints for defining nonconservative products can be taken: (i) the product is
defined in a pointwise fashion by using a predetermined family of paths at points of
jump discontinuity, (ii) the product is defined on the whole structure (the generalized
graph). The comparison hinges on the relation between generalized graphs and graphs
of functions of bounded variation (Propositions 4.7 and 4.8). The emerging defini-
tions are consistent, with each being more adept for a different range of applications.
Section 4.4 analyzes several typical examples of nonconservative products.

We complete the article with a study of the Riemann problem for quasi-linear
hyperbolic systems. For genuinely nonlinear systems the solution of the Riemann
problem is established in LeFloch [14] and Dal Maso, LeFloch, and Murat [10]. The
main step is a construction of the shock curves in the nonconservative case, in the
spirit of Lax [13]. The present result is based on an entirely different construction
process, following the method of self-similar zero-viscosity limits (see Dafermos [9],
Tzavaras [30]). It yields a solution for weak waves of the Riemann problem in the
class of general strictly hyperbolic systems with no further assumptions (like genuine
nonlinearity or finite number of inflection points) on the characteristic fields. The
necessary a priori BV estimates are established in the companion articles [18, 19].

2. Preliminary notions.

2.1. Change of variables formula. Throughout, we work in the framework of
functions of bounded variation. The total variation of an RN -valued function u on an
interval [a, b] is defined by

TV[a,b](u) := sup
n∑
i=1

|u(xi)− u(xi−1)|,

where | · | stands for the Euclidean length in RN and the supremum is taken over all
finite partitions a = x0 < x1 < · · · < xn = b. Let u : [a, b] → RN be a function of
bounded variation and let Tu : [a, b] → [0,∞) be the total variation function of u,
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defined by

Tu(x) := TV[a,x](u) for x ∈ [a, b].(2.1)

The domain of u can be decomposed into two disjoint sets: Cu the set of points of
continuity of u and Su the set of points of discontinuity, respectively. The set Su is at
most countable, and the right and left limits u(x+), u(x−), for x ∈ (a, b), and u(a+),
u(b−) exist and are finite. We use the notation u(a−) = u(a) and u(b+) = u(b). Note
that x is a point of (right or left) continuity for u if and only if x is a point of (right or
left) continuity for Tu. In the particular case that u is Lipschitz continuous (or even
when u is absolutely continuous, u ∈W 1,1

(
a, b
)
), the total variation function Tu can

be computed by the formula

Tu(x) =

∫ x

a

|u′(y)| dy.(2.2)

If u is of bounded variation and right continuous on (a, b), there exists a unique
finite, signed Borel measure µu generated by u,

u(x)− u(a+) = µu((a, x]) for x ∈ (a, b], u(a+)− u(a) = µu({a}).
The measure µu is typically denoted by du, its total variation measure satisfies |du| =
dTu, and it can be decomposed into an absolutely continuous part u′(x)dx, an atomic
part dau, and a singular part (relative to the Lebesgue measure) dsu, according to
the formula du = u′(x)dx+ dau+ dsu.

For functions u, v : [a, b]→ RN right continuous and of bounded variation, there
is an integration by parts formula: If u and v have no common points of discontinuity,
Su ∩ Sv = ∅, then∫

[α,β]

v(x)du(x) +

∫
[α,β]

u(x)dv(x) = v(β+)u(β+)− v(α−)u(α−)(2.3)

for any [α, β] ⊂ [a, b]. (Here and in what follows we use the notation v du to mean the
inner product

∑
i vidui, where ui and vi are the components of u and v, respectively.)

If v is absolutely continuous, (2.3) takes the more conventional form∫
[α,β]

v(x)du(x) = −
∫

[α,β]

u(x)v′(x)dx+ v(β)u(β+)− v(α)u(α−).(2.4)

We will need certain change of variable formulas that follow from a general mea-
sure theoretic construction. We first outline the general construction of image mea-
sures, taken out of Folland [11, p. 287]. Let (Ω,B, µ) be a measure space, let (Ω′,B′)
be a measurable space, and let ϕ : Ω → Ω′ be a (B,B′)-measurable map. Then µ
induces an image measure µϕ on Ω′ by

µϕ(E) = µ
(
ϕ−1(E)

)
for E ∈ B′.(2.5)

It is easy to check that µϕ defines a measure on (Ω′,B′). (The reader is warned not to
confuse the measure µϕ with the Borel measure µu generated by the right continuous
BV function u.) One also has the formula.

Proposition 2.1. If f : Ω′ → R is a measurable function, then∫
Ω′
f dµϕ =

∫
Ω

(
f ◦ ϕ)dµ(2.6)

whenever either side is defined.
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The proof of (2.6) follows the familiar process of first proving it for characteristic
functions f = 1lE with E ∈ B′, by using 1lE ◦ ϕ = 1lϕ−1(E) and (2.5), then for simple
functions and finally for integrable functions; cf. [11, p. 287]. In probability theory,
when µ is a probability measure and ϕ : Ω → R is a Borel-measurable real-valued
function, the image measure µϕ is called the distribution of the random variable ϕ.

For u a right continuous function of bounded variation, let L1(du) denote the
integrable functions with respect to the (signed) vector measure du. For instance,
all the bounded, Borel measurable functions belong to L1(du). Proposition 2.1 pro-
vides certain change of variable formulas for Borel–Stieltjes integrals that are used
extensively in the sequel.

Theorem 2.2. Let u : [a, b] → RN be a right continuous function of bounded
variation, and let X : [0, 1]→ [a, b] be a continuous increasing (not necessarily strictly
increasing) change of variables with X(0) = a, X(1) = b.

(a) If X−1 denotes the left-continuous inverse of X, then, for f ∈ L1
(
d(u ◦X)

)
,

we have ∫
[0,1]

f(s) d
(
u ◦X)(s) =

∫
[a,b]

f ◦X−1(x) du(x).(2.7)

(b) For any function g ∈ L1
(
du), we have∫

[0,1]

(
g ◦X)(s) d(u ◦X)(s) =

∫
[a,b]

g(x) du(x).(2.8)

Formula (2.8) when du is the Lebesgue measure is stated as an exercise in Folland
[11, p. 103]. It is easy to construct examples showing that (2.8) fails if the hypothesis
“X continuous” is replaced by “X right continuous.”

Proof. We first establish (2.7) and (2.8) under the hypotheses

u : [a, b]→ R increasing and right continuous,

f : [0, 1]→ [0,∞] Borel measurable,

g : [a, b]→ [0,∞] Borel measurable.

(2.9)

Since X is increasing, the inverse of X is a multivalued increasing map. We select
the single-valued left-continuous inverse ϕ = X−1 of the map X. Note that X◦ϕ = id,
but in general ϕ ◦X 6= id. The function ϕ : [a, b]→ [0, 1] is single valued, increasing,
and satisfies

ϕ−1
(
(s, τ ]

)
= (X(s), X(τ)] for s, τ ∈ [0, 1].

Since the half-open intervals generate the Borel σ-algebra, ϕ is a (B[a,b],B[0,1])-measur-
able map, that is, a Borel measurable map. Also, f ◦ ϕ is Borel measurable as well.

Let µu be the Borel measure generated by u, and let µϕu be the image measure of
µu under ϕ. Then

µϕu
(
(s, τ ]

)
= µu

(
ϕ−1

(
(s, τ ]

))
= µu

(
(X(s), X(τ)]

)
= µu◦X

(
(s, τ ]

)
.

Since µϕu and µu◦X agree on the half-open intervals, the extension theorems for pre-
measures (e.g., [11, Thms. 1.14 and 1.16]) imply µϕu = µu◦X on the Borel sets B[0,1].
Formula (2.7) is then a consequence of Proposition 2.1. In turn, (2.8) follows from
(2.7), upon setting f = g ◦X and using the identity X ◦ ϕ = id.
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Once (2.7) and (2.8) are established under (2.9), they are extended to hold under
the hypotheses of Theorem 2.2. Consider, for instance, (2.7). It is first extended to
hold for Borel measurable functions f : [0, 1] → R that are integrable with respect
to d(u ◦X), by using the decomposition f = f+ − f−, with f+, f− ∈ L1

(
d(u ◦X)

)
.

Next, if u : [a, b]→ R is a function of bounded variation, it can be decomposed in the
form u = u1 − u2, with u1, u2 increasing and thus du1, du2 positive measures. Using
the induced decomposition d(u ◦X) = d(u1 ◦X) − d(u2 ◦X) of the signed measure
d(u ◦ X) into a difference of positive measures, we can extend (2.7) to hold in this
case also. Finally, the extension to the vector-valued case is trivial.

Theorem 2.2 also yields a simple proof of the chain rule for Lipschitz functions in
the one-dimensional context (see Marcus and Mizel [21], Boccardo and Murat [2]).

Corollary 2.3. Suppose that u : [a, b] → RN is absolutely continuous and
X : [0, 1]→ [a, b] is increasing, continuous, and onto. Then

d
(
u ◦X) =

(
u′ ◦X) dX.(2.10)

If X is absolutely continuous, then

d

ds

(
u ◦X)(s) = u′

(
X(s)

) dX
ds

(s) for almost everywhere (a.e.) s ∈ [0, 1].

(2.11)

Proof. We will show that∫ s

0

d(u ◦X) =

∫ s

0

u′(X(s)) dX(s) for s ∈ [0, 1].

Fix s ∈ [0, 1] and let y = X(s) and s̄ = inf{s ∈ [0, 1] : X(s) > y}. Then X(τ) = y on
the interval [s, s̄], and (2.8) in Theorem 2.2 implies∫ s

0

d(u ◦X) =

∫ s̄

0

d(u ◦X) =

∫
[a,y]

du(x) =

∫
[a,y]

u′(x)dx

=

∫ s̄

0

u′(X(s))dX(s) =

∫ s

0

u′(X(s))dX(s).

Hence, (2.10) follows.
If X is absolutely continuous, then u ◦X is also absolutely continuous and (2.11)

follows from (2.10).
Let BV [a, b] be the set of all functions u : [a, b]→ RN of bounded variation. The

space BV [a, b] can be identified to the space of (equivalence classes of) functions u in
L1(a, b) whose distributional derivative, du/dx, is a finite, signed Borel measure. To
see that, let u ∈ BV [a, b] and let ū denote a right continuous BV function such that
u = ū a.e. (the function ū is uniquely determined by the equivalence class of u). By
the Riesz representation theorem, the signed Borel measure dū, generated by ū, can
be identified with a bounded linear functional νū on C[a, b],

〈νū, θ〉 =

∫
[a,b]

θ(x)dū(x) for θ ∈ C[a, b].(2.12)

Then (2.4) implies that, for ϕ ∈ C1
c (a, b),

〈νū, ϕ〉 =

∫
(a,b)

ϕ(x)dū(x) = −
∫

(a,b)

ϕ′(x)u(x)dx ,(2.13)
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i.e., the distributional derivative of u satisfies du/dx = νū. Moreover,

|νū|
(
[a, b]

)
= TV[a,b](ū) .(2.14)

We note that if another representative is used on the right of (2.14), then equality is
in general replaced by a strict inequality. The space BV [a, b], when equipped with
the norm

‖u‖BV = ‖u‖L1 + |νū|
(
[a, b]

)
,

becomes a Banach space. For functions of one variable, it is customary to use the
equivalent norm

‖u‖BV = ‖u‖L∞ + |νū|
(
[a, b]

)
.

We refer to Folland [11] and Volpert [31] for further information on the theory of BV
functions.

2.2. Reparametrizations and distance of graphs. We present first the no-
tion of uniform graph convergence [3, 10], which emerges when continuous paths are
studied from the viewpoint of identifying two paths if their ranges coincide. In C[0, 1],
the space of continuous paths V : [0, 1]→ RM , an equivalence relation is introduced.

Definition 2.4. We say that V1 and V2 are equivalent, V1 ∼ V2, if and only
if there exist two continuous, increasing (but not necessarily strictly increasing) and
surjective maps γ1, γ2 : [0, 1]→ [0, 1] such that V1 ◦ γ1 = V2 ◦ γ2.

The following lemma is proved in [3, Lemma 1].
Lemma 2.5. Let V1, V2 ∈ C[0, 1]. Given two continuous, increasing, and surjec-

tive maps γ1, γ2 : [0, 1] → [0, 1] there exist two increasing, surjective maps α1, α2 :
[0, 1]→ [0, 1], Lipschitz continuous with Lipschitz constant 3, such that

max
[0,1]

∣∣V1 ◦ α1 − V2 ◦ α2

∣∣ = max
[0,1]

∣∣V1 ◦ γ1 − V2 ◦ γ2

∣∣.
Therefore, V1 ∼ V2 if and only if there exist two Lipschitz continuous, increasing,

and surjective maps α1, α2 : [0, 1]→ [0, 1] such that V1 ◦ α1 = V2 ◦ α2.
If V is continuous and of bounded variation (and TV[0,1](V ) 6= 0), then V c :

[0, 1]→ RM , the canonical parametrization of V , is defined by

V c(τ) = V (s), τ =
1

L
TV (s), where L := TV[0,1](V ),(2.15)

the total variation function TV being defined by (2.1). It is easy to check that V c is
well defined and, for τ1 < τ2,

|V c(τ2)− V c(τ1)| = |V (s2)− V (s1)| ≤ TV (s2)− TV (s1) = L(τ2 − τ1).(2.16)

Hence, V = V c ◦ γ where V c is a Lipschitz continuous path and γ = (1/L)TV is
continuous. The equivalence relation separates C[0, 1] into equivalence classes that
satisfy the following properties:

(1) If V1 ∼ V2 and V1 is of bounded variation, then V2 is of bounded variation.
(2) If V is of bounded variation, then a Lipschitz continuous representative of the

class can be selected, V c.
(3) If V1, V2 are of bounded variation, then V1 ∼ V2 if and only if V c1 = V c2 .
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Statements (1) and (2) are clear. To show (3), suppose that V1 ∼ V2 are of
bounded variation and introduce the canonical parametrizations Vı = V cı ◦ γı, where
γı = (1/Lı)TVı for ı = 1, 2. Let α1, α2 : [0, 1] → [0, 1] be Lipschitz continuous,
increasing, surjective maps such that V1 ◦ α1 = V2 ◦ α2. Then TV1 ◦ α1 = TV2 ◦ α2,
γ1 ◦ α1 = γ2 ◦ α2, and thus V c1 = V c2 .

On the space of continuous paths, we define a distance function:

dist(V1, V2) := inf
γ1,γ2

max
s∈[0,1]

|(V1 ◦ γ1)(s)− (V2 ◦ γ2)(s)|,(2.17)

where the infimum is taken over all continuous, increasing, and surjective maps γ1, γ2 :
[0, 1] → [0, 1]. Bressan and Rampazzo [3] introduce the distance and show that it
defines a pseudometric,

dist(V1, V2) = dist(V2, V1),

dist(V, V ) = 0,

dist(V1, V3) ≤ dist(V1, V2) + dist(V2, V3),

and that, by virtue of Lemma 2.5, the infimum in (2.15) is attained on two Lipschitz
continuous paths α1, α2, so that the distance can be computed by

dist(V1, V2) = max
s∈[0,1]

|(V1 ◦ α1)(s)− (V2 ◦ α2)(s)|.

In particular, that implies dist(V1, V2) = 0 if and only if V1 ∼ V2 and, thus, if the
distance is viewed on the quotient space X = [C([0, 1];RM )/ ∼], it induces a metric.
(Working with equivalence classes has the disadvantage of being cumbersome and
identifying otherwise different functions; we will avoid doing that directly, but it
is instructive to keep the structure in mind.) The associated convergence is called

uniform graph convergence and is denoted by Vn
d→ V : {Vn} converges in graph to

V if dist(Vn, V ) → 0. Equivalently, Vn
d→ V if there exist two Lipschitz continuous,

increasing, surjective maps αn, α : [0, 1]→ [0, 1] such that

dist(Vn, V ) = max
[0,1]
|Vn ◦ αn − V ◦ α| → 0 as n→∞.

Finally we state a compactness result in Proposition 2.6.
Proposition 2.6. Let {Vn} be a sequence of continuous functions on [0, 1] that

are of uniformly bounded total variation. There exists a subsequence {Vnk} and a

Lipschitz continuous representative V c : [0, 1]→ RM such that Vnk
d→ V c.

Proof. Let V cn be the canonical representatives of Vn, say, Vn = V cn ◦ γn. By
(2.15)–(2.16), V cn are uniformly Lipschitz continuous, with Lipschitz constant equal
to the uniform variation bound of the sequence Vn. Since Vn ∼ V cn , Lemma 2.5 implies
there exist sequences αn, βn of uniformly Lipschitz continuous parametrizations such
that Vn ◦ αn = V cn ◦ βn. By the Ascoli–Arzela theorem there exist subsequences V cnk ,
αnk , βnk , and Lipschitz continuous functions V c : [0, 1]→ RM and α, β : [0, 1]→ [0, 1]
so that V cnk → V c, αnk → α, and βnk → β uniformly on [0, 1]. Then

Vnk ◦ αnk = V cnk ◦ βnk
= (V cnk ◦ βnk − V cnk ◦ β) + V cnk ◦ β → V c ◦ β

uniformly on [0, 1] and, thus, Vnk
d→ V c.
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2.3. Nonconservative products for continuous BV functions. The con-
cepts of canonical parametrization and distance of continuous paths have implications
when applied to graphs of continuous functions of bounded variation.

Let u : [a, b]→ RN be a continuous function of bounded variation. The graph of
u,

gr(u) :=
{

(x, u(x)) : x ∈ [a, b]
}
,(2.18)

is a continuous curve in R×RN . We introduce a canonical representative in the spirit
of (2.15) (cf. [10]). Let σ : [a, b]→ [0, 1] be defined by

σ(x) :=
1

L

(
x− a+ Tu(x)

)
, where L := b− a+ TV[a,b](u) > 0.(2.19)

Then σ is strictly increasing, continuous, and surjective and satisfies σ(a) = 0 <
σ(x) < 1 = σ(b) for x ∈ (a, b). The inverse of σ is a function X : [0, 1]→ [a, b], which
is strictly increasing, continuous, and surjective. If we set U := u ◦ X, the function
(X,U) : [0, 1] → [a, b]× RN is a representative of the graph of u. Further, if s1 < s2

in [0, 1] and y1, y2 their respective images under X, σ(y1) = s1 and σ(y2) = s2, then

X(s2)−X(s1) = y2 − y1 ≤ L(σ(y2)− σ(y1)) = L(s2 − s1),

|U(s2)− U(s1)| = |u(y2)− u(y1)| ≤ Tu(y2)− Tu(y1) ≤ L(s2 − s1).
(2.20)

Hence, (X,U) is Lipschitz continuous with Lipschitz constant L and will be referred
to as the arc-length parametrization (or canonical representative) of the graph of
u ∈ C ∩BV .

The terminology “arc-length parametrization” is justified as follows: Since Tu ◦
X = Tu◦X = TU , the parametrization (X,U) satisfies

s = σ(X(s)) =
1

L

(
X(s)− a+ TU (s)

)
(2.21)

for s in [0, 1]. Therefore, (2.21) implies

dX

ds
+

∣∣∣∣dUds
∣∣∣∣ = L,(2.22)

which means that the tangent vector to the curve (X(s), U(s)) has constant length
equal to L. Strictly speaking, the arc-length parametrization corresponds to L = 1 in
(2.22). This can be attained by stretching the interval [0, 1], but we avoid that here.

The graph of a continuous BV function u may be represented by several contin-
uous, increasing, and surjective parametrizations (Y, V ) : [0, 1] → [a, b] × RN with
Y increasing. The representative can always be chosen to be a Lipschitz continuous
path (X,U) with X strictly increasing. The distance between two graphs represented
by (Y, V ) and (Ȳ , V̄ ) is defined by dist

(
(Y, V ), (Ȳ , V̄ )

)
as in (2.17). The notion of

distance and the equivalence relation ∼ provide a suitable tool for factoring represen-
tatives of the same graph (viewed as a geometric object). In what follows, we use the
notation (Y, V ) ∼ gr(u) to denote the general continuous representative (Y, V ) of the
graph of u and retain the notation (X,U) for the arc-length parametrization or for
the associated notion of generalized graph defined in section 3.1.

The arc-length parametrization (X,U) may be used to express the Borel measure
du generated by a continuous function of bounded variation u. Using Theorem 2.2,
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for the change of variable x = X(s), we obtain∫
[a,b]

θ(x) du(x) =

∫ 1

0

(
θ ◦X)(s)dU

ds
ds for θ ∈ C[a, b].(2.23)

The left side in (2.23) is interpreted as a Borel–Stieltjes integral, while the right side
is a Lebesgue integral; the formula is useful for theoretical computations involving the
measure du. If (Y, V ) is an equivalent continuous representative of gr(u), (Y, V ) ∼
(X,U), repeated use of Theorem 2.2 implies∫

[a,b]

θ(x) du(x) =

∫ 1

0

(
θ ◦X)(s) dU(s) =

∫ 1

0

(
θ ◦ Y )(s) dV (s).

That is, the Borel measure du depends on gr(u) but not on the particular represen-
tative.

We turn now to the definition of nonconservative products for continuous func-
tions of bounded variation. A natural way of defining µ = g(u)dudx is as a Borel
measure, via (1.2). The definition is invariant under reparametrizations of gr(u) and
reads〈

g(u)
du

dx
, θ

〉
=

∫ 1

0

(
θ ◦ Y )(s)g(V (s)) dV (s) =

∫ 1

0

(
θ ◦X)(s)g(U(s))

dU

ds
ds,

where (X,U) is the arc-length parametrization and (Y, V ) ∼ gr(u) stands for a general
representative of the graph of u. This definition is consistent with the one proposed
in section 4 for discontinuous BV functions.

3. Generalized graphs.

3.1. Generalized graphs of BV functions. The graph of a general function
u : [a, b] → RN of bounded variation has jumps at the points of discontinuity of u.
The notion of generalized graph (or graph completion), introduced by Bressan and
Rampazzo [3], is an attempt to fill in the jumps by extending the idea of arc-length
(or canonical) parametrization.

Definition 3.1. A generalized graph of u is a map (X,U) : [0, 1] → [a, b]× RN
such that X, U are Lipschitz continuous and satisfy the following conditions:

(1) (X(0), U(0)) = (a, u(a)), (X(1), U(1)) = (b, u(b)).
(2) X is increasing: s1 < s2 implies X(s1) ≤ X(s2).
(3) Given y ∈ [a, b], there exists s ∈ [0, 1] such that X(s) = y, U(s) = u(y).
The range of (X,U) is a compact, connected set containing the graph of u. Let

σ = X−1 be the set theoretic inverse of X; then σ : [a, b] → [0, 1] is a strictly
increasing, multivalued map. The set Cσ of points of continuity of σ (that is, the
point where σ is single valued) is dense in [a, b]. The set Sσ of points of discontinuity
of σ (that is, the points where σ is truly multivalued) is countable and serves as a
counter of the jumps and possible loops attached to the graph of u. In this paper, a
point x ∈ Sσ is called a point of jump if u(x−) 6= u(x+) and a loop if u(x−) = u(x+).

The domain and range of σ admit the decompositions [a, b] = Cσ ∪ Sσ and

[0, 1] = σ(Cσ) ∪ σ(Sσ) =
( ⋃
y∈Cσ
{σ(y)}

)
∪
( ⋃
y∈Sσ

[σ(y−), σ(y+)]
)
,(3.1)

respectively. The function u is recovered by the formula

u(y) = U(σ(y)) for y ∈ Cσ.(3.2)
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The following theorem indicates that the notion of generalized graph captures
the limiting graphs selected by pointwise convergent sequences {un} of continuous
functions that are stable in BV [a, b]. Part (a) of the theorem below provides an
extension (and an alternative proof) of the classical Helly selection principle.

Theorem 3.2. (a) Let {un} be a sequence of continuous functions un : [a, b] →
RN satisfying the uniform bounds (1.3) and let (Xn, Un) be the arc-length parametriza-
tions of gr(un). There exists a subsequence {unk}, a function of bounded variation
u : [a, b]→ RN , and an associated generalized graph (X, U) such that

(1) (Xnk , Unk)
d→ (X, U);

(2) σnk(y)→ σ(y), unk(y)→ u(y) for all y ∈ Cσ and a.e. in [a, b],
where σn = X−1

n and σ = X−1 are the set theoretic inverses of Xn and X, respectively.
(b) Conversely, given a generalized graph (X,U) associated with a BV function

u, there exists a sequence {un} of Lipschitz continuous functions such that
(1) {un} is uniformly bounded in BV,

(2) (Yn, Vn)
d→ (X, U) for any representative (Yn, Vn) ∼ gr(un),

(3) un(y)→ u(y) for y ∈ Cσ and a.e. in [a, b].
The proof is based on the following lemma.
Lemma 3.3. Suppose that (Xn, Un) : [0, 1] → [a, b] × RN satisfy the following

conditions:
(1) Xn is strictly increasing and surjective,
(2) (Xn, Un) are uniformly Lipschitz continuous,
(3) (Xn, Un)→ (X,U) uniformly on [0, 1].

Let σn = X−1
n , un = Un◦X−1

n . Then (Xn, Un) is a Lipschitz continuous representative
of gr(un) and

dist
(
(Yn, Vn), (X,U)

)→ 0 for any representative (Yn, Vn) ∼ gr(un),

σn(y)→ σ(y), un(y)→ u(y) for all y ∈ Cσ.

Proof. Since Xn is strictly increasing, the functions σn = X−1
n : [a, b] → [0, 1]

and un = Un ◦ X−1
n are well defined and continuous. The couple (Xn, Un) is a

representative of the graph of un.
Fix y ∈ Cσ and let s = σ(y), sn = σn(y). We can write the chain of identities

sn − s = σn(y)− σ(y) = σ
(
X
(
σn(y)

))− σ(Xn

(
σn(y)

))
= σ

(
X(sn)

)
− σ

(
Xn(sn)

)
.

Since Xn → X uniformly and Xn(sn) = y ∈ Cσ, we deduce sn → s.
Next, assumption (2) implies

|Un(sn)− Un(s)| ≤ Lip(Un) |sn − s| → 0.

Hence, un(y) = Un(sn)→ U(s) = u(y).
Finally, if (Yn, Vn) is any continuous representative of gr(un), then

dist
(
(Yn, Vn), (X,U)

) ≤ dist
(
(Xn, Un), (X,U)

)→ 0 as n→∞.
This completes the proof.

Proof of Theorem 3.2. (a) The sequence {un} consists of continuous functions.
Let (Xn, Un) be the arc-length parametrizations of gr(un), defined by inverting

σn(x) :=
1

Ln

(
x− a+ Tun(x)

)
, Ln := b− a+ Tun(b),
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and setting Xn := σn
−1, Un := un ◦ Xn. In view of (2.22) and (1.3), (Xn, Un)

are uniformly Lipschitz continuous. There exists a subsequence (Xnk , Unk) and a
Lipschitz continuous function (X,U) : [0, 1]→ [a, b]× RN such that

Xnk → X, Unk → U uniformly on [0, 1].(3.3)

Hence, dist((Xnk , Unk), (X,U))→ 0 as k →∞, and (3.3), in conjunction with Lemma
3.3, yields the conclusion of part (a).

(b) Given a generalized graph (X,U), let (Xn, Un) be defined by

Xn :=

(
1− 1

n

)
X +

1

n

(
a+ (b− a)s), Un := U.

Then Xn : [0, 1] → [a, b] is strictly increasing, Lipschitz continuous, and surjective;
{(Xn, Un)} are uniformly Lipschitz continuous, while (Xn, Un) → (X,U) uniformly
on [0, 1]. The functions un, defined by un = Un ◦X−1

n , are Lipschitz continuous and
satisfy

sup
[a,b]

|un| = sup
[0,1]

|U |,

TV[a,b](un) = TV[0,1](U) ≤ Lip(U).

The conclusion of part (b) now follows from Lemma 3.3.
It is instructive to place the above concepts in a functional analysis framework.

Let

E =
{

(Y, V ) ∈ C([0, 1]; [a, b]× RN) : Y (0) = a, Y (1) = b
}

(3.4)

and X := (E/ ∼) be the quotient space of E over the equivalence relation∼ introduced
in Definition 2.4. The elements of X are equivalence classes of functions: (Y1, V1),
(Y2, V2) are in the same equivalence class if and only if (Y1, V1)◦α = (Y2, V2)◦β for some
Lipschitz and increasing reparametrizations of [0, 1]; that is, the curves determined by
the functions (Y1, V1) and (Y2, V2) coincide. The elements of X can thus be visualized
as geometric curves in [a, b]× RN with Y (0) = a, Y (1) = b.

If (Y, V ) ∈ E ∩BV , one can select, using (2.19), a Lipschitz continuous represen-
tative of the equivalence class [(Y, V )]. This representative is denoted here by (X,U)
and is characteristic to the class. The reason is that, for (Y, V ) and (Ȳ , V̄ ) of bounded
variation, (Y, V ) ∼ (Ȳ , V̄ ) if and only if the corresponding canonical representatives
of [(Y, V )] and [(Ȳ , V̄ )] are identical, (X,U) = (X̄, Ū). We emphasize that we can
talk about the canonical representative only for C ∩ BV curves. (Recall that if one
representative of the equivalence class is of bounded variation, any representative is
of bounded variation.)

When X is equipped with the pseudometric dist((Y, V ), (Ȳ , V̄ )), defined in (2.17),
it becomes a metric space. Consider now the sets

F =
{

[(Y, V )] ∈ X : (Y, V ) is of bounded variation and X is strictly increasing
}
,

G =
{

[(Y, V )] ∈ X : (Y, V ) is of bounded variation and X is increasing
}
,

(3.5)

where (X,U) always refers to the canonical representative of [(Y, V )]. Section 2.3 in-
dicates that F can be identified with the set of continuous functions of bounded varia-
tion, (C∩BV )

(
[a, b];RN

)
. The elements of F are viewed as the graphs of the functions
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u, with the canonical representative coinciding with the arc-length parametrization
of gr(u) in (2.19). The set G is the closure of F in the metric induced by the distance
function (2.17) and may itself be viewed as a complete metric space. The canonical
representative of each equivalence class element of G is a generalized graph in the
sense of Definition 3.1. Henceforth, elements of G are denoted by gr(X,U) and are
visualized as the geometric graphs generated by (X,U). We remark that elements of
G are not in correspondence with the space of BV functions, but rather G consists of
all possible limit points of F in the distance metric.

3.2. Representation of weak-? limits. Consider a sequence {un} of contin-
uous functions satisfying the uniform bounds (1.3). The sequence

{
g(un)dun

}
may

have multiple limit points in the weak-? topology ofM[a, b] (cf. Example 1.1). We now
characterize such limits for any continuous g in the following representation theorem.

Theorem 3.4. (a) Let {un} be a sequence of continuous functions satisfying
the uniform bounds (1.3). There exists a subsequence {unk} and a generalized graph
(X,U) such that, for any continuous function g = g(λ), we have∫

[a,b]

θ(x)g(unk(x)) dunk(x)→ 〈µ(g), θ〉 for θ ∈ C[a, b],(3.6)

where µ : C0(RN )→M[a, b] is defined by

〈µ(g), θ〉 =

∫ 1

0

θ(X(s))g(U(s)) dU(s).(3.7)

(b) Conversely, given a generalized graph (X,U), let µ be defined by (3.7). There
exists a sequence of Lipschitz functions {un}, uniformly bounded in BV, such that for
any continuous g,

g(un)dun ⇀ µ(g) weak-? in M[a, b].(3.8)

Theorem 3.4 is based on a characterization of the weak-? limit points to the
sequence of Radon measures {pn} defined in (1.9). The key ingredient is the following
weak stability type of theorem.

Theorem 3.5. Let {un} be a sequence of continuous functions un : [a, b]→ RN
satisfying the uniform bounds (1.3), and let (Xn, Un) be the arc-length parametrization
of gr(un). If

(Xn, Un)
d→ (X,U)(3.9)

to some generalized graph (X,U) associated with a BV function u, then∫
[a,b]

f(x, un(x)) dun(x)→
∫ 1

0

f(X(s), U(s))dU(s) for f ∈ C0([a, b]× RN ).(3.10)

Proof. Let (Xn, Un) be the arc-length parametrizations of gr(un), and let (X,U)
be a generalized graph of u. Hypothesis (3.9) implies that for some αn and α, Lipschitz
continuous reparametrizations of the interval [0, 1], we have

Yn := Xn ◦ αn → X ◦ α =: Y uniformly on [0, 1],

Vn := Un ◦ αn → U ◦ α =: V uniformly on [0, 1].
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By virtue of Theorem 2.2, we may express the integrals∫
[a,b]

f(x, un(x)) dun(x) =

∫ 1

0

f(Xn(s),Un(s))dUn(s) =

∫ 1

0

f(Yn(s), Vn(s))dVn(s),∫ 1

0

f(X(s), U(s))dU(s) =

∫ 1

0

f(Y (s), V (s))dV (s).

Fix f ∈ C0
(
[a, b]×RN). Note that (Yn, Vn) and (Y, V ) are continuous and satisfy

(3.11)
TV (Vn) = TV (Un) ≤ C,
(Yn, Vn)→ (Y, V ) uniformly on [0, 1].

It suffices to show that (3.11) implies∫ 1

0

f(Yn(s), Vn(s))dVn(s)→
∫ 1

0

f(Y (s), V (s))dV (s).(3.12)

Step 1. We first show that, if Vn, V : [0, 1] → RN are functions of bounded
variation (not necessarily continuous) such that

(1) ‖Vn − V ‖∞ → 0,
(2) TV (Vn) ≤ C,

then, for any [α, β] ⊂ [0, 1] and ϕ ∈ C[α, β], we have∫
[α,β]

ϕ(s) dVn(s)→
∫

[α,β]

ϕ(s) dV (s).(3.13)

If ψ ∈ C1[α, β], then (2.4) implies∫
[α,β]

ψ(s) dVn(s) = −
∫

[α,β]

ψ′(s)Vn(s)ds+ ψ(β)Vn(β+)− ψ(α)Vn(α−)

→ −
∫

[α,β]

ψ′(s)V (s)ds+ ψ(β)V (β+)− ψ(α)V (α−)

=

∫
[α,β]

ψ(s) dV (s).

(3.14)

Given ϕ ∈ C[α, β], there exists for every ε > 0 a function ψ ∈ C1[α, β] such that
‖ψ − ϕ‖∞ < ε. The relation∣∣∣∣∣

∫
[α,β]

ϕ(s) dVn(s)−
∫

[α,β]

ϕ(s) dV (s)

∣∣∣∣∣
≤ ε TV[α,β](Vn) +

∣∣∣∣∣
∫

[α,β]

ψ(s) dVn(s)−
∫

[α,β]

ψ(s) dV (s)

∣∣∣∣∣+ ε TV[α,β](V ),

in conjunction with (3.14), yields (3.13).
Step 2. Step 1, in conjunction with (3.11), implies∫ 1

0

f(Y (s), V (s))dVn(s)→
∫ 1

0

f(Y (s), V (s))dV (s).

On the other hand, again by (3.11),∣∣∣∣∫ 1

0

(f(Yn, Vn)− f(Y, V )) dVn

∣∣∣∣ ≤ (max |f(Yn, Vn)− f(Y, V )|)
∫

[0,1]

|dVn| → 0,

as n→∞. Hence, (3.12) follows.
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Proof of Theorem 3.4. (a) Let {un} be the sequence of continuous functions
satisfying (1.3), and let (Xn, Un) be the arc-length parametrizations of gr(un); the
latter are uniformly Lipschitz continuous. Let {pn} be the sequence of Radon measures
defined in (1.9). The sequence {pn} is bounded, ‖pn‖M ≤ C, by the uniform BV
bound of {un}.

Let p be a weak-? limit point of {pn}. For a subsequence

〈pnk , f(x, λ)〉 =

∫
[a,b]

f(x, unk)dunk → 〈p, f(x, λ)〉 for f ∈ C0([a, b]× RN ).

Using part (a) of Theorem 3.2 and passing to a further subsequence {unk}, if neces-
sary, we may assume that there is a generalized graph (X,U), so that the arc-length

parametrizations (Xnk , Unk)
d→ (X,U). Theorem 3.5 implies

〈p, f(x, λ)〉 =

∫ 1

0

f(X(s), U(s))dU(s).

Taking f(x, λ) = θ(x)g(λ) gives the desired result for g ∈ C0(RN ) and, due to the
uniform sup-norm bound of {un}, for any continuous g.

(b) Given a generalized graph (X,U), let µ be defined by (3.7) and let {un} be
the sequence of Lipschitz functions constructed in the proof of part (b) of Theorem
3.2. Then {un} are uniformly bounded in BV, {(Xn, Un)} are uniformly Lipschitz
continuous, and (Xn, Un) → (X,U) uniformly on [0, 1]. Theorem 3.5 for f(x, λ) =
θ(x)g(λ) implies (3.8).

4. Definition of nonconservative products.

4.1. Definition as a Radon measure. In view of Theorem 3.4, the definition
of nonconservative products should be based on a given generalized graph (X,U) :
[0, 1] → [a, b] × RN of the function u of bounded variation. The generalized graph
(X,U) determines a geometric object (the graph of u together with paths filling the
jumps and possible attached loops), call it gr(X,U). We define g(u)dudx relative to
gr(X,U), first as a Radon measure in this section, and then as a finite Borel measure
via its distribution function in section 4.2.

Definition 4.1. Let (Y, V ) ∼ gr(X,U) denote the general continuous represen-
tative of the graph determined by (X,U). Given a continuous map g : RN → RN ,
define µ(g) by

〈µ(g), θ〉 =

∫ 1

0

θ(Y (s))g(V (s)) dV (s)

=

∫ 1

0

θ(X(s))g(U(s))
dU

ds
ds for θ ∈ C[a, b].(4.1)

Then µ(g) ∈M[a, b] is called the nonconservative product of g(u) by du
dx and is denoted

by

µ(g) =
[
g(u)

du

dx

]
(X,U)

.(4.2)

Remark 4.2. (a) We refer to Dal Maso, LeFloch, and Murat [10] for a slightly
weaker definition of nonconservative products and to Raymond [27] for a definition
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that is equivalent. Comparisons of the various definitions are carried out in section
4.4. References [10, 27] also contain various weak stability results.

(b) Suppose that (Y, V ), (Ȳ , V̄ ) are two representatives of the same graph, that
is, (Y, V ) ∼ (Ȳ , V̄ ). Then (Y, V )◦β = (Ȳ , V̄ )◦α for some Lipschitz reparametrizations
α, β of [0, 1]. Theorem 2.2 implies the nonconservative product remains invariant,∫ 1

0

θ(Y (s))g(V (s)) dV (s) =

∫ 1

0

θ(Ȳ (s))g(V̄ (s)) dV̄ (s).(4.3)

The measure introduced in Definition 4.1 thus depends on the equivalence class de-
termined by the generalized graph (X,U), i.e., on gr(X,U) as a geometric object.
When a Lipschitz representative, such as (X,U) itself is used, then 〈µ(g), θ〉 may be
expressed via the last integral in (4.1).

(c) If µ is viewed as a map µ : C0(RN )→M[a, b], then µ is linear and bounded.
The boundedness follows from the estimate

|〈µ(g), θ〉| ≤ (TV[0,1](V )
)

sup
|λ|≤max |U |

|g(λ)| sup
x∈[0,1]

|θ(x)|,(4.4)

which implies ‖µ(g)‖M ≤ (TV[0,1](V )) ‖g‖C0 .
We state next a weak stability theorem for nonconservative products.
Theorem 4.3. (i) Let {(Xn, Un)} and (X,U) be generalized graphs. If
(1) TV (Un) is uniformly bounded,

(2) (Xn, Un)
d→ (X,U),

then [
g(un)

dun
dx

]
(Xn,Un)

⇀
[
g(u)

du

dx

]
(X,U)

weak-? in M[a, b].(4.5)

(ii) Let {un} be a sequence of continuous functions satisfying (1.3), let (Xn, Un)
be the arc-length parametrizations of gr(un), and let (X,U) be a generalized graph. If

(Xn, Un)
d→ (X,U), then

g(un)dun ⇀
[
g(u)

du

dx

]
(X,U)

weak-? in M[a, b].(4.6)

Proof. Define the graphs determined by (Xn, Un) and (X,U), and let (Yn, Vn) ∼
gr(Xn, Un) and (Y, U) ∼ gr(X,U) be continuous representatives such that (Yn, Vn)→
(Y, V ) uniformly on [0, 1]. Moreover, TV (Vn) = TV (Un) ≤ C. The result follows from
(3.10) in Theorem 3.5, together with part (b) of Remark 4.2.

4.2. Distribution functions. We discuss next the properties of nonconser-
vative products when viewed as signed Borel measures defined via their distribu-
tion functions. Recall, for a generalized graph (X,U), the set theoretic inverse
σ = X−1 : [0, 1]→ [a, b] is a strictly increasing multivalued map.

THEOREM AND DEFINITION 4.4. Let (Y, V ) ∼ gr(X,U) be a representative of the
graph determined by (X,U). For x ∈ [a, b] define

F (x) =

∫ Y −1(x+)

0

g(V (s)) dV (s) =

∫ X−1(x+)

0

g(U(s))
dU

ds
ds,

F (a−) = 0.

(4.7)
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Then F is a right continuous BV function and generates a signed Borel measure µ,
determined by

µ((a, x]) = F (x)− F (a) for x ∈ (a, b], µ({a}) = F (a).(4.8)

Also µ coincides with the nonconservative product [g(u)dudx ](X,U) in (4.1)–(4.2); that
is,

〈µ, θ〉 =

∫
[a,b]

θ(x) dF (x)

=

∫
[0,1]

θ(Y (s))g(V (s)) dV (s) =

∫ 1

0

θ(X(s))g(U(s))
dU

ds
ds

(4.9)

for any θ ∈ C[a, b].
Proof. Consider (Y, V ) ∼ gr(X,U), a general continuous representative of the

graph determined by (X,U). We have the following conditions:
(i) X : [0, 1] → [a, b] is Lipschitz continuous, increasing, and surjective with

X(0) = a, X(1) = b, and X−1(X(s)) = s whenever X(s) ∈ CX−1 .
(ii) Y : [0, 1] → [a, b] is continuous, increasing, and surjective with Y (0) = a,

Y (1) = b, and Y −1(Y (s)) = s whenever Y (s) ∈ CY −1 .
(iii) (Y, V ) ◦ β = (X,U) ◦ α for some α, β : [0, 1] → [0, 1] increasing, Lipschitz,

and surjective reparametrizations.
Let F : [a, b]→ RN be defined by

F (x) =

∫ Y −1(x+)

0

g(V (s)) dV (s), F (a−) = 0.

Then F is a right continuous BV function and generates a signed Borel measure µ,
through (4.8). Note that F satisfies

F (Y (s)) =

∫ s

0

g(V )dV for s ∈ Y −1(CY −1).(4.10)

Step 1. The definition of the distribution function F depends on the equivalence
class of (X,U) but not on the specific representative.

It suffices to define F at points x ∈ CY −1 and to extend F so that it is right
continuous. If (Y, V ) ∼ (X,U) are two equivalent representatives of gr(X,U), then
Y ◦ β = X ◦ α, V ◦ β = U ◦ α, and C(X◦α)−1 ⊂ CX−1 , C(Y ◦β)−1 ⊂ CY −1 . For
x ∈ C(X◦α)−1 = C(Y ◦β)−1 , Theorem 2.2 implies

[
F (x)

]
(X,U)

:=

∫ X−1(x)

0

g(U)dU =

∫ (X◦α)−1(x)

0

g(U ◦ α)d(U ◦ α),

[
F (x)

]
(Y,V )

:=

∫ Y −1(x)

0

g(V )dV =

∫ (Y ◦β)−1(x)

0

g(V ◦ β)d(V ◦ β).

Since such points are dense in [a, b], any of these formulas generates the same distri-
bution function [F ](X,U) = [F ](Y,V ) and we may use any representative for calculating
F . This shows (4.7).

Step 2. For θ ∈ C[a, b], we shall show that∫
[a,b]

θ(x) dF (x) =

∫
[0,1]

θ(X(s))g(U(s))
dU

ds
ds.(4.11)

(Note that this formula is not a direct consequence of Theorem 2.2.)
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Fix ψ ∈ C1[a, b]. Using (2.4), the change of variables x = X(s), (4.7), (4.10), the
property Ẋ = 0 on each interval [σ(y−), σ(y+)] with y ∈ Sσ, and the chain rule for
Lipschitz continuous functions, we obtain∫

[a,b]

ψ(x) dF (x) =ψ(b)F (b+)− ψ(a)F (a−)−
∫

[a,b]

ψ′(x)F (x) dx

=ψ(b)F (b+)−
∫ 1

0

ψ′(X(s))F (X(s)) Ẋ(s) ds

=ψ(b)F (b+)−
∫
σ(Cσ)

ψ′(X(s))Ẋ(s)

(∫ s

0

g(U)
dU

dτ
dτ

)
ds

−
∑
y∈Sσ

∫ σ(y+)

σ(y−)

ψ′(X(s))Ẋ(s)

(∫ σ(X(s)+)

0

g(U)
dU

dτ
dτ

)
ds

=ψ(X(1))

∫ 1

0

g(U)
dU

dτ
dτ −

∫ 1

0

d

ds

(
ψ(X(s))

)(∫ s

0

g(U)
dU

dτ
dτ

)
ds;

thus ∫
[a,b]

ψ(x) dF (x) =

∫ 1

0

ψ(X(s))g(U(s))
dU

ds
ds.

Since F is of bounded variation and U is Lipschitz continuous, a density argument
yields (4.11). The proof of (4.9) follows from part (b) of Remark 4.2.

Remark 4.5. In view of (4.7) and (4.8), the nonconservative product µ charges
points x ∈ SX−1 according to

µ
({x}) = F (x+)− F (x−) =

∫ X−1(x+)

X−1(x−)

g(U(s)) dU(s).

We state and prove a version of the weak stability theorem by using distribution
functions.

Theorem 4.6. Suppose {un} is a sequence of continuous functions satisfying
(1.3). Let (Xn, Un) be the arc-length parametrizations of gr(un), let (X,U) be a
generalized graph, and define the distribution functions

Fn(x) =

∫ x

a

g(un(y)) dun(y),(4.12)

and F (x) associated with (X,U) by (4.7). If (Xn, Un)
d→ (X,U), then

Fn(x)→ F (x) a.e. in (a, b),(4.13)

while µn and µ, generated by Fn and F , respectively, satisfy µn ⇀ µ weak-? in
M[a, b].

Proof. Let (Xn, Un) be the arc-length parametrizations of gr(un); (Xn, Un) are
uniformly Lipschitz. There exist reparametrizations of the interval [0, 1], αn, and α
that are uniformly Lipschitz continuous such that (X̄n, Ūn) = (Xn, Un)◦αn, (X̄, Ū) =
(X,U) ◦ α satisfy the following: (X̄n, Ūn) are uniformly Lipschitz and X̄n → X̄,
Ūn → Ū uniformly on [0, 1].
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Let SX̄−1
n

and SX̄−1 be the points of discontinuity of X̄−1
n and X̄−1, respectively,

and set T = (
⋃
n SX̄−1

n
) ∪ SX̄−1 . Then T is countable, and an argument as in the

proof of Lemma 3.3 shows

X̄−1
n (x)→ X̄−1(x) for x ∈ [a, b] \ T .(4.14)

Theorem 2.2, for the change of variables y = X̄n(s), gives

Fn(x) =

∫ x

a

g(un(y)) dun(y) =

∫ X̄−1
n (x)

0

g(Ūn(s))dŪn(s) for x ∈ CX̄−1
n
.(4.15)

An argument, as in the proof of (3.12), shows that∫ X̄−1(x)

0

g(Ūn(s))dŪn(s)→
∫ X̄−1(x)

0

g(Ū(s))dŪ(s) for x ∈ CX̄−1 .(4.16)

In turn, (4.14)–(4.16) and the fact that Ūn are uniformly Lipschitz imply

Fn(x)→ F (x) for x ∈ [a, b] \ T .(4.17)

The distribution functions Fn and F satisfy the following properties: Fn(a) = 0,
F (a−) = 0,

Fn(b) =

∫ 1

0

g(Ūn(s))dŪn(s) ds→
∫ 1

0

g(Ū(s))dŪ(s) = F (b).(4.18)

For any test function ψ ∈ C1[a, b], the integration by parts formula (2.4), in conjunc-
tion with (4.17)–(4.18), yields∫

[a,b]

ψ(x)dFn(x) = −
∫

[a,b]

ψ′(x)Fn(x) dx+ ψ(b)Fn(b)− ψ(a)Fn(a)

→ −
∫

[a,b]

ψ′(x)F (x) dx+ ψ(b)F (b)− ψ(a)F (a−);

hence ∫
[a,b]

ψ(x)dFn(x) →
∫

[a,b]

ψ(x)dF (x).(4.19)

Since Fn are of uniformly bounded variation, (4.19) and a density argument show
that µn ⇀ µ weak-? in M[a, b].

4.3. Generalized graphs and graphs of BV functions. In this section we
examine the relation between a generalized graph (X,U) and the graph of the asso-
ciated BV function u. First observe that Definition 3.1 directly implies the following
proposition.

Proposition 4.7. Let (X,U) be a generalized graph and let σ = X−1 be the set
theoretic inverse of X. Then the following conditions hold:

(i) If y ∈ Cσ, then u(y) = U(σ(y)).
(ii) If y ∈ Sσ, then X(τ) = y and the function

φy(τ) := U(τ), τ ∈ Jy := [σ(y−), σ(y+)],
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determines a Lipschitz continuous curve that lies on the hyperplane
{
x = y

}
and

connects (y, u(y−)) with (y, u(y+)).
(1) The Lipschitz path φy : Jy → RN is either an arc when u(y−) 6= u(y+) or a

loop when u(y−) = u(y+).
(2) The Lipschitz continuity of U implies∑

y∈Sσ

∫
[σ(y−),σ(y+)]

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ ≤ ∫ 1

0

∣∣∣∣dUds
∣∣∣∣ ds <∞.(4.20)

(iii) Cσ ⊂ Cu and Sσ ⊃ Su.
A generalized graph completely determines u and also specifies the paths connect-

ing points of discontinuity and possible loops attached to the graph of u. There is no
a priori mechanism, given u, for selecting a particular generalized graph. They may
be induced by introducing paths at points of discontinuity in Su (using straight lines
[31] or families of Lipschitz paths [10]) and by possibly attaching loops at points of
removable discontinuity or even at points of continuity in Cu (cf. the examples pointed
out in [10] and the notion of extended graph in [27]). A converse to Proposition 4.7
has been proved by Raymond [27].

Proposition 4.8 (see [27]). Given a function u : [a, b] → RN of bounded vari-
ation, a countable set T , with [a, b] ⊃ T ⊃ Su, and a family of Lipschitz paths
Φ = {φy}y∈T such that

φy : [0, 1]→ RN is Lipschitz continuous with

φy(0) = u(y−), φy(1) = u(y+) for y ∈ T ,(A1)

∑
y∈T

∫ 1

0

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ <∞,(A2)

there exists a generalized graph (X,U) associated with the triplet
(
u, T ,Φ).

The triplet
(
u, T ,Φ) is called extended graph in [27]. Apart from its theoretical

interest, the proof of the proposition provides a procedure for constructing examples.
Proof. The construction proceeds in two steps.
Step 1. Construction of a continuous, BV representative (Y, V ) : [0, 1]→ [a, b]×

RN of the graph determined by
(
u, T ,Φ).

Define q : [a, b]→ [0, 1] by setting q(b) = 1 and

q(x) :=
1

Q

x− a+
∑

y∈T ,y<x

∫ 1

0

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ

 for x ∈ [a, b),

Q := b− a+
∑
y∈T

∫ 1

0

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ.

(4.21)

Then q is a strictly increasing left-continuous (but generally discontinuous) function
satisfying the properties Cq = [a, b] \ T , Sq = T ,

q(y+)− q(y−) =
1

Q

∫ 1

0

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ,

0 < x2 − x1 ≤ Q
(
q(x2)− q(x1)

)
for x1 < x2,

(4.22)

and q(a) = 0 < q(x) < 1 = q(b) for x ∈ (a, b).
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The domain and range of q admit the decompositions

[a, b] = Cq
⋃
Sq,

[0, 1] = q(Cq)
⋃( ⋃

y∈T
[q(y−), q(y+)]

)
,

where q(Cq) and each Jy = [q(y−), q(y+)] are mutually disjoint. The closure of the
set q(Cq) is

q(Cq) =
( ⋃
y∈Cq

{
q(y)

})⋃( ⋃
y∈T

{
q(y−), q(y+)

})
.

Define now the function (Y, V ) as follows:
(a) On each interval Jy = [q(y−), q(y+)] with y ∈ T , set{

Y (s) = y for s ∈ Jy,
V (s) = φy

(
s−q(y−)

q(y+)−q(y−)

)
for s ∈ Jy.

(4.23)

(b) On the complement [0, 1]− ∪y∈TJy = q(Cq), we have s ∈ q(Cq) if and only if
s = q(y) for precisely one y ∈ Cq. We define{

Y (s) = y for s ∈ q(Cq),
V (s) = u(y) for s ∈ q(Cq).

(4.24)

Clearly, Y is an increasing function, (Y, V ) are continuous on the interior of each
interval Jy, and also for any s1, s2 ∈ Jy with s1 < s2, we have

|V (s2)− V (s1)| ≤
∫ s2−q(y−)

q(y+)−q(y−)

s1−q(y−)

q(y+)−q(y−)

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ ≤ ∫ 1

0

∣∣∣∣∂φy∂τ
∣∣∣∣ dτ.(4.25)

We proceed to show (Y, V ) is continuous for each s ∈ q(Cq). This follows by a
case analysis:

(i) s ∈ q(Cq), sn → s with {sn} ⊂ q(Cq). Then sn = q(yn), s = q(y) for some
yn, y ∈ Cq. By (4.22), yn → y and thus

Y (sn) = yn → y = Y (s), V (sn) = u(yn)→ u(y) = V (s).

(ii) s = q(y−) for some y ∈ T , sn → s with {sn} ⊂ q(Cq). In this case for large
n it is sn < s, and the corresponding points yn ∈ Cq satisfy sn = q(yn) and yn < y.
Again (4.22) implies

0 < y − yn < Q(q(y−)− q(yn))

and thus, by (A1),

Y (sn) = yn → y− = Y (s), V (sn) = u(yn)→ u(y−) = φy(0) = V (s).

(iii) If s = q(y+) for some y ∈ T , sn → s with {sn} ⊂ q(Cq). Then, as in (ii),

Y (sn)→ y+ = Y (s), V (sn) = u(yn)→ u(y+) = φy(1) = V (s).
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(iv) Now let sn → s with {sn} ⊂ q(Cq). For each n, let σn ∈ q(Cq) such that

|σn − sn| < 1

n
, |Y (σn)− Y (sn)| < 1

n
, |V (σn)− V (sn)| < 1

n
.

Then σn → s and (i)–(iii) imply Y (sn)→ Y (s), V (sn)→ V (s).
(v) On the other extreme, let sn → s with {sn} ⊂ ∪y∈T Jy. Then Y (sn) = yn

with yn ∈ T . To simplify the exposition, consider the case sn < s, sn → s. For each
n, define σn = q(yn+). Then {σn} ⊂ q(Cq), σn → s and (4.25) implies

∑
n

|V (σn)− V (sn)| ≤
∑
n

∫ 1

0

∣∣∣∣∂φyn∂τ

∣∣∣∣ dτ.
It follows from (iv) and hypothesis (A2) that Y (sn) = Y (σn)→ Y (s), V (sn)→ V (s).

(vi) For general sequences sn → s, the result follows by combining (iv) and (v).
The function Y is increasing and thus of bounded variation. The total variation

of V may be explicitly computed

TV[0,1](V ) ≤ TV[a,b](u) +
∑
y∈T

(∫ 1

0

∣∣∣∣∂φyn∂τ

∣∣∣∣ dτ − ∣∣u(y+)− u(y−)
∣∣) .

Thus V is also of bounded variation.
Step 2. Construction of a Lipschitz continuous representative (X,U) : [0, 1] →

[a, b]× RN of the graph determined by
(
u, T ,Φ).

Using the reparametrization (2.15) and the analysis of section 2.2, we can con-
struct the canonical representative of the curve (Y, V ). This representative (X,U) is
Lipschitz (with Lipschitz constant L) and satisfies

(Y, V ) = (X,U) ◦ γ,where γ(s) =
1

L
T(Y,V )(s), s ∈ [0, 1], and L = TV[0,1](Y, V ) .

Also, X is increasing and (X,U) is a generalized graph.

4.4. Comparison with definitions based on families of paths. In this
section, we compare definitions based on families of paths with Theorem 3.4 based on
generalized graphs.

We review the definition proposed by Dal Maso, LeFloch, and Murat [10]. This
theory is based on a given family of Lipschitz continuous paths φ : [0, 1]×RN×RN →
RN that satisfy, for some K > 0 and for all u0, u1 ∈ RN and τ ∈ [0, 1], the properties

φ(0;u0, u1) = u0, φ(1;u0, u1) = u1,(H1)

φ(τ ;u0,u0) = u0,(H2) ∣∣∣∣∂φ∂τ (τ ;u0, u1)

∣∣∣∣ ≤ K |u0 − u1|.(H3)

THEOREM AND DEFINITION 4.9 (see [10]). Let u : (a, b) → RN be a function of
bounded variation and g : RN → RN be a continuous map. There exists a unique
finite signed Borel measure µ on (a, b) such that

(1) if u is continuous on a Borel set B ⊂ (a, b), then

µ(B) =

∫
B

g(u) du;(4.26)
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(2) if u is discontinuous at a point x ∈ (a, b), then

µ({x}) =

∫ 1

0

g(φ(τ ;u−, u+))
∂φ

∂τ
(τ ;u−, u+)dτ with u± := u(x±).(4.27)

The measure µ is called the nonconservative product of g(u) by du
dx and is denoted by

µ =
[
g(u)

du

dx

]
φ
.(4.28)

Remark 4.10. The stronger condition∣∣∣∣∂φ∂τ (τ ;u0, u1)− ∂φ

∂τ
(τ ; v0, v1)

∣∣∣∣ ≤ K ∣∣(u0 − v0)− (u1 − v1)
∣∣(H3′)

is assumed in [10] in place of (H3), in connection with defining products of the form
g(u) dvdx , where u and v are BV functions. For instance, (H3′) guarantees that such

products depend solely on the measure dv
dx and not on the function v. It is straight-

forward to check that hypotheses (H1)–(H3) suffice for Definition 4.9, for most results
presented in [10], and, in particular, for the theorem on weak stability.

It can be checked that the nonconservative product is independent of reparametriza-
tions of the paths and that the definition is consistent with the usual distributional
definition in the case of conservative products: if f : RN → R is a continuously
differentiable function, then [

(Df)(u)
du

dx

]
φ

=
d

dx
(f(u)).(4.29)

The left-hand side in (4.29) is understood in the sense of Definition 4.9, while the
right-hand side is understood in the sense of distributions.

Example 4.11. A simple example of paths is the family of straight lines φS ,
defined by

φS(τ ;u0, u1) = u0 + τ(u1 − u0).(4.30)

Then (4.27) reads

[
g(u)

du

dx

]
S

({x}) =

(∫ 1

0

g(u− + τ(u+ − u−)) dτ

)
(u+ − u−) ,

and the nonconservative product coincides with a product introduced by Volpert [31].
To see that, recall that the averaged superposition of a BV function u : (a, b) → RN
by a continuous function g is the function ĝ(u), defined for all x ∈ (a, b) by

ĝ(u)(x) =

∫ 1

0

g(u− + s(u+ − u−)) ds, u± := u(x±).(4.31)

Of course, we have

ĝ(u)(x) = g(u(x)) for all x ∈ Cu.
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The function ĝ(u) is Borel measurable, and the product ĝ(u)dudx is well defined as
a signed Borel measure. This nonconservative product coincides with the one in
Definition 4.9 if one uses the family of straight lines:[

g(u)
du

dx

]
S

= ĝ(u)
du

dx
(4.32)

as Borel measures on (a, b).
A comparison of (4.20) with the hypotheses of Theorem 4.9 indicates that (H2)

and (H3) are somewhat restrictive, ruling out the possibility of loops attached to the
graph of the BV function u. The gap between the two definitions has been bridged
in a definition given by Raymond [27]. It is proved in [27] that this definition is
equivalent to Definition 4.1.

In practice, there should be no confusion between the notation introduced in
Definitions 4.1 and 4.9, respectively, in view of the following result.

Theorem 4.12. Let u : (a, b) → RN be a function of bounded variation and
(X,U) : [0, 1]→ [a, b]×RN be a generalized graph of u. Suppose there exists a family
of paths satisfying (H1)–(H2) such that, for every point of discontinuity x ∈ Su,

φ(τ ;u−, u+) := U
(
s− + τ(s+ − s−)

)
, τ ∈ [0, 1],

where s± := X−1(x±), u± := u(x±),
(4.33)

and satisfying the “no loop” condition

for every x ∈ Cu, there exists a unique s ∈ [0, 1] such that X(s) = x.(4.34)

Then the nonconservative products in Definitions 4.1 and 4.9, respectively, coincide[
g(u)

du

dx

]
φ

=
[
g(u)

du

dx

]
(X,U)

as Borel measures on (a, b).
Proof. It will be convenient to view the product in Definition 4.9 as a Borel–

Stieltjes integral. Namely, by modifying g(u) at most countably many points, we can
construct a function g(u) : [a, b]→ RN satisfying

g(u)(x) = g(u(x)) for x ∈ Cu(4.35)

and for x ∈ Su

g(u) · (u(x+)− u(x−)) =

∫ 1

0

g
(
φ(τ ;u(x−), u(x+)

))
∂τφ(τ ;u(x−), u(x+)) dτ.

(4.36)

Note that the value of g(u)(x) is not uniquely determined by points x ∈ Su, since
any vector othogonal to the jump u(x+) − u(x−) may be added to g(u)(x). From
Definition 4.9, one deduces that[

g(u)
du

dx

]
φ

= g(u) du(4.37)

as Borel measures on (a, b), where the right-hand side is understood as a Borel–
Stieltjes integral. Using the change of variable formula in Theorem 2.2, we thus have∫

[a,b]

θ

[
g(u)

du

dx

]
φ

=

∫
[a,b]

θ g(u) du =

∫
[0,1]

(θ ◦X) (g(u) ◦X) d(u ◦X).(4.38)
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Consider the decomposition
(
[0, 1] \ Ju

) ∪ Ju where Ju :=
⋃
x[s−, s+] with s± :=

X−1(x±). On one hand, by (4.35) one has g(u)(x) = g(u(x)) for x ∈ Cu and thus, on
the set [0, 1] \ Ju, we obtain u ◦X = U and g(u) ◦X = g(u ◦X) = g(U). Thus∫

[0,1]\Ju
(θ ◦X) (g(u) ◦X) d(u ◦X) =

∫
[0,1]\Ju

(θ ◦X) (g(u) ◦X) d(u ◦X)

=

∫
[0,1]\Ju

(θ ◦X) g(U)
dU

ds
ds.

(4.39)

On the other hand, in view of condition (4.34), each interval [s−, s+] ⊂ Ju corre-
sponds to a jump in u, say, u± := u(x±) for some x ∈ Su. Using (4.36) and (4.33),
we obtain ∫

[s−,s+]

(θ ◦X) (g(u) ◦X) d(u ◦X) =

∫
[s−,s+]

θ(x) g(u)(x) d(u ◦X)

= θ(x) g(u)(x) · (u+ − u−
)

= θ(x)

∫ 1

0

g
(
φ(τ ;u(x−), u(x+)

))
∂τφ(τ ;u(x−), u(x+)

)
dτ

= θ(x)

∫
[s−,s+]

g(U(s))
dU

ds
ds.

(4.40)

Combining (4.38)–(4.40) we deduce that∫
[a,b]

θ
[
g(u)

du

dx

]
φ

=

∫
[0,1]

(θ ◦X) (g(u) ◦X) d(u ◦X)

=

∫
[0,1]

(θ ◦X) g(U)
dU

ds
ds

=

∫
[a,b]

θ
[
g(u)

du

dx

]
(X,U)

for every test function θ.
Next, we list examples in order to illustrate the relation between regularized se-

quences {vn}, subject to (1.3), and the associated nonconservative products. Since all
definitions of nonconservative products are equivalent within their range of applicabil-
ity, we will use interchangeably the notation [g(u)dudx ]φ and [g(u)dudx ](X,U); the former
is applicable when we are given a family of paths φ or an extended graph and the
latter when we are given a generalized graph (X,U). In any case one can pass from
φ to (X,U) and vice versa by using Propositions 4.7 and 4.8. We recall that, given
a generalized graph (X,U), it is always possible to construct a sequence of smooth
functions {vn} that approach (X,U) in the graph distance (cf. Theorem 3.2).

Example 4.13. We return to the sequence {vn} discussed in Example 1.1. With
u0, u1 ∈ RN , the functions {vn}, v, and the path π defined in (1.5)–(1.6), we have

g(vn)
dvn
dx

⇀

(∫ 1

0

g(π(s))π′(s)ds
)
δx0 weak-? in M[a, b].(4.41)

We select the family of paths φ so that φ(.;u0, u1) = π holds. Then the noncon-
servative product reads[

g(v)
dv

dx

]
φ

= c(g, π) δx0
, where c(g, π) =

∫ 1

0

g(π(s))π′(s)ds ,(4.42)
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and for any g continuous we have g(vn)dvndx ⇀ [g(v) dvdx ]φ weak-?. This example il-
lustrates the important fact that the path φ must be selected in agreement with the
regularization under consideration. Different regularizations may give rise to different
paths φ.

When u0 6= u1, (4.42) may be interpreted in terms of Definition 4.9. When
u0 = u1, this is no longer possible, because hypothesis (H2) excludes the possibility
of loops. However, it can be interpreted in terms of the more general Definition 4.1
as follows: By Proposition 4.8 the function v together with the location of the loop
discontinuity x0 and the path π determine a generalized graph. A representative
(Y, V ) of this graph is given by the formulas

Y (s) =


a+ 3s(x0 − a), s ∈ [0, 1

3 ],

x0, s ∈ [1
3 ,

2
3 ],

x0 + (3s− 2)(b− x0), s ∈ [ 2
3 , 1],

V (s) =


u0, s ∈ [0, 1

3 ],

π(3 s− 1), s ∈ [ 1
3 ,

2
3 ],

u1, s ∈ [2
3 , 1].

(4.43)

Then Definition 4.1 gives [
g(v)

dv

dx

]
(Y,V )

= c(g;π) δx0
(4.44)

and so, as n→∞,

g(vn)
dvn
dx

⇀
[
g(v)

dv

dx

]
(Y,V )

weakly-? ∈M[a, b].(4.45)

Note that (4.44) holds for arbitrary u0 and u1 and that, when u0 = u1, the limiting
graph (Y, V ) contains a loop at the location x0.

Example 4.14. Consider next a piecewise constant function v : [a, b] → RN
having three points of discontinuity:

v(x) =


u0 for x ∈ [a, c1),

u1 for x ∈ [c1, c2),

u2 for x ∈ [c2, c3),

u3 for x ∈ [c3, b],

(4.46)

where a < c1 < c2 < c3 < b are real constants, and the uj ’s are constant vectors. Let
πj be Lipschitz continuous paths such that πj(0) = uj−1 and πj(1) = uj , j = 1, 2, 3.
In a fashion similar to Example 1.1, we can define a sequence of smooth functions vn
by replacing the jumps in v with smooth transition layers based on the paths πj such
that {vn} are uniformly bounded and vn → v pointwise. Then

g(vn)
dvn
dx

⇀
∑

j=1,2,3

c(g, πj) δcj , where c(g, πj) =

∫ 1

0

g
(
πj
)∂πj
∂s

ds .(4.47)

Accordingly, the nonconservative product is defined so that[
g(v)

dv

dx

]
(X,U)

=
[
g(v)

dv

dx

]
φ

=
∑

j=1,2,3

c(g, πj) δcj .(4.48)

In most cases this is done by using Definition 4.9, upon selecting the family of paths
φ so that φ(.;uj , uj+1) = πj . There are a few interesting exceptions when one needs
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to use Definition 4.1. One is the case where the approximating sequence contains
loops. This is discussed in the previous example. Another case is when the jumps
of v at x = c1 and x = c3 coincide, u0 = u2 and u1 = u3. Then Definition 4.9
prevents us from using, in vn, different paths for approximating the same jump at
two different locations. This difficulty does not arise with Definition 4.1. Upon
constructing a representative of the limiting graph, as in the previous example, we
define the nonconservative product as in (4.48).

Example 4.15. Given an increasing sequence of points ck ∈ [a, b), k = 0, 1, 2, . . . ,
with c0 = a and c∞ := limk→∞ ck ∈ (a, b), we consider the saltus function u : [a, b]→
RN defined by

v(x) =


u0 for x ∈ [a, c1),

uk for x ∈ [ck, ck+1) , k = 1, 2, . . . ,

u∞ for x ∈ [c∞, b],
(4.49)

for constants uk and u∞ in RN . For each jump connecting uk to uk+1 in v, we
consider a Lipschitz continuous path πk(s) for s ∈ [0, 1] satisfying πk(0) = uk−1 and
πk(1) = uk.

Let c±,nk , for k, n = 1, 2, . . . , be a sequence of points in the interval (a, b) such

that c−,nk < ck < c+,nk < c−,nk+1, and c±,nk → ck as n→∞. We construct the sequence

of regularized functions vn : [a, b]→ RN by

vn(x) =


u0 for x ∈ [a, c−,n1 ),

πk
( x−c−,nk

c+,nk −c−,nk

)
for x ∈ [c−,nk , c+,nk ) , k = 1, 2, . . . ,

uk for x ∈ [c+,nk , c−,nk+1) , k = 1, 2, . . . ,

u∞ for x ∈ [c∞, b].

(4.50)

The functions vn are continuous and

TV (vn) =
∞∑
k=1

∫ 1

0

∣∣∣∣dπkds (s)

∣∣∣∣ ds.(4.51)

We assume that the right-hand side of (4.51) is finite, so that the sequence {vn} is of
uniformly bounded variation. A calculation shows that

g(vn)
dvn
dx

⇀
∞∑
j=1

c(g, πj) δcj , weak-? in M[a, b],(4.52)

which suggests that the nonconservative product [g(v) dvdx ](X,U) should be defined by

[
g(v)

dv

dx

]
(X,U)

=

∞∑
k=1

c(g, πk) δck .(4.53)

Because of the uniform constant K in hypothesis (H3) this cannot be handled in
general by Definition 4.9. By contrast, Definition 4.1 is adequate to define the non-
conservative product as in (4.53); this follows from (A1)–(A2) and the construction
process in the proof of Proposition 4.8.
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5. The Riemann problem for nonconservative hyperbolic systems. The
theory developed in the previous sections is now applied to the Riemann problem for
first-order quasi-linear hyperbolic systems

∂tu+A(u) ∂xu = 0, x ∈ R, t > 0 ,(5.1)

u(x, 0) =

{
u− for x < 0,

u+ for x > 0,

where the N × N matrix A(u) is a smooth function of u, and u+ and u− are given
vectors in RN . Because of the invariance of the Riemann problem under dilations
(x, t) → (αx, αt), for α > 0, the solution is expected to be a self-similar function of
the variable ξ = x/t. Accordingly, u = u(x/t) is sought by solving the boundary value
problem

−ξ du
dξ

+A(u)
du

dξ
= 0,

u(±∞) = u± .
(P0)

In the nonconservative case A(u) is not a Jacobian matrix, and one is confronted
with the difficulty of giving an appropriate meaning to the product A(u) du/dξ. To
address this difficulty, we construct solutions of (P0) as ε↘ 0 limits of solutions to

−ξ duε
dξ

+A(uε)
duε
dξ

= ε
d

dξ

(
B(uε)

duε
dξ

)
,

uε(±∞) = u± ,

(Pε)

where B(u) is a positive semidefinite N ×N matrix. This approach for constructing
solutions to the Riemann problem is called self-similar zero-viscosity limits. For con-
servative strictly hyperbolic systems, this method is known to select shocks having
the internal structure of a traveling wave and to provide the unique solution to the
Riemann problem for weak waves; see Tzavaras [30].

Throughout the paper we proceed under the hypothesis: There exists a family of
smooth solutions uε to (Pε), for ε > 0, that satisfy uniform in ε L∞ and variation
bounds,

|uε − u−|L∞ + TV (uε) ≤ C ,(5.2)

as well as uniform convergence properties at infinity,

|uε(ξ)− u±| ≤ C exp(−α ε) for ξ < a+ 1 and ξ > b− 1,(5.3)

for some a < b and C,α > 0 independent of ε. Such solutions are constructed in
LeFloch–Tzavaras [18, 19] under the following set of structural assumptions:

(i) System (1.1) is strictly hyperbolic; i.e., the matrix A(u) has N real and distinct
eigenvalues λ1(u) < · · · < λN (u);

(ii) the initial jump |u+ − u−| is sufficiently small;
(iii) the diffusion matrix B(u) is the N ×N identity matrix Id.

It is, however, expected that estimates (5.2) should hold, together with (5.3) or vari-
ants, under more general circumstances, and the analysis in this section requires only
(5.2)–(5.3).
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The uniform BV estimates provide a natural framework to study the notion of
weak solutions for the nonconservative Riemann problem (P0). Let (Xε, Uε) be the
arc-length reparametrization of the graph (ξ, uε(ξ)). Theorem 3.2 asserts that there
exists a subsequence {uεn} and a generalized graph (X,U), determining a function u
of bounded variation such that

(Xεn , Uεn)
d→ (X,U),

σεn(ξ)→ σ(ξ) , uεn(ξ)→ u(ξ) for ξ ∈ Cσ.
(5.4)

Recall that σεn = X−1
εn is a strictly increasing function, while σ = X−1 is a strictly

increasing multivalued map.
Using the results of sections 3 and 4, we can give a meaning to the nonconservative

product [A(u)dudξ ](X,U), relative to the generalized graph (X,U), as a weak-? limit of

A(uε)
duε
dx . To this end, we use either Definition 4.1 to interpret [A(u)dudξ ](X,U) as a

Radon measure or Definition 4.4 to define it via its distribution function F . It leads
to a notion of solutions for (P0) as in Definition 5.1.

Definition 5.1. Let (X,U) : [0, 1]→ [a, b]×RN be a generalized graph associated
with a function of bounded variation u : [a, b] → RN . We say that (X,U) is a weak
solution to the system

−ξ du
dξ

+A(u)
du

dξ
= 0(5.5)

if

−ξ du
dξ

+
[
A(u)

du

dξ

]
(X,U)

= 0(5.6)

in the sense of measures. Equivalently, if for any ζ, ξ ∈ [a, b],

−
[
ξ u(ξ+)− ζ u(ζ−)

]
+

∫ ξ

ζ

u(θ)dθ +

∫ X−1(ξ+)

X−1(ζ−)

A(U(s))
dU

ds
ds = 0.(5.7)

Remark 5.2. Relation (5.7) suggests that at points ξ ∈ SX−1 , the set where
the inverse map X−1 is multivalued, the following analogue of the Rankine–Hugoniot
conditions is satisfied:

−ξ
[
u(ξ+)− u(ξ−)

]
+

∫ X−1(ξ+)

X−1(ξ−)

A(U(s))
dU

ds
ds = 0 .(5.8)

Points ξ ∈ SX−1 may correspond either to jumps or to loops.
The notion of weak solution depends on the equivalence class, but not on the

specific representative, of the generalized graph.
Proposition 5.3. If a generalized graph (X,U) is a weak solution to (5.4),

then any path (Y, V ) belonging to the same equivalence class as (X,U) is also a weak
solution.

Suppose there exists f : RN → RN such that A = Df . Let u of bounded variation
be a solution to (5.4) in the sense of distributions∫

R
u θ dξ +

∫
R

(
ξ u+ f(u)

) dθ
dξ
dξ = 0(5.9)
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for every smooth function θ of compact support. Then any generalized graph associated
with u is a weak solution in the sense of Definition 5.1.

The proof of Proposition 5.3 follows from the facts that the nonconservative prod-
uct is independent of reparametrizations of the generalized graph (X,U), and, when
A(u) = Df(u), one has [

A(u)
du

dξ

]
(X,U)

=
d

dξ
f(u)

as measures.
Theorem 5.4. Fix u± ∈ RN . Let uε : (−∞,+∞) → RN be a family of smooth

solutions to (Pε) for ε > 0 that are of uniformly bounded variation and satisfy (5.2)–
(5.3). Consider the arc-length parametrizations (Xε, Uε) of the graphs of uε. There
exists a subsequence {uεn}, with εn → 0, a generalized graph (X,U), and an associated
BV function u, such that (Xεn , Uεn) converges to (X,U) as in (5.4), (X,U) is a weak
solution of (5.5), and

u(ξ) =

{
u− for −∞ < ξ < a+ 1,

u+ for b− 1 < ξ < +∞.(5.10)

Combined with [18, 19], where the uniform bounds are established for strictly hy-
perbolic systems and small initial jumps |u+−u−|, Theorem 5.4 provides an existence
result for the Riemann problem (P0). We refer to [19] for the structure of the result-
ing wave-fan solution of the Riemann problem and the admissibility restrictions that
the process (Pε) imposes on shocks. The relation with the solution of the Riemann
problem for genuinely nonlinear systems, obtained in [14, 10], is also investigated in
[19].

Proof. In view of the uniform estimates (5.2)–(5.3) and Theorem 3.2, the graphs
(Xε, Uε) converge along subsequences in the graph distance. Denote by (X,U) the
limiting graph.

Observe that the right-hand side of the equation in (Pε) tends to zero in the sense
of distributions ∣∣∣∣ε ∫ B(uε)

duε
dξ

dθ

dξ
dx

∣∣∣∣ ≤ εC‖θ‖C1 TV (uε) −→ 0(5.11)

for every test function θ.
To determine the limit of the right-hand side of the equation in (Pε), one writes

A(uε)
duε
dξ

=
[
A(uε)

duε
dξ

]
(Xε,Uε)

and one uses the weak stability theorems, either Theorem 4.3 if the nonconservative
product is viewed as a Radon measure or Theorem 4.6 if the distribution function is
used instead. It follows that[

A(uε)
duε
dξ

]
(Xε,Uε)

⇀
[
A(u)

du

dξ

]
(X,U)

weak-? in M[a, b].

Using (5.11), we conclude that (X,U) is a weak solution in the sense of Definition
5.1. Finally, the fact that u(ξ) admits the boundary conditions as in (5.10) is a direct
consequence of (5.3).
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ROBUSTNESS OF INSTABILITY FOR THE TWO-DIMENSIONAL
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Abstract. We prove that in two dimensions any steady, inviscid, incompressible flow that is
sufficiently close to an unstable flow is also unstable.
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Introduction. The problem of stability or instability of a steady fluid flow has
been studied by many authors (see, for example, Rayleigh [1], Chandrasekhar [2],
Yudovich [3], Lin [4], and Drazin and Reid [5]). In this paper we study the following
question. Consider a steady flow of an inviscid, incompressible fluid, i.e., an equilib-
rium for the Euler equations. Assume this steady flow is (linearly) unstable. Are all
Euler equilibria that are in some sense “close” to this unstable flow also unstable?

This question requires us to study the spectrum of the linearized Euler operator,
which is a degenerate operator. In general the spectrum is the union of an essential
spectrum and some discrete eigenvalues. The concept of a fluid Lyapunov exponent
introduced by Vishik and Friedlander [6] produces an effective sufficient condition for
instability in the continuous spectrum. For example, it can be used to prove that any
Euler flow with a hyperbolic stagnation point is unstable (see Friedlander and Vishik
[7]). There are also some equilibria where instability arises in the discrete spectrum,
e.g., plane parallel shear flow with an oscillatory profile (see Friedlander, Strauss, and
Vishik [8]). On the other hand, not all Euler equilibria are unstable. The celebrated
Rayleigh criterion tells us that a plane parallel shear flow with no inflection points in
the profile is linearly stable. This result holds for both two- and three-dimensional
disturbances. The techniques of Arnold [9] prove that in two dimensions such a flow
is also, in some sense, nonlinearly stable.

The stability results cited in the preceding paragraph are proved in the energy
(L2) norm. The concept of stability and instability depends very strongly on the norm.
For example, Yudovich [10] proves that, in a norm that measures the derivatives of
the vorticity, even a shear flow with no inflection points is unstable.

In section 1 we recall a theorem of Vishik [11], which states that the fluid Lyapunov
exponent µ determines the essential spectral radius for the linearized Euler equation.
Thus the flows for which µ is positive have a nonempty essential spectrum and are
linearly unstable. This theorem holds in any spatial dimension for periodic boundary
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conditions and refers to the spectrum in L2. Except for an occasional remark, we
restrict ourselves in this paper to the case of periodic boundary conditions.

In sections 2 and 3 we prove the “robustness of instability” for ideal fluid flows
in two dimensions. In two dimensions the fluid Lyapunov exponent µ is the same
as the classical Lyapunov exponent. Furthermore, if a flow does not have a stag-
nation point, then µ = 0 (see Friedlander, Strauss, and Vishik [8]). In section 2
we consider the situation where µ is positive. We prove that any two-dimensional
nondegenerate flow for which µ > 0 must contain a hyperbolic stagnation point.
Hence for a nondegenerate Euler equilibrium in two dimensions, the existence of a
hyperbolic stagnation point is both a necessary and sufficient condition for instability
in the essential spectrum. It follows that such an instability is preserved under small
perturbations of the equilibrium flow.

In section 3 we consider a two-dimensional flow that is unstable even though µ
vanishes, that is, the spectrum contains some unstable eigenvalues but no unstable
essential spectrum. Thus, for a given Euler equilibrium we assume the existence of an
eigenvalue σ0 with Reσ0 > 0. We prove that for any sufficiently nearby equilibrium
there exists an eigenvalue σ near σ0. To accomplish this, we first convert the eigenvalue
problem for the velocity equation in L2 to an eigenvalue problem for the vorticity
equation in H−1. In two dimensions the eigenvalue equation can then be converted to
a condition of invertibility of an operator (id− T ), where T is compact and depends
analytically on the spectral parameter and continuously on the equilibrium. The poles
of such a family of operators depend continuously on the equilibrium. This technique
was developed by Guo and Strauss [12] to study the stability of BGK equilibria in
collisionless plasmas. Because of the relatively simple nature of the two-dimensional
vorticity equation, the proof works in two dimensions but cannot readily be extended
to three.

Like most questions in fluid dynamics, the problem of the robustness of instability
is much more difficult in three dimensions and in fact there is some evidence to suggest
that the robustness might be false. In section 4 we exhibit a forced flow where the
presence of a hyperbolic stagnation point gives a positive lower bound for the exponent
µ. However, an infinitesimally small three-dimensional modification of this flow may
destroy the stretching at the hyperbolic point so that the lower bound on µ collapses to
zero. The behavior of the fluid exponent under perturbation is related to the problem
of lower semicontinuity of the Lyapunov exponents of general dynamical systems.

In an appendix we prove the related but independent result that, for all flows
with µ = 0, the eigenfunctions associated with unstable eigenvalues must be C∞.

1. The fluid Lyapunov exponent. The Euler equation for inviscid incom-
pressible flow is

ut + (u,∇)u+∇p = 0, (∇, u) = 0.

The concept of a Lyapunov exponent for fluid flow was developed and utilized in a
series of papers [6], [7], [10] and is summarized here. Let U be a C∞-vector field that
satisfies the steady Euler equations in a 2π-periodic domain Tn = Rn/2πZn:

−(U,∇)U −∇P = 0, (∇, U) = 0,(1.1)

where P is a C∞-smooth pressure. We define the space of divergence-free vector fields

L2
s = L2(Tn)n ∩ {v | (∇, v) = 0}.
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We consider the linearized Euler equation around U :

v̇ = −(U,∇)v − (v,∇)U −∇q def
= Lv,(1.2)

(∇, v) = 0 , v(x, 0) = v0(x),(1.3)

v0(x) ∈ L2
s.(1.4)

The linear operator L is defined in (1.2) as acting on L2
s with the domain

D(L) = {v ∈ L2
s | Lv ∈ L2

s}.
Let eLt denote the evolution operator for the linearized Euler equation. The bicharact-
eristic-amplitude equations are the system of ODEs

ẋ = U(x) , x(0) = x0,(1.5.a)

ξ̇ = −
(
∂U

∂x

)T
ξ , ξ(0) = ξ0,(1.5.b)

ḃ = −
(
∂U

∂x

)
b+ 2

((
∂U

∂x

)
b, ξ

)
ξ

|ξ|2 , b(0) = b0.(1.5.c)

We define the fluid Lyapunov exponent µ as

µ
def
= µ(U)

def
= lim

t→∞
1

t
log sup

|ξ0|=1, |b0|=1

(ξ0,b0)=0

|b(x0, ξ0, b0; t)|.(1.6)

Let ress(e
Lt) denote the essential spectral radius of the evolution operator eLt in L2

s.
It is proved in [11] that

µ =
1

t
log ress(e

Lt),(1.7)

where the right side is independent of t. This identity (1.7) is valid in dimensions two
and three, both for periodic boundary conditions and for equilibrium flows that are
constant at infinity with perturbations in L2(Rn).

The quantity µ, which can be interpreted as a Lyapunov exponent for ideal fluid
flow, can be effectively computed for a number of specific flows U . For example, in [7]
it is proved that any flow having exponential stretching even along a single Lagrangian
trajectory has a positive µ and hence, by the theorem stated above in (1.7), is linearly
unstable due to instability in the essential spectrum. On the other hand, it can be
shown that µ = 0 in some examples (see [8]) and hence any instability would have to
occur in the discrete spectrum.

2. Perturbation of the essential spectrum for n = 2. Let U be a C∞

solution to the steady Euler equation (1.1) on a torus T 2. Assume all the stagnation
points (that is, points x∗ where U(x∗) = 0) are nondegenerate (that is, ∂U

∂x (x∗) has
both of its eigenvalues nonzero).

Theorem 2.1. Let V be another C∞ solution to (1.1) with ‖U − V ‖C1(T 2) < ε.
If the exponent µ defined in (1.6) is positive for the flow U and if ε is sufficiently
small, then µ is also positive for the flow V .

Proof. In two dimensions we claim that the positivity of µ for such a flow is
equivalent to the existence of a hyperbolic stagnation point. To prove this claim, we
appeal to results of Friedlander, Strauss, and Vishik [8, Sect. 4], concerning solutions
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of the system (1.5.a)–(1.5.c) for two-dimensional flows. It is shown there that µ = 0
for any flow U without a stagnation point. It is also shown that

|b| |ξ| = constant(2.1)

along any trajectory, hence the condition µ > 0 implies the existence of an expo-
nentially decaying solution ξ(t) of (1.5.b). The explicit formula for ξ(t) proved in [8]
is

ξ(t) =
c1U(x(t))

|U(x(t))|2 +

c2 − c1 ∫ t

0

((
∂U
∂x

)
U +

(
∂U
∂x

)T
U,U⊥

)
|U |4

∣∣∣∣∣∣
x(τ)

dτ

U⊥(x(t)),

(2.2)

where ∂U
∂x = Ux denotes the Jacobian matrix and ⊥ is defined by 〈u1, u2〉⊥ =

〈−u2, u1〉. This expression is valid for any trajectory of ẋ = U(x) which is not itself
a stagnation point .

Since |U | is bounded from above, the first term in (2.2) does not tend to zero as
t → ∞, so that the only way to get an exponentially decaying solution ξ(t) along a
sequence tj →∞ is to have c1 = 0. Thus it follows from µ > 0 that for such a sequence
we have |U(x(tj))| ≤ C exp{−εtj} for an appropriate ε > 0 and C > 0. Because of
compactness, there is a convergent subsequence x(tj)→ x∗ ∈ T 2, whence U(x∗) = 0.
Since x(tj) → x∗, one of the eigenvalues of the Jacobian matrix ∂U

∂x (x∗) is negative.

Since ξ(tj)→ 0, one of the eigenvalues of −(∂U∂x (x∗))T is negative. Therefore ∂U
∂x (x∗)

has one negative and one positive eigenvalue. Thus x∗ is hyperbolic. Conversely, if
x∗ is a hyperbolic stagnation point, then −(∂U∂x (x∗))T has one negative eigenvalue, so
that there is a solution ξ of (1.5.b) with x(t) ≡ x∗ that is exponentially decaying and
a solution b of (1.5.c) that is exponentially growing. Hence the claim is proved.

Now we apply the Grobman–Hartmann theorem (cf. [13]) to conclude that the
perturbed flow V also has a hyperbolic stagnation point for ‖U − V ‖C1(T 2) small
enough. This implies the positivity of µ for V and hence any such flow is linearly
unstable.

3. Perturbations of the discrete spectrum. Let U ∈ C∞ be a steady solu-
tion to the Euler equation in T 2 = R2/2πZ2:

−(U,∇)U −∇P = 0, (∇, U) = 0, x ∈ T 2.(3.1)

In this section we assume that µ = 0 but that there is an unstable eigenvalue σ0

(with an L2 eigenfunction) of the generator of the corresponding linearized stability
problem (1.2)–(1.4). We prove that any Euler equilibrium near U also has a nearby
eigenvalue.

Theorem 3.1. Let U ∈ C∞ be a solution of (3.1) such that all the classical
Lyapunov exponents vanish for the flow given by (1.5.a). Let σ0 be an eigenvalue with
Reσ0 > 0. Let V ∈ C∞ be another solution of (3.1) such that ‖U − V ‖C2(T 2) < ε.
If ε is sufficiently small, then V also has an unstable eigenvalue σ, which is near σ0.
Thus V is linearly unstable.

Corollary 3.2. If, in addition, µ(U) = 0 and U has no degenerate stagnation
points, then both U and V are nonlinearly unstable.

We denote by 〈f〉 the spatial average of a function or a distribution on T 2, by L2
s,0

the subspace of vector fields in L2
s with average zero, by L2

0 the space of L2 functions
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with average zero, by H1
0 the space of H1 functions with average zero, and by H−1

0

the subspace of H−1 distributions with average zero.
By curl we mean the scalar curl of a two-dimensional vector field: curl v = −∂2v1+

∂1v2. If ω is a scalar function on T 2, we denote by v = curl−1ω the unique solution of

curl v = ω, (∇, v) = 0 in T 2.

We note that curl−1 maps H−1
0 into L2

s,0.
Lemma 3.3. Let Reσ > 0. There is a solution of the linearized Euler equation

(1.2)–(1.4) of the form eσtv(x) with 0 6= v ∈ L2
s,0 if and only if there is a nontrivial

solution ω ∈ H−1
0 of the equation

σω + (U,∇)ω + (curl−1ω,∇)curlU = 0.(3.2)

Proof. Given v, we have

σv + (U,∇)v + (v,∇)U +∇q = 0, (∇, v) = 0, 〈v〉 = 0.

Differentiating and letting ω = curl v, we obtain

σω + (U,∇)ω + (v,∇)curlU = 0.

This implies (3.2). Conversely, given ω satisfying (3.2), the function v = curl−1ω
satisfies

curl [σv + (U,∇)v + (v,∇)U ] = 0,

from which it follows that eσtv(x) satisfies (1.2)–(1.4).
It is convenient to define the operator Λ = −(U,∇) with the domain D(Λ) =

{ω ∈ L2
0 | (U,∇)ω ∈ L2}, considered as an operator on L2

0. We denote the same
operator considered on the larger space H−1

0 by Λ−1.
Lemma 3.4. (a) The operator etΛ is an isometry on L2

0 and its generator Λ has
a purely imaginary spectrum.

(b) Assume that all the classical Lyapunov exponents vanish for the flow given by
(1.5.a). Then limt→∞ 1

t log ‖ exp{tΛ−1}‖L(H−1
0 ) = 0 and its generator Λ−1 also has

purely imaginary spectrum.
Proof. Let X(x, t) denote the volume-preserving flow on T 2 corresponding to the

vector field U (see (1.5.a)):

Ẋ(x, t) = U(X(x, t)); X(x, 0) = 0, x ∈ T 2, t ∈ R.(3.3)

The group exp{tΛ} is given by the formula

(exp{tΛ}f)(x) = f(X(x,−t)), x ∈ T 2, t ∈ R.
The volume-preserving character of the flow immediately implies part (a).

We shall show that the smoothness of U guarantees that the operator etΛ−1 is
also well defined on H−1

0 . By duality it is enough to justify this statement for its
adjoint Λ∗−1 on the space H1

0 . Indeed, X(·, t) is volume preserving so that for any

ψ ∈ H1
0 and ϕ ∈ H−1

0 we have∫
T 2

ψ(x)(exp{tΛ−1}ϕ)(x) dx =

∫
T 2

ψ(x)ϕ(X(x,−t)) dx

=

∫
T 2

ψ(X(x, t))ϕ(x) dx =

∫
T 2

(exp{tΛ∗−1}ψ)(x)ϕ(x) dx.
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Now X(X(x,−t), t) = x so that we have the explicit formula for the inverse matrix
∂X
∂x (x,−t) = [∂X∂y (X(x,−t), t)]−1. Thus the reversal of the sign of U preserves the van-
ishing condition on the Lyapunov exponents in a volume-preserving flow. Therefore
all we have to prove is the statement for H1

0 instead of H−1
0 .

Now for any ψ ∈ H1
0 and any t > 0,

‖ exp{tΛ∗−1}ψ‖2H1 ≤
∫
T 2

|ψ(X(x, t))|2 + |∇ψ(X(x, t))|2 ·
∣∣∣∂X(x, t)

∂x

∣∣∣2 dx
(3.4)

≤ C‖ψ‖2H1

(
1 + sup

x∈T 2

∣∣∣∂X(x, t)

∂x

∣∣∣2).
The assumption in part (b) means that limt→∞ 1

t log |∂X(x,t)
∂x | = 0 for all x. Thus for

any δ > 0 and any x ∈ T 2, there is a T (x) > 0 such that∣∣∣∂X(x, t)

∂x

∣∣∣ ≤ eδt/2 for t ≥ T (x).

By the smoothness of U , there is a neighborhood Qx of x such that∣∣∣∂X(y, T (x))

∂y

∣∣∣ ≤ eδT (x), y ∈ Qx.(3.5)

By compactness, there exists a finite number of points xi ∈ T 2 (i = 1, . . . , N) such
that

1.
N⋃
i=1

Qxi = T 2.

2. (3.5) is satisfied for x = xi.
The inequality (3.5) now implies for any y ∈ T 2 and k ∈ Z+ that∣∣∣∂X(y, Ti1 + · · ·+ Tik)

∂y

∣∣∣ ≤ exp δ(Ti1 + · · ·+ Tik),

where the sequence i1, . . . , ik is defined by the following conditions:

y ∈ Uxi1 ; X(y, Txi1 ) ∈ Uxi2 ; . . . ;X(y, Txi1 + · · ·+ Txik−1
) ∈ Uxik .

It follows that, for arbitrary t ≥ 0,∣∣∣∂X(y, t)

∂y

∣∣∣ ≤ C exp δt, t ≥ 0,(3.6)

where C is independent of t. Indeed, there is always a sequence Ti1 , . . . , Tik such that
Ti1 + · · ·+ Tik ≤ t < Ti1 + · · ·+ Tik + maxi Ti constructed as above.

By (3.4) and (3.6), there is a T > 0 such that

‖ exp{tΛ∗−1}‖L(H1) ≤ exp δt, t ≥ T.
Since δ > 0 is arbitrary, we deduce that the spectrum of exp{tΛ∗−1} is contained in
the unit circle. This proves the theorem.

For Reσ > 0, we may rewrite (3.2) in terms of the resolvent of the operator Λ.
We define

Mω ≡M(σ, U)ω ≡ −(σ + (U,∇))−1{(curl−1ω,∇)curlU}.(3.7)
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Thus (3.2) can be rewritten as ω = Mω.
Lemma 3.5. (a) M is a compact operator from H−1

0 to H−1
0 .

(b) M depends analytically on σ for Reσ > 0.
Proof. M is the composition of the following four continuous linear operators.

The operator curl−1 carries H−1
0 into L2

s,0. The operator of multiplication by ∇curlU
carries L2

s,0 into L2
0 because U ∈ C2. By Lemma 3.4(a), the operator −(σ + Λ)−1

carries L2
0 into L2

0. Finally, the embedding L2
0 into H−1

0 is compact. This proves part
(a).

The dependence on σ occurs only in the third of these operators. By Lemma
3.4(a),

−(σ + Λ)−1 =

∫ ∞
0

e−(σ+Λ)t dt,

an integral that converges in operator norm and is analytic in the half-plane Reσ > 0.
Therefore M is analytic there.

Lemma 3.6. M depends continuously on U in the following sense. Let V satisfy
the same conditions as U . For any constant C > 0, there exists a constant C1 such
that

sup
Reσ≥C

‖M(σ, U)−M(σ, V )‖L(L2
0) ≤ C1 ‖U − V ‖C2 .

Proof. Denote M = M(σ, U) and N = M(σ, V ). For all ω ∈ L2
0, we write

Mω −Nω = −[σ + (U,∇)]−1(curl−1ω,∇)curlU + [σ + (V,∇)]−1(curl−1ω,∇)curlV

= I + II,

where

I = [σ + (U,∇)]−1(U − V,∇) [σ + (V,∇)]−1 (curl−1ω,∇)curlU

and

II = −[σ + (V,∇)]−1(curl−1ω,∇)curl (U − V ).

Now

‖II‖H−1
0
≤ ‖II‖L2

0

≤ ‖U − V ‖C2 ‖[σ + (V,∇)]−1‖L(L2
0) ‖curl−1ω‖L2

0

≤ C‖U − V ‖C2 ‖curl−1ω‖L2
s,0

≤ C‖U − V ‖C2 ‖ω‖H−1
0

by Lemma 3.4(a). In the term I, we use Lemma 3.4(b) to estimate its first factor in the
norm L(H−1

0 , H−1
0 ). Its second factor (U − V,∇)ϕ may be written as (∇, (U − V )ϕ).

Therefore we may estimate

‖I‖H−1
0
≤ C‖(U − V,∇) [σ + (V,∇)]−1 (curl−1ω,∇)curlU‖H−1

0

≤ C‖U − V ‖L∞ ‖[σ + (V,∇)]−1 (curl−1ω,∇)curlU‖L2
0

≤ C‖U − V ‖L∞ ‖(curl−1ω,∇)curlU‖L2
0

≤ C‖U − V ‖L∞ ‖U‖C2 ‖curl−1ω‖L2
s,0

≤ C‖U − V ‖L∞ ‖U‖C2 ‖ω‖H−1
0
.
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This completes the proof of Lemma 3.6.
Now we apply the following well-known theorem of Steinberg [14]; cf. Gohberg

and Krein [15].
Theorem 3.7. Let T (σ, s) be a family of compact operators on a Banach space

analytic in σ and jointly continuous in (σ, s) for each (σ, s) ∈ Σ × S, where Σ is an
open set in C and S is an interval in R. If for each s there exists a σ such that
I −T (σ, s) is invertible, then (I −T (σ, s))−1 is meromorphic in σ ∈ Σ for each s and
the poles of (I−T (σ, s))−1 depend continuously on s and can appear or disappear only
at the boundary of Ω or at infinity.

A special case of this theorem, called the analytic Fredholm theorem, which may
be found in Reed and Simon [16], asserts that the set of σ such that I −T (σ, s) is not
invertible is a discrete subset of C and that each such σ is a pole of finite multiplicity.

We are now in a position to prove the main theorem.
Proof of Theorem 3.1. By Lemma 3.3 and (3.7), a point σ in the right half-plane

is an eigenvalue of the linearized Euler equation if and only if 1 is an eigenvalue of
M(σ, U). By Theorem 3.7, the set of such σ is discrete. Now define the family of
operators

T (σ, s) = (1− s)M(σ, U) + sM(σ, V )(3.8)

for Reσ > 0 and 0 ≤ s ≤ 1. These operators are compact on H−1
0 , analytic in σ, and

satisfy the estimate

‖T (σ, s)− T (σ, 0)‖ = |s| ‖M(σ, U)−M(σ, V )‖ ≤ C‖U − V ‖C2 ≡ η.
By assumption, (I − T (σ, 0))−1 has a pole at some point σ0 in the right half-plane.
Fix ε0 so small that on the circle Γ = {|σ − σ0| = ε0} the operator (I − T (σ, 0))−1,
which has a discrete set of poles, exists. For η sufficiently small, (I − T (σ, s))−1 also
exists on the same circle Γ for all 0 ≤ s ≤ 1. By Theorem 3.7, there exists a pole
σ1 of (I − T (σ, 1))−1 within the disk {|σ − σ0| < ε0}. Then σ1 is an eigenvalue for
the perturbed problem with the equilibrium V . This proves the linear instability of
V and completes the proof.

Proof of Corollary 3.2. Because µ(U) = 0 and U has no degenerate stagnation
points, it follows from the proof of Theorem 2.1 that all the stagnation points are
elliptic. So for ε sufficiently small, all the stagnation points of V are also elliptic.
Therefore µ(V ) = 0. But we have shown that V has an unstable eigenvalue. By [8],
V is nonlinearly unstable in the space Hk

s = L2
s,0 ∩Hk(T 2) for any k > 2.

4. A three-dimensional example. The question of the robustness of instabil-
ity for steady fluid flows in three dimensions is much harder than in two dimensions
and we give no answer here. The following example suggests that it may in fact not
be true in complete generality since there may exist unstable flows U for which there
is a stable flow arbitrarily close by.

We consider the following family of incompressible flows in R3/2πZ3 depending
on a parameter ε ∈ R:

U1ε(x1, x2, x3) = − sinx3∂2Ψ(x1, x2),

U2ε(x1, x2, x3) = sinx3∂1Ψ(x1, x2),

U3ε(x1, x2, x3) = ε.

(4.1)

Although (∇, Uε) = 0, (4.1) is not an equilibrium solution of the unforced Euler
equation but only the solution of a forced Euler equation. However the description of
the fluid Lyapunov exponent given by (1.6) still applies.
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Let Ψ ∈ C∞ (R2/2πZ2) and assume there exists a point (x01, x02), where
∇Ψ(x01, x02) = 0 and that this point is hyperbolic for the vector field ∇Ψ. The
trajectory of the flow (4.1) through the point x0 = (x01, x02, x03) is the straight line
on the torus R3/2πZ3


x1 = x01 (mod 2π),

x2 = x02 (mod 2π),

x3 = x03 + εt (mod 2π).

(4.2)

In this case equation (1.5.b) can be solved explicitly. The equation becomes

ξ̇ = − sin(x03 + εt) AT ξ,(4.3)

where

A =

−∂21Ψ(x0) −∂22Ψ(x0) 0
∂11Ψ(x0) ∂12Ψ(x0) 0

0 0 0

 .

Consider first the situation where ε = 0. Choose ξ ≡ e3, which is clearly a solution
to (4.3), where the vector ej denotes a unit vector in the xj-direction. In this case,
equation (1.5.c) becomes

ḃ = − sinx03 Ab with b3 = 0.(4.4)

Since (x01, x02) is a hyperbolic point for∇Ψ, the matrix A has nonzero real eigenvalues
±λ. Hence the exponent µ given by (1.6) has a positive bound from below. Thus
such a flow, when ε = 0, is formally unstable.

We now turn to the case where ε 6= 0. The solution to (4.3) is given by

ξ = exp{−(cos(x03 + εt)− cosx03)AT /ε} ξ0.(4.5)

Equation (1.5.c) becomes

ḃ = sin(x03 + εt) {−A+ 2|ξ|−2(ξ ⊗ ξ)A} b.(4.6)

This equation has the form

ḃ(t) = ϕ̇(t) B(ϕ(t)) b(t),(4.7)

where b(t) is vector valued, ϕ(t) = cos(x03 +εt)− cosx03 is a periodic scalar function,
and B is a continuous matrix-valued function. The solution of (4.7) may be written
as b(t) = a(ϕ(t)), where da/ds = b(s) a(s) with a(0) = b(0). Thus b(t) is periodic. It
follows that the exponent

lim
t→∞

1

t
log |b(t)| = 0.

Thus a fluid Lyapunov exponent that is nonzero due to stretching at the hyperbolic
point when ε = 0 collapses to zero for a neighboring flow (4.1) with ε 6= 0.
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Appendix A.
Theorem A.1. Let U(x) be a C∞ vector field on a compact n-dimensional

Riemannian manifold E. Assume divU = 0. Let X(x, t) be the corresponding flow
on E, i.e.,

Ẋ(x, t) = U(X(x, t)); X(x, 0) = 0, x ∈ E, t ∈ R.

Assume all forward Lyapunov exponents vanish:

χ+(x, η) = lim
t→∞

1

t
log

∣∣∣∣∂X∂x (x, t) η

∣∣∣∣ = 0 ∀ x ∈ E, ∀ η ∈ TxE.

Let Hk(E) be the Sobolev space of functions with k derivatives in L2(E). Then,

lim
t→∞

1

t
log ‖ exp{−t (U,∇)}‖L(Hk) = 0.

Remark. As was mentioned above, the vanishing of the forward Lyapunov expo-
nents implies the vanishing of the backward Lyapunov exponents, that is,

χ−(x, η) = lim
t→−∞

1

t
log

∣∣∣∣∂X∂x (x, t) η

∣∣∣∣ = 0 ∀ x ∈ E, ∀ η ∈ TxE.

Proof. We use induction on k. The case k = 1 is proved by repeating word for
word the proof of Lemma 3.4 and noting that, although ∂X

∂x is computed in a fixed
finite system of charts, the exponential growth rate does not depend on the particular
choice of this atlas. As before, h = f ◦X(−t) satisfies the transport PDE

∂h

∂t
(x, t) = −(U(x),∇)h, h(x, 0) = f(x).

Now assume the theorem is proved for all Hs, s ≤ k − 1. We have

‖h‖2Hk =
∑
|α|=k

‖Dαh‖2L2 +
∑
|α|<k

‖Dαh‖2L2 ,

where the second sum grows slower than any exponential. Taking β with |β| = k − 1
and differentiating the equation, we arrive at

∂

∂t
∇ Dβh = −(U(x),∇)∇Dβh−

(
∂U

∂x

)T
∇Dβh+

∑
|γ|<k

bγ(x)Dγh,

with coefficients bγ(·) ∈ C∞(E). Let |α| = k. Using the variation of constants formula
(i.e., Duhamel’s principle) for solutions of an inhomogeneous transport equation, we
get

‖Dαh(t)‖L2 ≤ ‖G(t)‖L2‖Dαh(0)‖L2 + C

∫ t

0

‖G(t− τ)‖L2

∑
|γ|<|α|

‖Dγh(τ)‖L2 dτ,

where G(t− τ) stands for the Green’s function of the equation

∂

∂t
q = −(U,∇)q −

(
∂U

∂x

)T
q.
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Again applying the induction assumption, we get for arbitrary small δ and all t ≥ 0

‖G(τ)‖L(L2) ≤ Cδ exp{δt} and

‖Dγh(τ)‖L2 ≤ Cδ exp{δt}‖h(0)‖Hk−1 .

This implies

‖Dαh(t)‖L2 ≤ Cδ exp{δt}‖h(0)‖Hk .
This concludes the induction step. The proof of the theorem is complete.

Theorem A.2. Let U be a solution to the Euler equation satisfying the conditions
of Theorem A.1. Let σ be an eigenvalue as in Lemma 3.3 with Reσ > 0. Then, the
corresponding eigenfunction is in C∞(E).

Proof. Let ω ∈ H−1 be the eigenfunction, that is,

σω + (U,∇)ω + (curl−1ω,∇)curlU = 0.(A.1)

Since curl−1ω ∈ L2, (A.1) implies that σω+(U,∇)ω ∈ L2. But, according to Theorem
A.1, the operator {σ + (U,∇)} is an isomorphism on Hk(E) for Reσ > 0 and for
integers k ≥ 0. By duality the same statement is valid for all negative integers k as
well. Since ω ∈ H−1, it follows that ω ∈ L2. Now by (A.1),

σω + (U,∇)ω ∈ H1(E).

So by Theorem A.1, ω ∈ H1. Continuation of this bootstrapping argument yields

ω ∈
∞⋂
k=0

Hk(E) = C∞(E).

This proves the theorem.
Remark. Under the condition that χ±(x, η) ≡ 0, it follows that any eigenfunction

of M with Reσ > 0 that is an arbitrary distribution has to be in C∞(E). More
precisely, let k be a positive integer and let Reσ > kλ, where λ is the maximal
Lyapunov exponent

λ = lim
t→∞

1

t
log sup

±
sup

(x,η)∈TxE

∣∣∣∣∂X∂x (x,±t) η
∣∣∣∣ .

Then it follows that ω ∈ Hk(E).
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Abstract. The notion of A-quasiconvexity is introduced as a necessary and sufficient condition
for (sequential) lower semicontinuity of

(u, v) 7→
∫

Ω

f(x, u(x), v(x)) dx

whenever f : Ω× Rm × Rd → [0,+∞) is a normal integrand, Ω ⊂ RN is open, bounded, un → u in

measure, vn ⇀ v in Lp(Ω;Rd) (
∗
⇀ if p = +∞), and Avn → 0 in W−1,p(Ω) (Avn = 0 if p = +∞).

Here Av =
∑N

i=1
A(i) ∂v

∂xi
is a constant rank partial differential operator, A(i) ∈ Lin(Rd;Rl), and

f(x, u, ·) is A-quasi-convex if

f(x, u, v) ≤
∫
Q

f(x, u, v + w(y)) dy

for all v ∈ Rd and all w ∈ C∞(Q;Rd) such that Aw = 0,
∫
Q
w(x) dx = 0, and w is Q-periodic,

Q := (0, 1)N . The characterization of Young measures generated by such sequences {vn} is obtained
for 1 ≤ p < +∞, thus recovering the well-known results for the framework A = curl, i.e., when
vn = ∇ϕn for some ϕn ∈ W 1,p(Ω;Rm), d = N × m. In this case A-quasiconvexity reduces to
Morrey’s notion of quasiconvexity.

Key words. A-quasiconvexity, equi-integrability, Young measure, lower semicontinuity
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1. Introduction. Recently there has been extensive research on minimization
and relaxation of nonconvex energies relevant to the study of equilibria for materials
exhibiting interesting, and technologically powerful, elastic and magnetic behaviors.
Often a starting point for this study directly addresses minimization of the energy,
leading to the search for necessary and sufficient conditions ensuring sequential weak
lower semicontinuity of integrals of the form

(u, v) 7→ I(u, v) :=

∫
Ω

f(x, u(x), v(x)) dx,

where Ω ⊂ RN is an open, bounded set, (u, v) : Ω→ Rm×Rd, and f : Ω×Rm×Rd → R
is a normal integrand. On the other hand, there may be situations where we need
to identify limn→∞ I(un, vn) for an oscillatory sequence {(un, vn)} which does not
minimize the energy. Consequently, this will entail a full characterization of the Young
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measures generated by the sequences under consideration, i.e., weak* measurable
maps ν : Ω→ P, where P is the space of probability measures on Rm×d, such that if
g : Ω×Rm×Rd → R is a Carathéodory function and if {g(·, un, vn)} is equi-integrable,
then ∫

Ω

g(x, un(x), vn(x)) dx→
∫

Ω

∫
Rm×d

g(x, y, z) dνx(y, z) dx.

Although Young measures have been used for quite some time in the contexts of
control theory and optimization [47], they were first introduced in a partial differential
equations (PDE) framework by Tartar [41, 42, 43] in order to relate the information
obtained from the linear balance equations via the method of compensated compact-
ness with the information resulting from pointwise nonlinear constitutive relations.
One application of this method was the study of quasi-linear hyperbolic equations
[42], and later DiPerna [17, 18] and DiPerna and Majda [19] extended it to systems.
(See [20] and [36] for further applications.) During the last few years several questions
related to the study of (nonlinear) elastic materials and certain material instabilities
have been successfully carried out via minimization techniques and through the under-
standing of the underlying Young measures [7, 8, 13, 16, 27]. Often, in this context v
is the gradient ∇u of a Sobolev function u ∈W 1,p(Ω;Rm), d = m×N , and coercivity
of f provides boundedness of the admissible sequences in W 1,p(Ω;Rm). If p > 1 then
un ⇀ u in W 1,p(Ω;Rm) (up to extraction of a subsequence). The work of Morrey
[32], Ball [5], Acerbi and Fusco [1], and Marcellini [31] shows that W 1,p (sequential)
weak lower semicontinuity of

u 7→
∫

Ω

f(x, u(x),∇u(x)) dx

is equivalent to quasiconvexity of f(x, u, ·) provided 0 ≤ f(x, u, ξ) ≤ a(x, u)(1 + |ξ|p)
for some locally bounded function a : Ω × Rm → [0,+∞) and for all ξ ∈ Rd, almost
everywhere (a.e.) x ∈ Ω. We recall that a Borel function f : Mm×N → R is said to
be quasi-convex if

f(ξ) = inf
ϕ∈W 1,∞

0 (Q;Rm)

∫
Q

f(ξ +∇ϕ(x)) dx,(1.1)

where Q := (0, 1)N . If f is quasi-convex then one can show that

f(ξ) = inf
ϕ∈W 1,∞

per (Q;Rm)

∫
Q

f(ξ +∇ϕ(x)) dx,(1.2)

where W 1,∞
per (Q;Rm) is the class of periodic functions in W 1,∞(Q;Rm). Within this

context, the characterization of all Young measures generated by sequences of gradi-
ents bounded in Lp was obtained by Kinderlehrer and Pedregal [28, 29]. They show
that (see Theorem 2.6) in a simply connected domain Ω a weakly measurable mapping
ν : Ω→ P is a Young measure generated by a sequence of gradients ∇un, with {un}
bounded in W 1,p(Ω;Rm), if and only if three conditions are satisfied: ν is p-integrable,
i.e., ∫

Ω

〈νx, |id|p〉 dx < +∞;
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the first moment x 7→ 〈νx, id〉 satisfies the underlying PDE, i.e.,

curl (〈νx, id〉) = 0;

and, as suggested by (1.1), Jensen’s inequality is satisfied for quasi-convex functions,
i.e.,

〈νx, f〉 ≥ f(〈νx, id〉)

for all quasi-convex functions f such that |f(ξ)| ≤ C(1 + |ξ|p).
As emphasized by Tartar, in the setting of continuum mechanics and electromag-

netism more general linear PDEs than curl v = 0 arise, and the theory of compensated
compactness was developed in that framework [34, 41, 42, 43, 44, 45]. To fix ideas,
consider a collection of linear operators A(i) ∈ Lin(Rd,Rl), i = 1, . . . , N , and define

Av :=

N∑
i=1

A(i) ∂v

∂xi
, v : RN → Rd,

A(w) :=

N∑
i=1

A(i)wi ∈ Lin(Rd,Rl), w ∈ RN ,

where Lin(X,Y) is the vector space of linear mappings from the vector space X into
the vector space Y . Following Murat [34], we will assume that A satisfies the constant
rank property, which states that there exists r ∈ N such that

rank A(w) = r for all w ∈ SN−1.

It is easy to see that the curl-free case is a particular case of this general framework
(see Remark 3.3 (iii)). Other examples are discussed in Remarks 3.3 and 3.5 and in
Examples 3.10 and 4.5.

We prove that a necessary and sufficient condition for weak lower semicontinuity
of I, along sequences that satisfy un → u in measure, vn ⇀ v in Lp, and Avn → 0
in W−1,p(Ω), is A-quasiconvexity of f(x, u, ·) (see Theorems 3.6, 3.7). The notion
of A-quasiconvexity and its implications for the lower semicontinuity of functionals
v 7→ ∫

Ω
f(v) dx were first investigated by Dacorogna, who studied, in particular,

situations where the kernel of A contains the range of a suitable first order differential
operator B [14, pp. 100–112] (in the general definition ofA-quasiconvexity as presented
in [14, p. 13] one needs to add periodicity of the test functions to obtain necessity
of A-quasiconvexity; this leads to some difficulties in establishing sufficiency, which,
under the assumption of constant rank, can be overcome using the methods presented
below). Precisely and by analogy with (1.2), a function f : Rd → R is said to be
A-quasi-convex if

f(v) ≤
∫
Q

f(v + w(x)) dx

for all v ∈ Rd and allQ-periodic w ∈ C∞(Q,Rd) such thatA(w) = 0 and
∫
Q
w(x) dx =

0. In addition, we obtain the generalization to the A-free setting of the theorem by
Kinderlehrer and Pedregal concerning the characterization of gradient Young mea-
sures (see Theorem 4.1). This issue has been independently raised by Pedregal in
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[35], where he studied the case of divergence-free fields (see also Remarks 3.3 (iv), 3.5
(iv)).

We remark that continuity of A-quasiconvex functions is only guaranteed along
directions in the characteristic cone Λ := ∪w∈SN−1 kerA(w), and A-quasi-convex
functions need not be (lower semi)continuous (see Proposition 3.4 and Remark 3.5
(ii)).

We note that the method used in this A-free framework departs from the case
curl-free mostly due to the lack of potential functions associated with the vn. Indeed,
in the case of gradients we reduce to the notion of quasiconvexity by localization
via covering lemmas, so that on each subdomain the target function is essentially
affine, followed by matching of the boundary conditions. The latter can be easily
done by simple convex combinations between the potentials and the target function,
avoiding layers of high concentrations of the gradients of the vn. Clearly, the gradient
of the resulting convex combinations still satisfies curl = 0. In the general A-free
setting, we must work directly on the vn, and we need to find a way to project back
the modified fields onto kerA. We perform these projections via discrete Fourier
multipliers (see Lemmas 2.15, 2.16, 2.17). It is at this point that the constant rank
condition enters in a crucial way. Situations where the constant rank condition fails
are little understood. Tartar [41] has studied the example where v : R2 → R2 and

Av = ( ∂v
1

∂x2
, ∂v

2

∂x1
). He showed that in this case A-quasiconvexity reduces to separate

convexity, the Young measures generated by sequences along which {Avn} is bounded
in L∞ are tensor products, and this class is strictly smaller than the class defined by
duality with separately convex functions (see condition (iii) in Theorem 4.1). The
class of Young measures generated by sequences that satisfy Avn → 0 in W−1,p is
not known in general (see [10, 46]). Very recently there has been progress in the case
of a nonconstant rank operator A, and this question has been completely solved by
Müller for p = 2 (see [33]).

2. Preliminaries. In this section we recall the notion of Young measures gen-
erated by sequences bounded in Lp and by curl-free sequences. We discuss some
properties of a constant rank linear partial differential operator A, and we conclude
with the decomposition lemmas, Lemmas 2.15, 2.16, and 2.17, where we show that
if {un} is weakly convergent in Lp and if Aun → 0 in the appropriate sense then
un = vn + wn where {vn} ∈ Lp ∩ kerA is p-equi-integrable and {wn} converges to
zero in measure.

In the sequel Ω ⊂ RN is an open, bounded domain, B(x, ε) denotes the open
ball centered at x ∈ RN with radius ε > 0, Q := (0, 1)N , Q(x0, r) := x0 + rQ∗,
Q∗ := Q − (1/2, . . . , 1/2), and SN−1 := {x ∈ RN : |x| = 1} is the unit sphere in
RN . The Lebesgue measure in RN is designated by LN , and HN−1 will stand for the
(N − 1)-dimensional Hausdorff measure in RN . If 1 < p < +∞, then W−1,p(Ω) is the

dual of W 1,p′
0 (Ω), with 1/p+ 1/p′ = 1, and it is well known that F ∈W−1,p(Ω) if and

only if F = f +
∑N
i=1

∂gi
∂xi

in the sense of distributions for some f, g1, . . . , gN ∈ Lp(Ω).

We denote by C0(Ω;Rd) the set of Rd-valued continuous functions with compact
support in Ω, endowed with the supremum norm. It is well known that the dual of
the closure of C0(Ω;Rd) may be identified with the set of Rd-valued Radon measures
with finite mass, M(Ω;Rd), through the duality

〈µ, ϕ〉 :=

∫
Ω

ϕ · dµ, ϕ ∈ C0(Ω), µ ∈M(Ω).

In order to simplify the notation, and when there is no ambiguity, we will abbreviate
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C0(Ω;Rd) and M(Ω;Rd) as C0(Ω) and M(Ω), respectively. If µ ∈M(Ω) and E ⊂ Ω
is a Borel set, then µbE stands for the restriction of the measure µ to E, i.e.,

µbE(X) := µ(E ∩X) for all Borel set X ⊂ Ω.

We recall that given λ, µ ∈ M(Ω) with µ ≥ 0, by the Radon–Nikodým theorem
we may decompose λ relative to µ, precisely λ = λa+λs, where λs and µ are mutually
singular (λs ⊥ µ), i.e.,

λs(X) = λs(X ∩B), µ(X) = µ(X \B)

for all Borel sets X ⊂ Ω and for some Borel set B ⊂ Ω, and where λa is absolutely
continuous with respect to µ, λa << µ, i.e., λa(X) = 0 whenever X ⊂ Ω is a Borel set
and µ(X) = 0. By Besicovitch’s differentiation theorem we have

λa(X) =

∫
X

∂λ

∂µ
(x) dµ,

∂λ

∂µ
(x) := lim

ε→0

λ(B(x, ε))

µ(B(x, ε))
for µ a.e. x ∈ Ω

and for all Borel sets X ⊂ Ω.
If {zn} is a sequence bounded in L1(Ω), then it admits a subsequence converging

weakly* in the sense of measures to a measure µ ∈M(Ω),∫
Ω

znkϕdx→
∫

Ω

ϕdµ

for all ϕ ∈ C0(Ω). The equi-integrability condition

for all ε > 0 there exists δ > 0 such that LN (E) < δ ⇒ sup
n

∫
E

|zn(x)| dx < ε

is a necessary and sufficient condition for weak compactness in L1 of the sequence {zn}
(recall that Ω is bounded). If equi-integrability holds then µ << LN . We will say that
{zn} is p-equi-integrable if {|zn|p} is equi-integrable. The following Dunford–Pettits
criteria for equi-integrability are well known.

Proposition 2.1. Let {zn} be a sequence bounded in L1(Ω).
(i) The sequence {zn} is equi-integrable if and only if for all ε > 0 there exists

M > 0 such that

sup
n

∫
{x∈Ω:|zn(x)|>M}

|zn(y)| dy < ε.

(ii) The sequence {zn} is equi-integrable if there exists a continuous function
g : [0,+∞)→ [0,+∞) such that

lim
t→+∞

g(t)

t
= +∞, sup

n

∫
Ω

g(|zn(x)|) dx < +∞.

(iii) If {zn} is bounded in Lp(Ω) for some 1 ≤ p < +∞, then {f(zn)} is equi-
integrable whenever f : Rd → [0,+∞) is a continuous function such that

lim
|y|→+∞

f(y)

|y|p = 0.

A map µ : E → M(Ω) is said to be weak* measurable if x 7→ 〈µ(x), ϕ〉 are
measurable for all ϕ ∈ C0(Ω). In order to simplify the notation we denote µ(x) by
µx.
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Often the study of the behavior of solutions of nonconvex problems leads to the
need to determine the limiting energy

lim
n→∞

∫
E

f(zn) dx,

where E is a measurable subset of Ω, f : Rd → R is a nonlinear function, and {zn} is
an oscillatory sequence of measurable functions zn : E → Rd. In general, the presence
of oscillations entails the inequality

lim
n→∞

∫
E

f(zn) dx 6=
∫
E

f(z) dx.

As it turns out, the Young measure generated by (a subsequence of) {zn} will provide
the limiting energy.

We recall that a function f : Ω× Rd → R is said to be a normal integrand if f is
Borel measurable and v 7→ f(x, v) is lower semicontinuous for all x ∈ Ω. Also, f is
Carathéodory if f and −f are normal integrands.

Theorem 2.2 (fundamental theorem on Young measures [6, 11, 41]). Let E ⊂
RN be a measurable set of finite measure and let {zn} be a sequence of measurable
functions, zn : E → Rd. Then there exists a subsequence {znk} and a weak* measur-
able map ν : E →M(Rd) such that the following hold:

(i) νx ≥ 0, ||νx||M(Rd) =
∫
Rd dνx ≤ 1 for a.e. x ∈ E;

(ii) one has (i′) ||νx||M = 1 for a.e. x ∈ E if and only if

lim
M→∞

sup
k
LN ({|znk | ≥M}) = 0;(2.1)

(iii) if K ⊂ Rd is a compact subset and dist (znk ,K)→ 0 in measure, then

supp νx ⊂ K for a.e. x ∈ E;

(iv) if (i′) holds, then in (iii) one may replace “if” with “if and only if”;
(v) if f : Ω× Rd → R is a normal integrand, bounded from below, then

lim inf
n→∞

∫
Ω

f(x, znk(x)) dx ≥
∫

Ω

f(x) dx,

where

f(x) := 〈νx, f(x, ·)〉 =

∫
Rd
f(x, y) dνx(y);

(vi) if (i′) holds and if f : Ω×Rd → R is Carathéodory and bounded from below,
then

lim
n→∞

∫
Ω

f(x, znk(x)) dx =

∫
Ω

f(x) dx < +∞

if and only if {f(·, znk(·))} is equi-integrable. In this case

f(·, znk(·)) ⇀ f in L1(Ω).

The map ν : E →M(Rd) is called the Young measure generated by the sequence
{znk}. It can be shown that every weak* measurable map ν : E → M(Rd) that
satisfies (i) is generated by some sequence {zn}. The Young measure ν is said to
be homogeneous if there is a Radon measure ν0 ∈ M(Rd) such that νx = ν0 for
a.e. x ∈ E.
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Remark 2.3.
(i) Condition 2.1 holds if for some p > 0

sup
n∈N

∫
E

|zn|p dx < +∞.

(ii) As a consequence of (vi), if {zn} is bounded in Lp and if f is a continuous
function in Rd such that |f(y)| ≤ C(1 + |y|q) for some C > 0, 0 < q < p, then
f(znk) ⇀ f in Lp/q. Also, if {zn} is equi-integrable, then taking f ≡ id we obtain

znk ⇀ z in L1(Ω), z(x) := 〈νx, id〉.
Proposition 2.4. If {vn} generates a Young measure ν and if wn → w in

measure, then {vn + wn} generates the “translated” Young measure

νx := Γw(x)νx,

where

〈Γaµ, ϕ〉 := 〈µ, ϕ(·+ a)〉
for a ∈ Rd, ϕ ∈ C0(Rd). In particular, if wn → 0 in measure, then {vn+wn} generates
the Young measure ν.

Proposition 2.5. If {vn} generates a Young measure ν and un → u a.e. in Ω,
then the pair {(un, vn)} generates the Young measure µ defined by

µx := δu(x) ⊗ νx a.e. x ∈ Ω.

A Young measure ν is called a gradient Young measure if it is generated by a
sequence of gradients; more precisely, ν is a W 1,p gradient Young measure if it is
generated by {∇un} and un ⇀ u in W 1,p(Ω;Rm). A complete characterization of
such Young measures has been obtained by Kinderlehrer and Pedregal [28, 29] (see
also [2, 24, 30]). A key ingredient is the notion of quasiconvexity: a Borel function
f : Mm×N → R is said to be quasi-convex if

f(ξ) = inf
ϕ∈W 1,∞

0 (Q;Rm)

∫
Q

f(ξ +∇ϕ(x)) dx.

If f is quasi-convex then one can show that

f(ξ) = inf
ϕ∈W 1,∞

per (Q;Rm)

∫
Q

f(ξ +∇ϕ(x)) dx,

where W 1,∞
per (Q;Rm) is the class of periodic functions in W 1,∞(Q;Rm). It has been

established by Morrey [32] (see also [1, 3, 5, 14, 15, 22, 23]) that sequential weak lower
semicontinuity in W 1,p and quasiconvexity are essentially equivalent. More precisely,
if 0 ≤ f(ξ) ≤ C(1 + |ξ|p) for some C > 0 and all ξ ∈ Mm×N (no growth condition is
necessary if p = +∞), then the implication

un ⇀ u in W 1,p(
∗
⇀ if p = +∞)⇒

∫
Ω

f(∇u) dx ≤ lim inf
n→∞

∫
Ω

f(∇un) dx

holds if and only if f is quasiconvex.
Theorem 2.6. Let 1 ≤ p ≤ +∞. A weak* measurable map ν : Ω→M(Mm×N )

is a W 1,p gradient Young measure if and only if νx ≥ 0 a.e. x ∈ Ω and
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(i) there exists u ∈W 1,p(Ω;Rm) such that 〈νx, id〉 = Du a.e. x ∈ Ω;
(ii)

∫
Ω

∫
Mm×N |ξ|p dνx(ξ)dx < +∞ (suppνx ⊂ K a.e. x ∈ Ω for some com-

pact K ⊂Mm×N if p = +∞);
(iii) 〈νx, f〉 ≥ f(〈νx, id〉) for a.e. x ∈ Ω and for all quasiconvex f : Mm×N → R

(with |f(ξ)| ≤ C(1 + |ξ|p) for some C > 0 and all ξ ∈Mm×N if 1 ≤ p < +∞).
Consider a collection of linear operators A(i) ∈ Lin(Rd,Rl), i = 1, . . . , N , and

define

Av :=

N∑
i=1

A(i) ∂v

∂xi
, v : RN → Rd,

A(w) :=

N∑
i=1

A(i)wi ∈ Lin(Rd,Rl), w ∈ RN ,

where Lin(X,Y) is the vector space of linear mappings from the vector space X into
the vector space Y .

In the sequel we will assume that A satisfies the constant rank property, namely,
there exists r ∈ N such that

rank A(w) = r for all w ∈ SN−1.(2.2)

Fix w ∈ RN . We define

P(w) : Rd → Rd to be the orthogonal projection of Rd onto kerA(w),

Q(w) : Rl → Rd, Q(w)A(w)z := z − P(w)z, z ∈ Rd, Q(w) ≡ 0 on (range A(w))⊥.

Proposition 2.7. If (2.2) holds then the map P : RN \ {0} → Lin(Rd;Rd) is
smooth and homogeneous of degree zero, and the map Q : RN \ {0} → Lin(Rl;Rd) is
smooth and homogeneous of degree −1.

Let ∆ := ZN be the unit lattice, i.e., the additive group of points in RN with
integer coordinates. We say that f : RN → Rd is ∆-periodic if

f(x+ λ) = f(x) for all x ∈ RN , λ ∈ ∆.

A ∆-periodic function f may be identified with a function fT on the N torus

TN := {(e2πix1 , . . . , e2πixN ) ∈ CN : (x1, . . . , xN ) ∈ RN}

through the relation

fT (e2πix1 , . . . , e2πixN ) := f(x1, . . . , xN ).

The space Lp(TN ) is identified with Lp(Q), and C(TN ) is the set of ∆-periodic con-
tinuous functions on Q.

Proposition 2.8 (see [9]). Let w ∈ Lp(TN ;Rd), 1 ≤ p ≤ +∞, and set wn(x) :=
w(nx), n ∈ N. If E ⊂ RN is a measurable set, then

wn ⇀

∫
TN

w(y) dy in Lp(E;Rd) (
∗
⇀ if p = +∞).
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In particular, {wn} generates the homogeneous Young measure ν := δw, where

〈δw, ϕ〉 :=

∫
TN

ϕ(w(y)) dy for all ϕ ∈ C0(Rd).

We recall some results on Fourier transforms of periodic functions (see [38, 39]).
If f ∈ L1(TN ), then its Fourier coefficients are defined as

f̂(λ) :=

∫
TN

f(x)e−2πix·λ dx, λ ∈ ∆,

and the following hold.
Theorem 2.9.

(i) The trigonometric polynomials

R(x) :=
∑
λ∈∆′

aλe−2πix·λ, ∆′finite subset of ∆, aλ ∈ C,

are dense in C(TN ) and in Lp(TN ) for all 1 ≤ p < +∞.
(ii) If µ ∈M(TN ) and 〈µ, e−2πix·λ〉 = 0 for all λ ∈ ∆ then µ ≡ 0.

(iii) If f ∈ L2(TN ) then

f(x) =
∑
λ∈∆

f̂(λ)e2πix·λ,
∑
λ∈∆

|f̂(λ)|2 = ||f ||L2 .

Corollary 2.10. If f ∈ L1(TN ) and
∑
λ∈∆ |f̂(λ)| < +∞, then there exists a

representative f of f such that f ∈ C(TN ) and for all x ∈ TN

f(x) =
∑
λ∈∆

f̂(λ)e2πix·λ.

Corollary 2.11. If f ∈ Ck(TN ) for some k > N/2 then∑
λ∈∆

|f̂(λ)| < +∞.

Let (Lp(TN ), Lq(TN )) denote the class of (p, q) Fourier multiplier operators, i.e.,
the class of all bounded linear operators T : Lp(TN )→ Lq(TN ) which commute with
translations,

Γh T = T Γh for all h ∈ RN ,

where Γhf(x) := f(x− h).
Theorem 2.12. If 1 ≤ p, q ≤ +∞ and if T ∈ (Lp(TN ), Lq(TN )), then there

exists a bounded function Θ : ∆→ C such that

Tf(x) :=
∑
λ∈∆

Θ(λ)f̂(λ)e2πix·λ if f ∈ Lp(TN )is given by f(x) =
∑
λ∈∆

f̂(λ)e2πix·λ.

The collection of coefficients {Θ(λ)}λ∈∆ is called the Fourier multiplier associated
with T .



1364 IRENE FONSECA AND STEFAN MÜLLER

It can be shown that a certain class of continuous functions on the unit sphere
SN−1 are Fourier multipliers. Precisely (see [38, Example iii, pp. 94], [39, Corollary
3.16, p. 263, and remark just below]),

Proposition 2.13. If Θ is homogeneous of degree zero and if it is infinitely
differentiable on SN−1, then the operator TΘ : Lp(TN )→ Lp(TN ) defined by

TΘf(x) :=
∑

λ∈∆\{0}
Θ(λ)f̂(λ)e2πix·λ if f ∈ Lp(TN ) is given by f(x) =

∑
λ∈∆

f̂(λ)e2πix·λ

is a Fourier multiplier operator for 1 < p < +∞.
If (2.2) holds, then in light of Propositions 2.7 and 2.13 the functions

Θij : w ∈ RN 7→ P(w)ij , i, j ∈ {1, . . . , d},

generate the Fourier multipliers {Θij(λ)}λ∈∆\{0} associated with the Fourier multi-
plier operators TΘij , and we define the operators

(Tu)i(x) := (TΘijuj)(x) for u ∈ Lp(TN ;Rd), i = 1, . . . , N,

where the summation convention for repeated indices is used.
Lemma 2.14. Suppose that (2.2) holds and let 1 < p < +∞. Then

(i) T : Lp(TN ;Rd)→ Lp(TN ;Rd) is a linear, bounded operator that vanishes on
constant mappings;

(ii) if u ∈ Lp(TN ;Rd) then T ◦ Tu = Tu, and A(Tu) = 0;
(iii) ||u−Tu||Lp ≤ Cp||Au||W−1,p for all u ∈ Lp(TN ;Rd), such that

∫
TN

u dx = 0,
and for some Cp > 0;

(iv) suppose that {un} is a sequence bounded in Lp(TN ;Rd) and {|un|p} is equi-
integrable. Then {|Tun|p} is still equi-integrable.

Proof. Property (i) follows from the definition of T and from Propositions 2.7 and
2.13. Property (ii) is an immediate consequence of the fact that P is a projection.

To prove (iii), we note that by Corollaries 2.10 and 2.11 for u ∈ C∞(TN ;Rd),
with

∫
TN

u dx = 0, we have

u− Tu= Σλ∈∆\{0}Q(λ)A(λ)û(λ)e2πix·λ

= Σλ∈∆\{0}Q
(
λ

|λ|
)
A
(
λ

|λ|
)
û(λ)e2πix·λ,

where we have used the linearity of A and the fact that Q is homogeneous of degree −1.
By Proposition 2.7 the inequality in (iii) is obtained, and the result for Lp periodic
functions with zero average follows via a density argument.

To prove (iv) consider the truncation τα : Rd → Rd given by

τα(z) :=

{
z if |z| ≤ α,
α z
|z| if |z| > α.

Since {ταun} is bounded in L∞ we have that{T(ταun)} is bounded in Lq for all
p ≤ q < +∞, and so {|T (ταun)|p} is equi-integrable. On the other hand, by the
equi-integrability of {un} we have that

lim
α→∞ sup

n
||un − ταun||p = 0,
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and by (i) we conclude that

lim
α→∞ sup

n
||T(un − ταun)||p = 0,

and the assertion is proved.

We note that, with the exception of Lemma 2.14 (iv), the above closely follows
Murat’s work (see [34]).

Decomposition results similar to the ones obtained below may be found in [24]
and [30] in the particular case of curl-free fields.

Lemma 2.15 (1 < p < +∞). Let 1 < p < +∞, let {un} be a bounded sequence
in Lp(Ω;Rd) such that Aun → 0 in W−1,p(Ω), un ⇀ u in Lp(Ω;Rd), and assume that
{un} generates the Young measure ν. Then there exists a p-equi-integrable sequence
{vn} ⊂ Lp(Ω;Rd) ∩ kerA such that∫

Ω

vn dx =

∫
Ω

u dx, ||vn − un||Lq(Ω) → 0 for all 1 ≤ q < p

and, in particular, {vn} still generates ν.

Proof. After an affine rescaling, we may suppose that Ω ⊂ Q. The assumptions
imply that Au = 0, and by linearity (and Proposition 2.4) we may take u = 0. By
Theorem 2.2 (v) we have ∫

Ω

∫
Rd
|z|p dνx(z) dx < +∞

and so, using Theorem 2.2 (vi), we obtain

lim
k→∞

lim
n→∞

∫
Ω

|τk(un)|p dx= lim
k→∞

∫
Ω

∫
Rd
|τk(z)|p dνx(z) dx

=

∫
Ω

∫
Rd
|z|p dνx(z) dx.

Therefore we may find an increasing sequence αn → +∞ such that the truncated
sequence {ταn ◦ un} satisfies

lim
n→∞

∫
Ω

|ταn ◦ un|p dx =

∫
Ω

∫
Rd
|z|p dνx(z) dx.(2.3)

On the other hand, as {un} is equi-integrable,

ταn ◦ un − un → 0 in measure and weakly in Lp(Ω).

Thus, by Proposition 2.4, the sequence {ũn} := {ταn ◦ un} still generates the Young
measure ν. By Theorem 2.2 (vi) and (2.3) we conclude that {ũn} is p-equi-integrable.
Moreover, if 1 < q < p, then

||ũn − un||qLq(Ω)≤
∫
{|un|≥αn}

2q|un|q dx

≤ αq−pn 2q
∫
TN

|un|p dx→ 0 as n→ +∞,
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and thus Aũn → 0 in W−1,q(Ω). Also, by virtue of the compact imbedding Lq(Ω) ↪→
W−1,q(Ω), we have for all ϕ ∈ C∞0 (Ω; [0, 1])

A(ϕũn) = ϕA(ũn) +
N∑
i=1

A(i)(ũn)
∂ϕ

∂xi
→ 0 in W−1,q(Ω).

Thus we may select a sequence {ϕn} ⊂ C∞0 (Ω; [0, 1]) with ϕn ↗ 1, and such that,
setting ûn := ϕn ũn, {ûn} is p-equi-integrable,

ûn ⇀ 0 in Lp(Ω), Aûn → 0 in W−1,q(Ω).

Extend ûn by zero to Q \ Ω and then periodically. We define

ṽn := T
(
ûn −

∫
TN

ûn dy

)
.

By Lemma 2.14 (iv) the sequence {ṽn} ⊂ Lp(Ω;Rd) ∩ kerA is p-equi-integrable, and
we have

||ṽn − un||Lq(Ω)≤ ||ṽn − ũn||Lq(Ω) + ||ũn − un||Lq(Ω)(2.4)

≤ ||ṽn − ûn||Lq(Ω) + ||ûn − ũn||Lq(Ω) + ||ũn − un||Lq(Ω)

=: In1 + In2 + In3 .

We have already seen that In3 → 0 as n → ∞, and the p-equi-integrability of {ũn}
entails

lim
n→∞ I

n
2 = 0.

Using Lemma 2.14 (iii) and the fact that
∫
TN

ûn dy → 0, we obtain

lim
n→∞ I

n
1≤ lim

n→∞

∣∣∣∣∣∣∣∣ûn − ∫
TN

ûn dy − T
(
ûn −

∫
TN

ûn dy

)∣∣∣∣∣∣∣∣
Lq(TN )

≤ lim
n→∞Cq ||Aûn||W−1,q(TN )

= 0.

In particular, by Proposition 2.4 {ṽn} still generates ν. Finally, it suffices to set

vn := ṽn −
∫

Ω

ṽn dy.

Note that if the initial sequence {un} is p-equi-integrable, then there is no need to con-
struct the truncated sequence {ũn}, and from (2.4) it follows that ||vn−un||Lp(TN ) →
0.

Lemma 2.16 (p = 1). Let {un} be a sequence converging weakly in L1(Ω;Rd)
to a function u, Aun → 0 in W−1,r(ΩN ) for some r ∈ (1, N/(N − 1)), and assume
that {un} generates a Young measure ν. Then there exists an equi-integrable sequence
{vn} ∈ L1(Ω;Rd) ∩ kerA such that∫

Ω

vn dx =

∫
Ω

u dx, ||vn − un||L1(Ω) → 0

and, in particular, {vn} still generates ν.
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Proof. The proof is similar to the one given above, and once again we may
assume that Ω ⊂ Q and u = 0. Due to the equi-integrability of {un} we do not
need to truncate the sequence, so we set ũn := un. Also, by mollification we may
assume that ûn ∈ C∞0 (Ω;Rd), where in the diagonalization argument leading to the
construction of ûn we use the compact imbedding L1(Ω) ↪→W−1,r(Ω). We have

||ṽn − un||L1(Ω)≤ ||ṽn − ûn||L1(Ω) + ||ûn − un||L1(Ω)

and the last term on the right-hand side converges to zero due to the equi-integrability
of {un}. Finally,

lim
n→∞ ||ṽn − ûn||L1(Ω)≤ lim

n→∞Cr

∣∣∣∣∣∣∣∣ûn − ∫
TN

ûn dy − T
(
ûn −

∫
TN

ûn dy

)∣∣∣∣∣∣∣∣
Lr(TN )

≤ Cr lim
n→∞ ||Aûn||W−1,r(TN )

= 0,

where we have used the fact that
∫
TN

ûn dy → 0.

Lemma 2.17 (p = +∞). Let {un} be a sequence that satisfies un
∗
⇀ u in

L∞(TN ;Rd), Aun ⇀ 0 in Lp(TN ) for some p > N , and assume that {un} generates
a Young measure ν. Then there exists a sequence {vn} ∈ L∞(TN ;Rd) ∩ kerA such
that ∫

TN

vn dx =

∫
TN

u dx, ||vn − un||L∞(TN ) → 0

and, in particular, {vn} still generates ν.
Proof. As before assume that u = 0 and set

vn := T
(
un −

∫
TN

un dy

)
.

Since
∫
TN

un dy → 0, we have

sup
n∈N
||vn − un||W 1,p(TN ) ≤ Cp sup

n∈N
||Aun||Lp(TN ) < +∞

and

lim
n→∞ ||vn − un||Lp(TN ) ≤ Cp lim

n→∞ ||Aun||W−1,p(TN ) = 0,

and we conclude that the functions vn − un converge to zero uniformly.
The last result of this section will enable us in section 4 to focus our attention

on the characterization of A-1-Young measures, where a Young measure ν is said to
be a A-p-Young measure if it is generated by a sequence in kerA which is weakly
convergent in Lp(Ω).

Corollary 2.18. Let 1 < p < +∞. If ν is a A-1-Young measure with∫
Ω

∫
Rd
|z|p dνx(z) dx < +∞,

then ν is a A-p-Young measure generated by a p-equi-integrable sequence.
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Proof. Assume that ν is generated by an equi-integrable sequence {un} ⊂ L1(Ω)∩
kerA, and ∫

Ω

∫
Rd
|z|p dνx(z) dx < +∞.

Following the beginning of the proof of Lemma 2.15, we may find a sequence of
truncations {ũn} ⊂ kerA, bounded in Lp(Ω;Rd), that still generates ν since, by
equi-integrability,

||ũn − un||L1(Ω) → 0.

The result now follows by direct application of Lemma 2.15 to the sequence
{ũn}.

3. A-quasi-convexity: A necessary and sufficient condition for lower
semicontinuity. Using the notation introduced in section 2, consider an operator A
satisfying the constant rank property (2.2). In this section we will prove lower semi-
continuity of functionals with normal integrands with respect to weakly convergent
sequences with weak limits in the kernel of A. In what follows Ω is a bounded, open
subset of RN .

Given a normal integrand f : Ω× Rm × Rd → R, we define

I(u, v) :=

∫
Ω

f(x, u(x), v(x)) dx

for measurable (u, v) : Ω→ Rm × Rd.
Definition 3.1. A function f : Rd → R is said to be A-quasi-convex if

f(v) ≤
∫
Q

f(v + w(x)) dx

for all v ∈ Rd and all w ∈ C∞(TN ;Rd) such that A(w) = 0 and
∫
TN

w(x) dx = 0.

Definition 3.2. Given a Borel function f : Rd → R we define the A-quasi-
convex envelope of f at v ∈ Rd as

QAf(v) := inf

{∫
TN

f(v + w(x)) dx : w ∈ C∞(TN ) ∩ kerA,
∫
TN

w dx = 0

}
.(3.1)

Clearly f = QAf when f is A-quasi-convex.
Remark 3.3.

(i) It follows immediately from Jensen’s inequality that convex functions are
A-quasi-convex.

(ii) If f is upper semicontinuous and locally bounded from above, then C∞(TN )
may be replaced by L∞(TN ) in Definition 3.1. Indeed, it suffices to approximate a
given function w ∈ L∞(TN ) ∩ kerA, with

∫
TN

w dx = 0, by the mollified sequence

wε := ρε ∗ w −
∫
TN

ρε ∗ w dy,

where wε ∈ C∞(TN ) ∩ kerA, are Q-periodic, and have zero average. The result now
follows by Fatou’s lemma. If, in addition, |f(v)| ≤ C(1 + |v|p) for some C > 0 and all
v ∈ Rd, then C∞(TN ) may be replaced by Lp(TN ) in (3.1).
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(iii) Given a matrix-valued function V : Ω ⊂ RN → Mm×n ≡ Rd, d := mn,
n = N + ρ, ρ ≥ 0, we write

V = (F | ξ), F ∈Mm×N , ξ ∈Mm×ρ,

where F is the matrix of the first N columns of V , and ξ is the matrix of the remaining
ρ columns. In the context of membrane or film theories, N = 2, m = 3, ρ = 1, and
F is the gradient of the membrane deformation. In the context of general nonlinear
elasticity, N = m = 3, ρ = 0, and F is the gradient of the deformation of the elastic
solid. The underlying PDE is then

curlF = 0, i.e.,
∂Fjk
∂xi

− ∂Fji
∂xk

= 0, 1 ≤ j ≤ m, 1 ≤ i, k ≤ N.

We may rewrite these PDEs as AV = 0, where l := N2m and

A
(r)
(j,k,i),(q,p) := δriδqjδpk − δrkδqjδpi, 1 ≤ j, q ≤ m, 1 ≤ i, k, p, r ≤ N,

A
(r)
(j,k,i),(q,p) = 0 if p = N + 1, . . . , n.

The constant rank condition (2.2) is satisfied, since dim(kerA(w)) = m + m × ρ for
all w ∈ SN−1. Indeed,

kerA(w)= {V ∈Mm×n : A(w)V = 0}
= {V = (F | ξ) ∈Mm×n : wiFjk − wkFji = 0, 1 ≤ j ≤ m, 1 ≤ i, k ≤ N}
= {V = (F | ξ) ∈Mm×n : F = a⊗ w for some a ∈ Rm}.

When ρ = 0 and f is locally bounded, then (3.1) reduces to the usual quasi-convex
envelope of f ,

QAf(v) := inf

{∫
TN

f(v +∇ϕ(x)) dx : ϕ ∈ C∞(TN ;Rm)

}
= inf

{∫
Q

f(v +∇ϕ(x)) dx : ϕ ∈ C∞0 (Q;Rm)

}
.

(iv) Now we consider the div-free case (see also [35]). Here d = N, l = 1,

A
(i)
j := δij ,

so that

Au = 0 if and only if divu = 0.

Once again, the constant rank condition (2.2) holds, as for all w ∈ SN−1

kerA(w)=

{
v ∈ RN :

N∑
i=1

A(i)wi(v) = 0

}
= {v ∈ RN : v · w = 0}.

Therefore dim(kerA(w)) = N − 1.
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Proposition 3.4. If f : Rd → R is upper semicontinuous, then QAf is A-quasi-
convex and upper semicontinuous. Moreover, the restriction of QAf to each cone
a+ Λ, a ∈ Rd, is convex, i.e.,

QAf(θy + (1− θ)z) ≤ θQAf(y) + (1− θ)QAf(z)

for all θ ∈ (0, 1), y, z ∈ Rd such that y − z ∈ Λ, where

Λ := ∪w∈SN−1 kerA(w).

Remark 3.5.
(i) The characteristic cone Λ as defined in Proposition 3.4 was introduced in

the work of Murat and Tartar (see [34, 41]).
(ii) There are A-quasi-convex functions that are not continuous. Indeed, in

the degenerate case kerA = {0} all functions are A-quasi-convex. Furthermore, in
general, QAf need not be continuous in directions that are not in spanΛ even when
f is smooth. As an example, let N = 1, d = 2, and Au := u′2. Fix ϕ ∈ C∞(R) such
that 0 ≤ ϕ ≤ 1, ϕ(0) = 1, lim|t|→∞ ϕ(t) = 0, and let

f(v1, v2) := ϕ(v1v
2
2).

Then QAf is obtained by convexification in the first component, and QAf(v1, v2) = 0
if v2 6= 0, while QAf(v1, 0) = 1.

(iii) In the curl-free case and when ρ = 0, by Remark 3.3 (iii) we have that
Λ = {a ⊗ w : a ∈ Rm, w ∈ SN−1}. Thus Proposition 3.4 entails that a quasi-convex
Borel measurable function is convex along any rank-one directions. It is then said
to be rank-one convex. In particular, it is separately convex and so continuous. We
remark that although Proposition 3.3 is stated for upper semicontinuous functions
f , in the case of gradients the statement still holds if f is only assumed to be Borel
measurable (see [21]).

(iv) In the div-free case and by Remark 3.3 (iv), we have Λ = RN , and by
Proposition 3.3 we conclude that QAf is convex (see also [35]). Thus, since we always
have QAf ≤ f , QAf reduces to the convexification of f .

(v) It follows from the convexity of t 7→ QAf(a + tz), z ∈ Λ (see Proposition
3.4), that QAf(a) > −∞ if and only if QAf > −∞ on a+ Λ.

Proof of Proposition 3.4.
Case 1. Suppose that f is continuous.
For R > 0, v ∈ Rd, define

QRAf(v) := inf

{∫
TN

f(v + w(x))dx: w ∈ C∞(TN ) ∩ kerA,
∫
TN

w(x)dx = 0, and ||w||L∞(TN ) ≤ R
}
.

We claim that

QRAf is continuous.(3.2)

Let ρ > 0, and let ω be the modulus of uniform continuity of f on B(0, ρ+R), i.e.,

ω(r) := sup{|f(v)− f(v′)| : v, v′ ∈ B(0, ρ+R), |v − v′| ≤ r}.
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For all v, v′ ∈ B(0, ρ) and every w ∈ C∞(TN ) ∩ A, with
∫
TN

w(x) dx = 0 and

||w||L∞(TN ) ≤ R, we have∫
TN

f(v + w(x)) dx≥
∫
TN

f(v′ + w(x)) dx− ω(|v − v′|)

≥ QRAf(v′)− ω(|v − v′|).

By definition of QAf(v) this implies that

QRAf(v)−QRAf(v′) ≥ ω(|v − v′|)

and the uniform continuity of QRAf in B(0, ρ) follows by reversing the roles of v and
v′.

Fix ε > 0, let n ∈ N, and decompose Q into nN cubes along the coordinate axes,
Q = ∪Qn,i, Qn,i = an,i + (1/n)Q. Now we choose smooth cut-off functions ϕn,i
with the following properties: 0 ≤ ϕn,i ≤ 1, ϕn,i = 1 on an,i + (1/n − 1/n2)Q, and∑nN

i=1 χQn,iϕn,i ↗ 1. For w ∈ C∞(TN ) ∩ kerA with average zero on Q, consider the
piecewise constant approximations

wn(x) :=
nN∑
i=1

χQn,i wn,i, where wn,i := nN
∫
Qn,i

w(x) dx.

Then ||wn − w||L∞(Q) → 0, and by the continuity of QRAf (see (3.2)) we have for
n ≥ n1(ε) ∫

TN

QRAf(v + w(x)) dx≥
∫
TN

QRAf(v + wn(x)) dx− ε(3.3)

=

nN∑
i=1

1

nN
QRAf(v + wn,i)− ε.

On the other hand, due to the uniform continuity of f on compact sets, there exists
δ > 0 such that

η, ζ ∈ L∞(B(0, 5R)), ||η−ζ||L∞(Q) < δ⇒
∣∣∣∣∫
Q

f(v + η(x)) dx−
∫
TN

f(v + ζ(x)) dx

∣∣∣∣ < ε.

(3.4)
Choose zn,i ∈ C∞(TN ) ∩ kerA, with average zero, such that ||zn,i||L∞(Q) ≤ R,

QRAf(v + wn,i) ≥
∫
TN

f(v + wn,i + zn,i(y)) dy − ε,(3.5)

and set

yn,k(x) := w(x) +
nN∑
i=1

ϕn,i(x)zn,i(kn
N (x− an,i)), k ∈ N.

Clearly

||yn,k||L∞(TN ) ≤ R+ ||w||L∞(Q).
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By Proposition 2.8, zn,i(kn
N (· − an,i)) ∗

⇀ 0 in L∞(Qn,i) as k → ∞, for all n ∈ N,
i = 1, . . . , nN , and so

lim
k→∞

Ayn,k = 0 weak-* in L∞(TN ), lim
n→∞ lim

k→∞

∫
TN

yn,k dx = 0.(3.6)

Choose n = n2(ε) ≥ n1(ε) such that

n2(ε)→∞ as ε→ 0, ||wn − w||L∞(Q) < δ, lim
k→∞

∣∣∣∣∫
TN

yn,k dx

∣∣∣∣ < δ.(3.7)

Now (3.3), (3.4), (3.5), and (3.7) yield∫
TN

QRAf(v + w(x)) dx(3.8)

≥ lim
k→∞

nN∑
i=1

∫
Qn,i

f(v + wn,i + zn,i(kn
N (x− an,i))) dx− 2ε

≥ lim sup
k→∞

∫
TN

f(v + yn,k(x)) dx− 3ε

−CnN
[

1

nN
−
(

1

n
− 1

n2

)N]
max{|f(z)| : z ∈ B(v, 2R)}.

In view of Lemma 2.17 and (3.6) we may find uk ∈ L∞(TN ;Rd) ∩ kerA such that∫
TN

uk dx = 0, uk −
(
yn,k −

∫
TN

yn,k(y) dy

)
→ 0 uniformly as k →∞.

Thus, by (3.4), (3.7), (3.8), and Remark 3.3 (ii) we have∫
TN

QRAf(v + w(x)) dx ≥ lim sup
k→∞

∫
TN

f(v + yn,k(x)) dx− 3ε−O
(

1

n

)
(3.9)

≥ lim sup
k→∞

∫
TN

f

(
v + yn,k(x)−

∫
TN

yn,k(y) dy

)
dx− 4ε−O

(
1

n

)
≥ lim sup

k→∞

∫
TN

f(v + uk(x)) dx− 5ε−O
(

1

n

)
≥ QAf(v)− 5ε−O

(
1

n

)
.

For ε → 0 we have, by (3.7), n = n2(ε) → +∞. Hence taking first the limit ε → 0
and then R → ∞ in (3.9) and observing that QRAf ↘ QAf as R → ∞, we deduce
from Lebesgue’s monotone convergence theorem that∫

TN

QAf(v + w(x)) dx ≥ QAf(v).

Case 2. f is upper semicontinuous.
Let {fn} be a sequence of continuous functions converging decreasingly to f . By

Case 1, given v ∈ Rd, w ∈ C∞(TN ) ∩ kerA, with
∫
TN

w dx = 0, we have∫
TN

QAfn(v + w(x)) dx ≥ QAfn(v), n ∈ N.
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In view of Lebesgue’s monotone convergence theorem, A-quasiconvexity of QAf will
follow provided we show that

QAfn ↘ QAf.(3.10)

Cleary {QAfn}n∈N is decreasing and larger than QAf . On the other hand, for fixed
v ∈ Rd with QAf(v) > −∞, given δ > 0 there exists η ∈ C∞(TN ) ∩ kerA, with∫
TN

η dx = 0, such that

QAf(v) ≥
∫
TN

f(v + η(x)) dx− δ.

By Lebesgue’s monotone convergence theorem it follows that

QAf(v)≥ lim
n→∞

∫
TN

fn(v + η(x)) dx− δ
≥ lim sup

n→∞
QAfn(v)− δ.

It suffices to let δ → 0. The case where QAf(v) = −∞ is treated in a similar
way. As proven in Case 1, the functions QAfn are upper semicontinuous, so QAf =
infn∈NQAfn is also upper semicontinuous.

Finally, we show that QAf is convex on the cones a+ Λ, a ∈ Rd, i.e.,

QAf(θy + (1− θ)z) ≤ θQAf(y) + (1− θ)QAf(z)

for all θ ∈ (0, 1), y, z ∈ Rd such that y − z ∈ Λ. By (3.10) it suffices to prove this
inequality in the case where f is a continuous function.

Let

χ(t) :=

{ −(1− θ) if 0 < t < θ,
θ if θ < t < 1

and extend χ periodically to R with period one. Let w ∈ SN−1 be such that y − z ∈
kerA(w) and define

un(x) := (z − y)χ(nx · w).

Clearly un
∗
⇀ 0 in L∞(Q), and if ϕ ∈ C∞0 (Q; [0, 1]) is such that LN ({ϕ = 1}) = 1− δ,

δ > 0, then

A(ϕun) =
N∑
i=1

A(i)un
∂ϕ

∂xi

∗
⇀ 0 in L∞(TN ).

Due to Lemma 2.17 we may find un ∈ L∞(TN ;Rd) ∩ kerA such that∫
TN

un = 0, ||un − ϕun||L∞(Q) → 0.

By Remark 3.3 (ii), since QAf is a A-quasi-convex function, upper semicontinuous,
and bounded above by the locally bounded function f , by (3.2), and if R > 0 is large



1374 IRENE FONSECA AND STEFAN MÜLLER

enough, we have

QAf(θy + (1− θ)z)≤ lim inf
n→∞

∫
TN

QAf(θy + (1− θ)z + un) dx

≤ lim inf
n→∞

∫
TN

QRAf(θy + (1− θ)z + un) dx

≤ lim inf
n→∞

∫
TN

QRAf(θy + (1− θ)z + un) dx+Mδ

= θQRAf(θy + (1− θ)z − (1− θ)(z − y))

+(1− θ)QRAf(θy + (1− θ)z + (z − y)θ) +Mδ

= θQRAf(y) + (1− θ)QRAf(z) +Mδ,

where M := max{|f(z)| : z ∈ B(0, R)}. It suffices for us to let δ ↘ 0 and then
R→∞.

Next we prove that A-quasiconvexity is a necessary condition for lower semicon-
tinuity under the PDE constraint Au = 0.

Theorem 3.6 (necessity). Let f : Ω× Rd → R be a Carathéodory function such
that ∫

Ω

f(x, v(x)) dx ≤ lim inf
n→∞

∫
Ω

f(x, vn(x)) dx

for all sequences {vn} ⊂ C∞(Ω;Rd) that satisfy

vn
∗
⇀ v in L∞(Ω) and Avn = 0.

Assume further that

{f(·, un)} is equi-integrable

whenever {un} is a sequence bounded in L∞(Ω;Rd). Then f(x0, ·) is A-quasi-convex
for a.e. x0 ∈ Ω.

Proof. Without loss of generality and using a rescaling argument, we may assume
that Ω ⊂ Q.

By the Scorza–Dragoni theorem, for all i ∈ N there exists a compact set Ki ⊂ Ω
such that the restriction of f to Ki × Rd is continuous and LN (Ω \ Ki) < 1/i. Let
S be a countable, dense subset (with respect to uniform convergence) of W := {w ∈
C∞(TN ) : Aw = 0,

∫
TN

w dx = 0}. Let x0 ∈ Ω be a Lebesgue point for

x 7→ f(x, v), x 7→
∫
Q

f(x, v + w(y)) dy

for all v ∈ Qd, w ∈ S, and suppose that z 7→ f(x0, z) is continuous. Fix v ∈ QN ,
w ∈ S. We claim that

f(x0, v) ≤
∫
Q

f(x0, v + w(x)) dx.

If so, by continuity of z 7→ f(x0, z) this inequality still holds true for all v ∈ Rd and
all w ∈W. To establish the inequality extend w to Rd periodically with period Q, fix
ε > 0, h ∈ N, and choose i = i(h, ε) ∈ N such that

LN
(
Q

(
x0,

1

h

)
\Ki

)
<

ε

hN
.
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Let n = n(h, ε) be such that

|x− x′| < 1

n
, x, x′ ∈ Ki, z ∈ B

(
0, |v|+ ||w||L∞(Q)

) ⇒ |f(x, z)− f(x′, z)| < ε.

Decompose the cube Q
(
x0,

1
h

)
as ∪nNj=1Q

(
xj ,

1
hn

)
and if Ki ∩ Q

(
xj ,

1
hn

) 6= ∅ select
aj in this intersection. Choose a cut-off function ϕ ∈ C∞0 (Q(x0, 1/h)) such that
LN (Q(x0, 1/h) ∩ {ϕ 6= 1}) < ε

hN
.

Define

wm(x) :=

{
ϕ(x)w∗(hmn(x− xj)) if x ∈ Q (xj , 1

hn

)
, j = 1, . . . , nN ,

0, x ∈ RN \Q (x0,
1
h

)
,

where w∗(y) := w(y + (1/2, . . . , 1/2)) for y ∈ Q∗. By Proposition 2.8 it is clear that

wm
∗
⇀ 0 in L∞(TN ), Awm ∗

⇀ 0 in L∞(TN ).

Using Lemma 2.17 we may find ηm ∈ L∞(Q(0, L);Rd) ∩ kerA such that ||ηm −
wm||L∞(Ω) → 0, and so∫

Ω

f(x, v) dx≤ lim inf
m→∞

∫
Ω

f(x, v + ηm(x)) dx

= lim inf
m→∞

∫
Ω

f(x, v + wm(x)) dx,

where we used Propositions 2.4 and 2.8 and Theorem 2.2 (vi). Taking into account
the estimates for {ϕ 6= 1} and Q(x0, 1/h) \Ki, we deduce that∫
Q(x0,1/h)

f(x, v) dx ≤ lim inf
m→∞

∫
Q(x0,1/h)

f(x, v + wm(x)) dx

≤ lim inf
m→∞


nN∑
j=1

∫
Q(xj , 1

hn )∩Ki
f(aj , v + w∗(hmn(x− xj))) dx

+
nN∑
j=1

∫
Q(xj , 1

hn )∩Ki
|f(x, v + w∗(hmn(x− xj)))− f(aj , v + w∗(hmn(x− xj)))| dx

+

nN∑
j=1

∫
Q(xj , 1

hn )\Ki
f(x, v + w∗(hmn(x− xj))) dx

+M
ε

hN

≤
nN∑
j=1

1

(hn)N

∫
Q

f(aj , v + w(y)) dy + 3M
ε

hN
+

ε

hN
,

where M := ess sup
{|f(x, z)| : x ∈ B(x0, R0) ⊂⊂ Ω, |z| ≤ |v|+ ||w||L∞(TN )

}
.

Hence∫
Q(x0,1/h)

f(x, v) dx≤
nN∑
j=1

∫
Q(xj , 1

hn )∩Ki

∫
Q

f(aj , v + w(y)) dy dx+
O(ε)

hN
(3.11)

≤
nN∑
j=1

∫
Q(xj , 1

hn )

∫
Q

f(x, v + w(y)) dy dx+
O(ε)

hN

=

∫
Q(x0,

1
h )

∫
Q

f(x, v + w(y)) dy dx+
O(ε)

hN
.
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Multiplying through (3.11) by hN , letting h → +∞, and then ε → 0, we conclude
that

f(x0, v) ≤
∫
Q

f(x0, v + w(y)) dy.

Now we prove sufficiency of the A-quasiconvexity property.
Theorem 3.7 (sufficiency). Let 1 ≤ p ≤ +∞ and suppose that f : Ω × Rm ×

Rd → [0,+∞) is a normal integrand such that z 7→ f(x, u, z) is A-quasi-convex and
continuous for a.e. x ∈ Ω and for all u ∈ Rd. If 1 ≤ p < +∞, then assume further
that there exists a locally bounded function a : Ω× Rd → [0,+∞) such that

0 ≤ f(x, u, v) ≤ a(x, u)(1 + |v|p).
If

un → u in measure

and

vn ⇀ v in Lp(Ω;Rd)( ∗⇀ if p = +∞), Avn → 0 in W−1,p(Ω) (Avn = 0 if p = +∞),

then

I(u, v) ≤ lim inf
n→∞ I(un, vn).

This theorem is a consequence of Propositions 3.8 and 3.9.
Proposition 3.8. Let 1 ≤ p < +∞, and let {vn} be a p-equi-integrable sequence

in Lp(Ω;Rd) such that Avn → 0 in W−1,p(Ω) if 1 < p < +∞, Avn → 0 in W−1,r(Ω)
for some r ∈ (1, N/(N − 1)) if p = 1, and {vn} generates the Young measure ν =
{νx}x∈Ω. Let vn ⇀ v in Lp(Ω;Rd). Then for a.e. a ∈ Ω there exists a sequence
{vn} ⊂ Lp(TN ;Rd)∩kerA that is p-equi-integrable, generates the homogeneous Young
measure νa, and satisfies ∫

TN

vn dx = 〈νa, id〉 = v(a).

In particular, one has

〈νa, f〉 ≥ f(〈νa, id〉) = f(v(a))

for a.e. a ∈ Ω and for every continuous A-quasi-convex f that satisfies

|f(z)| ≤ C(1 + |z|p)
for some C > 0 and all z ∈ Rd.

Proposition 3.9. Let {vn} be a bounded sequence in L∞(Ω;Rd) that generates a

Young measure ν = {νx}x∈Ω and satisfies Avn = 0. Let vn
∗
⇀ v in L∞(ΩN ;Rd). Then

for a.e. a ∈ Ω and every subcube Q′ ⊂⊂ Q, there exists a sequence {vn} ⊂ L∞(TN ;Rd)
such that

vn
∗
⇀ v(a) in L∞(TN ), Avn = 0,

∫
TN

vn dx = 〈νa, id〉 = v(a),
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and {vn} generates a Young measure µ such that∣∣∣∣∫
Q

ψ(x) 〈µx, g〉 dx− 〈νa, g〉
∫
Q

ψ(x) dx

∣∣∣∣ ≤ ||g||L∞(B(0,3M))

∫
Q\Q′

|ψ(x)| dx

for all ψ ∈ L1(Q), g ∈ C0(Rd), and where M := supn∈N ||vn||L∞(Ω). In addition, if

f : Rd → R is a continuous function, then

〈νa, f〉 ≥ f(〈νa, id〉) = f(v(a))

for a.e. a ∈ Ω.
We leave the proofs of Propositions 3.8 and 3.9 to the end of this section, and we

proceed with the proof of Theorem 3.7. We follow the argument of Kristensen (based
on Balder’s [4] reasoning for the case without constraints) in the context of the usual
curl-free A-quasiconvexity.

Proof of Theorem 3.7. Upon extracting a subsequence, we may assume that

lim inf
n→∞ I(un, vn) = lim

n→∞ I(un, vn),

and {vn} generates a Young measure ν. By Proposition 2.5 the pair {(un, vn)} gen-
erates the Young measure

{
µx = δu(x) ⊗ νx

}
x∈Ω

, and by Theorem 2.2 (v) we have

lim
n→∞ I(un, vn)≥

∫
Ω

∫
Rm×Rd

f(x, η, ξ) dµx(η, ξ) dx

=

∫
Ω

∫
Rd
f(x, u(x), ξ) dνx(ξ) dx.

If p = 1 or p = +∞ the result follows from direct application of Proposition
3.8 and Proposition 3.9, respectively, to the map ξ 7→ f(x, u(x), ξ) and integration
over Ω. If 1 < p < +∞ then by Lemma 2.15 and by Proposition 2.4, there exists a
p-equi-integrable sequence {yn} which generates ν and satisfies Ayn = 0. Once again,
it suffices to apply Proposition 3.8 to {yn} and to the map ξ 7→ f(x, u(x), ξ) for a.e.
x ∈ Ω fixed.

Proof of Proposition 3.8. Let E and C be countable dense subsets of L1(Q) and
C0(Rd), respectively. By Theorem 2.2 (vi) we have

g ◦ vn ∗⇀ 〈ν, g〉 in L∞(Ω)

for all g ∈ C. Let Ω0 be the set of points a ∈ Ω which are Lebesgue points for v, for
the functions

x 7→
∫
Rd
|ξ|p dνx(ξ), x 7→ 〈νa, id〉,

and for all functions x 7→ 〈νx, g〉, g ∈ C, in the sense that

lim
R→0

∫
Q

|〈νa+Rx, g〉 − 〈νa, g〉| dx = 0.

Consider an increasing sequence of smooth cut-off functions ϕj ∈ C∞0 (Q), ϕj ↗ 1.
For fixed a ∈ Ω0, R > 0, we define

vj,R,n(z) := ϕj(z)(vn(a+Rz)− 〈νa, id〉), z ∈ Q.
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Recall that 〈νa, id〉 = v(a). We have vj,R,n ∈ Lp(TN ;Rd), and for all ψ ∈ E and g ∈ C
we have

lim
j→∞

lim
R→0

lim
n→∞

∫
Q

ψ(z)g(vj,R,n(z) + v(a)) dz(3.12)

= lim
R→0

lim
n→∞

∫
Q

ψ(z) g(vn(a+Rz)) dz

= lim
R→0

∫
Q

ψ(z)〈νa+Rz, g〉 dz

= 〈νa, g〉
∫
Q

ψ(z) dz.

Moreover, as {|vn|p} is equi-integrable,

lim sup
j→∞

lim sup
R→0

lim sup
n→∞

∫
Q

|vj,R,n(z) + v(a)|p dz(3.13)

≤ lim
R→0

lim
n→∞

∫
Q

|vn(a+Rz)|p dz

=

∫
Rd
|ξ|p dνa(ξ).

Also, vj,R,n ⇀ 0 in Lp as n → ∞ and R → 0. If 1 < p < +∞ we have, in view
of the compact imbedding Lp(TN ) ↪→ W−1,p(TN ) and the assumption Avn → 0 in
W−1,p(Ω),

lim
j→∞

lim
R→0

lim
n→∞Avj,R,n = 0 in W−1,p(TN ).(3.14)

If p = 1 then

vj,R,n → 0 in W−1,r(TN ) for r ∈
(

1,
N

N − 1

)
,

and so, due to (3.12), (3.13), (3.14), and by means of a diagonalization procedure, we
may find a sequence of functions {wj} with the properties

wj ⇀ 0 in Lp(TN ), Awj → 0 in W−1,q(TN ),

where q = p if 1 < p < +∞ and q = r if p = 1, and

lim
j→∞

∫
Q

|wj(x) + v(a)|p dx =

∫
Rd
|ξ|p dνa(ξ),(3.15)

lim
j→∞

∫
Q

ψ(x)g(wj(x) + v(a)) dx = 〈νa, g〉
∫
Q

ψ(x) dx

for all ψ ∈ E and g ∈ C. By Lemmas 2.15 and 2.16 and by (3.15) we conclude that
νa is generated by a p-equi-integrable sequence wj ∈ Lp(TN ;Rd) ∩ kerA such that∫
TN

wj dx = v(a). Finally, if f is a continuous function such that |f(z)| ≤ C(1 + |z|p)
for some C > 0 and all z ∈ Rd, then {f(wj)} is equi-integrable and by Theorem 2.2
(vi) we have

〈νa, f〉 = lim
j→∞

∫
TN

f(wj) dx ≥ f(v(a)),
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where in the last inequality we used the A-quasiconvexity of f together with Remark
3.2 (ii).

Proof of Proposition 3.9. As in the previous proof, let E and C be countable dense
subsets of L1(Q) and C0(Rd), respectively, and let Ω0 be the set of points a ∈ Ω which
are Lebesgue points for x 7→ 〈νx, id〉 and for all functions x 7→ 〈νx, g〉, g ∈ C. Fix
Q′ ⊂⊂ Q and consider a smooth cut-off function ϕ ∈ C∞0 (Q), 0 ≤ ϕ ≤ 1, ϕ = 1 in
Q′.

For a ∈ Ω0, R > 0, we define

vR,n(z) := ϕ(z) (vn(a+Rz)− 〈νa, id〉) + 〈νa, id〉, z ∈ Q.
Then vR,n is bounded in L∞(TN ;Rd), and for all ψ ∈ E and g ∈ C we have

lim
R→0

lim
n→∞

∫
Q

ψ(z)g(vR,n(z)) dz= lim
R→0

lim
n→∞

∫
Q

ψ(z) g(vn(a+Rz)) dz + E(ψ, g)

= lim
R→0

∫
Q

ψ(z)〈νa+Rz, g〉 dz + E(ψ, g)

= 〈νa, g〉
∫
Q

ψ(z) dz + E(ψ, g),

where

|E(ψ, g)| ≤ ||g||L∞(B(0,3M))

∫
Q\Q′

|ψ| dy.

Clearly, vn(a+R·)− 〈νa, id〉 ∗⇀ 0 in L∞ as n→∞ and R→ 0, and

lim
R→0

lim
n→∞ AvR,n = 0 weakly-* in L∞(TN ), sup

R,n
||AvR,n||L∞(TN ) < +∞.

Diagonalizing {vR,n}, and extracting a further subsequence if necessary, we may find
a sequence of functions {wj} with the properties

wj
∗
⇀ v(a) in L∞(TN ), Awj ∗⇀ 0 in L∞(TN ),

and {wj} generates a Young measure µ such that ess suppµx ⊂ B(0, 3M) and∣∣∣∣∫
Q

ψ(x) 〈µx, g〉 dx− 〈νa, g〉
∫
Q

ψ(x) dx

∣∣∣∣ ≤ |E(ψ, g)|

for all g ∈ C, ψ ∈ E . By density this inequality extends to all ψ ∈ L1(Q), g ∈
C0(Rd). Due to Lemma 2.17 we may find wj ∈ L∞(TN ;Rd) ∩ kerA such that ||wj −
wj ||L∞(TN ) → 0,

∫
TN

wj dy = v(a). In particular, {wj} generates the Young measure
µ satisfying the statement, and if f is continuous, then

lim
j→+∞

∫
TN

f(wj) dx=

∫
TN

〈µx, f〉 dx

≤ 〈νa, f〉+ LN (Q \Q′)||f ||L∞(B(0,3R)).(3.16)

On the other hand, since f is A-quasi-convex and in view of Remark 3.3 (ii) we have
directly from Definition 3.1∫

TN

f(wj) dx ≥ f(v(a)) for all j ∈ N,

which, together with (3.16), and letting LN (Q \Q′)→ 0, concludes the proof.



1380 IRENE FONSECA AND STEFAN MÜLLER

We end this section with some examples of problems involving PDE constraints
which fall within the scope of the present study (for further examples, see [37, 41]).

Example 3.10. (a) Gradients and partial gradients.
The case where

Av = 0 if and only if v = ∇u

for some function u : Ω → Rm was already treated in Remarks 3.3 (iii) and 3.5 (iii).
It can be easily seen that this framework still applies when v is not a full gradient but
a list of only some of the partial derivatives of u.

(b) Divergence free fields.
For the example where

Av = 0 if and only if divv = 0,

we refer the reader to Remarks 3.3 (iv) and 3.5 (iv).
(c) Maxwell’s equations.

In magnetostatics the magnetization m : R3 → R3 and the induced magnetic field
h : R3 → R3 satisfy (in suitable units) the PDE constraints

A
(
m
h

)
:=

(
div (m+ h)

curlh

)
= 0.

For w ∈ S2 we have

kerA(w)=
{

(a, b) ∈ R3 × R3 : w · (a+ b) = 0, w ⊗ b− b⊗ w = 0
}

=
{

(a, b) ∈ R3 × R3 : a · w = −λ, b = λw for some λ ∈ R} ,
and so dim kerA(w) = 3 and (2.2) is satisfied. Note also that

Λ =
{

(a, b) ∈ R3 × R3 : (a+ b) · b = 0
}
,

and the fact that Λ imposes no restrictions on a has important consequences in mi-
cromagnetics (see [16, 27, 45]). For the full system of Maxwell’s equations we refer to
[41].

(d) Higher gradients.
Obviously all results remain valid if we replace the target space Rd by an abstract d-
dimensional vector space over R. In order to treat the case of second order derivatives,
consider the smooth maps v : TN → Em2 , where Emk stands for the space of symmetric
k-linear maps from RN into Rm. Define

A2v :=

(
∂

∂xi
vjk − ∂

∂xk
vji

)
1≤i,j,k≤N

.

We claim that{
v ∈ C∞(TN ;Em2 ) : Av = 0,

∫
TN

v dx = 0

}
= {D2u : u ∈ C∞(TN ;Rm)}.

Indeed, if Av = 0 then vjk =
∂wj
∂xk

, where wj ∈ C∞(Ω;Mm×N ) has average zero

and is periodic due to the periodicity of v and the fact that
∫
TN

v dx = 0. By the
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symmetry of vjk we have that curl w = 0, and we conclude that vjk = ∂2u
∂xk∂xj

, where

u ∈ C∞(TN ;Rm).
More generally, in order to study the kth order derivatives of functions u ∈

C∞(TN ;Rm), we set for v ∈ C∞(TN ;Emk )

Akv :=

(
∂

∂xi
vi1...ih j ih+2...ik −

∂

∂xj
vi1...ih i ih+2...ik

)
0≤h≤k−1, 1≤i,j,i1,...,ik≤N

.

Here h = 0 and h = k − 1 correspond to the multi-indices ji2 . . . ik and i1 . . . ik−1j,
respectively. The constant rank condition is satisfied since for w ∈ SN−1

kerA(w)=
{
X ∈ Emk : wiXi1...ih j ih+2...ik − wj Xi1...ih i ih+2...ik = 0,

1 ≤ h ≤ k, 1 ≤ i, j, i1, . . . , ik ≤ N}
= {X ∈ Emk : X = b⊗ w . . .⊗ w, b ∈ Rm}

and so dim kerA(w) = m. Moreover,{
v ∈ C∞(TN ;Emk ) : Av = 0,

∫
TN

v dx = 0

}
= {Dku : u ∈ C∞(TN ;Rm)}.

In fact, if Av = 0, then

vi1...ihjih+2...ik =
∂

∂xj
wi1...ihih+2...ik

for some smooth function wi1...ihih+1...ik with average zero. The periodicity of v and
the fact that

∫
TN

v dx = 0 entail the periodicity of w, and the symmetries of v, together
with the zero average condition we imposed on w, imply the symmetry of w, so that
w ∈ C∞(TN ;Emk−1). Furthermore, and once again using the symmetries of v,

Ak−1w:=

(
∂

∂xi
wi1...ih j ih+2...ik−1

− ∂

∂xj
wi1...ih i ih+2...ik−1

)
0≤h≤k−2, 1≤i,j,i1,...,ik≤N

= 0.

The argument may now be completed via induction.
(e) Linear elasticity.

In the framework of linear elasticity, one has to deal with the symmetrized gradient,
v = e(u) := 1

2 (∇u+∇Tu), of the displacement u : Ω→ R3, where Ω ⊂ R3 is an open,
bounded set. For 1 < p < +∞ one can use a local version of Korn’s inequality to
reduce the study of functionals

u 7→ I(e(u))

to that of functionals

u 7→ J(∇u), where J(ξ) := I

(
1

2
(ξ + ξT )

)
and proceed as in (a). For p = 1 or p = +∞ where one must avoid direct manipulation
of the gradient, it is possible to adopt the present framework to treat the second-order
operator

Ãv :=

(
N∑
i=1

∂2vij
∂xi∂xk

+
∂2vik
∂xi∂xj

− ∂2vii
∂xj∂xk

− ∂2vjk
∂xi∂xi

)
1≤j,k≤N

.
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It turns out that Ãv = 0 if and only if vij =
(
∂uj
∂xi

+ ∂ui
∂xj

)
/2 for some function u. In

this setting we have

Ãv =

N∑
i=1

A(ij) ∂2v

∂xi∂xj
, Ã(w) :=

N∑
i=1

A(ij)wiwj .

(f) Pseudodifferential operators.
The examples (a)–(e) may be treated in a unified way using pseudodifferential oper-
ators (see also [44, 45]). For (a)–(d), one considers (on TN or RN )

Bv := (−∆)−1/2Av = RiA(i)v,

where Ri denotes the Riesz transform. For (e) we take

B̃v := (−∆)−1Ãu =

(
N∑
i=1

RiRkvij +RiRjvik −RjRkvii − vjk
)

1≤j,k≤N
.(3.17)

The symbol of B is

b(ξ) :=
ξi
|ξ|A

(i),

and the constant rank condition becomes rank b(ξ) = r for all ξ 6= 0. Similarly, for
(3.17) the symbol takes values in Lin(E2,E2) and is given by

b̃(ξ)M := Mξ ⊗ ξ + ξ ⊗Mξ − (ξ ⊗ ξ) trM −M.

One can easily check that if |ξ| = 1, then

ker b̃(ξ) =
{
a⊗ ξ + ξ ⊗ a : a ∈ RN} ,

which has dimension N . Hence B̃ satisfies the analogue of (2.2).

4. Characterization of Young measures. The result below is the generaliza-
tion to the A-free setting of the theorem by Kinderlehrer and Pedregal for the case of
gradients [28, 29]. We roughly follow their strategy that relies on the Hahn–Banach
separation theorem and the representation of the (A-)quasi-convex envelope (see (3.1)
and Proposition 3.4). Tartar [41] has earlier used the Hahn–Banach separation theo-
rem to characterize Young measures in the case without differential constraints. (In a
similar vein, Berliocchi and Lasry [11] used the Krein–Milman theorem.) Our presen-
tation closely follows Kristensen’s strategy for the case of gradients. We first establish
the result for p = 1 and then deduce the assertion for 1 < p < +∞ by a truncation
process. Some of our arguments are similar to those of Sychev [40] who, independently
of our work, proposed an alternative approach to gradient Young measures.

Theorem 4.1. Let 1 ≤ p < +∞, and let {νx}x∈Ω be a weakly measurable
family of probability measures on Rd. There exists a p-equi-integrable sequence {vn}
in Lp(Ω;Rd) that generates the Young measure ν and satisfies Avn = 0 in Ω if and
only if the following three conditions hold:

(i) there exists v ∈ Lp(Ω;Rd) such that Av = 0 and

v(x) = 〈νx, id〉 a.e. x ∈ Ω;
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(ii) ∫
Ω

∫
Rd
|z|p dνx(z) dx < +∞;

(iii) for a.e. x ∈ Ω and all continuous functions g that satisfy |g(v)| ≤ C(1+ |v|p)
for some C > 0 and all v ∈ Rd one has

〈νx, g〉 ≥ QAg(〈νx, id〉).
Remark 4.2.

(i) From Lemma 2.15 it follows that if 1 < p < +∞ properties (i)–(iii) are still
necessary if the condition Avn = 0 is replaced by the weaker requirement Avn → 0
in W−1,p(Ω).

(ii) In view of Theorem 2.2 (i) it suffices to assume that νx ≥ 0 a.e. x ∈ Ω.
Condition (iii) then implies νx(Rd) = 1.

(iii) A similar statement is valid for operators with variable coefficients, as long
as rank A(x,w) is constant for all w ∈ SN−1 and a.e. x ∈ Ω. Such results are,
however, more naturally discussed in the context of pseudodifferential constraints
and will appear elsewhere. For the quadratic case, see [45].

Proof of Theorem 4.1—Necessity. Necessity of (i) follows immediately from The-
orem 2.2 (vi), where v is the weak limit in Lp of the sequence {vn}. Property (ii)
is deduced from Theorem 2.2 (v) with f(z) = |z|p, and (iii) is a consequence of
Proposition 3.8 (and Lemma 2.15 if 1 < p < +∞).

The proof of sufficiency for 1 < p < +∞ follows from the case p = 1 and Corollary
2.18.

We proceed with the proof in the case of homogeneous A-1-Young measures.
Let P be the set of probability measures on Rd and define

H := {ν ∈ P(Rd) :〈ν, id〉 = 0, there exists an equi-integrable sequence

{wj} ⊂ L1(TN ) ∩ kerA generating the Young measure ν}.
Set

E :=

{
g ∈ C(Rd) : lim

|z|→∞
g(z)

1 + |z| exists in R
}

equipped with the norm

||g||E := sup
z∈Rd

|g(z)|
1 + |z| .

This space is isometrically isomorphic to the space C(Rd∪{∞}) ∼ C(Sd) of continuous
functions on the one-point compactification of Rd, via the map

g 7→ g(·)
1 + | · | .

In particular, E is a separable Banach space, and its dual E′ may be identified with
the space of Radon measures on Rd ∪ {∞}. Thus if ν ∈ P is such that∫

Rd
|z| dν(z) < +∞,
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then ν ∈ E′ since for all g ∈ E∣∣∣∣∫
Rd
g dν

∣∣∣∣ ≤ ||g||E ∫
Rd

(1 + |z|) dν(z).

Proposition 4.3. Let ν ∈ P(Rd) with 〈ν, id〉 = 0. Then ν ∈ H if
(i) ∫

Rd
|z| dν(z) < +∞;

(ii)

〈ν, g〉 ≥ QAg(0)

for all g ∈ C(Rd) such that |g(z)| ≤ C(1 + |z|).
Proof. We follow [28, 29] and use the Hahn–Banach theorem to show that mea-

sures satisfying (i) and (ii) cannot be separated from H.
We will prove that H is convex and relatively closed in P.
Claim 1. H is convex.
Fix ν, µ ∈ H, θ ∈ (0, 1). Let {vj}, {wj} ⊂ L1(TN ) ∩ kerA be equi-integrable

sequences generating the A-1-Young measures ν and µ, respectively. By means of a
mollification, we may take vj , wj ∈ C∞(TN ). Also, as∫

TN

vj dx,

∫
TN

wj dx→ 0,

without loss of generality we may assume that∫
TN

vj dx =

∫
TN

wj dx = 0.

Since vj , wj → 0 in W−1,p(TN ) for p < N
N−1 , and as for all ϕ ∈ C∞0 ((0, θ)× TN−1)

||A(ϕ(wj − vj))||W−1,p =

∣∣∣∣∣∣∣∣ ∂ϕ∂xiA(i)(wj − vj)
∣∣∣∣∣∣∣∣
W−1,p

→ 0,

we may find a sequence {ϕj} ⊂ C∞0 ((0, θ)× TN−1) such that ϕj ↗ χ(0,θ)×TN−1
and

||A(ϕj(wj − vj))||W−1,p → 0.

Define

uj := vj + T
(
ϕj(wj − vj)−

∫
TN

ϕj(wj − vj) dy
)
.

Then uj ∈ L1(TN ) ∩ kerA,
∫
TN

ϕj(wj − vj) dy → 0, and by Lemma 2.14 (iii),

uj = vj + ϕj(wj − vj) + hj , hj → 0 in Lp(TN ), p <
N

N − 1
.

In particular, {uj} is equi-integrable and generates the Young measure {λx}x∈TN
given by

λx =

{
ν if x1 ∈ (0, θ),
µ if x1 ∈ (θ, 1).
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Finally, let

uj,m(x) := uj(mx), m ∈ N.
Then uj,m ∈ C∞(TN ) ∩ kerA, by periodicity supj,m ||uj,m||L1(TN ) < +∞, and due to

the equi-integrability of {uj}, for all ψ ∈ C0(RN ), g ∈ E, we have

lim
j→∞

lim
m→∞

∫
RN

ψ(x)g(uj,m(x)) dx= lim
j→∞

∫
RN

ψ(x)

(∫
TN

g(uj(y)) dy

)
dx

=

∫
RN

ψ(x) dx (θ〈ν, g〉+ (1− θ)〈µ, g〉).(4.1)

Extracting a diagonal subsequence and taking g = | · | in (4.1), by Theorem 2.2 (vi)
we conclude that θν + (1 − θ)µ is generated by an equi-integrable sequence in kerA
and thus belongs to H.

Claim 2. H is relatively closed in P with respect to the weak-* topology in E′,
i.e.,

HE
′
∩ P = H.

Let ν ∈ HE
′
∩ P, let {fi}i∈N ⊂ C∞(TN ) be dense in L1(TN ), and let {gj}j∈N ⊂

C∞0 (Rd) be dense in C0(Rd). We take f0 = 1 and g0(z) = |z|. By definition of weak-*
topology in E′ there exist νk ∈ H such that

|〈ν − νk, gj〉| < 1

2k
, j = 0, . . . , k;

thus, by virtue of Theorem 2.2 (vi) we may find wk ∈ L1(TN ) ∩ kerA such that∣∣∣∣〈ν, gj〉 ∫
TN

fi dx−
∫
TN

figj(wk) dx

∣∣∣∣ < 1

k
, 0 ≤ i, j ≤ k.(4.2)

In particular, setting i = 0 = j we deduce that {wk} is bounded in L1(TN ) and so (a
subsequence) generates a Young measure µ. From (4.2) and the density properties of
{fi}i∈N and {gj}j∈N it follows that µ = ν, and the choice i = 0 = j yields∫

TN

|wk| dx→ 〈ν, | · |〉.

By Theorem 2.2 (vi) we conclude that {wk} is equi-integrable and so ν ∈ H. This
proves Claim 2.

Consider ν ∈ P such that 〈ν, id〉 = 0 and ν satisfies (i), (ii). We want to prove
that ν ∈ H. Suppose that ν /∈ H. By Claims 1 and 2, ν /∈ co(H) with respect to the
weak-* topology of E′. Therefore, by the Hahn–Banach theorem and (ii) there exist
g ∈ E, α ∈ R, such that

〈µ, g〉 ≥ α for all µ ∈ H, QAg(0) ≤ 〈ν, g〉 < α.(4.3)

Given w ∈ C∞(TN ) ∩ kerA, with
∫
TN

w dx = 0, by Proposition 2.8 we have δw ∈ H
and thus ∫

TN

g(w) dx = 〈δw, g〉 ≥ α,
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which, by Definition 3.1 implies that QAg(0) ≥ α, contradicting (4.3). We conclude
that ν ∈ H.

Next we treat the case of inhomogeneous A-1-Young measures.
We define

X :=

{
ν : Ω→ P(Rd) : ν is weak* measurable,

∫
Ω

∫
Rd
|z|dνx(z)dx < +∞, 〈νx, id〉 = 0 a.e. x ∈ Ω

}
,

Y :=

{
ν ∈ X : νis generated by an equi-integrable sequence{wn} ∈ L1(TN )∩kerA

}
,

W := {ν ∈ X : 〈νx, g〉 ≥ QAg(0) a.e. x ∈ Ω and for all g ∈ E} ,
and

E := C(Ω;E) ∼ C(Ω× (Rd ∪ {∞})).
Suppose that ν satisfies (i), (ii), and (iii) of Theorem 4.1, and set νx := Γ−v(x)νx.

(The translation of a measure was defined in Proposition 2.4.) Clearly ν ∈W, and so
ifW ⊂ Y, then ν is generated by an equi-integrable sequence {v+wj} where Awj = 0.
It thus suffices to verify the following assertion.

Proposition 4.4.

W ⊂ Y.(4.4)

Proof. The strategy to prove (4.4) is as follows.

Step 1. YE
′
∩ X = Y in the weak-* topology.

Step 2. It is possible to find a good subset D ⊂W such that D
E′ ∩W = W.

Step 3. D ⊂ Y.
The proof of Step 1 is entirely identical to that of Claim 2 in the proof of Proposition
4.3. For Step 2, we define Gk to be the family of cubes of the form{

1

k
(y +Q) : y ∈ ZN , 1

k
(y +Q) ⊂ Ω

}
,

and we set

Gk := ∪U∈Gk U .
Consider the sets of piecewise homogeneous Young measures

Wk :=
{
ν ∈W : ν|U is homogeneous if U ∈ Gk, ν|(Ω\Gk) = δ0

}
,

and let

D := ∪k∈N Wk.

In order to show that

D
E′ ∩W = W,
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let ν ∈W and define

νkx :=

{ 1
LN (U)

∫
U νy dy if x ∈ U , U ∈ Gk,

δ0 otherwise.

It is clear that νk ∈Wk, so it suffices to show that

〈νk, f〉 → 〈ν, f〉 for all f ∈ E .(4.5)

Fix f ∈ E , and for each U ∈ Gk denote by xU ∈
(

1
kZ
)N

the lower left corner of U so
that U = xU + 1

kQ. Let ω be a modulus of uniform continuity of f , i.e.,

ω(δ) := sup
{||f(x, ·)− f(y, ·)||E : x, y ∈ Ω, |x− y| ≤ δ} .

We have∣∣∣∣∫U
∫
Rd
f(x, z) dνx(z)dx−

∫
U

∫
Rd
f(x, z) dνkx(z) dx

∣∣∣∣
≤
∣∣∣∣∫U

∫
Rd
f(xU , z) dνx(z) dx−

∫
U

∫
Rd
f(xU , z) dνkx(z) dx

∣∣∣∣
+ω

(
1

k

)
||f ||E

(∫
U

∫
Rd

(1 + |z|) dνx(z) dx+

∫
U

∫
Rd

(1 + |z|) dνkx(z) dx

)
≤ 2ω

(
1

k

)
||f ||E

∫
U

∫
Rd

(1 + |z|) dνx(z)dx.

Therefore,

|〈νk, f〉 − 〈ν, f〉|≤ 2ω

(
1

k

)
||f ||E

∫
Gk

∫
Rd

(1 + |z|) dνx(z)dx

+2||f ||E
∫

Ω\Gk

∫
Rd

(1 + |z|) dνx(z)dx,

and (4.5) follows by letting k →∞ and using assertion (ii) in Theorem 4.1.
Next, we carry out Step 3 by showing that

Wk ⊂ Y for all k ∈ N.

Using a rescaling argument, we may assume that Ω ⊂ Q. Fix k ∈ N and let Gk =
{Qi}mi=1 for some m ∈ N. Fix ν ∈ Wk, with ν|Qi = νi. By Corollary 2.18 for
each i ∈ {1, . . . ,m} there exists an equi-integrable sequence {wij} ⊂ L1(TN ) ∩ kerA
generating νi. In particular, without loss of generality we may assume that wij are
smooth, and that we have

wij ⇀ 0 in L1(Qi), wij → 0 in W−1,p
loc (RN )

for p < N/(N − 1). Hence, we may find smooth cut-off functions ϕij ∈ C∞0 (Qi; [0, 1])

such that ϕij ↗ χQi and

A
(

m∑
i=1

ϕijw
i
j

)
=

N∑
k=1

m∑
i=1

A(k)wij
∂ϕij
∂xk

→ 0 in W−1,p(RN ).
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Setting

uj := T
(
wj −

∫
TN

wj dy

)
, where wj :=

m∑
i=1

ϕij w
i
j ,

then uj ∈ kerA,
∣∣∣∣uj −∑m

i=1 ϕ
i
j w

i
j

∣∣∣∣
Lp(Ω)

→ 0. In particular {uj} is equi-integrable

and it generates ν, so ν ∈ Y.

Example 4.5. (a) Gradients.

Using Remark 3.3 (iii) and Theorem 4.1, we recover the characterization of W 1,p gra-
dient Young measures as obtained by Kinderlehrer and Pedregal [28, 29] (see Theorem
2.6).

(b) Divergence-free fields.

It follows from Remarks 3.3 (iv), 3.5 (iv), and Theorem 4.1 that any weakly measurable
family of probability measures {νx}x∈Ω satisfying

div(〈νx, id〉) = 0,

∫
Ω

∫
RN
|z|p dνx(z)dx < +∞,

is generated by a p-equi-integrable sequence of divergence-free fields vn ∈ Lp(Ω;RN )
(see also [35]).

(c) Micromagnetics.

In view of Example 3.10 c), we may apply Theorem 4.1 to the system of Maxwell
equations. Moreover, if 1 < p < +∞, if ν is an A-p-Young measure, and if we define
the projection λ by

λx(U) := νx(U × R3) for any open subset U ⊂ R3,

then supp λx ⊂ S2 for a.e.x ∈ Ω if and only if ν is generated by a p-equi-integrable
sequence {m̃n, h̃n)} ⊂ kerA such that |m̃n(x)| = 1 for a.e. x ∈ Ω. Indeed, assuming
that λx is supported on the unit sphere, let {(mn, hn)} ⊂ kerA be a p-equi-integrable
generating sequence, with hn = −∇un, un ∈ W 1,p

0 (Ω) (hn = −∇un + Hn with div
Hn = curl Hn = 0 if Ω is not simply connected). Consider the projection

π(x) :=


x
|x| if x 6= 0,

x0 if x = 0,

where x0 ∈ S2 is fixed, and define m̃n := πmn. Since dist(mn, S
2)→ 0 as n→∞, we

have that m̃n−mn → 0 in measure, and, due to the p-equi-integrability, we conclude
that m̃n −mn → 0 in Lp. Let h̃n := −∇ũn (h̃n := −∇ũn + Hn if Ω is not simply
connected), where ũn ∈W 1,p

0 (Ω) and div(m̃n −∇ũn) = 0. We have

div((m̃n −mn)− (∇ũn −∇un)) = 0;

therefore ∆(ũn − un) → 0 in W−1,p, and thus ũn − un → 0 in W 1,p. We conclude
that {(m̃n, h̃n)} still generates ν.
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[2] J. J. Alibert and G. Bouchitté, Non uniform integrability and generalized Young measures,
J. Convex Anal., 4 (1997), pp. 129–147.

[3] L. Ambrosio and G. Dal Maso, On the relaxation in BV (Ω;Rm) of quasi–convex integrals,
J. Funct. Anal., 109 (1992), pp. 76–97.

[4] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control
theory, SIAM J. Control Optim., 22 (1984), pp. 570–598.

[5] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational
Mech. Anal., 63 (1977), pp. 337–403.

[6] J. M. Ball, A version of the fundamental theorem for Young measures, in PDE’s and Con-
tinuum Models of Phase Transitions, M. Rascle, D. Serre, and M. Slemrod, eds., Lecture
Notes in Phys. 344, Springer-Verlag, Berlin, 1989, pp. 207–215.

[7] J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational
Mech. Anal., 100 (1987), pp. 13–52.

[8] J. M. Ball and R. D. James, Proposed experimental tests of a theory of fine microstructure
and the two well problem, Philos. Trans. Roy. Soc. London, 338 (1992), pp. 389–450.

[9] J. M. Ball and F. Murat, W 1,p-quasiconvexity and variational problems for multiple inte-
grals, J. Funct. Anal, 58 (1984), pp. 222–253.

[10] J. M. Ball and F. Murat, Remarks on rank-one convexity and quasiconvexity, in Ordinary
and Partial Differential Equations, Vol. III, B. D. Sleeman and R. J. Jarvis, eds., Longman,
Harlow, UK, 1991, pp. 25–37.

[11] H. Berliocchi and J.-M. Lasry, Intégrands normales et mesures paramétrées en calcul des
variations, Bull. Soc. Math. France, 101 (1973), pp. 129–184.
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Abstract. We study a symmetric nonlinear value problem in all R, arising in nonlinear optics
from the study of propagation of electromagnetic guided waves through a layered medium with
a nonlinear response. By variational arguments, we prove the existence of a positive asymmetric
solution of the problem, corresponding to an asymmetric guided wave.

Key words. electromagnetic guided wave, nonlinear eigenvalue problem, asymmetric positive
solution

AMS subject classifications. 34B15, 35Q60, 49R05

PII. S0036141098336388

1. Introduction. The propagation of electromagnetic guided waves through a
medium consisting of three layers of dielectric materials has been studied in several
papers; see, for instance, [1, 13, 2]. The ability of such slab geometry to support
guided waves depends upon the way in which the refractive index varies across the
layers. For example, in the absence of nonlinear effects, the condition for guidance
requires that the refractive index in the outer layers be smaller than that in the central
region, as one might guess from Snell’s law. As discussed in [1, 13], nonlinear effects
can be used to obtain guidance properties.

In this paper, we consider the case where the medium is stratified in three layers
of homogeneous composition perpendicular to the x-axis. In such a medium we seek
solutions of Maxwell’s equations corresponding to an electric field which is mono-
chromatic, propagating in the direction z and polarized along the y-axis. A field of
this kind is given by E(x, y, z, t) = u(x)cos(βz − ωt)e2, where β > 0, ei denotes the
usual basis vector and u : R → R. This ansatz leads to a second-order nonlinear
eigenvalue problem on the real axis:

−ü(x) + β2u(x) =
ω

c2
n2

(
x,

1

2
u2(x)

)
u(x) for x ∈ R,

where c is the speed of light in the vacuum and n2(x, s) is the dielectric function.
The guidance conditions require that all fields decay to zero as |x| → +∞ and

that the total electromagnetic energy for unit length in z is finite in each plane y ≡
const. This amounts to

lim
|x|→∞

u(x) = lim
|x|→∞

u̇(x) = 0
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and ∫
R
u2(x) dx+

∫
R
u̇2(x) dx <∞.

This problem has been studied for special choices of the dielectric function n2. In [1],
the dielectric function is taken of the form

n2(x, s) =

{
q2 + c2 if |x| < d,
q2 + s if |x| > d,

where q, c ∈ R and d > 0 denotes the thickness of the internal layer. In such a case the
equation can be integrated directly, and taking λ = β2 as a bifurcation parameter, one
can obtain a family of asymmetric solutions bifurcating from the branch of symmetric
ones, at a certain value λ = λ0, yielding the existence of asymmetric bound states for
any λ > λ0. (See also [5, 6] for discussions about stability.)

In a recent work [2], a class of equations which are not explicitly integrable is
considered and a perturbative method is applied to yield existence of asymmetric
guided waves when the internal layer of the medium is thin.

In this paper, our goal is to show how variational techniques can be applied to
prove existence of asymmetric modes without restrictive assumptions on the thickness
of the internal layer.

Precisely, we study a differential equation of the type

−ü(x) + (λ− c2h(x))u(x) = b(x)|u(x)|p−2u(x) for x ∈ R,
u ∈ H1(R),

(1.1)

where λ > 0, p > 2, and h, b are even functions such that the supports of h and 1− b
are compact.

We point out that (1.1) fits into the Akhmediev setting provided that λ = β2,
p = 4, h = χ, b = 1− χ, with χ(x) being the characteristic function of (−d, d).

Specifically, we seek positive solutions of (1.1), under the following restrictions on
h, b : R→ R:

(H1) h is a bounded function with h ≥ 0, h 6≡ 0, supp h ⊂ [−1, 1];

(B1)
b is a bounded function with b(x) = 1 for x 6∈ [−1, 1], b(x) ≤ 0 for x ∈
(−1, 1).

We remark that, by making a simple change of variables, the role of the interval
[−1, 1] in the assumptions (H1) and (B1) can be played by any closed and bounded
interval.

Our variational approach consists of minimizing the Euler functional in a suitable
C1-manifold. In order to do this, we need to check the compactness condition of
Palais–Smale, which is obtained by following closely the arguments in [8] and [3].
(See also [9, 10].) By testing the levels of the possible symmetric solutions, we infer
that for λ sufficiently large, the minimizer is asymmetric. Similar arguments are used
in [4] in a different setting.

Precisely, our result is considered in the following theorem.
Theorem 1.1. Assume (H1) and (B1). If λ > c2‖h‖∞, then the problem (1.1)

has, at least, one asymmetric positive solution.
The paper is organized as follows: section 2 is devoted to the proof of the Palais–

Smale condition. The details of the minimization and the proof that minimizers are
asymmetric are given in section 3.
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2. The Palais–Smale condition. In order to prove these technical results, we
need only assume the following (less restrictive) conditions on h and b:

(H2) h is a bounded function with h ≥ 0, lim|x|→∞ h(x) = 0;

(B2) b is a bounded function with lim sup|x|→∞ b(x) = 1.

Since h is a bounded function, the first eigenvalue λ1(−c2h) of the weighted eigenvalue
problem associated with the Laplacian operator of weight −c2h is given by

−c2‖h‖∞ ≤ λ1(−c2h) = inf
u6=0

∫
R |u̇|2 dx− c2

∫
R h(x)|u|2 dx∫

R u
2 dx

.

Moreover, assume

λ > −λ1(−c2h) ≥ 0,(2.1)

and set q(x) := λ− c2h(x); then it is easy to see that

‖u‖2 :=

∫
R
|u̇|2 + q(x)|u|2 dx, u ∈ H1(R)

defines a norm onH1(R) which is equivalent to the usual norm ‖u‖2H1 =
∫
R
(|u̇|2 + |u|2) dx.

Indeed, we can observe that

‖u‖2 ≤ max{‖q‖∞, 1}‖u‖2H1 .

Otherwise, for k small enough, we get for any u ∈ H1(R),

‖u‖2 − k‖u‖2H1 = (1− k)

∫
R

(|u̇|2 − c2hu2
)
dx

+

∫
R

(
λ− k − kc2h)u2 dx

≥ [
(1− k)λ1(−c2h) + λ− k − kc2‖h‖∞

] ∫
R
u2 dx

≥ 0.

(2.2)

From (2.2), it is easy to deduce that ‖u‖ = 0 implies u = 0. In addition, ‖ · ‖ satisfies
the other properties of a norm and thus it is a norm equivalent to ‖ · ‖H1 .

Let us consider J : H1(R)→ R the Euler functional associated with the problem
(1.1), namely,

J(u) =
1

2

∫
R
|u̇|2 + q(x)|u|2 dx− 1

p

∫
R
b(x)|u|p dx, u ∈ H1(R).

We now prove that the Euler functional satisfies the Palais–Smale condition on a
certain sublevel. Let us define

m(λ) := inf
u∈H1(R)\{0}

∫
R |u̇|2 + λ|u|2(∫
R |u|p

)2/p
.(2.3)

Lemma 2.1. Assume (H2), (B2) and (2.1). Then J satisfies the Palais–Smale
condition on the sublevel Σ := {u ∈ H1(R) : J(u) < p−2

2p m(λ)p/(p−2)}; that is, if un
is a sequence in H1(R), such that
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(i) J(un)→ c,
(ii) J ′(un)→ 0,

with c < L ≡ p−2
2p m(λ)p/(p−2), then un admits a convergent subsequence.

Proof. We follow closely the arguments in [8] and [3]. Let {un} in H1(R) such
that

J(un) = c+ o(1), J ′(un) = o(1) in H−1,(2.4)

as n→∞, and assume c < L. From (2.4), it follows that

p− 2

2p
‖un‖2 ≤ c+ |〈o(1), un〉|,

and thus {un} is bounded in H1(R) and, up to a subsequence, {un} has a weak limit
u ∈ H1(R). In order to show that {un} converges to u strongly in H1(R), it suffices
to prove that

‖un‖ → ‖u‖ as n→∞.
Now we observe that for any R > 0, there results

∣∣‖un‖2 − ‖u‖2∣∣ ≤
∣∣∣∣∣
∫
|x|≤R

(|u̇n|2 + q(x)|un|2
)− ∫

|x|≤R

(|u̇|2 + q(x)|u|2)∣∣∣∣∣
+

∫
|x|>R

(|u̇n|2 + |q(x)||un|2
)

+

∫
|x|>R

(|u̇|2 + |q(x)||u|2) .
Therefore since the Sobolev imbedding is compact on bounded sets, it suffices to show
that for any δ > 0 there exists R > 0 such that for any n ≥ R there results∫

|x|≥R

(
|u̇n|2 + |q(x)||un|2

)
< δ

and then, by the weak lower semicontinuity of the above integral,∫
|x|≥R

(
|u̇|2 + |q(x)||u|2

)
< δ.

By contradiction, assume that there exists δ0 such that for any R > 0 there results∫
|x|≥R

(
|u̇n|2 + |q(x)||un|2

)
≥ δ0

for some n = n(R) ≥ R. As a consequence, there exists a subsequence {unk} such
that ∫

|x|≥k

(
|u̇nk |2 + |q(x)||unk |2

)
≥ δ0(2.5)

for any k ∈ N. For any r > 0, let us introduce the annulus

Ar =
{
x ∈ R : r ≤ |x| ≤ r + 1

}
.
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Claim. For any ξ > 0 and for any R > 0 there exists r > R such that∫
Ar

(
|∇unk |2 + |q(x)||unk |2

)
< ξ(2.6)

for infinitely many k ∈ N.
By contradiction, assume that for some ξ0, R0 > 0 and for any integer m ≥ [R0]

there exists ν(m) ∈ N such that∫
Am

(
|u̇nk |2 + |q(x)||unk |2

)
≥ ξ0

for any k ≥ ν(m). Plainly, we can assume that the sequence {ν(m)} is nondecreasing.
Therefore, for any integer m ≥ [R0], there exists an integer ν(m) such that∫

R

(
|u̇nk |2 + |q(x)||unk |2

)
≥
∫

[R0]≤|x|≤m

(
|u̇nk |2 + |q(x)||unk |2

)
≥ (m− [R0])ξ0

for any k ≥ ν(m). This contradicts∫
R

(
|u̇nk |2 + |q(x)||unk |2

)
≤ max{1, ‖q‖∞}

∫
R

(
|u̇nk |2 + |unk |2

)
≤ K

∫
R

(
|u̇nk |2 + q(x)|unk |2

)
≤ K1

with K, K1 positive constants, and it proves the claim.
Now, let ξ > 0 be fixed such that λ − ξ > λ

2 > 0. Taking into account (H2) and
(B2), there exists R(ξ) > 0 such that

q(x) ≥ λ− ξ for any |x| ≥ R(ξ),(2.7)

b(x) ≤ 1 + ξ for any |x| ≥ R(ξ).(2.8)

Let r = r(ξ) > R(ξ) be as in (2.6), and let A = Ar; up to a subsequence, there results∫
A

(
|u̇nk |2 + q(x)|unk |2

)
< ξ(2.9)

for any k ∈ N. Now let us choose any function ρ ∈ C∞(R, [0, 1]) such that ρ(x) = 1
for |x| ≤ r, ρ(x) = 0 for |x| ≥ r+ 1, and |ρ̇(x)| ≤ 2 for any x ∈ R. For any k ∈ N, let
vk = ρunk and wk = (1− ρ)unk . It is not difficult to see that

|〈J ′(unk), vk〉 − 〈J ′(vk), vk〉| ≤ C1ξ,(2.10)

|〈J ′(unk), wk〉 − 〈J ′(wk), wk〉| ≤ C2ξ,(2.11)

where C1 and C2 are positive constants which do not depend on r. First, we prove
(2.10):∣∣∣〈J ′(unk), vk〉 − 〈J ′(vk), vk〉

∣∣∣
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=
∣∣∣∫
R

(
ẇkv̇k + q(x)wkvk

)
+

∫
R
b(x)

(|vk|p − |unk |p−1vk
)∣∣∣

=
∣∣∣∫
A

ρ(1− ρ)
(|u̇nk |2 + q(x)|unk |2

)
+

∫
A

ρ̇(1− 2ρ)unk u̇nk

−
∫
A

ρ̇2|unk |2 +

∫
A

b(x)ρ(ρp−1 − 1)|unk |p
∣∣∣

≤ 2

∫
A

(|u̇nk |2 + q(x)|unk |2
)

+ 6

∫
A

|u̇nkunk |+ 4

∫
A

|unk |2

+2‖b‖∞‖unk‖p−2
∞

∫
A

|unk |2 ≤ 2

∫
A

(|u̇nk |2 + q(x)|unk |2
)

+6

(∫
A

|u̇nk |2
)1/2(∫

A

|unk |2
)1/2

+M

∫
A

|unk |2

≤ 2

∫
A

(|u̇nk |2 + q(x)|unk |2
)

+6

(∫
A

|u̇nk |2 + q(x)|unk |2
)1/2(∫

A

|unk |2
)1/2

+M

∫
A

|unk |2.

By (2.7) and (2.9), we infer

(λ− ξ)
∫
A

|unk |2 ≤
∫
A

q(x)|unk |2 < ξ,

and thus ∫
A

|unk |2 <
ξ

(λ− ξ) <
2ξ

λ
.

Hence we deduce that∣∣∣〈J ′(unk), vk〉 − 〈J ′(vk), vk〉
∣∣∣ < 2ξ + 6ξ1/2

(
ξ

λ

)1/2

+ 2M
ξ

λ
≤ C1ξ.

Similar arguments show that (2.11) holds. By (2.10) and (2.11), we deduce

o(1) = 〈J ′(vk), vk〉+O(ξ), o(1) = 〈J ′(wk), wk〉+O(ξ),

whence

‖vk‖2 =

∫
R
b(x)|vk|p +O(ξ),(2.12)

‖wk‖2 =

∫
R
b(x)|wk|p +O(ξ).(2.13)

By (2.7) and (2.13), we deduce

c+ o(1) = J(unk) = J(vk) + J(wk) +O(ξ)

≥ p− 2

2p

∫
R

(
|ẇk|2 + λ|wk|2

)
+O(ξ).

(2.14)
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By (2.5) and (2.8), we infer∫
R
|wk|p ≥

∫
R
b(x)|wk|p +O(ξ) = ‖wk‖2 +O(ξ)

≥
∫
|x|≥r+1

(
|ẇk|2 + q(x)|wk|2

)
+O(ξ) ≥ 1

2
δ0

for ξ small and k large. Hence for ξ small,∫
R

(
|ẇk|2 + λ|wk|2

)
≥ m(λ)

(∫
R
|wk|p

)2/p

≥ m(λ)
(∫
R

(
|ẇk|2 + λ|wk|2

)
+O(ξ)

)2/p

,

and thus ∫
R

(
|ẇk|2 + λ|wk|2

)
≥ m(λ)

p/(p−2)
+

O(ξ)(∫
R |ẇk|2 + λ|wk|2

)2/(p−2)
.

Hence from (2.14), we infer

c+ o(1) ≥ p− 2

2p
m(λ)p/(p−2) +O(ξ)

for ξ small and k large. Letting k →∞ and ξ → 0 yields a contradiction and concludes
the proof.

3. Existence of asymmetric solution. Let us consider the C1-manifold

M =

{
u ∈ H1(R) :

∫
R
b(x)|u|p dx = 1

}
.

As J(u) = 1
2‖u‖2 − 1

p , for any u ∈ M , the minimization of J|M is equivalent to the
minimization of the functional I : M → R defined by

I(u) = ‖u‖2, u ∈M.

Lemma 3.1. Assume (2.1). Then we have the following.
(i) M is a closed C1-manifold of codimension one.
(ii) For any v ∈ H1(R) satisfying

∫
R b(x)|v|p dx 6= 0, there exists a unique α > 0

such that αv ∈M . Indeed,

α =

(∫
R
b(x)|v|p dx

)−1/p

and I(αv) =
‖v‖2(∫

R b(x)|v|p dx)2/p .
Proof. (i) Let f(u) =

∫
R b(x)|u|p dx, u ∈ H1(R). Observe that for any u ∈ M ,

f(u) = 1; hence

〈f ′(u), u〉 = −p
∫
R
b(x)|u|p dx = −p.(3.1)

As a consequence, f ′(u) 6= 0 if u ∈ M . This means that M is a C1−manifold of
codimension one. Trivially, it is closed by the continuity of the map u 7→ ∫

R b(x)|u|p dx.
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(ii) Straightforward computations show this part.
Lemma 3.2. Assume (H1), (B1), and (2.1). Then

inf
v∈M

I(v) < m(λ).

Proof. By [12, Theorem 5.5], it is known that the infimum in (2.3) is attained at
a symmetric function z ∈ H1(R) which is a solution of the problem

−ü(x) + λu(x) = |u(x)|p−2u(x) for x ∈ R,
lim|x|→∞ u(x) = 0.

In addition, by [7, 11], such a function is unique and it is given by

z(x) =

[
pλ

2 cosh2(p−2
2

√
λx)

]1/(p−2)

, x ∈ R.

For θ ∈ R, take the translate zθ = z(·+ θ) and consider, by (ii) of the preceding
lemma, the positive number αθ such that αθzθ ∈ M . The proof would be concluded
if we show that I(αθzθ) < m(λ) for some θ. In order to verify this, observe that from

hypotheses (H1) and (B1), the existence of the positive limit of the function z(x)e
√
λx

as x→ +∞ implies that for large θ,∫
R
h(x)z2

θdx ≥ C1e
−2
√
λθ and

∫
R
(1− b(x))|zθ|pdx ≤ C2e

−p√λθ

for some positive constants C1 and C2. Then,

I(αθzθ) =

∫
R
(|ż|2 + λz2) dx− c2

∫
R
h(x)z2

θ dx[∫
R
|z|p dx−

∫
R
(1− b(x))|zθ|p dx

]2/p

≤

∫
R
(|ż|2 + λz2) dx− c2C1e

−2
√
λθ

[∫
R
|z|p dx− C2e

−p√λθ
]2/p

=

∫
R
(|ż|2 + λz2) dx[∫
R
|z|p dx

]2/p

1− C3e
−2
√
λθ(

1− C4e
−p√λθ

)2/p

= m(λ)
1− C3e

−2
√
λθ(

1− C4e
−p√λθ

)2/p
.

Since p > 2, for large values of θ, one has (1−C3e
−2
√
λθ)/(1−C4e

−p√λθ)2/p < 1 and
consequently, I(αθzθ) < m(λ).

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. The solution of (1.1) is found as a minimizer of I con-

strained on M (up to a Lagrangian multiplier). In order to prove the existence of
such a minimizer, and taking into account Lemmas 3.1 and 3.2, it suffices to show that
I satisfies the Palais–Smale condition on the sublevel Mλ := {u ∈M : I(u) < m(λ)},
that is, if {un} is a sequence in M , such that
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(a) I(un)→ c,
(b) |I ′(un)(v)| ≤ εn‖v‖ for any v ∈ TunM , with εn → 0,

with c < m(λ), then {un} admits a convergent subsequence. Indeed, by (b), it follows
that there exists a sequence {θn} ⊂ R such that for any n ∈ N

−4un + q(x)un − θnb(x)|un|p−2un = o(1) in H−1.

Testing the previous equation in un gives

θn = I(un)− 〈o(1), un〉.

Therefore, setting vn(x) = I(un)1/(p−2) un, we plainly get

J ′(vn) = I(un)1/(p−2)o(1) = o(1) in H−1.

Moreover there results

J(vn) =
p− 2

2p
I(un)p/(p−2) = c′ + o(1)

with c′ < p−2
2p m(λ)p/(p−2). Therefore, by Lemma 2.1, it follows that {vn} is precom-

pact, and thus, taking into account (a), {un} is precompact and the Palais–Smale
condition holds.

Therefore, if v is a minimizer of I|M , setting u = I(v)1/(p−2)v, it results that u is

a solution of (1.1). Moreover J(u) = J
(
I(v)1/(p−2)v

)
< p−2

2p m(λ)p/(p−2).
Therefore, the proof would be concluded if we show that u is not symmetric for

λ > c2‖h‖∞. This is a consequence of the fact that every possible symmetric positive
solution u of (1.1) must have a level greater than p−2

2p m(λ)p/(p−2). Indeed, since

b(x) ≤ 0 for any x ∈ (−1, 1), for such u,

−ü(x) + (λ− c2h(x))u(x) ≤ 0 for x ∈ (−1, 1).

Hence, since λ > c2‖h‖∞, we get ü(x) ≥ (λ − c2h(x))u(x) ≥ 0 for any x ∈ (−1, 1).
Then u is convex in (−1, 1), and thus max {u(x) : x ∈ [−1, 1]} = u(−1) = u(1), with
u̇(1) > 0, by the Hopf lemma. This means that the maximum of u in all R is attained
in some point x0 ∈ R− [−1, 1].

Now, observing that supp h ⊂ [−1, 1], we obtain −ü(x) + λu(x) = u(x)p−1, for
|x| > 1, which together with the fact u̇(±x0) = 0 implies that

u(x) = z(|x| − x0) for any |x| ≥ x0.

As a consequence, since λ > c2‖h‖∞, and −z̈ + λz = zp−1, we obtain

2p

p− 2
J(u) =

∫
R

[|u̇|2 + (λ− c2h)u2
]
dx

≥
∫
R\[−x0,x0]

[|u̇|2 + (λ− c2h)u2
]
dx

=

∫
R\[−x0,x0]

|u̇|2 + λu2 dx

=

∫
R
|ż|2 + λz2 dx
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=

[ ∫
R |ż|2 + λz2 dx(∫

R |ż|2 + λz2 dx
)2/p

]p/(p−2)

≥
[∫
R |ż|2 + q(x)|z|2 dx(∫

R |z|p dx
)2/p

]p/(p−2)

= m(λ)p/(p−2),

which concludes the proof.
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